TW314647B - Manufacturing method of memory with decreased memory cell layout area - Google Patents

Manufacturing method of memory with decreased memory cell layout area Download PDF

Info

Publication number
TW314647B
TW314647B TW85104748A TW85104748A TW314647B TW 314647 B TW314647 B TW 314647B TW 85104748 A TW85104748 A TW 85104748A TW 85104748 A TW85104748 A TW 85104748A TW 314647 B TW314647 B TW 314647B
Authority
TW
Taiwan
Prior art keywords
polycrystalline silicon
layer
dielectric layer
polysilicon
dielectric
Prior art date
Application number
TW85104748A
Other languages
Chinese (zh)
Inventor
Horng-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW85104748A priority Critical patent/TW314647B/en
Application granted granted Critical
Publication of TW314647B publication Critical patent/TW314647B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A method of forming polysilicon structure of integrated circuit comprises of the following steps: (1) on semiconductor wafer forming first dielectric, second dielectric and third dielectric, and planarizing the above second dielectric; (2) by lithography and etch technique etching the above first dielectric, second dielectric and third dielectric to form hole; (3) forming one first polysilicon, which filling the above hole; (4) by etch technique conducting etchback to the above first polysilicon, in which the above etch etches the above first polysilicon except the above hole region, and only in the above hole reserving the above first polysilicon to form first polysilicon plug; (5) oxidizing one portion of the above first polysilicon plug in the above hole to form polysilicon oxide, in which one portion of the above polysilicon oxide leaves in the above hole, one portion extrudes the above third dielectric; (6) removing the above third dielectric to expose the above polysilicon oxide and one portion of left the above first polysilicon plug; (7) forming one second polysilicon; (8) by etch technique conducting etchback to the above second polysilicon, so as to form second polysilicon spacer on the above polysilicon oxide and exposed side of the above first polysilicon plug; (9) removing the above polysilicon oxide, leaving the above first polysilicon and second polysilicon spacer to become shell shape with the above hole as symmetric center.

Description

經濟部中央標準局負工消費合作社印31 S14647 at B7 五、發明説明() 1 _發明之技術領域 本發明是關於積體電路之動態隨機存取記憶體(DRAM )的製造方法 (Manufacturing Method ),特別是有關堆疊式動態隨機存取記憶體(stack DRAM ) 的製造方法。 ΐ 2·發明背景 臺灣目前已經成爲積體電路王國,1995年新竹科學工業園區(Science Based Industry Park)產値超過新臺幣1000億,而新竹科學工業園區主要的積體電路產品 是金氧半場效電晶體積體電路(MOSFET 1C)。傳統製造金氧半場效電晶體積體電 路之方法是在矽半導體晶圓上(Silicon Semiconductor Wafer)形成隔離『金氧半場 效電晶體』所需要的場氧化層(Field Oxide),然後,再製造金氧半場效電晶體 (MOSFET),並可分爲P通道金氧半場效電晶體(PMOSFET)、N通道金氧半 場效電晶體(NMOSFET)和互補式金氧半場效電晶體(CMOSFET) » 爲了增加集積密度,傳統動態隨機存取記憶體製程是在場效電晶體之上方或下 方之第三度空間形成電容器(Three Dimension Capacitor),以在有限的電路佈局面 積內增加電容器之電容値;在場效電晶體之上方形成之電容器稱爲堆疊式電容器 (Stacked Capacitor),在場效電晶體之下方形成之電容器稱爲凹溝式電容器 (Trenched Capacitor)。例如,德碁半導體公司(TI-Acer)之動態隨機存取記憶體 是採用『凹溝式電容器』,『世界先進積體電路公司』之動態隨機存取記憶體是採 用『堆疊式電容器』,力晶半導體公司、聯華電子公司、華邦電子公司、臺灣積體 電路製造公司和南亞集團之動態隨機存取記憶體產品也都是採用『堆疊式電容 器』。 典型的動態隨機存取記憶體是在矽半導體晶圓上(Silicon Semiconductor Wafer) 製造一個金氧宇場效電晶體(Metal Oxide Semiconductor Field Effect Transistor ; MOSFET)與電容器(Capacitor),並利用所述金氧半場效電晶體的源極(Source) 來連接電容器的電荷儲存電極(StorageNode)以形成動態隨機存取記憶體的記憶元 (Memory Cell)。數目龐大的記憶元聚集成爲記憶元陣列(Cell Array)。另一方 面,在記憶元陣列的附近則有其它電路圍繞,例如感測放大器(Sense Amplifier)等 電路,這些外部電路,稱爲週邊電路區域(Peripheral Circuit)。因此,要達到動態 隨機存取記憶體之高積集密度的目的,必需縮小記憶體之記億元的尺寸(Memory Cell Size),然而電容器尺寸的縮小會降低電容値,使得記憶體電路的訊號/雜訊 (Signal Noise ; S/N)比例降低,造成電路誤判或電路不穩定等缺點。職是之故,爲 了達成高積集密度的動態隨機存取記憶體,必需尋找更尖端的製程技術,以在降低 記憶元之平面電路佈局面積之同時(Plannar Layout Area),能夠維持或增加電容器 之電容値。 ' 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X297公釐) (諳先聞讀背面之注意事項再填寫本頁)Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Consumer Cooperative Society 31 S14647 at B7 V. Description of invention () 1 _Technical field of the invention The present invention relates to a manufacturing method of dynamic random access memory (DRAM) of integrated circuits (Manufacturing Method) , In particular, the manufacturing method of stacked dynamic random access memory (stack DRAM). Ι 2. Background of the invention Taiwan has now become the kingdom of integrated circuits. In 1995, the Hsinchu Science Industrial Park (Science Based Industry Park) produced more than NT $ 100 billion, and the main integrated circuit product of the Hsinchu Science Industrial Park was the gold oxygen half field. Effective crystal volume circuit (MOSFET 1C). The traditional method of manufacturing a metal oxide half field effect transistor volume body circuit is to form a field oxide layer (Field Oxide) needed to isolate the "metal oxide half field effect transistor" on a silicon semiconductor wafer, and then remanufacture Metal Oxide Half Field Effect Transistor (MOSFET), and can be divided into P Channel Gold Oxide Half Field Effect Transistor (PMOSFET), N Channel Gold Oxide Half Field Effect Transistor (NMOSFET) and Complementary Gold Oxide Half Field Effect Transistor (CMOSFET) » In order to increase the accumulation density, the traditional dynamic random access memory system process is to form a capacitor (Three Dimension Capacitor) in the third degree space above or below the field effect transistor to increase the capacitance value of the capacitor within a limited circuit layout area; The capacitor formed above the field effect transistor is called a stacked capacitor (Stacked Capacitor), and the capacitor formed below the field effect transistor is called a trenched capacitor (Trenched Capacitor). For example, TI-Acer's dynamic random access memory uses "recessed capacitors", and "World Advanced Integrated Circuits" dynamic random access memory uses "stacked capacitors". The dynamic random access memory products of Powerchip Semiconductor Corporation, Lianhua Electronics Corporation, Winbond Electronics Corporation, Taiwan Semiconductor Manufacturing Corporation and Nanya Group also all use "stacked capacitors". A typical dynamic random access memory is to manufacture a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and a capacitor (Capacitor) on a silicon semiconductor wafer (Silicon Semiconductor Wafer), and use the gold The source of the oxygen half field effect transistor (Source) is connected to the charge storage electrode (StorageNode) of the capacitor to form a memory cell of the dynamic random access memory. A huge number of memory cells are gathered into a cell array (Cell Array). On the other hand, there are other circuits around the memory cell array, such as Sense Amplifier and other circuits. These external circuits are called Peripheral Circuits. Therefore, in order to achieve the purpose of high accumulation density of dynamic random access memory, it is necessary to reduce the memory cell size of the memory (memory cell size). However, the reduction in the size of the capacitor will reduce the capacitance value, making the signal of the memory circuit / Noise (Signal Noise; S / N) ratio is reduced, resulting in shortcomings such as circuit misjudgment or circuit instability. The reason is that in order to achieve a high accumulation density of dynamic random access memory, it is necessary to find more advanced process technology to reduce the planar circuit layout area of the memory cell (Plannar Layout Area), can maintain or increase the capacitor The capacitance value. 'This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) (know the precautions on the back and then fill in this page)

ΟΪ4647 A7 B7 五、發明説明() 最近幾年來,積體電路製程技術進步神速,動態隨機存取記憶體的集積密度 (.Packing Density)急劇增加,目前已進入記憶元尺寸1.5平方微米(um2)之六仟 四佰萬位元的量產,日本半導體公司NEC在1995年宣稱已經有十億位元動態隨機 存取記億體(1GB DRAM)的原型樣品問世。而在國內的【新竹科學工業園區】 •各大積體電路公司也已經進入設記準則0.4到0.45微米之一仟六佰萬位元動態g機 存取記憶體的量產階段,例如,『世界先進積體電路公司』、『臺灣積體電路製造 公司』和F德碁半導體公司』都已經具備這種能力。 傳統堆疊式電容器增加電容的方法是增加電容器之下層電極板(Storage Node ) 的厚度,以增加電容器之表面積(Surface Area),如圖一所示,其中,28是由複晶 矽組成之電容器之『電荷儲存電極』(StorageNode),以期望在降低記憶元之平面 電路佈局面積的同時,亦維持相同的電容値,然而,當記億元尺寸不斷縮小時,僅 靠增加電容器宅下層電極板的厚度增加電容器電容是不可能,必需尋求更尖端的製 程技術來達到這個目地。日本日立公司(Hitachi)的T.Kaga等人在1994年IEDM 第 927 頁發表了一篇題目爲【A 0.29 um2 ΜΙΜ-CROWN Cell and process Technology for 1-Gigabit DRAMs】的論文,揭露了一種稱爲【ΜΙΜ-CROWN】的先進堆疊式電 容器結構,這些電容器結構均能大幅增加電容器的電容値。 本發明揭露了一種新穎的堆疊式電容器的製造方法,以金氧半場效電晶體之源 極接觸窗(Node Contact)爲中心來製造堆疊式電容器以形成『殼型電荷儲存電極』 (Storage Node with Shell Shape ; SNSS ),可以大幅縮小電容器之平面電路佈局面 積和大幅提高電容器的電容,因此能應用在超高集積密度之堆疊式動態隨機存取記 憶體產品的製造。 3·發明之簡要說明 本發明的主要目的是提供一種能降低記憶元佈局面積之堆疊式電容器(Stacked Capacitor)的製造方法》 經濟部中央標準局負工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 本發明的另一個目的是提供一種高集積密度(Packing Density)之堆疊式動態 隨機存取記憶體的製造方法。 茲簡述本發明之主要方法如下。 首先,以標準製程在砂半導體晶圓上(Silicon Semiconductor Wafer)形成隔離 『金氧半場效電晶體』所需要的場氧化層(Field Oxide),接著,形成『金氧半場效 電晶體』,而在形成『金氧半場效電晶體』閘極(Gate Electrode)之同時也形成複 晶砂字語線(Polysilicon Wordline)。 _ . -本纸張又度適用中國國家揉準(CNS ) A4規格(210X297公釐) 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明() 接著,沈積1『第一介電層』(FirstDielectric)、『第二介電層』(SeC〇nd Djelectric)和『第三介電層』(ThirdDielectric),並平坦化所述『第二介電層』。 接著’利用微影技術電漿蝕刻技術在電容器區域(Capacitor Region)蝕去所述r第 —介電層』、『第二介電層』和『第三介電層』以形成源極接觸窗(N〇de Contact) ’未來,堆疊式電容器之電荷儲存電極(StorageNode)將透過所述『源_ 接觸窗』跟金氧半場效電晶體之源極作電性接觸。 然後’沈積一層『攙雜的第一複晶砂層』(First Doped Polysilicon ),所述『攙 雜的第一複晶矽層』塡滿所述『源極接觸窗』。接著,利用電漿蝕刻技術對所述 『攙雜的第一複晶砂層』進行單向性的回触刻(Anisotropically Etchback),所述 『單向性的回蝕刻』蝕去所述『源極接觸窗』區域以外之所述『携雜的第一複晶矽 層』’而僅在所述『源極接觸窗』內保留有所述『攙雜的第一複晶矽層』以形成 『第一複晶砂層問柱』(First Polysilicon Plug )。 接著’利用商溫熱氧化技術(Thermal Oxidation)氧化一部份所述『源極接觸 窗』內所述『第一複晶砂閃柱』,以形成複晶砂氧化層(PolysiliconOxide),所述 『複晶矽氧化層』一部份留在所述『源極接觸窗』內,一部份則突出所述『第三介 電層』,並且’所述『複晶矽氧化層』之底部是剩餘之所述『第一複晶矽閂柱』, 也就是說’所述『複晶矽氧化層』和剩餘之所述『第一複晶矽閂柱』構成複層結構 (Stacked Layer) 〇 然後’去除所述『第三介電層』以露出所述『複晶矽氧化層』和一部份的剩餘 之所述『第一複晶矽層閂柱』,並接著沈積一層『攙雜的第二複晶矽層』(Second Doped Polysilicon)。然後,利用電漿蝕刻技術對所述『攙雜的第二複晶矽層』進行 『單向性的回蝕刻』,所述『單向性的回蝕刻』蝕去所述【第二介電層】表面之所 述『攙雜的第二複晶矽層』和所述『複晶矽氧化層』之上表面之所述『攙雜的第二 複晶矽層』,也就是說,所述『單向性的回蝕刻』終止於所述『第二介電層』之表 面和所述『複晶矽氧化層』之上表面,以在所述『複晶矽氧化層』和露出之所述 ’第一複晶砂層閃柱』的側面形成第二複晶砂側壁子(Second Polysilicon Spacer)。 接著,利用化學蝕刻液或電漿蝕刻技術去除所述『複晶矽氧化層』,於是,剩 餘之所述『攙雜的第一複晶矽層』和『第二複晶矽側壁子』構成了電容器的電荷儲 存電極(StorageNode)。所述『電荷儲存電極』係以『源極接觸窗』爲對稱中心, 並呈『殼型』(Shell Shape ),故所述『殼型電荷儲存電極』(Storage Node with Shell Shape ; SNSS)可以大幅縮小電容器之平面電路佈局面積和大幅提高電容器的 電容,提高動態隨機存取記憶體的集積密度。 最後,在所述『殼型電荷儲存電極』的表面形成一層電容器介電層-(Capacitor Dielectric)和『攙雜的第三複晶矽層』(Third Doped Polysilicon),再利用微影技術 和蝕刻技術蝕去所述『電容器介電層』和『攙雜的第三複晶矽層』,以形成電容器 的上層電極(Top Plate),一種具有高集積密度之堆疊式動態隨機存取記億體於焉 完成。 本纸張尺度適用中國國家標率(CNS > A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)ΟΪ4647 A7 B7 V. Description of the invention () In recent years, the technology of integrated circuit manufacturing technology has advanced rapidly, and the packing density (.Packing Density) of dynamic random access memory has increased dramatically. It has entered the memory cell size of 1.5 square microns (um2) Sixty-four million bits of mass production, the Japanese semiconductor company NEC announced in 1995 that there have been 1 billion bits of dynamic random access memory (1GB DRAM) prototype samples. And in the [Hsinchu Science Industrial Park] in China • The major integrated circuit companies have also entered the mass production stage of the sixty-six million-bit dynamic memory access memory with a design criterion of 0.4 to 0.45 microns, for example, " The world's advanced integrated circuit company "," Taiwan integrated circuit manufacturing company "and F Deqi Semiconductor Company all have this capability. The traditional method of increasing the capacitance of stacked capacitors is to increase the thickness of the lower electrode plate (Storage Node) of the capacitor to increase the surface area of the capacitor (Surface Area), as shown in Figure 1, where 28 is the capacitor composed of polycrystalline silicon "Storage Node" is expected to reduce the planar circuit layout area of the memory cell while maintaining the same capacitance value. However, when the size of the billion yuan continues to shrink, only by increasing the capacitor's lower electrode plate Increasing the thickness of the capacitor capacitance is impossible, it is necessary to seek more sophisticated process technology to achieve this goal. T. Kaga et al. Of Hitachi, Japan published an article titled [A 0.29 um2 ΜΙΜ-CROWN Cell and process Technology for 1-Gigabit DRAMs] on page 927 of 1994 IEDM, revealing a paper called [ΜΙΜ-CROWN] advanced stacked capacitor structure, these capacitor structures can greatly increase the capacitance value of the capacitor. The present invention discloses a novel method for manufacturing stacked capacitors, which uses a source contact window (Node Contact) of a metal oxide half field effect transistor as a center to manufacture a stacked capacitor to form a "shell type charge storage electrode" (Storage Node with Shell Shape; SNSS) can greatly reduce the planar circuit layout area of the capacitor and greatly increase the capacitance of the capacitor, so it can be applied to the manufacture of ultra-high accumulation density stacked dynamic random access memory products. 3. Brief description of the invention The main purpose of the present invention is to provide a method for manufacturing a stacked capacitor that can reduce the layout area of a memory cell (printed by the Cooperative Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs) Please fill in this page again.) Another object of the present invention is to provide a manufacturing method of high packing density (Packing Density) stacked dynamic random access memory. The main method of the present invention is briefly described as follows. First, a standard process is used to form a field oxide layer needed to isolate the "gold oxide half field effect transistor" on the silicon semiconductor wafer (Silicon Semiconductor Wafer), and then, the "gold oxide half field effect transistor" is formed, and While forming the "Gold Oxide Half Field Effect Transistor" gate (Gate Electrode), a polysilicon wordline (Polysilicon Wordline) was also formed. _. -This paper is again applicable to China National Standard (CNS) A4 specification (210X297 mm). The A7 B7 is printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of invention () Next, deposit 1 "First Dielectric", "Second Djelectric" and "Third Dielectric", and planarize the "Second Dielectric". Next, the photolithographic plasma etching technique is used to etch the r-dielectric layer, the "second dielectric layer" and the "third dielectric layer" in the capacitor region to form the source contact window (N〇de Contact) 'In the future, the charge storage electrode (StorageNode) of the stacked capacitor will make electrical contact with the source of the metal oxide half field effect transistor through the "source_contact window". Then, a layer of "First Doped Polysilicon" (first doped polysilicon) is deposited, and the "doped first polysilicon layer" is filled with the "source contact window". Next, using plasma etching technology, the "doped first polycrystalline sand layer" is anisotropically etched back (Anisotropically Etchback), the "unidirectional etchback" etched away the "source contact The "doped first polycrystalline silicon layer" outside the window "area and only the" doped first polycrystalline silicon layer "remains in the" source contact window "to form the" first "Polycrystalline sand layer asks the column" (First Polysilicon Plug). Then 'use commercial thermal oxidation technology (Thermal Oxidation) to oxidize part of the' first polycrystalline sand flash column 'in the' source contact window 'to form a polycrystalline sand oxide layer (Polysilicon Oxide), the A part of the "polycrystalline silicon oxide layer" remains in the "source contact window", and a part protrudes the "third dielectric layer" and the bottom of the "polycrystalline silicon oxide layer" It is the remaining "first polycrystalline silicon latch pillar", that is to say, the "polycrystalline silicon oxide layer" and the remaining "first polycrystalline silicon latch pillar" constitute a stacked layer structure (Stacked Layer) 〇Then remove the "third dielectric layer" to expose the "polycrystalline silicon oxide layer" and a portion of the remaining "first polycrystalline silicon layer latch", and then deposit a layer of "doped Second Polycrystalline Silicon Layer ”(Second Doped Polysilicon). Then, use plasma etching technology to perform "unidirectional etch back" on the "doped second polycrystalline silicon layer", the "unidirectional etch back" etch away the [second dielectric layer ] The "doped second polycrystalline silicon layer" on the surface and the "doped second polycrystalline silicon layer" on the upper surface of the "polycrystalline silicon oxide layer", that is, the "single Anisotropic etch-back ”terminates on the surface of the“ second dielectric layer ”and the upper surface of the“ polycrystalline silicon oxide layer ”to expose the“ polycrystalline silicon oxide layer ”and the exposed A second polycrystalline sand sidewall (Second Polysilicon Spacer) is formed on the side surface of the first polycrystalline sand layer flash column. Next, the "polycrystalline silicon oxide layer" is removed by chemical etching solution or plasma etching technique, so the remaining "doped first polycrystalline silicon layer" and "second polycrystalline silicon sidewall" constitute The capacitor's charge storage electrode (StorageNode). The "charge storage electrode" takes the "source contact window" as the center of symmetry and has a "Shell Shape", so the "Shell Charge Storage Electrode" (Storage Node with Shell Shape; SNSS) can be The planar circuit layout area of the capacitor is greatly reduced and the capacitance of the capacitor is greatly increased, and the accumulation density of the dynamic random access memory is improved. Finally, a capacitor dielectric layer-(Capacitor Dielectric) and "Third Doped Polysilicon" (Third Doped Polysilicon) are formed on the surface of the "shell type charge storage electrode", and then the lithography technology and the etching technology are used Etching away the "capacitor dielectric layer" and "doped third polycrystalline silicon layer" to form the top electrode of the capacitor (Top Plate), a stacked dynamic random access with high accumulation density carry out. This paper scale is applicable to China's national standard rate (CNS & A4 specifications (210X297mm) (Please read the precautions on the back before filling this page)

經濟部中央標準局員工消費合作社印製 ^14647 A7 B7 五、發明説明() 4·圖示的簡要說明 圖一是堆疊式動態隨機存取記憶體之先前技藝(Prior Art)的製程剖面示意圖 (Process Cross Section ); 圖二到圖十一是本發明之實施例(Embodiment)的製程剖面示意圖。 丨Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ^ 14647 A7 B7 V. Description of the invention () 4. Brief description of the figure Figure 1 is a schematic cross-sectional view of the process of prior art (Prior Art) of stacked dynamic random access memory Process Cross Section); Figures 2 to 11 are schematic cross-sectional views of the process of the embodiment (Embodiment) of the present invention.丨

I 圖一是堆疊式動態隨機存取記憶體之先前技藝(Prior Art)的製程剖面示意圖,其各 層編號跟圖^^一之編號相同,其中,28是由複晶矽組成之電容器之『電荷儲存 電極』(Storage Node)。 圖二是在矽半導體晶圓上形成『金氧半場效電晶體』後的製程剖面示意圖; 圖三是沉積『第一介電層』、『第二介電層』和『第三介電層』,並平坦化所述 『第二介電層』後的製程剖面示意圖; 圖四是利用微影技術和鈾刻技術形成『源極接觸窗』後的製程剖面示意圖; 圖五是沈積一層『攙雜的第一複晶矽層』後的製程剖面示意圖,所述『攙雜的第一 複晶矽層』塡滿所述『源極接觸窗』; 圖六是利用電獎餓刻技術對所述『攙雜的第一複晶矽層』進行單向性的回飩刻後的 製程剖面示意圖,所述單向性的回蝕刻終止於所述『第三介電層』表面,以 在所述『源極接觸窗』內形成『第一複晶矽閂柱』; 圖七是利用高溫『熱氧化技術』氧化一部份所述『源極接觸窗』內所述第一複晶 矽問柱』,以形成複晶砂氧化層(PolysiliconOxide)後的製程剖面示意圖, 所述^複晶矽氧化層』一部份留在所述『源極接觸窗』內,一部份則突出所 述『第三介電層』,並且,所述『複晶矽氧化層』之底部是剩餘之所述『第 一複晶矽閂柱』; 圖八是去除所述『第三介電層』以露出所述『複晶矽氧化層』和一部份的剩餘之所 述『第一複晶矽閂柱』後的製程剖面示意圖; 圖九是沈積^層『攙雜的第二複晶矽層』後的製程剖面示意圖; 圖十是利用電漿蝕刻技術對所述『攙雜的第二複晶矽層』進行『單向性的回蝕刻』 後的製程剖面示意圖,所述『單向性的回蝕刻』蝕去所述【第二介電層】表 面之所述『攙雜的第二複晶矽層』和所述『複晶矽氧化層』之上表面之所述 『攙雜的第二複晶矽層』,也就是說,所述『單向性的回蝕刻』終止於所述 『第二介電層』之表面和所述『複晶矽氧化層』之上表面,以在所述『複晶 矽氧化層』和露出之所述『第一複晶矽層閂柱』的側面形成第二複晶矽側壁 子(Second Polysilicon Spacer ); 圖十一是去除所述『複晶矽氧化層』後的製程剖面示意圖,剩餘之所述【攙雜的第 一複晶矽層】和『第二複晶矽側壁子』構成了電容器的電荷儲存電極 (StorageNode),所述『電荷儲存電極』係以『源極接觸窗』爲對稱中心, 並呈『殼型』(Shell Shape)。 本紙浪尺度適用中國國家標準(CNS ) A4说格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁 ,tr A7 B7 五、發明説明() 5·發明之實施例 參考圖二。首先,在晶格方向(1〇〇)之P型矽半導體晶圓2上(Silicon Semiconductor Wafer)上开減場氧化層4,戶斤述『場氧化層4』通常是利用熱氧化技 術(Thermal Oxidation)氧化所述『P型矽半導體晶圓2』而形成,其厚度介 3000埃到6000埃之間,作爲隔離『金氧半場效電晶體』之用。 再參考圖二。然後,在所述『P型矽半導體晶圓2』之表面形成『金氧半場效 電晶體』,所述『金氧半場效電晶體』包含有閘氧化層6 (Gate Oxide)、閘極8 (Gate Electrode)、二氧化砂側壁子 12 (Silicon Dioxide Spacer)、源極/汲極 14 (Source/Drain),所述『源極/汲極14』含有N_淡摻雜區域(LightlyDoped Region)和 N+濃慘雜區域(Heavily Doped Source/Drain),如圖二所示。 所述『閘氧化層6』是在含氧氣的高溫環境中熱氧化(Oxidized )所述『P型矽 半導體晶圓2』之表面之矽原子而形成,其厚度介於100到200埃之間。所述 『閘極8』則一般是利用低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition ; LPCVD)形成之複晶矽8 (Polysilicon)所構成,其厚度介於1000到 3000埃之間。接著,利用低壓化學氣相沉積法形成二氧化矽10 (Silicon Dioxide),所述『二氧化矽10』通常是也利用低壓化學氣相沉積法形成,其反應氣 體利用四已基矽酸鹽(TetraEthOxySilane ; TEOS),反應溫度大約720°C,反應壓 力介於0.2到0.4托爾之間,其厚度介於500到1200埃之間,然後,利用微影技 術與蝕刻技術蝕去所述『二氧化砂1〇』和『複晶矽8』以形成所述『金氧半場效電 晶體』之閘極結構(Gate Structure)。接著,利用離子佈値技術(IonImplantation) 來形成『源極/汲極14』的N_淡摻雜區域(Lightly Doped Region),其離子種類 是磷原子(P3·1),其離子佈値劑量介於1E13到3E14原子/平方公分之間,離子 佈値能量則介於20到50 kev之間,如圖二所示》 經濟部中央標準局貝工消費合作社印装 (請先閱讀背面之注意事項再填寫本頁) 再參考圖二。接著,沉積一層『二氧化矽12』,並對所述『二氧化矽12』進 行單向性的回蝕刻,以在所述『閘極8』之二側形成【二氧化矽側壁子12】,而所 述『二氧化矽1?』通常是利用低壓化學氣相沉積法形成之二氧化矽,其反應氣體是 四已基矽酸鹽(TetraEthOxySilane ; TEOS),反應溫度大約720 °C,反應壓力介於 0.2到0.4托爾之間,厚度介於500到1500埃之間。最後,利用離子佈値技術形成 『源極/汲極14』的濃慘雜區域(Heavily Doped Region),其離子種類是砷原子 (AS75 ),其離子佈値劑量介於1E15到3E16原子/平方公分之間,離子佈値能量 則介於30到90 kev之間,形成所述『濃摻雜區域』後,所述『金氧半場效電晶體』 的製造於焉完成,如圖二所示。 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印策 A7 B7 五、發明説明() 現在參考圖三。接著,沈積一層『第一介電層18』(First Dielectric)、『第 二介電層 20』(SecondDielectric)和 F第三介電層 22』(ThirdDielectric),並平 垣化所述『第二介電層20』。所述『第一介電層18』通常是利用低壓化學氣相沉 積法形成之氮化矽(Silicon Nitride)或二氧化矽(Silicon Dioxide ),其厚度介於 500到1500埃之間。所述『第二介電層20』則一般是利用大氣壓化學氣相沉_ (APCVD)形成之硼磷攙雜二氧化矽膜(BoroPhosphoSilicateGlass ; BPSG)或磷攙 雜二氧化矽膜(PhosphoSilicate Glass ; PSG),其厚度介於3000到10000埃之 間。所述平坦化處理則通常是利用習知的化學機械式磨光技術(Chemical Mechanical Polishing ; CMP)。所述『第三介電層22』則可以是利用低壓化學氣相沉積法形成 之氮化矽,其厚度介於2000到6000埃之間。 現在參考圖四。接著,利用微影技術電漿蝕刻技術在電容器區域(Capacitor Region)蝕去所述『第一介電層18』、『第二介電層20』和『第三介電層22』以 形成源極接觸窗23 (Node Contact),未來,堆疊式電容器之電荷儲存電極 (StorageNode)將透過所述『源極接觸窗23』跟金氧半場效電晶體之源極作電性 接觸。對所述『第一介電層18』、『第二介電層20』和『第三介電層22』之『電 漿蝕刻』可以利用磁場增強式活性離子式電漿蝕刻技術(Magnetic Enhanced Reactive Ion Etching ; MERIE )或電子迴旋共振電獎鈾刻技術(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電獎鈾刻技術(Reactive Ion Etching ; RIE),在次微米技術領域,通常是利用4兹場增強式活性離子式電漿蝕刻技術』, 其電漿反應氣體一般是CF4、CHF3和Ar等氣體,例如,美國Lam Research公司所 製造型號RAINBOW 4500之蝕刻機或美國Applied Materials公司所製造型號 PR5000E之蝕刻機都屬於『磁場增強式活性離子式電漿蝕刻技術』。 現在參考圖五和圖六。接著,沈積一層【攙雜的第一複晶矽層24】(First DopedPolysiliccm),所述【攙雜的第一複晶矽層24】塡滿所述【源極接觸窗 23】。所述【攙雜的第一複晶矽層24】一般是利用同步磷原子攙雜(In-situ Phosphorus Doped)之低壓化學氣相沉積法形成,其反應氣體是PH3、3旧4與>12 的混合氣體,反應溫度介於520到580 °C之間,其厚度介於1000到3000埃之間。 接著,利用電漿蝕刻技術對所述『攙雜的第一複晶矽層24』進行單向性的回蝕刻 (AnisotropicallyEtchback),所述『單向性的回蝕刻』蝕去所述『源極接觸窗23』 區域以外之所述『攙雜的第一複晶矽層24』,而僅在所述『源極接觸窗23』內保 留有所述『攙雜的第一複晶矽層24』以形成『第一複晶矽層閂柱24A』(First Polysilicon Plug),如圖六所示。對所述『攙雜的第一複晶矽層24』之『單向性的 回蝕刻』可以利用『磁場增強式活性離子式電獎餓刻技術』或『電子迴旋共振電漿 蝕刻技術』或傳統的『活性離子式電漿鈾刻技術』,在次微米積體電路製造之技術 領域,通常是使用『磁場增強式活性離子式電漿蝕刻技術』,其電漿反應氣體一般 是CC14、Cl2和HBr等含氯氣體。 - 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)I Figure 1 is a schematic cross-sectional view of the prior art (Prior Art) process of stacked dynamic random access memory. The number of each layer is the same as the number of Figure ^^ 1, where 28 is the "charge" of the capacitor composed of polycrystalline silicon Storage Node. Figure 2 is a schematic cross-sectional view of the process after forming a "gold oxide half field effect transistor" on a silicon semiconductor wafer; Figure 3 is the deposition of "first dielectric layer", "second dielectric layer" and "third dielectric layer" ”, And planarize the schematic cross-sectional view of the process after the“ second dielectric layer ”; FIG. 4 is a schematic cross-sectional view of the process after forming the“ source contact window ”using lithography and uranium engraving technology; A schematic cross-sectional view of the manufacturing process after the doped first polycrystalline silicon layer, the "doped first polycrystalline silicon layer" is filled with the "source contact window"; FIG. A schematic cross-sectional view of the manufacturing process of the "doped first polycrystalline silicon layer" after unidirectional etching, the unidirectional etching back is terminated on the surface of the "third dielectric layer" The "first polycrystalline silicon latch post" is formed in the source contact window; Figure 7 is the use of high temperature "thermal oxidation technology" to oxidize a part of the "first polycrystalline silicon question post" in the "source contact window" , In order to form a polycrystalline sand oxide layer (PolysiliconOxide) after the process cross-sectional schematic diagram, so A part of the ^ polycrystalline silicon oxide layer remains in the "source contact window", a part highlights the "third dielectric layer", and the "polycrystalline silicon oxide layer" At the bottom is the remaining "first polycrystalline silicon latch post"; Figure 8 is to remove the "third dielectric layer" to expose the "polycrystalline silicon oxide layer" and a portion of the remaining "" Schematic diagram of the process profile after the first polycrystalline silicon latch column; Figure 9 is a schematic diagram of the process profile after the deposition of the "doped second polycrystalline silicon layer"; Figure 10 is the use of plasma etching technology for the "doped" The second polycrystalline silicon layer "is a schematic cross-sectional view of the process after" unidirectional etch back ", the" unidirectional etch back "etched away the" doped "surface of the" second dielectric layer " The second polycrystalline silicon layer "and the" doped second polycrystalline silicon layer "on the upper surface of the" polycrystalline silicon oxide layer ", that is, the" unidirectional etch back "ends at The surface of the "second dielectric layer" and the upper surface of the "polycrystalline silicon oxide layer" A second polysilicon spacer (Second Polysilicon Spacer) is formed on the exposed side of the "first polycrystalline silicon layer latch"; FIG. 11 is a schematic cross-sectional view of the process after removing the "polycrystalline silicon oxide layer", The remaining "doped first polycrystalline silicon layer" and the "second polycrystalline silicon sidewall" constitute the charge storage electrode (StorageNode) of the capacitor, and the "charge storage electrode" is based on the "source contact window" It is the center of symmetry and has a "Shell Shape". This paper wave scale is applicable to the Chinese National Standard (CNS) A4 format (210X297mm) (please read the notes on the back before filling out this page, tr A7 B7 V. Description of the invention) 5. Refer to Figure 2 for an example of the invention. First, the field oxide layer 4 is opened on the P-type silicon semiconductor wafer 2 (Silicon Semiconductor Wafer) in the lattice direction (100). It is stated that "field oxide layer 4" usually uses thermal oxidation technology (Thermal Oxidation) is formed by oxidizing the "P-type silicon semiconductor wafer 2", and its thickness is between 3000 angstroms and 6000 angstroms, which is used to isolate the "gold oxide half field effect transistor". Then refer to FIG. 2. Then, in the Describe the formation of "gold oxide half field effect transistor" on the surface of "P-type silicon semiconductor wafer 2", the "gold oxide half field effect transistor" includes gate oxide layer 6 (Gate Oxide), gate electrode 8 (Gate Electrode) 、 Silicon Dioxide Spacer 12 (Source / Drain), the “Source / Drain 14” contains N_Lightly Doped Region and N + Miscellaneous area (Heavily Doped Source / Drain), as shown in Figure 2. The oxide layer 6 is formed by thermally oxidizing (Oxidized) silicon atoms on the surface of the "P-type silicon semiconductor wafer 2" in a high-temperature environment containing oxygen, and its thickness is between 100 and 200 angstroms. The gate electrode 8 is generally made of polysilicon 8 (Polysilicon) formed by Low Pressure Chemical Vapor Deposition (LPCVD), and its thickness is between 1000 and 3000 Angstroms. Then, use low pressure Silicon Dioxide (Silicon Dioxide) is formed by chemical vapor deposition. The "Silicon Dioxide 10" is usually formed by low-pressure chemical vapor deposition. The reaction gas is TetraEthOxySilane (TEOS) , The reaction temperature is about 720 ° C, the reaction pressure is between 0.2 and 0.4 Torr, and the thickness is between 500 and 1200 Angstroms. Then, the photodiode 1 is etched away using photolithography and etching techniques. "And" polycrystalline silicon 8 "to form the gate structure of the" gold oxide half field effect transistor ". Then, the ion source technology (IonImplantation) is used to form the" source / drain 14 " N_lightly doped region (Li ghtly Doped Region), its ion type is phosphorus atom (P3 · 1), its ion distribution value is between 1E13 and 3E14 atoms / cm 2, and its ion distribution energy is between 20 and 50 kev, as shown in the figure "2" printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (please read the precautions on the back before filling in this page) and then refer to Figure 2. Next, deposit a layer of "silicon dioxide 12", and unidirectionally etch back the "silicon dioxide 12" to form a "silicon dioxide sidewall sub 12" on both sides of the "gate 8" , And the "silicon dioxide 1?" Is usually formed by low-pressure chemical vapor deposition of silicon dioxide, the reaction gas is tetrahexyl silicate (TetraEthOxySilane; TEOS), the reaction temperature is about 720 ° C, the reaction The pressure is between 0.2 and 0.4 Torr, and the thickness is between 500 and 1500 Angstroms. Finally, the ion source technology is used to form a "Heavily Doped Region" of "Source / Drain 14". The ion type is arsenic atom (AS75), and the ion dose is between 1E15 and 3E16 atoms / square. Between centimeters, the ion distribution energy is between 30 and 90 kev. After the formation of the "densely doped region", the manufacture of the "gold-oxygen half field effect transistor" was completed in Yan, as shown in Figure 2. . This paper scale is applicable to China National Standard (CNS) A4 (210X297mm). Policy printed by Employee Consumer Cooperative of Central Bureau of Standards, Ministry of Economic Affairs A7 B7 V. Description of invention () Now refer to Figure 3. Next, deposit a layer of "First Dielectric Layer 18" (First Dielectric), "Second Dielectric Layer 20" (Second Dielectric) and F Third Dielectric Layer 22 "(Third Dielectric), and flatten the" Second Dielectric Layer " Electric layer 20 ". The "first dielectric layer 18" is usually silicon nitride (Silicon Nitride) or silicon dioxide (Silicon Dioxide) formed by low-pressure chemical vapor deposition, and its thickness is between 500 and 1500 angstroms. The "second dielectric layer 20" is generally a boron-phosphorus doped silicon dioxide film (BoroPhosphoSilicateGlass; BPSG) or a phosphorus-doped silicon dioxide film (PhosphoSilicate Glass; PSG) formed by atmospheric pressure chemical vapor deposition (APCVD) , Its thickness is between 3000 and 10000 angstroms. The flattening process generally uses conventional chemical mechanical polishing (CMP). The "third dielectric layer 22" may be silicon nitride formed by low-pressure chemical vapor deposition with a thickness between 2000 and 6000 angstroms. Refer now to Figure 4. Next, the "first dielectric layer 18", "second dielectric layer 20" and "third dielectric layer 22" are etched in the capacitor region by using the photolithography plasma etching technique to form a source In the future, the charge storage electrode (StorageNode) of the stacked capacitor will make electrical contact with the source of the metal oxide half field effect transistor through the "source contact window 23". For the "plasma etching" of the "first dielectric layer 18", "second dielectric layer 20" and "third dielectric layer 22", magnetic field enhanced active ion plasma etching technology (Magnetic Enhanced Reactive Ion Etching; MERIE) or Electron Cyclotron Resonance (ECR) or traditional reactive ion electric uranium engraving technology (Reactive Ion Etching; RIE), which is usually used in the field of submicron technology "4 field-enhanced active ion plasma etching technology", the plasma reaction gas is generally CF4, CHF3 and Ar and other gases, for example, American Lam Research company model RAINBOW 4500 etching machine or American Applied Materials company The etching machine of model PR5000E belongs to "magnetic field enhanced active ion plasma etching technology". Now refer to Figures 5 and 6. Next, a layer of [First Doped Polysilicon cm 24] (First Doped Polysiliccm) is deposited, and the [source doped polysilicon layer 24] fills the [source contact window 23]. The [doped first polycrystalline silicon layer 24] is generally formed by low-pressure chemical vapor deposition method of synchronous phosphorus atom doping (In-situ Phosphorus Doped), and the reaction gas is PH3, 3 old 4 and > 12 For mixed gases, the reaction temperature is between 520 and 580 ° C, and the thickness is between 1000 and 3000 Angstroms. Next, using plasma etching technology, the "doped first polycrystalline silicon layer 24" is anisotropically etched back (AnisotropicallyEtchback), and the "unidirectional etchback" etched away the "source contact The "doped first polycrystalline silicon layer 24" outside the area of the window 23, and only the "doped first polycrystalline silicon layer 24" remains in the "source contact window 23" to form "First Polysilicon Plug 24A" (First Polysilicon Plug), as shown in Figure 6. For the "unidirectional etch back" of the "doped first polycrystalline silicon layer 24", the "magnetic field-enhanced active ion electric award etching technology" or "electron cyclotron resonance plasma etching technology" or traditional "Reactive ion plasma uranium engraving technology", in the technical field of submicron integrated circuit manufacturing, usually "magnetic field enhanced active ion plasma etching technology", the plasma reaction gas is generally CC14, Cl2 and Chlorine-containing gas such as HBr. -This paper scale is applicable to China National Standard (CNS) A4 (210X297mm) (please read the precautions on the back before filling this page)

-1T 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明() 現在參考圖七和圖八。接著,利用高溫熱氧化技術(Thermal Oxidation)氧化 一部份所述『源極接觸窗23』內所述『第一複晶矽閂柱24A』使成爲『第一複晶矽 問'柱24B』,以形成複晶砂氧化層26 (Polysilicon Oxide),所述F複晶砂氧化層 26』一部份留在所述『源極接觸窗23』內,一部份則突出所述『第三介電p 22A』,並且,所述『複晶矽氧化層26』之底部是剩餘之所述『第一複晶矽閂柱 24B』,也就是說,所述『複晶矽氧化層26』和剩餘之所述『第一複晶矽問柱 24B』構成複層結構(StackedLayer),如圖七所示。接著,去除所述『第三介電層 22A』以露出所述『複晶矽氧化層26』和一部份的剩餘之所述『第一複晶矽層閂柱 24B』,如圖八所示。 現在參考圖九和圖十。接著,沈積一層『攙雜的第二複晶矽層28』(Second Doped Polysilicon),如圖九所示。然後,利用電漿蝕刻技術對所述『攙雜的第二複 晶矽層28』進行『單向性的回触刻』,所述『單向性的回蝕刻』蝕去所述【第二介 電層20A】表面之所述『攙雜的第二複晶矽層28』和所述『複晶矽氧化層26』之 上表面之所述『攙雜的第二複晶矽層28』,也就是說,所述『單向性的回蝕刻』終 止於所述『第二介電層20A』之表面和所述『複晶矽氧化層26』之上表面,以在所 述『複晶矽氧化層26』和露出之所述『第一複晶矽層閂柱24B』的側面形成第二複 晶矽側壁子28A (Second Polysilicon Spacer),如圖十所示。所述『攙雜的第二複晶 砂層28』一般也是利用同步磷原子攙雜(In-situ Phosphorus Doped)之低壓化學氣 相沉積法形成,其反應氣體是PH3、SiH4與N2的混合氣體,反應溫度介於520到 580 °C之間,其厚度介於800到2500埃之間。對所述『攙雜的第二複晶矽層28』 之『單向性的回蝕刻』可以利用『磁場增強式活性離子式電漿蝕刻技術』或『電子 迴旋共振電漿触刻技術』或傳統的『活性離子式電漿蝕刻技術』,在次微米積體電 路製造之技術領域,通常是使用『磁場增強式活性離子式電漿蝕刻技術』,其電漿 反應氣體一般是CC14、Cl2和HBr等含氯氣體。 最後,參考圖圖十一。接著,利用氫氟酸溶液去除所述『複晶矽氧化層 26』,於是,剩餘之所述【攙雜的第一複晶矽層24B】和『第二複晶矽側壁子 28A』構成了電容器的電荷儲存電極(Storage Node)。所述『電荷儲存電極』係以 『源極接觸窗23』爲對稱中心,並呈『殼型』(Shell Shape),故所述『殼型電荷 儲存電極』(Storage Node with Shell Shape ; SNSS)可以大幅縮小電容器之平面電 路佈局面積和大幅提高電容器的電容,提高動態隨機存取記憶體的集積密度。 最後,在所述『殼型電荷儲存電極』的表面形成一層電容器介電層(Capacitor Dielectric)和『攙雜的第三複晶较層』(Third Doped Polysilicon),再利用微影技術 和蝕刻技術鈾去所述『電容器介電層』和『攙雜的第三複晶矽層』,以形成電容器 的上層電極(Top Plate),一種具有高集積密度之堆疊式動態隨機存取記憶體於焉 完成。 _ * 本纸張又度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) (請先閱讀背面之注意事項再填寫本頁)-1T Printed by Beigong Consumer Cooperative of Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 V. Description of invention () Now refer to Figures 7 and 8. Next, a part of the "first polycrystalline silicon latch post 24A" in the "source contact window 23" is oxidized by a high temperature thermal oxidation technique (Thermal Oxidation) to become the "first polycrystalline silicon interlock 24B" post 24B ”, To form a polysilicon oxide layer 26 (Polysilicon Oxide), part of the F polysilicon oxide layer 26” remains in the “source contact window 23”, and a part highlights the Three dielectrics p 22A ", and the bottom of the" polycrystalline silicon oxide layer 26 "is the remaining" first polycrystalline silicon latch 24B ", that is, the" polycrystalline silicon oxide layer 26 "And the remaining" first polycrystalline silicon interrogation column 24B "constitute a multi-layer structure (StackedLayer), as shown in Figure 7. Next, the "third dielectric layer 22A" is removed to expose the "polycrystalline silicon oxide layer 26" and a portion of the remaining "first polycrystalline silicon layer latch 24B", as shown in FIG. 8 Show. Reference is now made to Figures 9 and 10. Next, deposit a "second doped polysilicon layer 28" (Second Doped Polysilicon), as shown in Figure 9. Then, using plasma etching technology, the "doped second polycrystalline silicon layer 28" is subjected to "unidirectional back etching", and the "unidirectional back etching" is used to etch away the second Electrical layer 20A] The "doped second polycrystalline silicon layer 28" on the surface and the "doped second polycrystalline silicon layer 28" on the upper surface of the "polycrystalline silicon oxide layer 26", that is That is, the "unidirectional etch back" ends at the surface of the "second dielectric layer 20A" and the upper surface of the "polycrystalline silicon oxide layer 26" to oxidize the "polycrystalline silicon oxide" Layer 26 ”and the exposed side of the“ first polycrystalline silicon layer latch 24B ”form a second polycrystalline silicon sidewall 28A (Second Polysilicon Spacer), as shown in FIG. 10. The "doped second polycrystalline sand layer 28" is generally formed by low-pressure chemical vapor deposition of synchronous phosphorus atom doping (In-situ Phosphorus Doped). The reaction gas is a mixed gas of PH3, SiH4 and N2, and the reaction temperature It is between 520 and 580 ° C and its thickness is between 800 and 2500 Angstroms. For the "unidirectional etch back" of the "doped second polycrystalline silicon layer 28", "magnetic field enhanced active ion plasma etching technology" or "electron cyclotron resonance plasma etch technology" or traditional "Active ion plasma etching technology", in the technical field of submicron integrated circuit manufacturing, usually "magnetic field enhanced active ion plasma etching technology", the plasma reaction gas is generally CC14, Cl2 and HBr Such as chlorine-containing gas. Finally, refer to Figure 11. Next, the "polycrystalline silicon oxide layer 26" is removed with a hydrofluoric acid solution, so that the remaining [doped first polycrystalline silicon layer 24B] and the "second polycrystalline silicon sidewall 28A" constitute a capacitor Storage node (Storage Node). The "charge storage electrode" takes the "source contact window 23" as the center of symmetry and has a "shell shape" (Shell Shape), so the "shell type charge storage electrode" (Storage Node with Shell Shape; SNSS) The planar circuit layout area of the capacitor can be greatly reduced, the capacitance of the capacitor can be greatly increased, and the accumulation density of the dynamic random access memory can be improved. Finally, a capacitor dielectric layer (Capacitor Dielectric) and a "Third Doped Polysilicon" (Third Doped Polysilicon) are formed on the surface of the "shell-type charge storage electrode", and then the lithography and etching techniques are used for uranium The "capacitor dielectric layer" and the "doped third polycrystalline silicon layer" are removed to form the top electrode of the capacitor, a stacked dynamic random access memory with high accumulation density is completed in Yan. _ * This paper is again applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X297mm) (please read the precautions on the back before filling this page)

,1T i. 314647 A7 五、發明説明() 所述『電容器介電層』係以標準製程形成。通常是由氧化氮化矽 (Oxynitride)、氮化矽和二氧化矽藉由下述方法形成。首先,在溫度介於850°C到 950°C之間時熱氧化由複晶矽構成之所述『殼型電荷儲存電極』,以形成厚度介於 40埃到200埃之間的『二氧化矽』;接著,在溫度介於650°C到750°C之間時^ 低壓化學氣相沉積法形成厚度介於40埃到60埃之間的『氮化砂』;最後,在溫f度 介於850°C到950°C之間時氧化所述『氮化矽』,以形成厚度介於20埃到50邊之 間的『氧化氮化矽』。所述『電容器介電層』亦可由Ta205材料組成。 以上係以最佳實施例來闡述本發明,而非限制本發明,並且,熟知半導體技藝 之人士皆能明瞭,適當而作些微的改變及調整,仍將不失本發明之要義所在,亦不 脫離本發明之精神和範圍。 (請先閲讀背面之注意事項再填寫本頁) V., 1T i. 314647 A7 V. Description of the invention () The "capacitor dielectric layer" is formed by a standard process. It is usually formed by Oxynitride, Silicon Nitride, and Silicon Dioxide by the following method. First, the "shell type charge storage electrode" composed of polycrystalline silicon is thermally oxidized at a temperature between 850 ° C and 950 ° C to form a "dioxide" with a thickness between 40 angstroms and 200 angstroms Silicon ”; then, at a temperature between 650 ° C and 750 ° C ^ low-pressure chemical vapor deposition method to form" nitride sand "with a thickness between 40 Angstroms and 60 Angstroms; finally, at a temperature of f degrees The "silicon nitride" is oxidized between 850 ° C and 950 ° C to form a "silicon nitride" with a thickness between 20 angstroms and 50 sides. The "capacitor dielectric layer" may also be composed of Ta205 material. The above is a description of the present invention with the preferred embodiments, rather than limiting the present invention, and anyone skilled in semiconductor technology can understand that appropriate and slight changes and adjustments will still not lose the essence of the present invention, nor Departs from the spirit and scope of the present invention. (Please read the notes on the back before filling this page) V.

、1T 經濟部中央標準局貝工消費合作社印装 本紙張尺度適用中國國家樣準(CNS ) A4说格(210 X 297公釐)、 1T Printed by Beigong Consumer Cooperative of Central Bureau of Standards of the Ministry of Economics The paper size is applicable to China National Standard (CNS) A4 format (210 X 297 mm)

Claims (1)

經濟部中央標準局負工消费合作社印裝 、申請專利範圍 1 ·—種積體電路之『複晶矽結構』的形成方法,係包含下列步驟: 在半導體晶圓上(Semiconductor Wafer )形成1第一介電層』(First Dielectric )、『第二介電層』(Second Dielectric )和p第三介電層』(Third Dielectric),並平坦化所述『第二介電層』; 利用微影技術蝕刻技術蝕去所述『第一介電層』、『第二介電層』和F第三 介電層』以形成洞孔(Hole); 开多成一層『第一複晶砂層』(FirstPotysiliccm) ’所述『第一複晶砂層』塡 滿所述『洞孔』; 利用鈾刻技術對所述『第一複晶矽層』進行回蝕刻(Etchback),所述『回 蝕刻』蝕去所述『洞孔』區域以外之所述『第一複晶矽層』,而僅在所述『洞 孔』內保留有所述『第一複晶矽層』以形成『第一複晶矽閂柱』(First Polysiliccm Plug); 氧化(Oxidation) —部份所述f洞孔』內所述『第一複晶矽閂柱』,以形成 複晶砂氧化層(Polysilicon Oxide),所述『複晶矽氧化層』一部份留在所述『涧 孔』內,一部份則突出所述『第三介電層』; 去除所述『第三介電層』以露出所述『複晶矽氧化層』和一部份的剩餘之所 述『第一複晶矽R柱』; 形成一層『第二複晶砂層』(SecondPolysilicon); 利用蝕刻技術對所述『第二複晶矽層』進行『回蝕刻』,以在所述『複晶矽 氧化層』和露出之所述『第一複晶矽閂柱』的側面形成第二複晶矽側壁子 (Second Polysilicon Spacer ); 去除所述『複晶矽氧化層』,剩餘之所述『第一複晶矽層』和『第二複晶矽 側壁子』以所述『洞孔』爲對稱中心,並呈『殼型』(Shell Shape)。 2·如申請專利$圍第1項所述之形成方法,其中所述『半導體晶圓』含有電性 兀;件/電子元件(Electrical/ElectronicDevices)。 3 -如申請專利範圍第1項所述之形成方法,其中所述『第一介電層』是由氮化 石夕(Silicon Nitride )組成。 4·如申請專利範圍第1項所述之形成方法,其中所述『第二介電層』是由二氧 化石夕(Silicon Dioxide)組成。 5 ·如申請專利範圍第1項所述之形成方法,其中所述『第三介電層』是由氮化 砂(Silicon Nitride )組成。 6 -如申請專利範圍第1項所述之形成方法,其中所述『第一複晶矽層』是由低 壓化學氣相沉積法形成。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) HINi —7 I I I 裝— I I I I — 訂— i I —J·" i (請先閲讀背面之注意事項再填寫本頁) H3 7·如申請專利範圍第1項所述之形成方法,其中所述『第二複晶矽層』是由低 壓化學氣相沉積法形成。 8·如申請專利範圍第1項所述之形成方法,其中所述『第三複晶矽層』是由低 壓化學氣相沉積法形成。 9·如申請專利範圍第1項所述之形成方法,其中所述之去除所述『複晶矽氧化 層』,是利用氫氟酸溶液。 10 ·如申請專利範圍第1項所述之形成方法,其中所述『回蝕刻』是指磁場增 強式活性離子式電紫餓刻技術(Magnetic Enhanced Reactive Ion Etching ; MERIE)或電子迴旋共振電獎蝕刻技術(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電獎蝕刻技術(Reactive Ion Etching ; RIE)等電 漿蝕刻技術。 係包含下列 11 · 一種堆疊式動態隨機存取記憶體(Stack DRAM)的製造方法 步驟: 在砂半導體晶圓上(Silicon Semiconductor Wafer)形成『金氧半場效電晶 體』(MOSFET); 形成『第一介電層』(First Dielectric )、『第二介電層( Second Dielectric)和『第三介電層』(Third Dielectric),並平坦化所述『第二介電 層』; 利用微影技術蝕刻技術飽去所述『第一介電層』、『第二介電層』和『第三 介電層』以形成源極接觸窗(Node Contact Hole); 形成一層『第一複晶砂層』(FirstPolysilicon),所述『第一複晶砂層』塡 滿所述『源極接觸窗』; 利用蝕刻技術對所述『第一複晶矽層』進行回蝕刻(Etchback),所述『回 蝕刻』蝕去所述『源極接觸窗』區域以外之所述^第一複晶矽層』,而僅在所述 『源極接觸窗』內保留有所述『第一複晶矽層』以形成『第一複晶矽閂柱』 (First Polysilicon Plug ); 經濟部中央標準局員工福利委員會印製 氧化(Oxidation) —部份所述『源極接觸窗』內所述『第一複晶矽閂柱』, 以形成複晶矽氧化層(PolysilictmOxide) ’所述『複晶矽氧化層』一部份留在所 述『源極接觸窗』內,一部份則突出所述『第三介電層』; 去除所述F第三介電層』以露出所述『複晶矽氧化層』和一部份的剩餘之所 述『第一複晶矽閂柱』; 形成一層『第二複晶砂層』(SecondPoly^licon); 利用蝕刻技術對所述『第二複晶矽層』進行『回蝕刻』,以在所述『複晶矽 氧化層』和露出之所述『第一複晶矽閂柱』的側面形成第二複晶矽側壁子 (Second Polysilicon Spacer ); 本纸張尺度適用中國國家標準(CNS )A4規格(210 X 297公爱) S14647 H3 去除所述『複晶矽氧化層』,剩餘之所述『第一複晶矽層』和『第二複晶矽 側壁子』以所述F源極接觸窗』爲對稱中心,並呈『殼型』(ShellShape); 在所述『殼型電荷儲存電極』的表面形成一層電容器介電層(Capacitor Dielectric) '» 形成一層『第三複晶矽層』(ThirdPolysUicon),再利用微影技術和蝕刻技 術蝕去所述『電容器介電層』和『第三複晶矽層』,以形成電容器的上層電極 (Top Plate) ° I2 -如申請專利範圍第11項所述之製造方法,其中所述『金氧半場效電晶體』 含有含有閘氧化層(Gate Oxide)、閘極(Gate Electrode)、二氧化矽側壁子 (Silicon Dioxide Spacer )、源極/汲極(Source/Drain )。 Π ·如申請專利範圍第11項所述之製造方法,其中所述『第一介電層』是由氮 化矽(SiliconNitride)組成,其厚度介於800埃到1500埃之間。 14 ·如申請專利範圍第11項所述之製造方法,其中所述『第二介電層』是由二 氧化矽(Silicon Dioxide)組成,其厚度介於3000埃到8000埃之間。 15 ·如申請專利範圍第11項所述之製造方法,其中所述『第三介電層』是由氮 化矽(SiliconNitride)組成,其厚度介於2000埃到6000埃之間。 16 ·如申請專利範圍第11項所述之製造方法,其中所述『第一複晶矽層』是由 低壓化學氣相沉積法形成,其厚度介於1000埃到3000埃之間。 17 ·如申請專利範圍第11項所述之製造方法,其中所述『第二複晶矽層』是由 低壓化學氣相沉積法形成,其厚度介於600埃到2500埃之間。 18 ·如申請專利範圍第11項所述之製造方法,其中所述『第三複晶矽層』是由 低壓化學氣相沉積法形成,其厚度介於1000埃到2500埃之間。 19 ·如申請專利範圍第11項所述之製造方法,其中所述之去除所述『複晶矽氧 化層』,是利用氫氟酸溶液。 經濟.邱中央標準局員工福利委員會印製 20 _如申請專利範圍第11項所述之製造方法,其中所述『電容器介電層』是由 氧化氮化砂(Oxynitride)、氮化砂和二氧化砂所組成,或由Ta2〇5所組 成。 21 ·如申請專利範圍第11項所述之製造方法,其中所述『回蝕刻』是指磁場增 強式活性離子式電紫蝕刻技術(Magnetic Enhanced Reactive Ion Etching ; MERIE)或電子迴旋共振電駿鈾刻技術(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電漿蝕刻技術(Reactive Ion Etching ; RDE)等電 雜刻技術。 本紙張尺度適用中國國家標準(CNS )A4規格(210 X 297公釐) 104 7-^8Printed and applied for patents by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 1-The formation method of the "polycrystalline silicon structure" of the integrated circuit includes the following steps: forming the first on the semiconductor wafer (Semiconductor Wafer) First dielectric layer (First Dielectric), Second dielectric layer (Second Dielectric) and Third dielectric layer (Third Dielectric), and planarize the "Second dielectric layer"; use lithography Technical etching technology etched away the "first dielectric layer", "second dielectric layer" and F third dielectric layer "to form holes (Hole); open more layers of" first polycrystalline sand layer "( FirstPotysiliccm) 'The "first polycrystalline sand layer" is filled with the "holes"; using uranium engraving technology to etch back the "first polycrystalline silicon layer" (Etchback), the "back etching" etching Go to the "first polycrystalline silicon layer" outside the "hole" area, and only the "first polycrystalline silicon layer" remains in the "hole" to form the "first polycrystalline silicon layer" "Silicon Bolt" (First Polysiliccm Plug); Oxidation (Oxidation)-part of the f hole The "first polycrystalline silicon latch pillar" in the "hole" to form a polysilicon oxide layer (Polysilicon Oxide), part of the "polycrystalline silicon oxide layer" remains in the "jian hole", a The part highlights the "third dielectric layer"; remove the "third dielectric layer" to expose the "polycrystalline silicon oxide layer" and a portion of the remaining "first polycrystalline silicon" "R column"; forming a "second polycrystalline silicon layer" (SecondPolysilicon); using etching technology to "etch back" the "second polycrystalline silicon layer" to the "polycrystalline silicon oxide layer" and exposed The side surface of the "first polycrystalline silicon latch column" forms a second polysilicon spacer (Second Polysilicon Spacer); remove the "polycrystalline silicon oxide layer", and the remaining "first polycrystalline silicon layer" "" And "Second polycrystalline silicon sidewalls" take the "hole" as the center of symmetry and have a "Shell Shape". 2. The formation method as described in item 1 of the patent application $ Wai, wherein the "semiconductor wafer" contains electrical components; electronic / electronic components (Electrical / Electronic Devices). 3-The formation method as described in item 1 of the patent application scope, wherein the "first dielectric layer" is composed of Silicon Nitride. 4. The formation method as described in item 1 of the patent application scope, wherein the "second dielectric layer" is composed of Silicon Dioxide. 5. The formation method as described in item 1 of the patent application scope, wherein the "third dielectric layer" is composed of silicon nitride (Silicon Nitride). 6-The formation method as described in item 1 of the patent application scope, wherein the "first polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) HINi —7 III Pack — IIII — Order — i I —J · " i (Please read the precautions on the back before filling this page) H3 7 The formation method as described in item 1 of the patent application scope, wherein the "second polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method. 8. The formation method as described in item 1 of the patent application scope, wherein the "third polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method. 9. The formation method as described in item 1 of the patent application scope, wherein the removal of the "polycrystalline silicon oxide layer" is by using a hydrofluoric acid solution. 10. The formation method as described in item 1 of the patent application scope, wherein the "etchback" refers to the magnetic enhanced reactive ion ion etching technology (Magnetic Enhanced Reactive Ion Etching; MERIE) or the electron cyclotron resonance electric award Etching technology (Electron Cyclotron Resonance; ECR) or traditional reactive ion electric award etching technology (Reactive Ion Etching; RIE) and other plasma etching technologies. The system includes the following 11 · A method for manufacturing a stacked dynamic random access memory (Stack DRAM): forming a "gold oxide half field effect transistor" (MOSFET) on a silicon semiconductor wafer; forming a "first First dielectric layer (First Dielectric), "Second dielectric layer (Second Dielectric) and" Third dielectric layer "(Third Dielectric), and planarize the" Second dielectric layer "; use of lithography technology Etching technology is used to complete the "first dielectric layer", "second dielectric layer" and "third dielectric layer" to form a source contact window (Node Contact Hole); forming a "first polycrystalline sand layer" (FirstPolysilicon), the "first polycrystalline sand layer" fills the "source contact window"; using etching technology to etch back the "first polycrystalline silicon layer" (Etchback), the "back etching" 『The first polycrystalline silicon layer outside the area of the“ source contact window ”is etched away, and the“ first polycrystalline silicon layer ”remains only in the“ source contact window ” Formed "First Polysilicon Pole" (First Polysilicon P lug); Employee Welfare Committee of the Central Bureau of Standards of the Ministry of Economic Affairs printed oxidation (Oxidation) — the “first polycrystalline silicon latch post” in the “source contact window” described in part to form a polycrystalline silicon oxide layer ) 'A part of the "polycrystalline silicon oxide layer" remains in the "source contact window", a part protrudes the "third dielectric layer"; remove the F third dielectric layer To expose the "polycrystalline silicon oxide layer" and a portion of the remaining "first polycrystalline silicon latch pillar"; form a layer of "second polycrystalline silicon layer" (SecondPoly ^ licon); use etching technology to The "second polycrystalline silicon layer" is "etched back" to form a second polycrystalline silicon sidewall on the side of the "polycrystalline silicon oxide layer" and the exposed "first polycrystalline silicon latch pillar" (Second Polysilicon Spacer); This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) S14647 H3 remove the "polycrystalline silicon oxide layer", the remaining "first polycrystalline silicon" The "layer" and "second polycrystalline silicon sidewall" are symmetrical with the F source contact window And a "Shell Shape" (ShellShape); form a "Capacitor Dielectric" on the surface of the "Shell Charge Storage Electrode" to form a "Third Polysilicon Layer" (ThirdPolysUicon), and then Using lithography and etching techniques to etch away the "capacitor dielectric layer" and "third polycrystalline silicon layer" to form the top electrode of the capacitor (Top Plate) ° I2-as described in item 11 of the patent application A manufacturing method, wherein the "gold oxide half field effect transistor" contains a gate oxide layer (Gate Oxide), a gate electrode (Gate Electrode), a silicon dioxide sidewall spacer (Silicon Dioxide Spacer), a source / drain (Source / Drain). Π The manufacturing method as described in item 11 of the patent application scope, wherein the "first dielectric layer" is composed of silicon nitride (SiliconNitride), and its thickness is between 800 angstroms and 1500 angstroms. 14. The manufacturing method as described in item 11 of the patent application scope, wherein the "second dielectric layer" is composed of silicon dioxide (Silicon Dioxide), and its thickness is between 3000 angstroms and 8000 angstroms. 15. The manufacturing method as described in item 11 of the patent application scope, wherein the "third dielectric layer" is composed of silicon nitride (SiliconNitride), and its thickness is between 2000 angstroms and 6000 angstroms. 16. The manufacturing method as described in item 11 of the patent application scope, wherein the "first polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method, and its thickness is between 1000 angstroms and 3000 angstroms. 17. The manufacturing method as described in item 11 of the patent application scope, wherein the "second polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method, and its thickness is between 600 angstroms and 2500 angstroms. 18. The manufacturing method as described in item 11 of the patent application scope, wherein the "third polycrystalline silicon layer" is formed by a low-pressure chemical vapor deposition method, and its thickness is between 1000 angstroms and 2500 angstroms. 19. The manufacturing method as described in item 11 of the patent application scope, wherein the removal of the "polycrystalline silicon oxide layer" uses a hydrofluoric acid solution. Economy. Printed by Qiu Central Standards Bureau Employee Welfare Committee 20 _ The manufacturing method as described in item 11 of the patent application scope, in which the "capacitor dielectric layer" is made of Oxynitride, Oxynitride and Nitrile Composed of oxidized sand, or composed of Ta205. 21. The manufacturing method as described in item 11 of the patent application scope, wherein the "etch back" refers to the magnetic enhanced ion reactive ion etching technology (Magnetic Enhanced Reactive Ion Etching; MERIE) or electron cyclotron resonance electric uranium Engraving technology (Electron Cyclotron Resonance; ECR) or traditional reactive ion plasma etching technology (Reactive Ion Etching; RDE) and other electric hybrid etching technology. The paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 104 7- ^ 8 S14647S14647 寸 (NInch (N ¢1¢ 1 314647314647 S14647S14647 314647314647 VvVv
TW85104748A 1996-04-18 1996-04-18 Manufacturing method of memory with decreased memory cell layout area TW314647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85104748A TW314647B (en) 1996-04-18 1996-04-18 Manufacturing method of memory with decreased memory cell layout area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85104748A TW314647B (en) 1996-04-18 1996-04-18 Manufacturing method of memory with decreased memory cell layout area

Publications (1)

Publication Number Publication Date
TW314647B true TW314647B (en) 1997-09-01

Family

ID=51566658

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85104748A TW314647B (en) 1996-04-18 1996-04-18 Manufacturing method of memory with decreased memory cell layout area

Country Status (1)

Country Link
TW (1) TW314647B (en)

Similar Documents

Publication Publication Date Title
US5843822A (en) Double-side corrugated cylindrical capacitor structure of high density DRAMs
JPH1022476A (en) Capacitive element
JP2820065B2 (en) Method for manufacturing semiconductor device
TW314647B (en) Manufacturing method of memory with decreased memory cell layout area
JP2819498B2 (en) Manufacturing method of DRAM having case type capacitor having wrinkles on both sides
US6071790A (en) Method of crown capacitor rounding by oxidant dipping process
TW411549B (en) A method for shrinking memory cell size
JP2921563B2 (en) Method of forming memory cell using corrugated oxide spacer
TW301775B (en) Forming method of multiple cone capacitor
JP2921564B2 (en) Method of manufacturing case-type capacitor having wrinkles on a single side
TW301799B (en) High-density memory device structure and manufacturing method thereof
TW297157B (en) Method of fabricating super high-density memory circuit
JP2898929B2 (en) Manufacturing method of stacked DRAM
TW387140B (en) A manufacturing method for high density stacked capacitor
TW307919B (en) The manufacturing method of capacitor
TW321782B (en) Manufacturing method of memory integrated circuit by chemical mechanical polishing technology
TW302543B (en) Manufacturing method of high-density stack DRAM
TW298677B (en) Fabrication method of cup-shaped capacitors for DRAM
TW319896B (en) Manufacturing method of memory device capacitor by chemical mechanical polishing technology
TW319897B (en) Manufacturing method of stack capacitor
TW315508B (en) Manufacturing method of self-aligned cylindrical capacitor
TW322621B (en) Manufacturing method of high-density dynamic random access memory by oblique nitrogen ion implantation
TW311255B (en) Improved manufacturing method of stack capacitor
TW312834B (en) Manufacturing method of semiconductor capacitor device
TW293946B (en) The manufacturing method of capacitor with improved DRAM