TW411549B - A method for shrinking memory cell size - Google Patents

A method for shrinking memory cell size Download PDF

Info

Publication number
TW411549B
TW411549B TW85109849A TW85109849A TW411549B TW 411549 B TW411549 B TW 411549B TW 85109849 A TW85109849 A TW 85109849A TW 85109849 A TW85109849 A TW 85109849A TW 411549 B TW411549 B TW 411549B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
dielectric
angstroms
manufacturing
Prior art date
Application number
TW85109849A
Other languages
Chinese (zh)
Inventor
Hung-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW85109849A priority Critical patent/TW411549B/en
Application granted granted Critical
Publication of TW411549B publication Critical patent/TW411549B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The invention relates to a manufacturing method for stack dynamic random access memory (Stack DRAM). The well-known chemical mechanical polishing (CMP) technique and photoresist erosion are employed. The production processes of depositing polysilicon and dielectric layers followed by etchback are carried out. The charge-storage node of a capacitor has trenches on the surface, making a substantial reduction of the planar circuit layout area possible without reducing capacitance of the memory cell. Therefore, the stacking density of memory cells can be increased and eventually result in a super high density Stack DRAM.

Description

411549 at B7 五'發明説明() 經濟部中央樣準局貝工消費合作社印装 1·發明之技術領域 本發明是關於積體電路之堆曼式動態隨機存取記億體之堆叠式電容器(Stack DRAM)的製造方法(ManufacturingMethod) β 2·發明背景 典型的r堆叠式動態隨機存取記億體_s之記憶元是在砂半導體晶圓上(Silicon Semiconductor Wafer )製造一個金氧半場效電晶體(Metal Oxide Semiconductor Field Effect Transistor ; MO$FET)與堆疊式電容器(Stack Capacitor),並利用所述 金 氧半場效電晶體』的源極(Source)來連接堆叠式電容器的電荷儲存電極(Storage Node),以形成動態隨機存取記億體的記億元(MemoiyCdl)然後,聚集數目龐大 的記億元成爲記億元陣列(Cell Array) ·另一方面,在記億元陣列的附近則有其它 電路圍繞,例如感測放大器(Sense Amplifier)等電路,這些外部電路,稱爲週邊電 路區域(Peripheral Circuit)。 最近幾年’動態隨機存取記億體的集稹密度Ontergrated Density)急劇增加, 現在已經進入記億元尺寸(Cell Size)約1.5平方微米(um2)之六仟四倍萬位元動 態隨機存取記搶體的量產(64MBit) ’日本的NEC半導體公司更在1995年宣稱 已經有十億位元動態隨機存取記億體的原型樣品問世(1GB DRAM Prototype) ·而 在國內新竹的【科學工業園區】(Science Based Industrial Park; SIPA) ’各大積體 離公司也已經進入設記準則0-35-0.5微米之一ff六佰萬位元動態隨機存取記億體 的量產,例如,臺灣積體電路製造公司(Taiwan Semiconductor Manufacturing Corporation ; tsmc)和世界先進積體電路公司(Vanguard InteraatioDal Semiconductor Coiporaticm ; VISC)之堆叠式動態隨機存取記億體,德碁半導體公司(TI-Acer)之 凹溝式動態隨撒ί取記億體(TrcnchDRAM) · 爲了達到動態隨機存取記億體記億元之高積集密度的目的,必需縮小記億體之 記尺寸 (Cell Size),然而,記觀內縣器尺寸的縮小鱗低電容値•使得 記億體的訊號/雜訊(SignalNoise ; S/N)比例降低·造成離誤判或離不穩 定等缺點•所以,爲了達成動態隨機存取記億體的高積集密度,必需尋求更鎌的 製程技術,以在降低記億元之平面電路佈局面積(Plannar Layout Area)的同時,能 維持或增加電容器之電容値· 爲了增加集積密度,傳統動態隨機存取記億體製程是在場效電晶體之上方或下 方之第三度空間形成電容器(Three Dimension Capacitor),以在有限的電路佈局面 積內增加電容器之電容値;在場效電晶體之上方形成之電容器稱爲堆疊武電容器 (Stacked Capacitor) ·在場效電晶體之下方形成之電容器稱爲凹溝式電容器 (Trenched Capacitor)-傳統堆璺式電容器增加電容的方法是增加電容器之下層電 極号的厚度,以增加電容器之表面稹(Surface Area),如圖一所示,以便在降低記 億元之平面面積(P丨annar Area)的同時,亦維持相同的電容値,然而,當記億元尺 寸不斷縮小時’僅靠增加電容器之下層電極板的厚度增加電容器電容是不實際的, 1 —- I I I - —^1 I I I —-"訂 線 (¾先閑讀背¾之注意事¾再填寫本頁〕 _ 本紙》J?·度適用中S國家標準(CNS ) A4说格^Τ210:Χ297公釐) 411549 五、發明説明() 必需尋求更尖端的製程技術來達到這個目地,例如,日本Hitachi公司的T. Kaga等 人在1994年IEDM第927頁也發表了一篇題目爲[A 0.29 um2 ΜΙΜ-CROWN Cell and process Technology for 1-Gigabit DRAMs】的論文,揭露了一種稱爲【MIM- CROWN】的先進電容器結構,這些堆疊式電容器結構均能大幅增加電容器的電容 値。 本發明揭露了一種新穎的堆叠式電容器的製造方法,可以大幅縮小電容器之平 面電路佈局面積,並同時提高電容器的電容,因此自g應用在超高密度之堆疊式動態 隨游取記憶體的鱗。 3·發明之簡要說明 本發明之主要目的是提供一種具有高電容之堆疊式電容器(Stacked Capacitor ) 的製造方法。 本發明之另一個目的是提供一種超高集積密度(PackingDensity)之堆疊式動 | 態隨機存取記億體的觀方法。 1 本發明之主要酶方法如下。 1 1 首先,以傳統標準製程在半導體晶圓上(Silicon Semiconductor Wafer )形成隔 訂 離電性活動區(Active Area)所需的場氧化層(Field Oxide) ·接著,在所述[電性 | 活動區】上製造【金氧半場^«晶體】與字語線CW—) 所述金氧半| 體包含有閘氧化層(GateOxide)、閘極(GateElectrode),側壁子(Spacer)與源 |411549 at B7 Five 'invention description () Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperative, 1. Technical Field of the Invention The present invention relates to stacked-type dynamic random access memory chip stack capacitors of integrated circuits ( Stack DRAM) Manufacturing Method β 2 · BACKGROUND OF THE INVENTION A typical r-stacked dynamic random access memory cell is a memory cell manufactured on a silicon semiconductor wafer (Silicon Semiconductor Wafer). A crystal (Metal Oxide Semiconductor Field Effect Transistor; MO $ FET) and a stacked capacitor (Stack Capacitor), and the source of the metal-oxygen half field effect transistor is used to connect the charge storage electrode (Storage) of the stacked capacitor Node) to form a dynamic random access memory of 100 million yuan (MemoiyCdl). Then, aggregate a large number of hundred million yuan to become a cell array. On the other hand, near the hundred million yuan array, There are other circuits around, such as the sense amplifier (Sense Amplifier) and other circuits, these external circuits are called peripheral circuit area (Peripheral Circuit). In recent years, the dynamic random access memory density of Onbitgrated Density has increased sharply, and now it has entered a cell size of approximately 1.5 square micrometers (um2), which is six to four million. Take note of mass production (64MBit) 'NEC Semiconductor Corporation of Japan announced in 1995 that a billion-bit dynamic random access memory prototype prototype was available (1GB DRAM Prototype). Science and Industrial Park] (Science Based Industrial Park; SIPA) 'The major integrated companies have also entered the mass production of 6 million digits of dynamic random access memory, which is one of the set guidelines 0-35-0.5 microns. For example, Taiwan Semiconductor Manufacturing Corporation (TSMC) and World Advanced Semiconductor Circuit Corporation (Vanguard InteraatioDal Semiconductor Coiporaticm; VISC) stacked dynamic random access memory billion, TI-Acer In order to achieve the purpose of dynamic random access to record the high accumulation density of 100 million yuan, it must be reduced Recording the size of the cell (Cell Size), however, the size of the internal scale of the watch is reduced and the capacitance is low. • The signal / noise (Signal Noise; S / N) ratio of the record is reduced. Disadvantages such as instability • Therefore, in order to achieve a high accumulation density of dynamic random access memory, it is necessary to find a more sickle process technology to reduce the Plannar Layout Area, which is worth hundreds of millions of dollars. Maintain or increase the capacitance of the capacitor. In order to increase the accumulation density, the traditional dynamic random access memory system is to form a capacitor (Three Dimension Capacitor) in the third degree space above or below the field effect transistor to limit the circuit size. Increase the capacitance of the capacitor within the layout area; the capacitor formed above the field effect transistor is called a stacked capacitor (Stacked Capacitor) · The capacitor formed below the field effect transistor is called a trenched capacitor (Trenched Capacitor)- The traditional way to increase the capacitance of a stacked capacitor is to increase the thickness of the electrode number below the capacitor to increase the surface area of the capacitor. As shown in Figure 1, in order to reduce the plane area (P 丨 annar Area) of 100 million yuan, while maintaining the same capacitance 値, however, when the size of 100 million yuan continues to shrink, 'only by increasing the electrode layer below the capacitor It is not practical to increase the thickness of the capacitor by 1 —- III-— ^ 1 III —- " Threading (¾Notes for reading first and back ¾Notes ¾ then fill out this page] _ This paper "J? · Degree Applicable S National Standard (CNS) A4 grid ^ T210: X297 mm) 411549 5. Invention Description () It is necessary to seek more sophisticated process technology to achieve this goal, for example, T. Kaga of Hitachi Corporation in Japan in 1994 IEDM A paper entitled [A 0.29 um2 ΜΙΜ-CROWN Cell and process Technology for 1-Gigabit DRAMs] was also published on page 927, revealing an advanced capacitor structure called [MIM-CROWN]. These stacked capacitor structures Can greatly increase the capacitance of the capacitor 値. The invention discloses a novel method for manufacturing a stacked capacitor, which can greatly reduce the planar circuit layout area of the capacitor and increase the capacitance of the capacitor at the same time. Therefore, it is applied to the scale of a super-high-density stacked dynamic random access memory . 3. Brief Description of the Invention The main object of the present invention is to provide a method for manufacturing a stacked capacitor (Stacked Capacitor) with high capacitance. Another object of the present invention is to provide a super-high packing density (PackingDensity) stacked dynamic random state memory access method. 1 The main enzyme method of the present invention is as follows. 1 1 First, a field oxide layer required for isolating an active area is formed on a semiconductor wafer (Silicon Semiconductor Wafer) using a conventional standard process. Then, in the [electricity | Active area] [metal oxide half field ^ «crystal] and word line CW—) The metal oxide half body includes gate oxide layer (GateOxide), gate electrode (GateElectrode), side wall (Spacer) and source |

極/汲極(Source/Drain) « ISource / Drain «I

I 接著,沈積一層【第一介電層】(FirstDielectric)和【第二介電層】(Second Dielectric),並平坦述【第二介®®】,接著,利用術(Lithography)在 線 電容器區域(Capacitor Region)制定源極接觸窗的光阻圖案(PhotoresistPattern), 1I Next, deposit a layer of [First Dielectric] and [Second Dielectric], and describe [Second Medium®], and then use Lithography to online the capacitor area ( Capacitor Region) PhotoresistPattern of source contact window, 1

再利用電漿_技術(PlasmaEtching)蝕去沒有被所述【光阻圖案】覆蓋住之所述 IThen use Plasma Etching to remove the I that is not covered by the [Photoresist Pattern] I

【第j電層】和【第二介電層】•以形成金氧半場效電晶體之源極接觸窗(齡 I 經濟部中央標準局員工消费合作社印装 n n n -n n 1 n I I n · (請先閲讀背面之注意事項再填窝本頁)[Jth electrical layer] and [second dielectric layer] • to form a source contact window for metal-oxygen half field effect transistors (age I printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs nnn -nn 1 n II n · ( (Please read the notes on the back before filling in this page)

Contact),未來,電容器之電荷儲存電極(StorageNode)將透過所述[源極接觸 I 窗】跟金氧半場效電晶體之源極(Source)作電性接觸- 1Contact). In the future, the storage node of the capacitor will make electrical contact with the source of the metal-oxide half field effect transistor through the [Source contact I window]-1

接著,沈積一層[攙雜的第一複晶矽層】(FirstDopedPolysilicon)和【第三介 INext, a layer of [Doped Polysilicon] (First Doped Polysilicon) and

電層】(Third Dielectric),並且,所述【攙雜的第一複晶矽層】塡滿所述【源極接 I[Third Dielectric], and the [doped first polycrystalline silicon layer] is filled with the [source electrode I

觸窗】。然後,利用微影技術在所述電容器區域之【第三介電層】正上方形成光阻 I 圖案,再利用習知的光阻浸軸技術(Photoresist Erosion)側向飽去一部份的辦述【光 1Touch the window]. Then, a photoresist I pattern is formed directly above the [third dielectric layer] in the capacitor region by using the lithography technology, and then a part of the photoresist Erosion technology is used to laterally saturate a part of the solution. Description [Light 1

阻圖案】,使得所述【光阻圖案】之尺寸小於所述【源極接觸窗】。然後,利用電 IResistance pattern], so that the size of the [photoresist pattern] is smaller than the [source contact window]. Then, using electricity I

榮飽刻技術單向性的(AnisotropicaUy)蝕去沒有被所述[光阻圓案】覆蓋住之所述 IRong-Feng Engraving Technology AnisotropicaUy Etched the I that is not covered by the [Photoresistance Case] I

【第三介電層】,以形成【第三介電層柱】(ThirdDidectricPillar),所述電發餓刻 I[Third Dielectric Layer] to form [ThirdDidectricPillar], the electric hair is engraved I

終止於所述【攙雜的第一複晶矽層】。 I 本紙张尺度近用中国國家標率(CNS ) A4说格(2丨0 X 297公楚) 經濟命申央橾车局貝工消费合作社印裝 411549 A7 B7 五、發明说明() 去除所述【光阻圖案】後•接著,沈積一層【攙雜的第二複晶矽層】(Second Doped Polysilicon),然後,利用電紫触刻技術對所述【攙雜的第二複晶矽層】進行 【單向性的回蝕刻】(AnisotmpicaUyEtchback),所述【單向性的回蝕刻】蝕去所 述【第二介電層]表面之所述【攙雜的第二複晶矽層】和所述【攙雜的第一複晶矽 層】,亦即所述【單向性的回蝕刻】終止於所述【第二介電層】之表面'以在所述 【第三介電層細柱】的側面形成第二複晶砂層側壁子(Second Polysilicon Spacer )。 接著,利用氫氟酸化學溶液或電獎蝕刻技術去除所述【第三介電層細柱】,於 是,剩餘之所述【攙雜的第一複晶矽層】和【第二複晶矽層側壁子】構成了電容器 的電荷瓣電極(Storage Node),所述【電荷儲存電極】表面有凹溝形成,並以所 述【源極接觸窗】作爲軸心,所以在大幅縮小電容器之平面電路佈局面積的情況 下,仍能同時提高電容器的電容•亦即,在高集積密度時仍能提高電容器的電容。 接著,在所述【電荷儲存電極】表面沉積一層厚度極薄的電容器介電層(Capacitor dielectric)和【攙雜的第三複晶矽層】,再利用微影技術和蝕刻技術鈾去所述【電 容器介電層】和所述【攙雜的第三複晶矽層】,以形成電容器的上層電極(Top Plate).具有超高電容之電容器的堆疊式動態隨機存取記億體於焉完成。 4.圖示的簡要說明 圖一是堆疊式動態隨機存取記憶體之先前技藝(Prior Art)的製程剖面示意圖;圖 二到圖十二是本發明之實施例的製程剖面示意圖(Process Cross Sectional View ) » 5.發明之實施例 首先,在晶格方向(100)之P型砂半導體晶圓2上(Silicon Semiconductor Wafer)上形成場氧化層4,所述【場氧化層12】通常是以熱氧化技術(Thermal Oxidation)形成,其厚度介於3000埃到5500埃之間,作爲隔離電性元件之用》 然後,在所述晶格方向(100)之P型矽半導體晶圓2之表面形成【金氧半場效電 晶體】*所述金氧半場效電晶體包含有閛氧化層6 (Gate Oxide)、閘極8 (Gate Electrode)、絕緣層側壁子 12 (Insulator Spacer)和源極/汲極 14 (Source/Terminated in the [doped first polycrystalline silicon layer]. I The size of this paper is near China National Standards (CNS) A4 scale (2 丨 0 X 297 Gongchu) Economic order Shenyang Municipal Bureau of Automobile Industry Co., Ltd. Printed by the Bayer Consumer Cooperative 411549 A7 B7 5. Description of the invention () Remove the description [Photoresist pattern] Afterwards, a layer of [Second Doped Polysilicon] (Second Doped Polysilicon) is deposited, and then the [Doped Second Polysilicon layer] is performed using electro-violet touch engraving technology Unidirectional etch-back] (AnisotmpicaUyEtchback), the [unidirectional etch-back] etched away the [doped second polycrystalline silicon layer] and [ The first doped polysilicon layer], that is, the "unidirectional etch-back" ends on the surface of the "second dielectric layer" so as to A second polysilicon spacer (Second Polysilicon Spacer) is formed on the side surface. Next, the [third dielectric layer thin column] is removed by using a hydrofluoric acid chemical solution or an electro-etching technique, so that the remaining [doped first polycrystalline silicon layer] and [second polycrystalline silicon layer] are left. Side wall] constitutes a capacitor charge electrode (Storage Node) of the capacitor. The surface of the [charge storage electrode] is formed with a groove, and the [source contact window] is used as an axis. Therefore, the planar circuit of the capacitor is greatly reduced. In the case of the layout area, the capacitance of the capacitor can be increased at the same time. That is, the capacitance of the capacitor can be increased at a high accumulation density. Next, a very thin Capacitor dielectric and a doped third polycrystalline silicon layer are deposited on the surface of the [charge storage electrode], and then lithography and etching techniques are used to remove the [ The capacitor dielectric layer] and the [doped third polycrystalline silicon layer] are used to form a capacitor's top plate. A stacked dynamic random access capacitor with ultra-high capacitance is recorded in a single body. 4. Brief description of the diagram FIG. 1 is a process cross-sectional schematic diagram of a prior art of the stacked dynamic random access memory (Prior Art); FIG. 2 to FIG. 12 are process cross-section schematic diagrams of an embodiment of the present invention. View) »5. Embodiments of the invention First, a field oxide layer 4 is formed on a P-type sand semiconductor wafer 2 (Silicon Semiconductor Wafer) in a lattice direction (100), and the field oxide layer 12 is usually thermal Oxidation technology (Thermal Oxidation) is formed, and its thickness is between 3000 Angstroms and 5500 Angstroms, which is used to isolate electrical components. Then, the P-type silicon semiconductor wafer 2 is formed on the surface of the lattice direction (100). [Gold Oxygen Half-Effect Transistor] * The metal oxide half field-effect transistor includes a gadolinium oxide layer 6 (Gate Oxide), a gate electrode 8 (Gate Electrode), an insulating layer sidewall 12 (Insulator Spacer), and a source / sink Pole 14 (Source /

Drain),所述『源極/汲極14』含有N-淡摻雜區域(Lightly Doped Region)和 N+ 濃慘雜區域(Heavily Doped Source/Drain),如圖二所示。 所述【閘氧化層6】是熱氧化(Thermal Oxidized)所述【P型矽半導體晶圓 10】之表面而成,其厚度介於50到200埃之間。所述【鬧極8】則一般是由低壓 化學氣相沉積法(Low Pressure Chemical Vapor Deposition : LPCVD)形成之複晶砂 8 (Polysilicoii)所構成,其厚度介於1000到3000埃之間。接著,以低壓化學氣 相沉積法形成二氧化矽10 (Silicon Dioxide),所述【二氧化矽10】通常是以低壓 化學氣相沉積法形成,其反應氣體是四已基矽酸鹽(TetraEthOxySilane : TEOS : Si(C2H50)4),N20和〇2,反應溫度是720 °C,反應壓力介於200到300 tnUi- 本紙張尺皮適用中囡0家樣卒(CNS ) 格(210X297公蹵)' ]!—-------裝-----Ί---:订-------線 (請先閲讀背*之注意事項再填寫本頁) ______ Μ濟也中央樣率局貝工消费合作社印装 411549 A7 _____B7 五、發明説明() ton·之間,其厚度介於500到1200埃之間,再利用微影技術與蝕刻技術 (Lithography and Etching)軸去所述【二氧化砂1〇】和【複晶砂8】’以形成所述 【金氧半場效電晶體】之閘極結構(Gate Structure)。接著*利用離子佈値技術 (Ion Implantation)來形成『源極/汲極14』的N-淡慘雜區域(Lightly Doped Region),其離子種類是碟原子(PM),其離子佈値劑量介於1E13到3E14原子 /平方公分之間•離子佈値能量則介於20到50 kev之間,如圖二所示。 接著,沉積一層【絕緣層12】(Insulator),並對所述【絕緣層12】進行單 向性的回蝕刻•以在所述【閘極8】之二側形成【絕緣層側壁子12】,而所述【絕 緣層12】通常是利用低壓化學氣相沉積法形成之二氧化矽(Silicon Dioxide),其反 應氣體是四已基矽酸鹽(TetraEthOxySilane ; TEOS : Si(C2H50)4)、N2〇 和 , 反應溫度是720 °C,反應壓力介於200到300 mili-torr之間,其厚度介於500到 1500埃之間。接著,接著,利用離子佈値技術來形成r源極/汲極14_s的濃摻雜區 域(Heavily Doped Region),其離子種類是砷原子(A#),其離子佈値劑量介於 1E15到3E16原子/平方公分之間,離子佈値能量則介於30到90 kev之間,以 完成金氧半場效電晶體的製造,如圖二所示。 現在參考圖三。沈積一層『第一介電層18j (First Dielectric)和Γ第二介電 層20』(Second Dielectric),並平坦化(Planarized)所述r第二介電層20』,如 圖三所示。所述『第一介電層18』通常是利用低壓化學氣相沉積法形成之氮化砂 (Silicon Nitride),其反應氣體是SiCl2H2和NH3,反應溫度介於700 eC到 800 °C之間,反應壓力介於200到300 milUorr之間,其厚度介於500到1500 埃之間。所述F第二介電層20』則一般是利用化學氣相沉積法(Chemical Vapor Deposition ; CVD)形成之硼璃薄膜(BoroPhosphoSilicateGlass ; BPSG)或 璃薄膜(PhosphoSiiicate Glass ; PSG) 1其厚度介於3000到10000埃之間。所述 【平坦化】處理,通常是利用習知的化學機械式磨光技術(Chemical Mechanical Polishing : CMP)。 接著,利用微影技術在電容器區域(Capacitor Region)形成源極接觸窗的光阻 圖案(Photoresist Pattern),再利用電獎飽刻技術(Plasma Etching)餘去沒有被所述 【光阻圓案】覆蓋住之所述【第一介電層I8】和【第二介電層2〇】 ' 以形成金氧 半場效電晶體之源極接觸窗21 (Node Contact),如圖四所示•未來•電容器之電 荷儲存電極(Storage Node)將透過所述【源極接觸窗21】跟所述金氧半場效電晶 體之【源極/汲極M】作電性接觸。對所述【第一介電層18】和【第二介電層 20】之【電漿蝕刻】可以是磁場增強式活性離子式電漿蝕刻(Magnetic Enhanced Reactive Ion Etching ; MERIE)或電子迴旋共振電獎融刻(Electron Cyclotron Resonance : ECR)或傳統的活性離子式電锻軸刻技術(Reactive Ion Etching ; RIE),在次微米積體電路領域,通常是使用【磁場增強式活性離子式電漿蝕刻】, 其電漿反應氣體一般是CF4、CHF3和Ar等氣體。 本紙张尺71逋用中®囡家榇牟(CNS )人4規_格(2丨0父297公莰) I ------- ί .—裝 I L.---L--一-訂 -----線 (請先阽讀背面之注意事項再填寫本頁) _ 411549 A7 B7 較 濟 部― 中 央 车 局 貝 工 洧 合 作 杜 印 裝 五、發明说明() 接著•沈積一層【薄的攙雜的第一複晶矽層22】(Thin First Doped Polysilicon)和【第三介電層24】(Third Dielectric),所述【薄的攙雜的第一複晶 矽層22】並塡滿所述【源極接觸窗21】,如圖五所示。所述【薄的攙雜的第一複 晶矽層22】通常是利用同步磷原子攙雜(Phosphorus In-S1tu Doped)之低壓化學氣 相沉積法形成,其反應氣體是PH3 ' SiH4與N2的混合氣體*反應溫度介於520 到580 °C之間,其厚度介於1〇〇〇到4000埃之間。所述【第三介電層24】可以 是利用大氣壓化學氣相沉積法(Atmosphere Pressure Chemical Vapor Deposition ; APCVD)形成之攙雜的二氧化矽(Doped Silicon Dioxide)或無攙雜的二氧化矽 (Undoped Silicon Dioxide),也可以是携雜的自旋塗佈式玻璃膜(Spin-On-Glass : SOG)或無攙雜的自旋塗佈式玻璃膜(Spin-On-Glass ; S0G),其厚度介於3000 到8000埃之間,其目地僅是提供一個具有高度的階梯*其材質的緻密性並非關 鍵。 接著,利用微影技術在電容器區域(Capacitor Region)形成光阻圖案26,所 述【光阻圖案26】可以利用所述【源極接觸窗21】之逆圖案光罩(Reverse-Tone Mask)來形成,如圖六所示。然後•利用習知的光阻浸蝕技術(Photoresist Erosion)將所述【光阻圖案26】浸蝕於氧氣電漿中,以側向蝕去一部份的所述【光 阻圖案26】使成爲【光阻圖案26A】,使得所述【光阻圖案26A】之尺寸小於所 述【源極接觸窗】,如圖七所示。通常,所述【源極接觸窗21】之尺寸是稹體電路 上的最小尺寸(Minimum Dimension) ’也是光學微影技術的解析極限(Lithography Resolution Limit) ·因此,所述【光阻圖案26A】之尺寸將超過光學微影技術的解 析極限’故能形成超高的記憶元集積密度(Packing Density),這是本發明之關鍵。 接著,再利用電駿飽刻技術單向性的蝕去(Anisotropical Etch)沒有顯述【光阻圖 案26A】覆蓋住之所述【第三介電層24】,使成爲【第三介電層柱24A】(Tliird Dielectric Pillar),所述電漿蝕刻並終止於所述【薄的讎的第一複晶矽層22】, 如圖八所示,去除所述【光阻圖案26A】後,如圖九所示。對所述【第三介電層 24】之『單向性蝕刻j可以是磁場增強式活性離子式電漿蝕刻(Magnetic Enhanced Reactive Ion Etching : MERIE)或電子迴旋共振電獎独刻(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電紫飽刻技術(Reactive Ion Etching : RIE),在次微米技術領域,通常是使用【磁場增強式活性離子式電漿蝕刻】’其電 漿反應氣體一般是CF4、CHF3和Ar等氣體。 現在參考圖十》接著,沈積一層【攙雜的第二複晶矽層28】(Second Doped Po丨ysilicon),如圖十所示。然後,利用電漿蝕刻技術對所述【攙雜的第二複晶矽層 28】進行【單向性的回蝕刻】,所述【單向性的回蝕刻】蝕去所述【第二介電層 20】表面之所述【攙雜的第二複晶矽層28】和所述【攙雜的第一複晶矽層22】, 亦即所述【單向性的回蝕刻】終止於所述【第二介電層20】之表面,以在所述【第 三介電層柱24A】的側面形成第二複晶矽層側壁子28A (Second Pdysilicon Spacer),如圖十一所示。所述【撞雜的第二複晶矽層28】通常也是利用同步磷原 子攙雜(Phosphorus In-situ Doped)之低壓化學氣相沉積法形成,其反應氣體是 PH3、SiH4與N2的混合氣體,反應溫度介於520到580 °C.之間,其厚度介於 1000到3000埃之間。對所述【攙雜的第二複晶矽層28】之【單向性的回蝕 本紙乐尺度適用中a國家搵申-(CNS )八4说格(2丨0X:297公釐> L—_________裝--·,--.--訂------線 (锖先«讀背面之注^•項再填窝本頁) ___ 411549 A7 B7 五、發明説明() 刻],可以利用F磁場增強式活性離子式電漿蝕刻j或『電子迴旋共振電漿蝕刻』 或傳統的『活性離子式電漿蝕刻技術』,在次微米積體電路領域,通常是使用r磁 場增強式活性離子式電漿蝕刻』,其電漿反應氣體一般是CC14、Cl2和HBr等鹵 素氣體。 請注意’所述『第二複晶矽層側壁子28A_|緊靠著超過光學微影技術之解析極 限的所述【第三介電層柱24A】,故能大幅縮小記憶元面積,以大幅增加記億體的 集積密度*製造超高密度的動態隨機存取記憶體。 接著,利用氫氟酸化學溶液或電漿蝕刻技術去除所述【第三介電層柱24A】’ 於是,剩餘之所述【薄的攙雜的第一複晶矽層22A】和【第二複晶矽層側壁子 28A】構成了電容器的電荷儲存電極(Storage Node),所述【電荷儲存電極】表面 有凹溝形成,並以所述t源極接觸窗21】作爲軸心,如圖十二所示,所以在大幅縮 小電容器之平面電路佈局面積的情況下,仍能同時提高電容器的電容,亦即,在高 集積密度時仍能提高電容器的電容,故能維持記憶體電路的訊號/雜訊(Signal Noise : S/N)比例不致降低’不致造成電路誤判或電路不穩定等缺點。 最後,在所述*電荷儲存電極JI之表面形成一層厚度極薄的電容器介電層 (Capacitor Dielectric)和 r三複晶砂層』(Third Doped Polysilicon),再 利用微影技術和蝕刻技術蝕去所述『電容器介電層』和所述*攙雜的第三複晶矽 層j,以形成電容器的上層電極(Top Plate),一種具有超高集積密度的堆疊式動 態隨機存取記億體於焉完成* 所述f電容器介電層j通常是由氧化氮化矽(Oxynitride)、氮化矽和二氧化砂 藉由下述方法形成"首先,在溫度介於850°C到950°C之間時熱氧化由複晶矽構 成之所述【電荷儲存電極】*以形成厚度介於40埃到200埃之間的【二氧化 矽】:接著,在溫度介於650°C到750°C之間時以低壓化學氣相沉積法形成厚度 介於4〇埃到60埃之間的【氮化矽】;最後,在溫度介於850°C到95(TC之間 時氧化所述【氮化砂】,以形成厚度介於20埃到50埃之間的【氧化氮化矽】。 所述【電容器介電層】亦可由Ta2〇5材料組成。 -----------^-- - ~ (请先Μ讀背面之注意事項再填窵本頁) 線 經濟t中央楳準局貝工消背合作社印装 本紙張尺度逍用中家榡车(CNS } 见格(210X297公釐>Drain), the "source / drain 14" contains an N-lightly doped region (Lightly Doped Region) and an N + heavily doped source / drain, as shown in Figure 2. The gate oxide layer 6 is formed by thermally oxidizing the surface of the [P-type silicon semiconductor wafer 10], and the thickness is between 50 and 200 angstroms. [Alarm 8] is generally composed of Polysilicoii 8 (Low Pressure Chemical Vapor Deposition: LPCVD), and its thickness is between 1000 and 3000 Angstroms. Next, a silicon dioxide 10 (Silicon Dioxide) is formed by a low-pressure chemical vapor deposition method. The silicon dioxide 10 is usually formed by a low-pressure chemical vapor deposition method, and the reaction gas is TetraEthOxySilane. : TEOS: Si (C2H50) 4), N20 and 〇2, the reaction temperature is 720 ° C, and the reaction pressure is between 200 and 300 tnUi- The paper scale is suitable for 0 (CNS) grid (210X297 cm) ) ']! --------- install ----- Ί ---: order ------- line (please read the notes on the back * before filling this page) ______ Μ 济 也Printed by the Central Sample Rate Bureau Shellfish Consumer Cooperative Co., Ltd. 411549 A7 _____B7 V. Description of the invention () ton ·, its thickness is between 500 and 1200 angstroms, and then the lithography and etching technology (Lithography and Etching) axis is used to The [Sand Dioxide 10] and the [Crystalline Sand 8] 'form a gate structure of the [gold-oxygen half field effect transistor]. Then * Ion Implantation is used to form the N-Lightly Doped Region of "Source / Drain 14". Its ion type is disk atom (PM). Between 1E13 and 3E14 atoms / cm² • The ion cloth energy is between 20 and 50 kev, as shown in Figure 2. Next, a layer of [Insulator] is deposited, and the [Insulator layer 12] is etched back unidirectionally to form an [Insulator side wall 12] on the two sides of the [Gate 8] , And the [insulating layer 12] is usually silicon dioxide (Silicon Dioxide) formed by a low-pressure chemical vapor deposition method, and the reaction gas is tetrahexyl silicate (TetraEthOxySilane; TEOS: Si (C2H50) 4), The reaction temperature is 720 ° C, the reaction pressure is between 200 and 300 mili-torr, and the thickness is between 500 and 1500 angstroms. Then, the ion doping technique is used to form a heavily doped region (source dove region) of r source / drain 14_s. The ion species is arsenic (A #), and the ion dosing dose ranges from 1E15 to 3E16. / Cm2, the ion cloth energy is between 30 and 90 kev to complete the fabrication of metal-oxygen half field effect transistors, as shown in Figure 2. Refer now to Figure III. A layer of "first dielectric layer 18j (First Dielectric) and Γ second dielectric layer 20" (Second Dielectric) is deposited, and the second dielectric layer 20 "is planarized, as shown in FIG. The "first dielectric layer 18" is usually a silicon nitride (Silicon Nitride) formed by a low-pressure chemical vapor deposition method. The reaction gas is SiCl2H2 and NH3, and the reaction temperature is between 700 eC and 800 ° C. The reaction pressure is between 200 and 300 milUorr and its thickness is between 500 and 1500 Angstroms. The F second dielectric layer 20 ′ is generally a BoroPhosphoSilicateGlass (BPSG) or a glass film (PhosphoSiiicate Glass; PSG) formed by a chemical vapor deposition method (Chemical Vapor Deposition; CVD). Between 3000 and 10,000 Angstroms. The [flattening] treatment is usually performed by a conventional chemical mechanical polishing (CMP) technique. Next, the photoresist pattern of the source contact window is formed in the capacitor region by lithography technology, and then the Plasma Etching technology is used. The first dielectric layer I8 and the second dielectric layer 20 are covered to form the source contact window 21 (Node Contact) of the metal-oxide half field-effect transistor, as shown in FIG. 4 • Future • The storage node of the capacitor will make electrical contact with the [source / drain M] of the metal-oxide half field effect transistor through the [source contact window 21]. [Plasma Etching] for the [First Dielectric Layer 18] and the [Second Dielectric Layer 20] may be Magnetic Enhanced Reactive Ion Etching (MERIE) or electron cyclotron resonance Electron Cyclotron Resonance (ECR) or traditional Reactive Ion Etching (RIE) technology is used in the field of sub-micron integrated circuits. Etching], the plasma reaction gas is generally CF4, CHF3 and Ar and other gases. This paper ruler 71 is in use ® 囡 家 榇 牟 (CNS) 4 rules _ grid (2 丨 0 father 297 male) I ------- ί .— 装 I L .--- L-- First-order ----- line (please read the precautions on the back before filling in this page) _ 411549 A7 B7 Ministry of Economic Affairs-Central Bureau of Automotive Engineering Cooperate with Du Yinzhuang 5. Description of the invention () Then deposit [Thin First Doped Polysilicon] and [Third Dielectric] [Thin Doped Polysilicon 22] and Fill in the [source contact window 21], as shown in Figure 5. The [thin doped first polycrystalline silicon layer 22] is generally formed by a low-pressure chemical vapor deposition method using synchronous phosphorus atom doping (Phosphorus In-S1tu Doped), and the reaction gas is a mixed gas of PH3 'SiH4 and N2 * The reaction temperature is between 520 and 580 ° C, and its thickness is between 1000 and 4000 Angstroms. The third dielectric layer 24 may be doped silicon dioxide or undoped silicon dioxide formed using an atmospheric pressure chemical vapor deposition (APCVD) method. Dioxide), which can also be a spin-on-glass (SOG) or a spin-on-glass (S0G) with a thickness between Between 3000 and 8000 Angstroms, the purpose is only to provide a step with a high degree * The compactness of the material is not critical. Then, a photoresist pattern 26 is formed in the capacitor region by using a photolithography technology. The [photoresist pattern 26] can use the reverse-tone mask of the [source contact window 21] to Formation, as shown in Figure 6. Then • Use the conventional Photoresist Erosion technology to etch the [Photoresist pattern 26] in an oxygen plasma, and etch away a part of the [Photoresist pattern 26] to become [ Photoresist pattern 26A], so that the size of the photoresist pattern 26A is smaller than the source contact window, as shown in FIG. Generally, the size of the [source contact window 21] is the minimum dimension on the body circuit. It is also the Lithography Resolution Limit of the optical lithography technology. Therefore, the [Photoresist pattern 26A] The size will exceed the analytical limit of optical lithography technology, so it can form an ultra-high memory cell packing density (Packing Density), which is the key of the present invention. Next, the unidirectional etch (Anisotropical Etch) using Dianjun full-etching technology did not show the [Third Dielectric Layer 24] covered by the [Photoresist Pattern 26A] to make it a [Third Dielectric Layer Column 24A] (Tliird Dielectric Pillar), the plasma is etched and terminated at the [thin first crystalline silicon layer 22 of ytterbium], as shown in FIG. 8, after removing the photoresist pattern 26A, As shown in Figure 9. The "unidirectional etching j" of the "third dielectric layer 24" may be magnetic enhanced reactive ion plasma etching (Magnetic Enhanced Reactive Ion Etching: MERIE) or an electron cyclotron resonance electromagnetism (Electron Cyclotron Resonance) ECR) or traditional Reactive Ion Etching (RIE) technology. In the sub-micron technology field, [Magnetic field enhanced reactive ion plasma etching] is usually used. 'The plasma reaction gas is generally CF4, CHF3 and Ar. Now refer to FIG. 10. Next, a layer of [Second Doped Posilicon] is deposited, as shown in FIG. Then, using the plasma etching technology, the [doped second polycrystalline silicon layer 28] is subjected to [unidirectional etch-back], and the [unidirectional etch-back] etches away the [second dielectric Layer 20] The [doped second polycrystalline silicon layer 28] and the [doped first polycrystalline silicon layer 22] on the surface, that is, the [unidirectional etch-back] ends at the [ On the surface of the second dielectric layer 20, a second polycrystalline silicon layer sidewall 28A (Second Pdysilicon Spacer) is formed on the side of the third dielectric layer pillar 24A, as shown in FIG. 11. [Hybrid second polycrystalline silicon layer 28] is usually formed by a low-pressure chemical vapor deposition method using synchronous phosphorus atom doping (Phosphorus In-situ Doped), and the reaction gas is a mixed gas of PH3, SiH4, and N2. The reaction temperature is between 520 and 580 ° C., And its thickness is between 1000 and 3000 Angstroms. For the [doped second polycrystalline silicon layer 28], [unidirectional etchback of the paper, the scale of the paper is suitable for a country's application- (CNS) 8-4 grid (2 丨 0X: 297 mm > L —_________ Install-·, --.-- Order ------ line (锖 «read the note on the back ^ • items and then fill in the page on this page) ___ 411549 A7 B7 V. Description of the invention () Carved] , You can use the F magnetic field enhanced active ion plasma etching j or "electron cyclotron resonance plasma etching" or the traditional "active ion plasma etching technology", in the field of sub-micron integrated circuit, usually using r magnetic field enhancement Plasma reactive ion etching ", the plasma reaction gas is generally CC14, Cl2 and HBr and other halogen gases. Please pay attention to the" the second polycrystalline silicon layer sidewall 28A_ | next to the optical lithography technology Analyze the limit of the [Third Dielectric Layer Column 24A], so that the area of the memory cell can be greatly reduced, and the accumulation density of the billionth body can be greatly increased * to produce ultra-high density dynamic random access memory. Next, using hydrogen fluoride Acid chemical solution or plasma etching technology to remove the [third dielectric layer pillar 24A] ' The doped first polycrystalline silicon layer 22A] and the second polycrystalline silicon layer sidewall 28A constitute a charge storage electrode of the capacitor. The surface of the [charge storage electrode] is formed with grooves, and is formed by the grooves. The t-source contact window 21] is used as the axis, as shown in Fig. 12, so that the capacitor's capacitance can still be increased at the same time when the planar circuit layout area of the capacitor is greatly reduced, that is, at high accumulation density It can increase the capacitance of the capacitor, so that the signal / noise (S / N) ratio of the memory circuit is not reduced, and it will not cause shortcomings such as misjudgment or instability of the circuit. A very thin capacitor dielectric layer (Capacitor Dielectric) and a triple doped polysilicon layer are formed on the surface, and then the lithography and etching technology are used to remove the "capacitor dielectric layer" and the * Doped with a third compound silicon layer j to form the capacitor's top plate, a stacked dynamic random access memory with a very high accumulation density is completed in 焉 * said f The dielectric layer j of the container is usually formed of silicon oxide nitride (Oxynitride), silicon nitride and sand dioxide by the following method. First, thermal oxidation is performed at a temperature between 850 ° C and 950 ° C. The [charge storage electrode] made of polycrystalline silicon * to form [silicon dioxide] with a thickness between 40 angstroms and 200 angstroms: then, at a low pressure at a temperature between 650 ° C and 750 ° C Chemical vapor deposition forms [silicon nitride] with a thickness between 40 angstroms and 60 angstroms; finally, the [nitride nitride] is oxidized at a temperature between 850 ° C and 95 ° C to [Silicon Nitride] with a thickness between 20 and 50 angstroms is formed. The [capacitor dielectric layer] may also be composed of a Ta205 material. ----------- ^--~ (Please read the precautions on the back before filling in this page) Online Economy Chinese home car (CNS) see the grid (210X297 mm >

Claims (1)

錳難A8 师 Β84U54S 認 六、申請專利範圍 經濟部中央搮牟局貝工消費合作社坪装 1 ·--種積體電路之F複晶矽結構』的製作方法,係包含下列步驟: 在半導體晶圓上(Semiconductor Wafer)形成【第一介電層】(First Dielectric )和【第二介電層】(Second Dielectric ),並平坦化所述【第二介電 層】: 独去所述【第一介電層】和【第二介電層】以形成洞孔(Hole),未來,導電 體(Conductor)將透過所述【洞孔】跟所述『半導體晶圓』上的電性元件作接觸; 形成【第一複晶矽層】(First Polysilicon )和【第三介電層】(Third Dielectric),所述【第--複晶矽層】並塡滿所述【洞孔】; 利用微影技術茌所述【洞孔】上方形成光阻圖案(Photoresist Pattern); 側向蝕去(Lateral Etch) —部份的所述【光阻圖案】,使得所述【光阻圖案】 之尺寸小於所述【洞孔】的尺寸: 利用蝕刻技術單向性的蝕去(Anisotmpical Etch)沒有被所述【光阻圖案】覆蓋 住之所述【第三介電層】以形成【第三介電層柱】(Third Dielectric Pillar),所述單 向性的蝕刻並終止於所述【第一複晶砂層】; 沈積一層【第二複晶砂層】(SecondPolysilicon); 利用蝕刻技術對所述【第二複晶矽層】進行【單向性的回蝕刻】,所述【單向 性的回蝕刻】蝕去所述【第二介電層】表面之所述【第二複晶矽層】和所述【第一 複晶矽層】,亦即所述【單向性的回蝕刻】終止於所述【第二介電層】之表面,以 在所述【第三介電層柱】的側面形成第二複晶矽層側壁子(Second Polysi丨icon Spacer); 去除所述【第三介電層柱】。 2 ·如申請專利範圍第1項所述之製作方法,其中所述【半導體晶圓】含有電性元 件。 3 -如申請專利範圍第1項所述之製作方法,其中所述【第一介電層】是由氮化矽 (Silicon Nitride)組成。 4 _如申請專利範圍第1項所述之製作方法,其中所述【第二介電層】是由二氧化 砂(Silicon Dioxide)組成。 5 如申請專利範圍第1項所述之製作方法,其中所述【第三介電層】是由是由二 氧化砂組成。 6 _如申請專利範圍第i項所述之製作方法,其中所述【第一複晶砍層】是以【化 學氣相沉積法】形成,tt厚度介於1000埃到4000埃之間。 7.如^請專利範圍第】項所述之製作方法,其中所述【第二複晶矽層】是以【化 學氣相沉積法】形成,其原度介於1〇〇〇埃到4000埃之間。 (請先Μ讀背面之注意事項再填寫本頁) 本紙张尺度逍用中HS家榡牟(CNS ) Α4洗格(2丨0><297公度) 錳難A8 师 Β84U54S 認 六、申請專利範圍 經濟部中央搮牟局貝工消費合作社坪装 1 ·--種積體電路之F複晶矽結構』的製作方法,係包含下列步驟: 在半導體晶圓上(Semiconductor Wafer)形成【第一介電層】(First Dielectric )和【第二介電層】(Second Dielectric ),並平坦化所述【第二介電 層】: 独去所述【第一介電層】和【第二介電層】以形成洞孔(Hole),未來,導電 體(Conductor)將透過所述【洞孔】跟所述『半導體晶圓』上的電性元件作接觸; 形成【第一複晶矽層】(First Polysilicon )和【第三介電層】(Third Dielectric),所述【第--複晶矽層】並塡滿所述【洞孔】; 利用微影技術茌所述【洞孔】上方形成光阻圖案(Photoresist Pattern); 側向蝕去(Lateral Etch) —部份的所述【光阻圖案】,使得所述【光阻圖案】 之尺寸小於所述【洞孔】的尺寸: 利用蝕刻技術單向性的蝕去(Anisotmpical Etch)沒有被所述【光阻圖案】覆蓋 住之所述【第三介電層】以形成【第三介電層柱】(Third Dielectric Pillar),所述單 向性的蝕刻並終止於所述【第一複晶砂層】; 沈積一層【第二複晶砂層】(SecondPolysilicon); 利用蝕刻技術對所述【第二複晶矽層】進行【單向性的回蝕刻】,所述【單向 性的回蝕刻】蝕去所述【第二介電層】表面之所述【第二複晶矽層】和所述【第一 複晶矽層】,亦即所述【單向性的回蝕刻】終止於所述【第二介電層】之表面,以 在所述【第三介電層柱】的側面形成第二複晶矽層側壁子(Second Polysi丨icon Spacer); 去除所述【第三介電層柱】。 2 ·如申請專利範圍第1項所述之製作方法,其中所述【半導體晶圓】含有電性元 件。 3 -如申請專利範圍第1項所述之製作方法,其中所述【第一介電層】是由氮化矽 (Silicon Nitride)組成。 4 _如申請專利範圍第1項所述之製作方法,其中所述【第二介電層】是由二氧化 砂(Silicon Dioxide)組成。 5 如申請專利範圍第1項所述之製作方法,其中所述【第三介電層】是由是由二 氧化砂組成。 6 _如申請專利範圍第i項所述之製作方法,其中所述【第一複晶砍層】是以【化 學氣相沉積法】形成,tt厚度介於1000埃到4000埃之間。 7.如^請專利範圍第】項所述之製作方法,其中所述【第二複晶矽層】是以【化 學氣相沉積法】形成,其原度介於1〇〇〇埃到4000埃之間。 (請先Μ讀背面之注意事項再填寫本頁) 本紙张尺度逍用中HS家榡牟(CNS ) Α4洗格(2丨0><297公度) 411549 AS B8 C8 D8 六、申請專利範園 8,如申請專利範圍^ 1項^述之製作方法,其中所述【單向性的回蝕刻】是指磁 場增強式活性離子式電發蝕刻(Magnetic Enhanced Reactive Ion Etching : MERiE)或電子迴旋共振電漿触刻(Electron Cyclotron Resonance : ECR)或傳 統的活性離子式電漿蝕刻技術(Reactive Ion Etching ; Rffi)等電漿蝕刻技術。 M濟部中夾揉率局員工消费合作社印«. 9 一種動態隨機存取記億體(DRAM)之記憶元的製作方法,係包含下列步驟: 在矽半導體晶圓上(Silicon Semiconductor Wafer)形成『金氧半場效電晶體』 (MOSFET)和字語線(Word Line ); 形成【第一介電層】(First Dielectric )和【第二介電Μ】(Second Dielectric),並平坦化所述【第二介電層】: 蝕去所述【第一介電層】和【第二介電層】以形成f源極接觸窗』(Node Contact),未來,導電體(Conductor)將透過所述『源極接觸窗』跟『金氧半場效 電晶體』作電性接觸; 形成【第一複晶砂層】(First Polysilicon )和【第二介電層】(Third Dielectric),所述【第一複晶矽層】並塡滿所述『源極接觸窗』; 利用微影技術在所述F源極接觸窗』上方形成光阻圖案(Photoresist Pattern); 側向蝕去(Lateral Etch) —部份的所述【光阻圖案】,使得所述【光阻圖案】 之尺寸小於所述F源極接觸窗』的尺寸; 利用蝕刻技術單向性的蝕去(AnisotmpicalEtch)沒有被所述【光阻圖案】覆蓋 住之所述【第三介電層】以形成【第三介電層柱】(Third Die丨ectric Pillar),所述單 向性的蝕刻並終止於所述【第一複晶矽層】: 形成【第二複晶砂層】(&〇〇11(1?〇丨3^1丨(:〇11); 利用鈾刻技術對所述【第二複晶矽層】進行【單向性的回触刻】,所述【單向 性的回蝕刻】蝕去所述【第二介電層】表面之所述【第二複晶砂層】和所述【第一 複晶矽層】,亦即所述【單向性的回蝕刻】終止於所述【第二介電層】之表面,以 在所述【第三介電層柱】的側面形成第二複晶砂層側壁子(Second Poly silicon Spacer); 去除所述【第三介電層柱】,形成由剩餘之所述【第一複晶矽層】和【第二複 晶矽層】組成之電容器的電荷儲存電極(StorageNode); 在所述【電荷儲存電極】表面沉積一層厚度極薄的電容器介電層(Capacitor Dielectric)和【第三複晶矽層】,再利用微影技術和蝕刻技術蝕去所述【電容器介 電層】和所述【第三複晶矽曆】,以形成電容器的上層電極Γ「〇Ρ Plate )。 10 ·如申請專利範圍第9項所述之製作方法,其中所述『金氧半場效電品體』含有 鬧氧化層(Gate Oxide)、鬧極(Gate Electrode),側壁子(Spacer)與源極/ 汲極(Source/Drain)。 11 ·如申請專利範圍第9項所述之製作方法,其中所述【第-介電屑】是由氮化矽 (SiliconNitride)組成,厚度則介於800埃到1500埃之問。 :------裝---:一1.丨訂-------線 (請先閲讀背面之注意事項再填寫本頁) 本紙张尺度適用中因®家樣率(CNS > A4*t格(210X297公釐> 411549 g D8 六、申請專利範圍 12 -如申請專利範阐第9項所述之製作方法,其中所述【第二介電層】是由二氧化 砍(Silicon Dioxide )組成,其厚度介於3000埃到9000埃之間。 13 .如申請專利範圍第9項所述之製作方法,其中所述【第三介電層】是由是由氮 化砂組成,其厚度介於1〇〇〇埃到;Ϊ000埃之間。 Μ,如申請^利範圍第9項所述之製作方法,其中所述【第一複晶矽層】是以【低 壓化學氣相沉積法】形成,其厚度介於1000埃到4000埃之間。 15 -如申請專利範圍第9項所述之製作方法,其中所述【第二複晶矽層】是以【低 壓化學汽相沈積法】形成,其厚度介於1000埃到4000埃之問。 16 ·如申請專利範圍第9項所述之製作方法’其中所述【第三複晶矽層】是以【低 壓化學汽相沈積法】形成,tt厚度介於1000埃到3〇〇〇埃之間。 17 ·如中請專^利範圍第9項所述之製作方法,其中所述【單向性的冋蝕刻】是指磁 場增強式活性離子式爾驳触刻(Magnetic Enhanced Reactive丨on Etching ; MER1E)或電子迴旋共振龜策触刻(Electron Cyclotron Resonance ; ECR )或傳 統的活性離子式電駿蝕刻技術(Reactive Ion Etching ; RIE)等電漿蝕刻技術- 18 ·$[]申請專利範圍第9項所述之製作方法,其中所述【電容器介電層】是由氧化 氮化矽(Oxynitride)、氮化矽和二氧化矽所紺成,或由Ta205所組成。 19 ·如申請專利範圍第9項所述之製作方法,其中所述之【去除所述第三介電層 柱】時’也可以進一步去除所述【第二介電層】。 ----;---;-----裝----: ~~ 訂線 (倩先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社作装 本紙浪尺及適用中®因家栳率(CNS ) A4*ll格(210X297公釐)Manganese Difficulty A8 Division B84U54S Recognition VI. Application for Patent Scope The Ministry of Economic Affairs Central Ministry of Economy and Trade Co., Ltd. Shellfish Consumer Cooperative Co., Ltd. 1-"F-Crystalline Silicon Structure of Integrated Circuits" The production method includes the following steps: [Semiconductor Wafer] forms [First Dielectric] and [Second Dielectric] and planarizes the [Second Dielectric]: A dielectric layer] and a [second dielectric layer] to form a hole. In the future, a conductor will be used as an electrical component on the "semiconductor wafer" through the [hole]. Contact; forming [First Polysilicon] and [Third Dielectric], said [S—polysilicon layer] and filling the [hole]; using Lithography technology: Photoresist pattern is formed above the [hole]; Lateral Etch — part of the [photoresist pattern] makes the size of the [photoresist pattern] Size smaller than the [hole]: unidirectional using etching technology Anisotmpical Etch The third dielectric layer not covered by the photoresist pattern to form a Third Dielectric Pillar, the unidirectional etching And terminating in the [first polycrystalline sand layer]; depositing a [second polycrystalline sand layer] (SecondPolysilicon); using etching technology to perform [unidirectional etch-back] on the [second polycrystalline silicon layer], The [unidirectional etch-back] etches away the [second polycrystalline silicon layer] and the [first polycrystalline silicon layer] on the surface of the [second dielectric layer], that is, the [second polycrystalline silicon layer] Unidirectional etch-back is terminated on the surface of the second dielectric layer to form a second polycrystalline silicon layer sidewall on the side of the third dielectric layer pillar. ); Removing the [third dielectric layer pillar]. 2 · The manufacturing method described in item 1 of the scope of patent application, wherein the [semiconductor wafer] contains electrical components. 3-The manufacturing method according to item 1 of the scope of patent application, wherein the [first dielectric layer] is composed of Silicon Nitride. 4 _ The manufacturing method described in item 1 of the scope of patent application, wherein the [second dielectric layer] is composed of silicon dioxide (Silicon Dioxide). 5 The manufacturing method according to item 1 of the scope of patent application, wherein the [third dielectric layer] is composed of sand dioxide. 6 _ The manufacturing method described in item i of the patent application range, wherein the [first polycrystalline layer] is formed by a [chemical vapor deposition method], and the thickness of tt is between 1000 angstroms and 4000 angstroms. 7. The manufacturing method according to item ^ of the patent scope, wherein the second polycrystalline silicon layer is formed by a chemical vapor deposition method, and the original degree is between 1000 Angstroms and 4000 Angstroms. Between Egypt. (Please read the precautions on the back before filling in this page) HS papers (CNS) Α4 washable (2 丨 0 > < 297 degrees) Manganese Difficulty A8 Division B84U54S for paper size application Scope of patent: The manufacturing method of the “F-Crystalline Silicon Structure of Integrated Circuits” by the Central Ministry of Economic Affairs of the Ministry of Economic Affairs, Shellfish Consumer Cooperatives, includes the following steps: Forming a semiconductor wafer (Semiconductor Wafer) [A dielectric layer] (First Dielectric) and [second dielectric layer] (Second Dielectric), and planarizing the [second dielectric layer]: the [first dielectric layer] and the [second dielectric layer] are removed separately Dielectric layer] to form a hole. In the future, a conductor will contact the electrical components on the "semiconductor wafer" through the "hole"; Layer] (First Polysilicon) and [Third Dielectric], the [first-complex silicon layer] and filling the [hole]; using the lithography technology to [the hole] 】 Photoresist Pattern is formed on the top; Lateral Etch —Part The [photoresist pattern] makes the size of the [photoresist pattern] smaller than the size of the [hole]: unidirectional etching (Anisotmpical Etch) using etching technology is not affected by the [photoresist pattern] The [third dielectric layer] is covered to form a [Third Dielectric Pillar], and the unidirectional etching is terminated at the [first polycrystalline sand layer]; a layer is deposited [Second polycrystalline sand layer] (SecondPolysilicon); using etching technology to perform [unidirectional etchback] on the [second polycrystalline silicon layer], the [unidirectional etchback] etch away the [ [Second Dielectric Layer] The second polycrystalline silicon layer and the first polycrystalline silicon layer on the surface, that is, the unidirectional etch-back ends at the second dielectric layer. A second polycrystalline silicon layer sidewall (Second Polysilicon Spacer) on the side of the third dielectric layer pillar; and removing the third dielectric layer pillar. 2 · The manufacturing method described in item 1 of the scope of patent application, wherein the [semiconductor wafer] contains electrical components. 3-The manufacturing method according to item 1 of the scope of patent application, wherein the [first dielectric layer] is composed of Silicon Nitride. 4 _ The manufacturing method described in item 1 of the scope of patent application, wherein the [second dielectric layer] is composed of silicon dioxide (Silicon Dioxide). 5 The manufacturing method according to item 1 of the scope of patent application, wherein the [third dielectric layer] is composed of sand dioxide. 6 _ The manufacturing method described in item i of the patent application range, wherein the [first polycrystalline layer] is formed by a [chemical vapor deposition method], and the thickness of tt is between 1000 angstroms and 4000 angstroms. 7. The manufacturing method according to item ^ of the patent scope, wherein the second polycrystalline silicon layer is formed by a chemical vapor deposition method, and the original degree is between 1000 Angstroms and 4000 Angstroms. Between Egypt. (Please read the notes on the back before filling in this page) HS papers (CNS) Α4 washable (2 丨 0 > < 297 degrees) in paper size 411549 AS B8 C8 D8 VI. Patent Application Fan Yuan 8, as described in the patent application scope ^ 1 ^ production method, wherein the [unidirectional etch back] refers to Magnetic Enhanced Reactive Ion Etching (MERiE) or electronics Plasma etching techniques such as Electron Cyclotron Resonance (ECR) or traditional reactive ion plasma etching (Reactive Ion Etching; Rffi). The Ministry of Economic Affairs and Economics Bureau ’s Consumer Cooperatives ’Seal«. 9 A method for making memory cells of dynamic random access memory (DRAM), including the following steps: Forming on a Silicon Semiconductor Wafer "Metal Oxide Half Field Effect Transistor" (MOSFET) and Word Line; forming [First Dielectric] and [Second Dielectric] and planarizing the [Second Dielectric Layer]: The [First Dielectric Layer] and the [Second Dielectric Layer] are etched away to form an f-source contact window. In the future, a conductor will pass through The "source contact window" is in electrical contact with the "metal oxide half field effect transistor"; [First Polysilicon] and [Third Dielectric] are formed. A polycrystalline silicon layer] and fills the "source contact window"; a photoresist pattern is formed over the F source contact window "using lithography technology; lateral etch (Lateral Etch) — Part of the [Photoresist pattern] makes the [Photoresist pattern The size is smaller than the size of the F-source contact window; the unidirectional etching (AnisotmpicalEtch) using the etching technology is not covered by the [photoresist pattern] and the [third dielectric layer] is formed to form [ Third Dielectric Layer Pillar], the unidirectional etching ends in the [first polycrystalline silicon layer]: [second polycrystalline sand layer] (& 〇〇11 (1? 〇 丨 3 ^ 1 丨 (: 〇11); using the uranium etching technique to perform the [unidirectional etchback] on the [second polycrystalline silicon layer], and the [unidirectional etchback] [Erase the second polycrystalline sand layer] and the first polycrystalline silicon layer on the surface of the second dielectric layer, that is, the unidirectional etchback ends at Describe the surface of the [second dielectric layer] to form a second polysilicon spacer on the side of the [third dielectric layer pillar]; remove the [third dielectric layer pillar] ], Forming a charge storage electrode (StorageNode) of a capacitor composed of the remaining [first polycrystalline silicon layer] and [second polycrystalline silicon layer]; The [Charge Storage Electrode] deposits a very thin capacitor dielectric layer (Capacitor Dielectric) and [third polycrystalline silicon layer] on the surface, and then uses lithography technology and etching technology to remove the [Capacitor Dielectric Layer] and [The third polycrystalline silicon calendar] to form the upper electrode of the capacitor Γ ”〇 Plate” 10. The manufacturing method according to item 9 of the scope of patent application, wherein the “metal oxide half field effect electrical product body” 』Contains Gate Oxide, Gate Electrode, Spacer, and Source / Drain. 11 · The manufacturing method as described in item 9 of the scope of the patent application, wherein the [-dielectric chip] is composed of Silicon Nitride and the thickness is between 800 Angstroms and 1500 Angstroms. : ------ install ---: one. 丨 order ------- line (please read the precautions on the back before filling this page) This paper size is applicable to ZhongYin® Home Sample Rate (CNS > A4 * t grid (210X297 mm > 411549 g D8 VI. Patent application scope 12-The manufacturing method described in item 9 of the patent application model, wherein the [second dielectric layer] is made of dioxide It is made of Silicon Dioxide, and its thickness is between 3000 Angstroms and 9000 Angstroms. 13. The manufacturing method described in item 9 of the scope of patent application, wherein the [third dielectric layer] is made of nitride Sand composition, the thickness of which is between 1000 angstroms and 1,000 angstroms. M, the manufacturing method described in the ninth scope of the application, wherein the [first polycrystalline silicon layer] is [low pressure] Chemical Vapor Deposition] is formed with a thickness between 1000 Angstroms and 4000 Angstroms. 15-The manufacturing method described in item 9 of the scope of patent application, wherein the [Second Polycrystalline Silicon Layer] is a low pressure Chemical Vapor Deposition] is formed with a thickness between 1000 Angstroms and 4000 Angstroms. 16 · The production method described in item 9 of the scope of patent application 'wherein [The third polycrystalline silicon layer] is formed by a [low-pressure chemical vapor deposition method], and the thickness of tt is between 1000 angstroms and 3,000 angstroms. 17 · As described in item 9 of the patent scope The manufacturing method, wherein the [unidirectional holmium etching] refers to a magnetic enhanced active ion-type etch (Magnetic Enhanced Reactive on Etching; MER1E) or an electron cyclotron resonance etch (Electron Cyclotron Resonance; ECR) ) Or traditional reactive ion etching technology (Reactive Ion Etching; RIE) and other plasma etching technology-18 · $ [] application for the manufacturing method described in item 9 of the patent scope, wherein the [capacitor dielectric layer] It is composed of silicon oxide nitride (Oxynitride), silicon nitride, and silicon dioxide, or it is composed of Ta205. 19 · The manufacturing method as described in item 9 of the scope of patent application, wherein [ The third dielectric layer pillar] can also be further removed from the "second dielectric layer". ----; ---; --------------- (Please read the notes on the back and fill in this page.) This paper-foot waves and applicable in ® because the home lao rate (CNS) A4 * ll grid (210X297 mm)
TW85109849A 1996-08-12 1996-08-12 A method for shrinking memory cell size TW411549B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85109849A TW411549B (en) 1996-08-12 1996-08-12 A method for shrinking memory cell size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85109849A TW411549B (en) 1996-08-12 1996-08-12 A method for shrinking memory cell size

Publications (1)

Publication Number Publication Date
TW411549B true TW411549B (en) 2000-11-11

Family

ID=21625377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85109849A TW411549B (en) 1996-08-12 1996-08-12 A method for shrinking memory cell size

Country Status (1)

Country Link
TW (1) TW411549B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665371B (en) * 2016-02-03 2019-07-11 睿能創意公司 Vehicle, locker of vehice and operation method of locker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665371B (en) * 2016-02-03 2019-07-11 睿能創意公司 Vehicle, locker of vehice and operation method of locker

Similar Documents

Publication Publication Date Title
US5591664A (en) Method of increasing the capacitance area in DRAM stacked capacitors using a simplified process
US5726086A (en) Method of making self-aligned cylindrical capacitor structure of stack DRAMS
JP2820065B2 (en) Method for manufacturing semiconductor device
TW411549B (en) A method for shrinking memory cell size
JP2819498B2 (en) Manufacturing method of DRAM having case type capacitor having wrinkles on both sides
US6071790A (en) Method of crown capacitor rounding by oxidant dipping process
JP2921563B2 (en) Method of forming memory cell using corrugated oxide spacer
TW314647B (en) Manufacturing method of memory with decreased memory cell layout area
JP2921564B2 (en) Method of manufacturing case-type capacitor having wrinkles on a single side
JP2898929B2 (en) Manufacturing method of stacked DRAM
TW297157B (en) Method of fabricating super high-density memory circuit
TW388991B (en) Method for fabricating DRAM capacitor
TW301775B (en) Forming method of multiple cone capacitor
TW293946B (en) The manufacturing method of capacitor with improved DRAM
TW319896B (en) Manufacturing method of memory device capacitor by chemical mechanical polishing technology
TW320760B (en) Manufacturing method of integrated circuit stack capacitor with deep trench
TW319897B (en) Manufacturing method of stack capacitor
TW311259B (en) Manufacturing method of buried contact of dynamic random access memory
TW392336B (en) Method for manufacturing capacitor with ultra high capacitance and ultra small size
TW315508B (en) Manufacturing method of self-aligned cylindrical capacitor
TW311255B (en) Improved manufacturing method of stack capacitor
TW298677B (en) Fabrication method of cup-shaped capacitors for DRAM
TW311281B (en) Method of forming memory
TW317018B (en) Manufacturing method of high-density random access memory
TW321786B (en) Production method for memory component with grating capacitor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent