TW307919B - The manufacturing method of capacitor - Google Patents

The manufacturing method of capacitor Download PDF

Info

Publication number
TW307919B
TW307919B TW85101719A TW85101719A TW307919B TW 307919 B TW307919 B TW 307919B TW 85101719 A TW85101719 A TW 85101719A TW 85101719 A TW85101719 A TW 85101719A TW 307919 B TW307919 B TW 307919B
Authority
TW
Taiwan
Prior art keywords
layer
doped
polycrystalline silicon
insulating layer
manufacturing
Prior art date
Application number
TW85101719A
Other languages
Chinese (zh)
Inventor
Horng-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW85101719A priority Critical patent/TW307919B/en
Application granted granted Critical
Publication of TW307919B publication Critical patent/TW307919B/en

Links

Abstract

A manufacturing method for memory cell of DRAM, it includes following steps:Form field oxide, MOSFET and wordline on semiconductor substrate; Deposit 1st and 2nd insulator, and planarize 1st insulator; Etch 1st and 2nd insulator to form node contact, which is through by storage node of capacitor to do electricity contacting with source of MOSFET;Deposit a 1st doped polysilicon to fill source contact; Form trench, which depth is smaller than thickness of 1st doped polysilicon, on 1st doped polysilicon; Deposit 3rd insulator to fill trench; Form 3rd insulator plug inside the trench; Proceed anisotropic etching back on 1st doped polysilicon to etch partially thickness of 1st doped polysilicon; Deposit a thin 2nd doped polysilicon, and proceed anisotropic etching back on thin 2nd and 1st doped polysilicon till the surface of 2nd insulator and 3rd insulator plug, and form polysilicon spacer on side of 3rd insulator plug; Remove 3rd insulator plug, and consist storage node of capacitor by residual 1st doped polysilicon and polysilicon spacer; Form thin capacitor dielectric and 3rd doped polysilicon on storage node, and etch capacitor dielectric and 3rd doped polysilicon to form plate electrode of capacitor.

Description

307919 A7 B7 五、發明説明() 經濟部中央標华局員工消费合作社印製307919 A7 B7 V. Description of the invention () Printed by the employee consumer cooperative of the Central Standardization Bureau of the Ministry of Economic Affairs

1 ·發明之技麵域 、、本發明是有關稹儺爾路之動態__存取記慷髓之電容器(C^acitor)的製 造方法(Manufacturing Me^iod) ° .2·發明背景 典型的動態隨機存取記憶雔是在矽半導體基板 (Silicon Semiconductor Substrate )上製造一個金氧半場效電晶體(Metal Θχ丨de Semiconductor Field Effect Transistor ; MOSFET)與電容審(Capacitor),並利用所述金氧半場效 電晶體的源極(Source)來連接電容器的電荷儲存電極(storageNode)以形成 動態隨機存取記憶體的記憶元(Memory Cell)。其‘,所述金氧半場效電晶 體的源極跟電容器作電性接觸,數位資訊儲存在電容器,並藉著所述金氧半場 效電晶體、位元線和字語線陣列來取懈儲存在電容器內的數位資訊。爲了增加 動態隨機存取記憶體元件之集積密度,傳_態_機存取記憶體製程是在金氧 半場效電晶體之上方或下方之第三度空間形成電容器,以在有限的電路佈局面 積內增加電容器之電容値;在金氧半場效電晶體之上方形成之電容器稱爲堆疊 式電容器(Stacked Capacitor),在金氧半場效電晶體之下方形成之電容器稱 爲凹溝式電容器(TrenchedCapacitor)。 傅統【堆叠式電容器1增加電容的方法是增加電容器之下餍爾極板的厚 度,以增加電容器之表面積 (Surface Area) ,以便在降低記憶體記憶元之平面 面積(Plannar Area)的同時,亦應維持相同的電容値,然而,增加電容器下層 電極板的厚度卻產生陟峭的地形地勢’導致後續的微影蝕刻與薄膜沈稹製程不 容易進行,降低了產品的良率(Yield) 傳統【凹溝式電容器】增加電容的方 法是增加半導體基板內之凹溝的深度,以增加電容器之表面積(Surface Area),以便在降低記憶元之【平面面積】的同時,亦應維持相同的電容値, 然而,由於【凹溝式電容器】破壞了半導體基板之晶體結構,容易產生漏電流 (Leakage Current)。 最近幾年來,動態酶機存取記憶體的整合密度快速的增加,目前臺灣 【新竹科學工業園區】(ScienceBasedlndustrialParfc : SIPA〉的積體電路公司 已經已進入記憶元尺寸1.5平方微米之六仟四佰萬位元的量產階段,例如,世 界先進積體電路公司(VanguardInternational Semiconductor)之堆疊式動態隨 機存取記憶體和德碁半導體公司(TI-Acer)之凹溝式動態隨機存取記憶體。而 國外動態隨機存取記億體的整合密度也呈現相當快速的增加,例如,SONY等 日本半導體公司在1995年宣稱已經有彳·億位元動態隨機存取記憶體(1GB DRAM)的原型樣品問世:曰本Hitachi公司的T. Kaga等人在1994年IEDM (請先閲讀背面之注意事贫再填寫本頁) Λ. 訂 Λ 本紙張尺度適用中國國家梂準(CNS ) A4规格(2丨0X297公釐) 307919五、發明説明( Λ7 B7 第 927 頁也發表了-一篇題目爲【A 0.29 um2 ΜΙΜ-CROWN Cell and process Technology for 1-Gigabit D^AMs】的論文,揭露了 ·種稱爲【ΜΙΜ-CROWN】 的先進電容器結構,這些堆疊式電容器結構均能大幅增加電容器的_容値。 本發明揭露了一·種高密度堆叠式動態隨機存取記憶體(Stock Dynamic Random Access Memory ; Stack DRAM)之電容器的製造方法,能大幅增加電 容器的電容値,能應用在六仟四佰萬位元以上的【堆曼式動態隨機存取記憶 體】製程。 3·發明之簡要說明 本發明的 提高動態隨: §的主要目的是提供一種在有限的電路佈局 游取記讎;£«容器電容的方法。 (CircuitLayout)面積內 (請先閱讀背面之注意事項再填寫本頁) " 經濟部中央標準局員工消f合作社印裝 本發明之另一個目的是提供一種具有高整合密度之【堆鲞式動態隨機存 取記億體】的製造方法。 本發明之主要製程方法如下。首先,以傳統標準製程在矽半導體基板上 (Silicon Semiconductor Substrate )形成隔離電性活動區(Active Area )所需的 場氧化層(Field Oxide ),接著,形成金氧半場效電晶體與字語線 (WordUne),所述金氣半場效電晶體包含有關氧化層(Gate Oxide)、閘極 (Gate Electrode),側壁子(Spacer)與源極/汲極(Source/Drain)。接 著,沈積一層【第一絕緣層】與【第二絕緣層】,並平坦化所述【第---絕緣 層】。接著,利用微影技術和電漿蝕刻技術蝕去所述【第·絕緣層】與【第二 絕緣層】,以形成金氧半場效電晶體之源極接觸窗(Node Contact),未來, 電容器之【電荷儲存電極】將透過所述【源極接觸窗】跟【金氣半場效電晶 體】之源極作電性接觸。 接著,沈積一層【攙雜的第一複晶矽層】(FirstDopedPdysiliccm),所 述【攙雜的第一複晶矽層】塡滿所述【源極接觸窗】。然後,利用微影技術和 電漿蝕刻技術在所述【電容器區域】中央位置附近之【擔雜的第--複晶矽層】 表面形成凹溝(Trench)。接著,沈gf—層【第三絕緣層】,然後,利用電漿 蝕刻技術對所述【第三絕緣層】進行單向性的回蝕刻(^^〇11"〇1^£11 Etchback),所述固蝕刻終止於所述【攙雜的第一複晶矽層】表面,以在所述 【凹溝】內形成【第三絕緣層栓柱】(™rdlnsulatorP1ug)。 接著,利用電漿蝕刻技術對所述【攙雜的第一複晶矽層】進行單向性的 冋忡刻(AnisotropicalEtchback),以蝕去一部份厚度的【攙雜的第一複晶矽 M】,露出一部份的【第三絕緣層栓柱】。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐)1. The technical area of the invention. The present invention is related to the dynamics of Zhen Nuoer Road__Manufacturing Me ^ iod of the capacitor (C ^ acitor) ° .2. Background of the invention is typical The dynamic random access memory device is to manufacture a metal oxide semiconductor field effect transistor (MOSFET) and a capacitor review (Capacitor) on a silicon semiconductor substrate (Silicon Semiconductor Substrate), and use the metal oxide The source of the half field effect transistor (Source) is connected to the charge storage electrode (storageNode) of the capacitor to form a memory cell of the dynamic random access memory. '', The source of the metal oxide half field effect transistor is in electrical contact with the capacitor, digital information is stored in the capacitor, and the metal oxide half field effect transistor, the bit line and the word line array are used to relax Digital information stored in the capacitor. In order to increase the accumulation density of dynamic random access memory devices, the pass_state_machine access memory system process is to form a capacitor in the third-degree space above or below the metal oxide half field effect transistor to limit the circuit layout area The capacitance value of the capacitor is added internally; the capacitor formed above the metal oxide half field effect transistor is called a stacked capacitor (Stacked Capacitor), and the capacitor formed below the metal oxide half field effect transistor is called a trenched capacitor (TrenchedCapacitor) . Fu Tong [The method of increasing the capacitance of stacked capacitor 1 is to increase the thickness of the pad under the capacitor to increase the surface area of the capacitor (Surface Area), so as to reduce the planar area of the memory cell (Plannar Area), The same capacitance value should also be maintained. However, increasing the thickness of the lower electrode plate of the capacitor produces a steep terrain. The subsequent photolithographic etching and thin film sinking process is not easy to perform, reducing the yield of the product (Yield). [Concave Capacitor] The method of increasing the capacitance is to increase the depth of the concave groove in the semiconductor substrate to increase the surface area of the capacitor (Surface Area), so that the same capacitance should be maintained while reducing the [planar area] of the memory cell However, due to the destruction of the crystal structure of the semiconductor substrate by the [concave trench capacitor], leakage current is likely to occur. In recent years, the integration density of dynamic enzyme machine access memory has increased rapidly. At present, the integrated circuit company of Taiwan [Hsinchu Science Industrial Park] (ScienceBasedlndustrialParfc: SIPA) has entered the memory cell with a size of 600 square meters of 1.5 square micrometers. In the mass-production phase of 10,000 bits, for example, the world's advanced integrated circuit company (Vanguard International Semiconductor) stacked dynamic random access memory and the De groove semiconductor company (TI-Acer) grooved dynamic random access memory. The integration density of foreign dynamic random access memory devices has also shown a fairly rapid increase. For example, Japanese semiconductor companies such as SONY announced in 1995 that they already have prototypes of 1 billion dynamic random access memory (1GB DRAM) Samples come out: T. Kaga et al. Of Hitachi Corporation in IEDM in 1994 (please read the notes on the back before filling in this page) Λ. Order Λ This paper size is applicable to China National Standards (CNS) A4 specification (2丨 0X297mm) 307919 V. Description of the invention (Λ7 B7 page 927 was also published-an article titled [A 0.29 um2 ΜΙΜ-CROWN Cell and process T The paper "echnology for 1-Gigabit D ^ AMs" reveals an advanced capacitor structure called [ΜΙΜ-CROWN], and these stacked capacitor structures can greatly increase the capacity of the capacitor. The present invention discloses a High-density stacked dynamic random access memory (Stock Dynamic Random Access Memory; Stack DRAM) capacitor manufacturing method, can greatly increase the capacitance value of the capacitor, can be applied to more than 64 million bit [Heman type Dynamic Random Access Memory] process. 3. Brief description of the invention The improved dynamics of the present invention are as follows: § The main purpose is to provide a method for accessing memory in a limited circuit layout; £ «Container capacitance. (CircuitLayout) area (Please read the precautions on the back before filling in this page) " Printed by the Cooperative Society of the Central Standards Bureau of the Ministry of Economic Affairs. Another object of the present invention is to provide a high-density [heaped dynamic random access memory The manufacturing method of the 100 million body. The main manufacturing method of the present invention is as follows. First, a traditional standard process is used on a silicon semiconductor substrate (Silicon Semicondu ctor Substrate) to form a field oxide layer (Field Oxide) required to isolate the electrical active area (Active Area), and then to form a gold oxide half field effect transistor and a word line (WordUne), the gold gas half field effect transistor includes About the oxide layer (Gate Oxide), gate electrode (Gate Electrode), side wall (Spacer) and source / drain (Source / Drain). Next, deposit a layer of [First Insulation Layer] and [Second Insulation Layer], and planarize the [No .--- Insulation Layer]. Next, using lithography technology and plasma etching technology to etch away the [first insulation layer] and [second insulation layer] to form the source contact window (Node Contact) of the metal oxide half field effect transistor, in the future, capacitors The [charge storage electrode] will make electrical contact with the source of the [gold gas half field effect transistor] through the [source contact window]. Next, a layer of [First Doped Pdysiliccm] (First Doped Pdysiliccm layer) is deposited, and the [Doped first polycrystalline silicon layer] fills the [source contact window]. Then, a lithography technique and a plasma etching technique are used to form a trench on the surface of the [loaded first polycrystalline silicon layer] near the center of the [capacitor area]. Next, sink the gf-layer [third insulating layer], and then use plasma etching technology to unidirectionally etch back the [third insulating layer] (^^ 〇11 " 〇1 ^ £ 11 Etchback), The solid etching is terminated on the surface of the [doped first polycrystalline silicon layer] to form a [third insulating layer stud] (™ rdlnsulatorP1ug) in the [concave groove]. Next, a plasma etching technique is used to perform unidirectional etching (Anisotropical Etchback) on the [doped first polycrystalline silicon layer] to etch away a part of the thickness of the [doped first polycrystalline silicon M] , A part of the [third insulating layer stud] is exposed. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm)

*1T 气! 五、發明説明() A7 B7 經濟部中央標準局員工消費合作社印製 接著,沈積一層【薄的攙雜的第二複晶矽層】(Thin Second Doped Polysilicon),並旋即利用電漿蝕刻技術對所述【薄的攙雜的第二複晶矽層】 進行單向性的回蝕刻,所述【單向性的回蝕刻】終止於所述【第二絕綠層】和 【第三絕緣層栓柱】之上表面,以在ί第:Ξ絕緣詹栓柱】之旁側形成複晶矽側 壁子(Polysilicon Spacer),所述【複晶矽側壁子】並跟【攙雜的第一複晶矽 層】相連接,最後,去除所述【第三絕綠層栓柱】,具備高電容之【電荷儲存 電極】於焉完成。4·圖示的簡要說明 圖1至圖11是本發明之實施例的製程剖面圖 (Process Cross Section) 〇5.發明之實施例 首先,在電阻値約3.5 ohm-ctn、晶格方向(100 ) ( Crystalline Orientation)的P型砍半導體基板1上形成場氧化層3,所述【場氧化層3】 厚度介於3000埃到6000埃之間,作爲隔離電性元件之用。然後,在所述【P 型矽半導體基板1】上形成金氧半場效電晶體,所述【金氧半場效電晶體】包 含有閘氧化層5 ( Gate Oxide )、閘極7 ( Gate Electrode )、側壁子11 (Spacer)與源極/汲極 13A/13B (Source/Drain)等元件。 所述【閘氧化層5】是熱氧化所述【P型矽半導體基板1】之表面而成, 其厚度介於80到200埃之間。所述【閘極7】則是由低壓化學氣相沉積法 (Low Pressure Chemica卜 Vapor Deposition ; LPCVD )形成之複晶砂 7 (Polysiliccm)所組成,其厚度介於1000到3000埃之間。接著,以【低壓化 學氣相沉積法】形成二氣化潑.9 (Cap Oxide),其厚度介於500到1200埃之 間,再利用微影技術與電漿蝕刻技術(Lithography and Etching)制定所述【二 氧化矽9】與【複晶矽7】的圖案,以形成所述金氣半場效電晶體之【閘極 7】。接著,.沉積一層介電層11,並對所述【介電層11】進行單向性的回触 刻,以在所述【閘極7】之二側產生【介電層側壁子11A】。所述【介電層 11】通常是以低壓化學氣相沉積法形成之無摻雜二氣化矽(Untyped Silicon Dioxide),其反應氣體是四已基矽酸鹽(TetraEthOxySi丨ane ; TEOS),反應 溫度約720 °C,反應壓力介於200到300 mTorr之間,|4:厚度介於800到1600 埃之間。 (請先閲讀背面之注^^項再填寫本頁) 訂 A ! 本紙張尺度逍用中國國家棋準(CNS ) Μ规格U10X297公嫠) Λ7 B7 f- 307919 五、發明説明() 接著,形成源極/汲極13A/13B (Source/Drain)。所述源極/汲極 13A/13B是由【N-淡讎源極/汲極】和【N+重讎源極/汲極組成】;所述 【N·淡慘雜源極/汲極】是在形成【側壁子11】之前,使用磷離子(P31)進 行離子佈値來形成On Implantation),其離子佈値劑量介於1E13到1EH原 子/平方公分之間,離子佈値能量則介於2〇到40 Kev之間;【N+重摻雜源 極/汲極】則是在形成【側壁子丨1】之後,使用砷離子(As75)進行離子佈値 來形成,其離子佈値劑量介於1K15到1E16原子/平方公分之間,離子佈値能 量則介於20到80Kev之間,完成所述【源極/汲極13A/13B】之後,金氧 半場效電晶體的製作,於焉完成’如圖〗所示。 接著,沈積一層【第一絕緣層21】與【第二絕綠層23】,並平坦化所述 【第一絕緣層21】,如圖2所示。所述【第一絕緣廢21】通常是以化學氣相 沉積法(Chemical Vapor Deposition ; CVD)形成之磷玻璃薄膜(13〇1:〇-PhosphoSilicateGlass ; BPSG)或_皮璃薄膜(PhosphoSilicateGlass ; PSG), 其厚度介於5000到10000埃之間,完成沈積後,利用傳統熱流整技術 (Thermal Flow)平坦化(Planarized)所述【第一絕緣層21】,所述熱流整 溫度介於85(TC到95(TC之間,熱流整時間介於1〇分鐘到30分鐘之間。除了 利用熱流整技術將所述【第一絕緣層21】平坦化以外,也可以利用習知的化 學機械式拋光技術(Chemicil Mechanical Polishing ; CMP)將所述【第一絕緣 層21】平坦化。所述【第二絕緣層23】則通常是以低壓化孿氣相沉積法形成 之氮化矽(Silicon Nitride ; Si3N4 ),其反應氣體是NH3和SiH4,反應溫度約 760°C,反應壓力約350 mtorr,厚度介於500到1500埃之間。 接著,利用微影技術與電漿蝕刻技術(Lithography and Plasma Etching) 蝕去所述【第一絕緣層21】與【第:::絕緣層23】,以形成金氧半場效電晶體 之源極接觸窗24 (Node Contact),如圖3所示,未來,電容器之【電荷儲 存電極】將透過所述【源握接餳窗24】跟金氧半場效電晶體之溉極作電性接 觸。所述【電漿蝕刻】可以是磁場增強式活性離子式電漿蝕刻(Magnetic Enhanced Reactive Ion Etching ; MERJE)或電子迴旋共振電駿蝕刻(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電漿蝕刻技術(Reactive Ion Etching ; RIE),在次微米積體電路技術領域,一般是使用【磁場增強式活性 離子式電漿蝕刻】,電漿反應氣體-.般是CF4、CHF3和Ar等含氟氣體。 接著,沈積一層【攙雜.的第一複晶矽層25】(First Doped Polysilicon),所述【攙雜的第一複晶矽層25】塡滿所述【源極接觸窗 24】.,如圖4所示。所述【攙雜的第一複晶矽層25】是利用同步磷攙雜(In-situ Phosphorus Doped )之低壓化學氣相沉積法形成,反應氣體是PH3、SiH4 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X 297公瘴} (請先閲讀背面之注意事項再填寫本頁) —L—i f 經濟部中央標準局員工消費合作社印製 A 7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明() 與N2的混合氣體,反應溫度介於525到575 °C之間,由於所述【源極接觸窗 24】之寬度介於2000到5000埃之間,故所述【搛雜的第一複晶矽層25】之 厚度介於4000到8000埃之間。然後’利用微影技術和電蛾触刻技術在【電容 器區域】中央位置附近之所述【攙雜的第一複晶较層25】表面形成凹溝26 (Trench),如圖5所示。所述對【攙雜的第--複晶矽層25】之電漿蝕刻, 可以是磁場增強式活性離子式電漿飩刻(Magnetk Enhanced Reactive Ion Etching ; MER1E)或電子迴旋共振霉漿蝕刻(Electron Cyclotron Resonance ; ECR)或傳統的活性離子式電娥蝕刻岐術(Reactive Ion Etching ; RIE),但在 次微米技術領域,一般是使用【磁場晴強式活性離子式電漿蝕刻】,電獄反應 氣體一般是CC14、Cl2和HBr等含麵氣髗。 接著,沈積一層【第三絕緣層27】,所述【第Ξ£絕緣層27】塡滿所述 凹溝26,如圖ό所示。兩通竺繼緣層27】通常悬以低壓化學氣相沉積法 形成之摻雜二氧化矽(EtapedSiUccm Dioxide)或無鑛雜二氧化矽(Undoped Silicon Dioxide ),其反應氣體是四已基矽酸(TetraEtbOxySilane; TEOS ),反應溫度約720 °C,反應壓力介於200到300 mTorr之間,其厚度 介於3000到6000埃之間。然後,利用電漿蝕刻技術對所述【第三絕緣層 27】進行單向性的回蝕刻(AnisotropicalEtchback),所述回蝕刻終止於所述 【攙雜的第一複晶矽層25】$面,以在所述【凹溝26】內形成【第三絕緣層 栓柱27A】(Third Insulator Plug),如圖7所示。所述對【第三絕緣層27】 之【單向性的回蝕刻】,一般是使用【磁場增強式活性離子式電漿蝕刻】,電 漿反應氣體是CF4、CHF3和Ar等含氟氣體。 接著,以所述【第三絕緣層栓柱27A】作爲蝕刻保護罩(EtchMask), 利用電漿蝕刻技術對所述【攙雜的第一複晶矽層25A】進行單向性的回蝕刻, 以蝕去一部份厚度的所述【攙雜的第一複晶矽層25A】,成爲【搛雜的第一複 晶矽層25B】,並露出一部份的【第三絕緣層检柱27A】,剛8所示。對 所述【攙雜的第一複晶矽層25A】之單向性的回触刻,通常是使用所述【磁場 增強式活性離子式電漿蝕刻】,電槳反應氣體一般是CC14、Cl2和HBr等含 氯氣體。 〇 接著,沈積一層【薄的攙雜的第二複晶矽餍,】(Thin Second Doped* 1T gas! V. Description of the invention () A7 B7 Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. Next, deposit a thin layer of thin second doped polysilicon (Thin Second Doped Polysilicon), and immediately use plasma etching technology The [thin doped second polycrystalline silicon layer] performs unidirectional etch back, and the [unidirectional etch back] ends at the [second green layer] and [third insulating layer stud] 】 The upper surface to form a polysilicon spacer (Polysilicon Spacer) on the side of the ΥInsulation Zhan stud post, said [polysilicon spacer] and the phase of [doped first polysilicon layer] Connection, and finally, the [third green layer stud] is removed, and the [charge storage electrode] with high capacitance is completed in Yan. 4. Brief description of the drawings Figures 1 to 11 are process cross sections of the embodiment of the invention (Process Cross Section). 5. Embodiment of the invention First, the resistance value is about 3.5 ohm-ctn, the lattice direction (100 ) (Crystalline Orientation) P-type diced semiconductor substrate 1 is formed with a field oxide layer 3, the [field oxide layer 3] has a thickness between 3000 angstroms and 6000 angstroms, and is used to isolate electrical components. Then, a metal oxide half field effect transistor is formed on the [P-type silicon semiconductor substrate 1], the metal oxide half field effect transistor includes a gate oxide layer 5 (Gate Oxide) and a gate electrode 7 (Gate Electrode) , Side wall 11 (Spacer) and source / drain 13A / 13B (Source / Drain) and other components. The [gate oxide layer 5] is formed by thermally oxidizing the surface of the [P-type silicon semiconductor substrate 1], and its thickness is between 80 and 200 angstroms. The [Gate 7] is composed of polycrystalline sand 7 (Polysiliccm) formed by Low Pressure Chemica Vapor Deposition (LPCVD), and its thickness is between 1000 and 3000 angstroms. Then, the [Low Pressure Chemical Vapor Deposition Method] was used to form two gasification splashes. 9 (Cap Oxide), with a thickness between 500 and 1200 Angstroms, and then formulated using Lithography and Etching The patterns of the [silicon dioxide 9] and the [polycrystalline silicon 7] are used to form the [gate 7] of the gold gas half-field effect transistor. Next, a dielectric layer 11 is deposited, and the [dielectric layer 11] is unidirectionally back-etched to produce a [dielectric layer sidewall 11A] on both sides of the [gate 7] . The [dielectric layer 11] is usually an undoped silicon dioxide (Untyped Silicon Dioxide) formed by a low-pressure chemical vapor deposition method, and its reaction gas is TetraEth Oxysilane (TEOS), The reaction temperature is about 720 ° C, the reaction pressure is between 200 and 300 mTorr, and | 4: the thickness is between 800 and 1600 Angstroms. (Please read the note ^^ item on the back before filling in this page) Order A! This paper size is easy to use Chinese National Chess Standards (CNS) M specifications U10X297 public daughter) Λ7 B7 f- 307919 V. Description of invention () Then, form Source / Drain 13A / 13B (Source / Drain). The source / drain 13A / 13B is composed of [N-light source / drain] and [N + heavy source / drain]; the [N · light miscellaneous source / drain] Before the formation of [side wall element 11], use phosphorus ions (P31) for ion implantation to form On Implantation). The ion implantation dose is between 1E13 and 1EH atoms / cm2, and the ion implantation energy is between Between 20 and 40 Kev; [N + heavily doped source / drain] is formed after the formation of the [side wall sub 1], using arsenic ions (As75) for ion distribution, and the ion distribution dose is Between 1K15 and 1E16 atoms / cm 2, and the ion distribution energy is between 20 and 80Kev, after the completion of the [source / drain 13A / 13B], the production of gold-oxygen half-field effect transistors, Yu Yan Complete 'as shown in Figure〗. Next, deposit a layer of [first insulation layer 21] and [second insulation layer 23], and planarize the [first insulation layer 21], as shown in FIG. 2. The [first insulation waste 21] is usually a phosphorous glass film (13〇1: 〇-PhosphoSilicateGlass; BPSG) or _ skin glass film (PhosphoSilicateGlass; PSG) formed by chemical vapor deposition (Chemical Vapor Deposition; CVD) The thickness is between 5000 and 10000 angstroms. After the deposition is completed, the [first insulating layer 21] is planarized using traditional thermal flow technology (Thermal Flow), and the thermal flow temperature is between 85 (TC Between 95 and TC, the heat flow time is between 10 minutes and 30 minutes. In addition to using heat flow technology to planarize the [first insulating layer 21], conventional chemical mechanical polishing can also be used Technology (Chemicil Mechanical Polishing; CMP) planarizes the [first insulating layer 21]. The [second insulating layer 23] is usually silicon nitride (Silicon Nitride; Si3N4), the reaction gases are NH3 and SiH4, the reaction temperature is about 760 ° C, the reaction pressure is about 350 mtorr, and the thickness is between 500 and 1500 Angstroms. Then, using lithography and plasma etching technology (Lithography and Plasma Et ching) The [first insulating layer 21] and the [first ::: insulating layer 23] are etched away to form the source contact window 24 (Node Contact) of the metal oxide half field effect transistor, as shown in FIG. 3, in the future , The [charge storage electrode] of the capacitor will make electrical contact with the irrigation electrode of the metal oxide half field effect transistor through the [source gripping sugar window 24]. The [plasma etching] may be a magnetic field enhanced active ion type Plasma etching (Magnetic Enhanced Reactive Ion Etching; MERJE) or Electron Cyclotron Resonance (ECR) or traditional reactive ion plasma etching (Reactive Ion Etching; RIE) in submicron integrated circuits In the technical field, [Magnetic field-enhanced active ion plasma etching] is generally used, and plasma reaction gases-generally CF4, CHF3, and Ar-containing fluorine gases. Next, a layer of [doped] first polycrystalline silicon layer is deposited 25] (First Doped Polysilicon), the [doped first polycrystalline silicon layer 25] fills the [source contact window 24], as shown in FIG. 4. The [doped first polycrystalline silicon layer Layer 25] is to use synchronous phosphorus doping (In-sit u Phosphorus Doped) is formed by low-pressure chemical vapor deposition method, the reaction gas is PH3, SiH4 This paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 grub) (please read the precautions on the back before filling this page ) —L-if Printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A 7 B7 Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention () Mixed gas with N2, the reaction temperature ranges from 525 to 575 ° C In between, since the width of the [source contact window 24] is between 2000 and 5000 angstroms, the thickness of the [doped first polycrystalline silicon layer 25] is between 4000 and 8000 angstroms. Then, a groove 26 (Trench) is formed on the surface of the [doped first polycrystalline comparison layer 25] near the central position of the [capacitor area] using the photolithography technique and the electric moth engraving technique, as shown in FIG. The plasma etching of the [doped first-polycrystalline silicon layer 25] may be magnetic field enhanced active ion plasma etching (Magnetk Enhanced Reactive Ion Etching; MER1E) or electron cyclotron resonance mildew plasma etching (Electron Cyclotron Resonance; ECR) or traditional Reactive Ion Etching (RIE), but in the field of sub-micron technology, [magnetic field strong-strength active ion plasma etching] is generally used. The gas is generally CC14, Cl2, HBr and other gas-containing gas. Next, a layer of [third insulating layer 27] is deposited, and the [third insulating layer 27] fills the recess 26, as shown in FIG. The two-layer Zhu Jiyuan layer 27] usually doped with low-pressure chemical vapor deposition of doped silicon dioxide (EtapedSiUccm Dioxide) or undoped heterogeneous silicon dioxide (Undoped Silicon Dioxide), the reaction gas is tetrahexyl silicic acid (TetraEtbOxySilane ; TEOS), the reaction temperature is about 720 ° C, the reaction pressure is between 200 and 300 mTorr, and its thickness is between 3000 and 6000 angstroms. Then, the plasma etching technique is used to perform unidirectional etch back (Anisotropical Etchback) on the [third insulating layer 27], the etch back is terminated on the surface of the [doped first polycrystalline silicon layer 25], In order to form a [Third Insulator Plug 27A] (Third Insulator Plug) in the [recess 26], as shown in FIG. 7. The [unidirectional etch back] of the [third insulating layer 27] is generally [magnetic field enhanced active ion plasma etching], and the plasma reaction gas is a fluorine-containing gas such as CF4, CHF3 and Ar. Next, using the [third insulating layer stud 27A] as an etch protection cover (EtchMask), a unidirectional etch back is performed on the [doped first polycrystalline silicon layer 25A] using plasma etching technology, to A part of the thickness of the [doped first polycrystalline silicon layer 25A] is etched away to become a [doped first polycrystalline silicon layer 25B], and a part of the [third insulating layer inspection pillar 27A] is exposed , Just 8 shows. For the unidirectional back touch etching of the [doped first polycrystalline silicon layer 25A], the [magnetic field enhanced active ion plasma etching] is generally used. The propeller reaction gas is generally CC14, Cl2 and Chlorine-containing gas such as HBr. 〇 Next, deposit a thin layer of thin second doped polycrystalline silicon (Thin Second Doped)

Polysilicon),如圖9所示,並旋即利用電漿触刻技術對所述【薄的攙雜的第 二複晶矽層29】和【攙雜的第一複晶矽層25B】進行單向性的回蝕刻,所述 【單向性的回蝕刻】終止於所述【第二絕緣層23】和【第三絕緣層栓柱 27A】之上表面,以在【第三絕緣層栓柱27A】之旁側形成複晶矽側壁子29Α (PolysiliconSpacer),所述【複晶矽側壁子29Α】並跟複晶砍 層25C】相連接,如圖1〇所示。所述【薄的攙雜的第二複晶矽層29】,也 本紙張尺度適用中國國家樣準(CNS ) A4規格(2丨0X 297公釐) (請先閲讀背面之注項再填寫本頁) L·Polysilicon), as shown in FIG. 9, the plasma thin etching technique is used to unidirectionally perform the [thin doped second polycrystalline silicon layer 29] and [doped first polycrystalline silicon layer 25B] Etching back, the [unidirectional etch back] ends on the upper surface of the [second insulating layer 23] and [third insulating layer stud 27A], so that the [third insulating layer stud 27A] A polysilicon spacer 29A (Polysilicon Spacer) is formed on the side, and the [polysilicon spacer 29A] is connected to the polycrystalline cut layer 25C, as shown in FIG. 10. The [thin doped second polycrystalline silicon layer 29] described in this paper is also applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X 297mm) (please read the notes on the back and fill in this page ) L

、1T 五、發明説明() A7 B7 經濟部中夾標华局負工消费合作社印製 是利用同步鱗原子.攙雜(In-situ Phosphorus Doped)之低壓化學氣相沉積法形 成,其反應氣體是PH3、SiH4與喊的混合氣體,反應溫度介於52Q到580 °C之間,其厚度介於1000到2000埃之間。 接著,利用稀釋氫氟酸溶液(Diluted HF)去除所述【第三絕緣層栓柱 27八】,剩餘之【攙雜的第-複晶矽層25C】和【複晶矽側壁子2M】構成了 電容器之【電荷儲存電極】,如圖1:1所示,具備高爾容之【電荷儲存電極】 於焉完成。最後,以標準製程在所述【電荷儲存電極】表面形成一層厚度極薄 的電容器介電層(CapacitorDielectric)和一.層【攙雜的第Η複晶矽層】’並利 用微影與電漿蝕刻技術蝕去所述【電容器介11層】和所述【攙雜的第三複晶矽 層】,以形成電容器的上層電極(Plate Electrode),具備高電容之堆疊式電容 器於焉完成。 所述【攙雜的第三複晶矽層】,通常是利用同步磷原子攙雜Un-situ Phosphorus Doped)之低壓化學氣相沉積法形成,其反應氣鼸是PH3、SiH4與 N2的混合氣體,反應溫度介於520到580 °C之間,其厚度介於1000到2500 埃之間。對所述【攙雜的第三複晶矽層】之電漿蝕刻,通常是使用所述【磁場 增強式活性離子式電漿蝕刻】,其電漿反應氣體一般是C〇4、Cl2和HBr等 含氯氣體° ' 所述【電容器介電層】通常是由氧化氮化矽(Oxynitride)、氮化矽和二 氧化矽藉由下述方法形成,這是傳統標準製程。首先,在溫度介於850°C到 950°C之間時熱氧化由複晶矽構成之所述【電荷儲存電極】,以形成厚度介於 40埃到200埃之間的【二氧化矽】;接著,在溫度介於650°C到750。(:之間 時以低壓化學氣相沉積法形成厚度介於4〇埃到6〇埃之間的【氮化矽】;最 後,在溫度介於85〇°C到950°C之間時氧化所述【氮化矽】,以形成厚度介於 2〇埃到50埃之間的【氧化氮化矽】。所述【電容器介電暦】亦可由Ta205材 料組成。 以上係利用最佳實施例來_述本發明,而非限制本發明,並且,熟知半 導體技藝之人士皆能明瞭,適當而作些微的改變及調盤,仍將不失本發明之要 義所在,亦不脫離本發明之精神和範園- (請先閲讀背面之注意事項再填寫本頁)、 1T V. Description of the invention () A7 B7 Printed by the Ministry of Economic Affairs, China National Bureau of Standards and Technology Negative Consumers Cooperatives is formed by the use of synchronous scale atoms. Doped (In-situ Phosphorus Doped) low-pressure chemical vapor deposition method, the reaction gas is The mixed gas of PH3, SiH4 and Hou has a reaction temperature between 52Q and 580 ° C and a thickness between 1000 and 2000 Angstroms. Next, using a diluted hydrofluoric acid solution (Diluted HF) to remove the [third insulating layer plug 27], the remaining [doped first-polycrystalline silicon layer 25C] and [polycrystalline silicon sidewall sub 2M] constitute The [charge storage electrode] of the capacitor is shown in Figure 1: 1, and the [charge storage electrode] with high capacity is completed in Yan. Finally, a standard process is used to form a very thin capacitor dielectric layer (Capacitor Dielectric) and a layer [doped H-polycrystalline silicon layer] on the surface of the [charge storage electrode] and use photolithography and plasma etching The technology etches the [capacitor interlayer 11] and the [doped third polycrystalline silicon layer] to form the upper electrode of the capacitor (Plate Electrode), and the stacked capacitor with high capacitance is completed in Yan. The [doped third polycrystalline silicon layer] is usually formed by low-pressure chemical vapor deposition method of synchronous phosphorus atom doping (Un-situ Phosphorus Doped). The reaction gas is a mixed gas of PH3, SiH4 and N2. The temperature is between 520 and 580 ° C, and its thickness is between 1000 and 2500 Angstroms. For the plasma etching of the [doped third polycrystalline silicon layer], the [magnetic field enhanced active ion plasma etching] is generally used, and the plasma reaction gases are generally C〇4, Cl2, HBr, etc. Chlorine-containing gas ° The [capacitor dielectric layer] is usually formed of silicon oxide nitride (Oxynitride), silicon nitride, and silicon dioxide by the following method, which is a traditional standard process. First, thermally oxidize the [charge storage electrode] composed of polycrystalline silicon at a temperature between 850 ° C and 950 ° C to form [silicon dioxide] with a thickness between 40 Angstroms and 200 Angstroms ; Then, at a temperature between 650 ° C to 750. (: [Silicon Nitride] with a thickness between 40 Angstroms and 60 Angstroms is formed by low-pressure chemical vapor deposition method at the time; finally, it is oxidized when the temperature is between 85 ° C and 950 ° C The [silicon nitride] is used to form a [silicon oxide nitride] with a thickness between 20 Angstroms and 50 Angstroms. The [Capacitor Dielectric Nitride] can also be composed of Ta205 material. The above is the best embodiment Let's describe the present invention, not limit the present invention, and those familiar with semiconductor technology can understand that appropriate and slight changes and adjustments will still lose the essence of the present invention and will not deviate from the spirit of the present invention He Fan Yuan-(Please read the notes on the back before filling this page)

JJ

•1T 本紙張尺度逍用中國國家揉準(CNS ) Α4規格(2丨OX 2W公釐)• The size of 1T paper is used in China National Standard (CNS) Α4 specification (2 丨 OX 2W mm)

Claims (1)

3079ί9六、申請專利範圍 B8 C8 D8 •一種動態隨機存取記憶體之記憶元的製造方法,係包含下列歩驟: 在半導體基板上(Semiconductor Substrate)形成隔雛電性活動區 (Active Area)所窬的場氧化層( Field Oxide),並形成金氧半場效電晶體 與字語線(Wordline); 沈積【第一絕緣層】與【第二絕緣層】,並平坦化所述【第一絕緣 層】; 蝕去所述【第一絕緣層】與【第二絕緣靥】,以形成源極接觸窗 (Node Contact),未來,電容器之電荷儲存電極(Storage Node)將透過 所述【源極接觸窗】跟所述金氧半場效電晶體之源極(Source)作電性接 觸; (First Doped Polysilicon ),所述 沈積一層【攙雜的第一複晶矽層】(First D〇f 【攙雜的第一複晶矽層】塡滿所述【源極接觸窗】.; (請先閲讀背面之注意事項再填寫本頁) 裝. 經濟部中央標準局員工消费合作社印製 在【電容器區域】中央位置附近之【攙雜的第一複晶矽層】表面形成 凹溝(Trench),所述【凹溝】之深度必須小於所述【攙雜的第一複晶矽 層】的厚度; 沈積一層【第三絕緣層】,所述【第三絕緣曆】塡滿所述【凹溝】; 在所述【凹溝】內形成【第三絕緣層栓柱】(Third Insulator Plug); 對所述【攙雜的第:Γ複晶矽層J進行單向性的回蝕刻,以蝕去一部份 厚度的所述【攙雜的第一複晶矽層】; 沈積一層【薄的攙雜的第二複晶矽層】(Thin Second Doped Polysilicon),並利用蝕刻技術對所述【薄的攙雜的第二複晶砂層】和【攙 雜的第一複晶矽層】進行單向性的回触刻,所述【單向性的回蝕刻】終止 於所述【第二絕緣層】和【第三絕緣層栓柱】之上表面,以在【第三絕緣 層栓柱】之旁側形成複晶矽側壁子(PolysiliconSpacer); 去除所述【第三絕緣層栓柱】,剩餘之【攙雜的第一複晶矽層】和 【複晶矽側壁子】構成了電容器之【電荷儲存電極】; 在所述【電荷儲存電極】表面形成一層厚度極薄的電容器介電層 (CapacitorDielectric)和一層【攙雜的第三複晶矽層】,並利用微影與蝕 刻技術蝕去所述【電容器介電層】和所述【攙雜的第三複晶矽層】,以形 成電容器的上層電極(PlateElectrode)。 2 ·如申請專利範圍第1項所述之製作方法,其中所述【第一絕緣層】是二 氧化矽(Silicon Dioxide ),其厚度介於5000至(1 10000埃之間》 3·如申請專利範圍第1項所述之製作方法,其中所述【第二絕緣層】是氮 化矽(Silicon Nitride),其厚度介於500到1S00埃之間。 本紙張尺度適用中嗶國家梯準(CNSJ A4规格(210X297公釐) 訂 A8 B8 C8 D8 經濟部中央榡準局負工消費合作社印製 =、申請專利範圍 4 ·如申請專利範圍第1項所述之製作方法,其中所述在電容器中央形成所 述第一複晶矽的凹溝的方法,尙包括: 形成一層光阻在所述攙雜的第一複晶; 利用微影技術定義所述凹_位置; 蝕刻出凹溝; 所述凹溝之深度小於在所述第二絕緣層上方之所述【攙雜的第二複晶 砂層】的厚度。 5·如申請專利範圍第1項所述之製作方法,其中所述【第三絕緣層】是二 氧化矽(Silicon Dioxide ),其屢度介於3000到60CK)埃之間。 6·如申請專利範圃第1項所述之製作方法,其中所述【播雜的第一複晶矽 層】’其厚度介於4000到8000埃之間。 7·如申請專利範圃第1項所述之製作方法,其中所述【薄的攙雜的第二複 晶矽層】,其厚度介於1〇〇〇到20W埃之間。 8·如申請專利範圍第1項所述之製作方法,其中所述【攙雜的第三複晶矽 層】,其厚度介於10Q9到埃之間- 9.如申請專利範園第1項所述之製作方法,其中所述【電容器介電層】是 由氧化氮化矽(Oxynitride)、氮化矽和二氧化矽所組成,或由Ta2〇5所 -組成。 ⑴·如申請專利範圍第1項所述之製作方法,其中所述在【凹溝】內形成 【第三絕緣層栓柱】的方法是卿刻所述【第二絕緣層】。 11 .如申請專利範圍第1項所述之製作方法,其中所述去除【第三絕緣層检 柱】的方法是用化學濕蝕刻去除之。 12 ·—種動態隨機存取記憶體之記憶元的製造方法,係包含下列步驟: 在半導體基板上(Semiconductor Substrate)形成隔離電性活動區 (Active Area )所需的場氧化層(Held Oxide ),並形成金氧半場效電晶體 與字語線(Wordline): 沈積一層【第一絕緣層】,所述【第一絕綠層1是由齦化砍和二氧化 矽組成,氮化矽位於下方,二氧化砍位於上方,然後,平坦化所述【第一 絕緣層】; 沈積一層【第二絕緣層】; 本紙張尺度適用中國國家揉隼(CNS ) A4洗格(210x297公着) 3 、τ (請先聞讀背面之注$項再填寫本頁)3079ί9 6. Patent scope B8 C8 D8 • A method of manufacturing memory cells for dynamic random access memory, which includes the following steps: forming an active area on a semiconductor substrate (Semiconductor Substrate) A field oxide layer (Field Oxide), and forming a metal oxide half field effect transistor and a word line (Wordline); deposit [first insulation layer] and [second insulation layer], and planarize the [first insulation [Layer]; The [first insulating layer] and the [second insulating layer] are etched away to form a source contact window (Node Contact). In the future, the charge storage electrode (Storage Node) of the capacitor will pass through the [source electrode Contact window] Make electrical contact with the source electrode of the metal-oxygen half field effect transistor (Source); (First Doped Polysilicon), the deposited layer [First Doped Polysilicon layer] (First D〇f [Doped The first polycrystalline silicon layer is full of the [source contact window] .; (Please read the precautions on the back before filling out this page). Installed. Printed in the [Capacitor area] by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Central position A trench is formed on the surface of the nearby [doped first polycrystalline silicon layer], and the depth of the [concave trench] must be less than the thickness of the [doped first polycrystalline silicon layer]; deposit a layer [third Insulation layer], the [third insulation calendar] fills the [concave ditch]; [Third Insulator Plug] (Third Insulator Plug) is formed in the [concave ditch]; for the [doped The first: Γ polycrystalline silicon layer J is unidirectionally etched back to etch a part of the thickness of the [doped first polycrystalline silicon layer]; deposit a layer of [thin doped second polycrystalline silicon layer 】 (Thin Second Doped Polysilicon), and the etching is used to unidirectionally etch the [thin doped second polycrystalline silicon layer] and [doped first polycrystalline silicon layer], the [single Anisotropic etchback] terminates on the upper surface of the [second insulating layer] and [third insulating layer stud] to form polysilicon sidewalls (PolysiliconSpacer) beside the [third insulating layer stud] ); Remove the [third insulating layer stud], the remaining [doped first polycrystalline silicon layer] and [The polysilicon sidewall] constitutes the [charge storage electrode] of the capacitor; a thin dielectric capacitor layer (CapacitorDielectric) and a layer of [doped third polysilicon layer are formed on the surface of the [charge storage electrode] ], And using photolithography and etching techniques to etch away the [capacitor dielectric layer] and the [doped third polycrystalline silicon layer] to form the upper electrode of the capacitor (PlateElectrode). The manufacturing method described in item 1, wherein the [first insulating layer] is silicon dioxide (Silicon Dioxide), and its thickness is between 5000 and (1 10000 Angstroms). 3. As described in item 1 of the patent application scope The manufacturing method, wherein the [second insulating layer] is silicon nitride (Silicon Nitride), the thickness of which is between 500 to 1S00 Angstroms. This paper scale is applicable to China National Standard (CNSJ A4 standard (210X297mm). Order A8, B8, C8, D8. Printed by the Ministry of Economic Affairs, Central Bureau of Preservation and Consumer Cooperatives =, patent application scope 4 The manufacturing method described above, wherein the method of forming the concave groove of the first polycrystalline silicon in the center of the capacitor includes: forming a layer of photoresist on the doped first complex crystal; defining the concave using photolithography technology _Position; etched groove; the depth of the groove is less than the thickness of the [doped second polycrystalline sand layer] above the second insulating layer. 5. As described in item 1 of the patent application scope The manufacturing method, wherein the [third insulating layer] is silicon dioxide (Silicon Dioxide), which is frequently between 3000 and 60 CK. 6. The production method as described in item 1 of the patent application park, wherein the thickness of the [first doped polycrystalline silicon layer] is between 4000 and 8000 angstroms. 7. The manufacturing method as described in item 1 of the patent application, wherein the [thin doped second polycrystalline silicon layer] has a thickness between 1000 to 20W. 8. The manufacturing method as described in item 1 of the patent application scope, wherein the thickness of the [doped third polycrystalline silicon layer] is between 10Q9 and Angstrom-9. As claimed in item 1 of the patent application park The manufacturing method described above, wherein the [capacitor dielectric layer] is composed of silicon oxide nitride (Oxynitride), silicon nitride and silicon dioxide, or is composed of Ta205. (1) The manufacturing method as described in item 1 of the patent application scope, wherein the method of forming the [third insulating layer stud] in the [concave ditch] is to engrave the [second insulating layer]. 11. The manufacturing method as described in item 1 of the patent application scope, wherein the method for removing the [third insulating layer inspection pillar] is to remove it by chemical wet etching. 12-A method for manufacturing memory cells of dynamic random access memory, including the following steps: forming a field oxide layer (Held Oxide) required to isolate an electrical active area (Semiconductor Substrate) on a semiconductor substrate (Semiconductor Substrate) , And form a metal oxide half field effect transistor and Wordline: deposit a layer of [first insulating layer], the [first green layer 1 is composed of gingival and silicon dioxide, silicon nitride is located Below, the chopped dioxide is located above, and then, the [first insulating layer] is flattened; a layer of [second insulating layer] is deposited; this paper scale is applicable to the Chinese National Falcon (CNS) A4 wash grid (210x297 public) 3 , Τ (please read the $ item on the back and then fill in this page) AS B8 C8 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 蝕去所述【第一絕緣層】興【第二絕緣層】,以形成源極接觸窗 (Node Contact),未來,電容器之電荷釀存電極(Storage Node)將透過 所述【源極接觸窗】跟所述金氧半場效電晶繼之源極(Source)作電性接 觸; " 沈積一層【攙雜的第一複晶砂屬】(FirstDopedPolysi.li.con),所述 【攙雜的第—·複晶矽層】塡滿所述【源極接觸窗】; 在【電容器區域】中央位置附近之【攙雜的第一複晶矽層】表面形成 凹溝(Trench),所述【凹溝】之深度必須小於所述【攙雜的第一複晶矽 層】的厚度; 沈積一層【第三絕緣層I ,所述【第三絕緣層】塡滿所述【凹溝】; 在所述【凹溝】內形成【第5Ξ絕綠層栓柱】(ThifdlmulatorPlug); 對所述【攙雜的第一複晶矽曆】進行單向性的回蝕刻,以蝕去一部份 厚度的所述【攙雜的第一複晶矽層】; 沈積一層【薄的攙灘的第二複晶矽層】( Thin Second Doped Polysilicon),並利用蝕刻技術對所述【薄的攙雜的第二複晶矽層】和【攙 雜的第一複晶矽層】進行單向性的回蝕刻,所述【單向性的回蝕刻】終止 於所述【第二絕緣層】和【第三絕緣層检柱】之上表面,以在【第三絕緣 層栓柱】之旁側形成複晶砂側壁子(PolysiliconSpacer); 去除所述【第一_層】上層之二氧化矽、所述【第二絕緣層】與 【第三絕緣層栓柱】,剩餘之【攙雜的第一複晶砂層】和【複晶矽側壁 子】構成了電容器之【電荷儲存電極】; 在所述【電荷儲存電極】表面形成一層厚度極薄的電容器介電層 (CapacitorDielectric)和一層【攙雜的第三複晶矽層】,並利用微影與蝕 亥ί技術蝕去所述【電容器介電層i和所述【攙雜的第三複晶矽層】,以形 成電容器的上層電極( Plate Electrode )。 13 ·如申請專利範圔第12項所述之製作方法,其中所述【第一絕緣層】是 由氮化矽(SiliconNitride)和二氧化矽(Silicon Dioxide)組成,氮化矽 位於下方,二氧化砂位於上方,其中,氮化矽之厚度介於500到1000埃 之間,二氧化矽之厚度介於5000到〗0000埃之間。 14 ·如申請專利範圍第12項所述之製作方法,其中所述【第二絕緣層】是 氮化矽(Silicon Nitride ),其厚度介於500到1500埃之間。 15 ·如申請專利範圔第12項所述之製作方法,其中所述在電容器中央形成 所述第一複晶矽的凹溝的方法’尙包括: 形成一層光阻在所述攙雜的第一複晶矽層之上: 利用微影技術定義所述凹溝的位置; 蝕刻出凹溝ί 本紙張尺度逋用中國國家揉準(CNS }_Α4洗格(210X 297公釐) (請先聞讀背面之注意事項再填寫本Ϊ) 訂 A8 B8 08 D8 307919 六、申請專利範圍 所述凹溝之深度小於在所述第二絕緣曆上方之所述【攙雜的第二複晶 矽層】的厚度。 16 ·如申請專利範圍第12項所述之製作方法,其中所述【第三絕緣層】是 二氧化矽(Silicon Dioxide ),其厚度介於3000到6(»0埃之間。 17 ·如申請專利範圍第12項所述之製作方法,其中所述【攙雜的第一複晶 矽層】,其厚度介於4000到8000埃之間。 18 ·如申請專利範圍第12項所述之製作方法,其中所述【薄的攙雜的第二 複晶矽層】,其厚度介於1000到2000埃之間。 19 ·如申請專利範圍第12項所述之製作方法,其中所述【搛雜的第三複晶 矽層】,其厚度介於1000到30Θ0埃之間。 20 ·如申請專利範圍第12項所述之製作方法,其中所述【電容器介電層】 是由氧化氮化矽(Oxynitride )、氮化矽和二氧化矽所組成,或由Ta205 所組成° 21 ·如申請專利範圔第f項所述之製作方法,其中所述在【凹溝】內形成 【第三絕緣靥栓柱】的方法是回蝕刻所述【第二絕緣靥】。 22 ·如申請專利範圍第Π項所述之製作方法,其中所述去除【第三絕緣層 栓柱】的方法是用化學濕蝕刻去除之。 (請先聞讀背面之注意事項再填寫本頁) 裝- 經濟部中央標準局貝工消费合作社印製 本紙張尺度埴用中國國家樣準(CNS > A4洗格 .(210X297公釐)AS B8 C8 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy 6. The scope of the patent application is to etch the [first insulating layer] and the [second insulating layer] to form a source contact window (Node Contact). In the future, capacitors The charge storage electrode (Storage Node) will make electrical contact with the source electrode of the gold-oxygen half field effect transistor through the [source contact window]; " deposit a layer [the first complex compound Crystal Sands] (FirstDopedPolysi.li.con), the [doped first-polycrystalline silicon layer] fills the [source contact window]; the [doped first near the center of the [capacitor area] Polycrystalline silicon layer] A trench is formed on the surface, and the depth of the [concave trench] must be less than the thickness of the [doped first polycrystalline silicon layer]; deposit a layer of [third insulating layer I, the [ The third insulating layer is filled with the [concave ditch]; [Thifdlmulator Plug] is formed in the [concave ditch]; the [doped first polycrystalline silicon calendar] is performed Unidirectional etch back, to etch a part of the thickness of the 【 Mixed first polycrystalline silicon layer]; deposit a [thin second doped polysilicon layer] (Thin Second Doped Polysilicon), and use etching technology to the [thin doped second polycrystalline silicon layer] ] And [Doped first polycrystalline silicon layer] perform unidirectional etch back, the [unidirectional etch back] ends at the [second insulating layer] and [third insulating layer inspection column] On the upper surface, to form polysilicon space sidewalls (PolysiliconSpacer) beside the [third insulating layer stud]; remove the silicon dioxide on the [first_layer] upper layer, the [second insulating layer] and [Third insulation layer stud], the remaining [doped first polycrystalline sand layer] and [polycrystalline silicon sidewall] constitute the [charge storage electrode] of the capacitor; a layer of thickness is formed on the surface of the [charge storage electrode] Very thin capacitor dielectric layer (CapacitorDielectric) and a layer of [doped third polycrystalline silicon layer], and using lithography and etching technology to etch the [capacitor dielectric layer i and the said [doped third Polycrystalline silicon layer] to form the upper electrode of the capacitor (Pla te Electrode). 13. The manufacturing method as described in Item 12 of the patent application, wherein the [first insulating layer] is composed of silicon nitride (SiliconNitride) and silicon dioxide (Silicon Dioxide), silicon nitride is located below, two The oxide sand is located above, where the thickness of silicon nitride is between 500 and 1000 angstroms, and the thickness of silicon dioxide is between 5000 and 10000 angstroms. 14. The manufacturing method as described in item 12 of the patent application scope, wherein the [second insulating layer] is silicon nitride (Silicon Nitride), and its thickness is between 500 and 1500 angstroms. 15. The manufacturing method as described in Item 12 of the patent application, wherein the method of forming the concave groove of the first polycrystalline silicon in the center of the capacitor 'includes: forming a layer of photoresist on the doped first On the polycrystalline silicon layer: Use photolithography technology to define the location of the groove; etch the groove ί This paper scale is calibrated using the Chinese National Standard (CNS} _Α4 wash grid (210X 297 mm) (please read first Note on the back and fill in this Ϊ) Order A8 B8 08 D8 307919 6. The depth of the groove described in the patent application is less than the thickness of the [doped second polycrystalline silicon layer] above the second insulating calendar 16. The manufacturing method as described in item 12 of the patent application scope, wherein the [third insulating layer] is Silicon Dioxide (Silicon Dioxide), and its thickness is between 3000 and 6 (»0 Angstroms. 17 · The manufacturing method as described in item 12 of the patent application scope, wherein the thickness of the [doped first polycrystalline silicon layer] is between 4000 and 8000 angstroms. 18 · As described in item 12 of the patent application scope Manufacturing method, wherein the [thin doped second polycrystal Silicon layer] whose thickness is between 1000 and 2000 angstroms. 19 · The manufacturing method as described in item 12 of the patent application scope, wherein the thickness of the [doped third polycrystalline silicon layer] is between 1000 To 30Θ0 Angstroms. 20. The manufacturing method as described in item 12 of the patent application scope, wherein the [capacitor dielectric layer] is composed of Oxynitride, Silicon Nitride and Silicon Dioxide, Or composed of Ta205 ° 21 · The manufacturing method as described in item f of the patent application, where the method of forming the [third insulating peg post] in the [concave ditch] is to etch back the [second Insulation] 22 · The manufacturing method as described in item Π of the scope of the patent application, wherein the method of removing the [third insulating layer stud] is removed by chemical wet etching. (Please read the notes on the back first (Fill in this page again) Packing-The paper standard printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy uses the Chinese National Standard (CNS > A4 wash grid. (210X297mm)
TW85101719A 1996-02-09 1996-02-09 The manufacturing method of capacitor TW307919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85101719A TW307919B (en) 1996-02-09 1996-02-09 The manufacturing method of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85101719A TW307919B (en) 1996-02-09 1996-02-09 The manufacturing method of capacitor

Publications (1)

Publication Number Publication Date
TW307919B true TW307919B (en) 1997-06-11

Family

ID=51566174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85101719A TW307919B (en) 1996-02-09 1996-02-09 The manufacturing method of capacitor

Country Status (1)

Country Link
TW (1) TW307919B (en)

Similar Documents

Publication Publication Date Title
US7262090B2 (en) Random access memory (RAM) capacitor in shallow trench isolation with improved electrical isolation to overlying gate electrodes
US5895250A (en) Method of forming semicrown-shaped stacked capacitors for dynamic random access memory
US6187624B1 (en) Method for making closely spaced capacitors with reduced parasitic capacitance on a dynamic random access memory (DRAM) device
US6495411B1 (en) Technique to improve deep trench capacitance by increasing surface thereof
US6037213A (en) Method for making cylinder-shaped capacitors for dynamic random access memory
US5793077A (en) DRAM trench capacitor with recessed pillar
TW320761B (en) Manufacturing method of high density DRAM with cylindrical stack capacitor
JP2741672B2 (en) Method of manufacturing capacitor for stacked DRAM cell
US6015734A (en) Method for improving the yield on dynamic random access memory (DRAM) with cylindrical capacitor structures
US6083790A (en) Method for making y-shaped multi-fin stacked capacitors for dynamic random access memory cells
US20040266098A1 (en) Method of forming geometric deep trench capacitors
TW479328B (en) Method for manufacturing a self-aligned stacked storage node DRAM cell
TW307919B (en) The manufacturing method of capacitor
TW506121B (en) Circuit-arrangement with at least one capacitor and at least one transistor connected with the capacitor
TW439268B (en) Dynamic random access memory structure having vertical transistor and its fabricating method
TW321782B (en) Manufacturing method of memory integrated circuit by chemical mechanical polishing technology
JP2921563B2 (en) Method of forming memory cell using corrugated oxide spacer
TW301775B (en) Forming method of multiple cone capacitor
TW297157B (en) Method of fabricating super high-density memory circuit
KR100772703B1 (en) Method of forming capacitor of memory device
TW301799B (en) High-density memory device structure and manufacturing method thereof
TW314647B (en) Manufacturing method of memory with decreased memory cell layout area
TW382772B (en) Method for making DRAM cell with dual-crown capacitor using polysilicon and nitride spacer
TW296483B (en) Process of high-density dynamic random access memory
TW382792B (en) Method and structure for making bottom electrode of capacitor

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent