TW295720B - Method for manufacturing the Salicide with N2 layer silicidation mask - Google Patents

Method for manufacturing the Salicide with N2 layer silicidation mask Download PDF

Info

Publication number
TW295720B
TW295720B TW85100420A TW85100420A TW295720B TW 295720 B TW295720 B TW 295720B TW 85100420 A TW85100420 A TW 85100420A TW 85100420 A TW85100420 A TW 85100420A TW 295720 B TW295720 B TW 295720B
Authority
TW
Taiwan
Prior art keywords
metal
layer
semiconductor substrate
silicidation
drain
Prior art date
Application number
TW85100420A
Other languages
Chinese (zh)
Inventor
Jau-Jye Wang
Yuan-Long Liou
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW85100420A priority Critical patent/TW295720B/en
Application granted granted Critical
Publication of TW295720B publication Critical patent/TW295720B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method of manufacturing Salicide includes a) forming the field oxide layer on the silicon substrate for the need of isolation active area. b) forming the gate oxide, the polysilicon gate electrode, and the source\drain of the MOSFET. c) forming the photoresist pattern by the microimage technique, which exposes part of the substrate of the source/drain. d) implanting the N2 ion into the exposed surface of the substrate to form an N2 layer. e) depositing a layer of metal. f) performing high-temperature anneal to cause the silicidation between the metal and the silicon atoms near the substrate surface and to form the metal silicide on the surface of the source/drain. g) the high-temperature anneal also cause the silicidation between the metal and the polysilicon gate electrode to form the metal Salicide on the surface of the polysilicon gate, and the metal without silicidation is remained on the surface of the N2 layer, and h) removing the remained metal without silicidation.

Description

B' 五、發明説明(/ ) ㈠技術領域 月m揭露的是關於積體電路之【金氧半場效電晶 體】之【自動對準矽化物】(Self-Aligned Silicide ;B 'V. Description of the invention (/) (1) Technical Field The month m discloses the [Automatic Aligned Silicide] of the [Metal Oxide Half Field Electric Crystal] of the integrated circuit (Self-Aligned Silicide;

Salicide)的製造方法(Method)。 (二)發明背景 装Salicide) manufacturing method (Method). (2) Background of the invention

A 在;欠微米積體電路領域,爲了增進【金氧半場效電晶 體】之性能’―種稱爲【自動對準矽化物】(Self-Aligned Silicide ; Salicide)的傳統製每方法被揭露,茲以圖1 到圖7說明傳統【自動對準矽化物】製程方法如下。首先, 在半導體基板2上形成場氧化層(Field Oxide),作爲隔 離電性元件之用,接著,形成【金氧半場效電晶體】之閘極 氧化層4 (Gate Oxide),接著,形成【金氧半場效電晶 體】之複晶砂鬧極 6 (Polysilicon Gate Electrode)。然 後,進行N-淡摻雜離子佈値,以形成【N-淡摻雜源極/汲 極】’然後,沉積一層介電層8,並利用蝕刻技術垂直單向 性地對所述【介電層8】進行回飽刻(Anisotropically Etchback),以在所述【閘極6】之兩側產生側壁子8A (Spacer),然後,進行π濃摻雜離子佈値,以形成【N+ 濃慘雜源極/汲極10】(Heavi ly Doped Source / Drain) ’如圖1所示。 接著,沉積一層二氧化砂層12 (Silicon Dixoide ; Si〇2) ’如圖2所示。然後,利用微影技術形成光阻圖案 14,所述【光阻圖案14】遮住一部份的所述【二氧化矽層 12】,如圓3所示。接著,利用電漿蝕刻技術蝕去露出之所 述【二氧化矽層12】,以形成【二氧化矽層12A】圖案, 衣紙*尺Jt邋用中a·家樑率(CNS ) A4洗樁(ϋίοχ 297公釐A In the field of submicron integrated circuits, in order to improve the performance of [Gold Oxygen Half Field Effect Transistors]-a traditional manufacturing method called [Self-Aligned Silicide] (Self-Aligned Silicide) was revealed, The traditional [automatic alignment of silicide] process method is described below with reference to FIGS. 1 to 7. First, a field oxide layer (Field Oxide) is formed on the semiconductor substrate 2 as an isolation element, then, a gate oxide layer 4 (Gate Oxide) of [Gold Oxygen Half Field Effect Transistor] is formed, and then, [ Metal Oxygen Half Field Effect Transistor】 Polysilicon Gate Electrode 6 (Polysilicon Gate Electrode). Then, N-lightly doped ion distribution is performed to form [N-lightly doped source / drain] '. Then, a dielectric layer 8 is deposited, and the etching is performed vertically and unidirectionally using the etching technique. Electrical layer 8] Anisotropically Etchback to produce sidewall spacers 8A (Spacer) on both sides of the [Gate 6], and then perform π concentrated doping ion distribution to form [N + thick miserable Heteroly source / drain 10] (Heavi ly Doped Source / Drain) 'as shown in Figure 1. Next, a layer of silicon dioxide sand 12 (Silicon Dixoide; Si〇2) is deposited as shown in FIG. 2. Then, a photoresist pattern 14 is formed by photolithography technology, and the [photoresist pattern 14] covers a part of the [silicon dioxide layer 12], as shown by circle 3. Next, the plasma etching technique is used to etch the exposed [silicon dioxide layer 12] to form a pattern of [silicon dioxide layer 12A], and the paper and paper * ruler Jt is washed with the middle a · jialiang rate (CNS) A4 Pile (ϋίοχ 297 mm

蝗濟#*夹*袅||»?|二.-4*<>#-.注访龙Locust Ji # * 夹 * 袅 || »? | 二 .-4 * < >#-. 注 访 龙

_B:_ 五、發明説明(> ) 如圖4所示。 接著,形成一層鈦金屬16 (Titanium ; Ti)’如圖5 所示。然後,施行【回火處理】(Anneal) ’所述【回火處 理】使【鈦金屬16】跟所述【半導體基板2】表面之矽原子 發生矽化反應(Silicidation) ’以在【N+濃摻雜源極 /汲極10】表面形成【自動對準鈦矽化物18A】 (TiSi2),而在所述【複晶矽閘極6】表面則形成【自動對 準鈦矽化物18B】,留下未發生【矽化反應】之鈦金屬 16A,如圖6所示。最後,去除未發生【矽化反應】之鈦金 屬16A,【自動對準鈦矽化物18】於焉形成,如圖7所 示。 問題是,積體電路元件不斷縮小’所述【複晶矽閘極 6】兩側之【側壁子8A】的寬度越來越短,甚至小於0.1 微米,而如圖4所示,在利用電獎蝕刻技術鈾去露出之所述 【二氧化矽層12】以形成【二氧化矽層12A】圖案時’ 【側壁子8A】會再虔被蝕刻而造成所述【側壁子8A】寬度 更短,如此更容易造成【複晶矽閘極6】跟【N+濃摻雜源 極/汲極10】之間發生漏電現像(Leakage),導致電路短 路(Short)。 因此,提供一個無漏電現像之【自動對準矽化物】,是 非常重要的課題。 (三)發明的簡要說明 本發明的主要目的是提供一種【金氧半場效電晶體】的i 閘極跟源極/汲極之間無漏電現像(Leakage)的【自動對| 準矽化物】(Self Aligned Silicide ; Salicide)的製造 i I (請先《1#背面之注意事項异填寫衣f ) -装. 订 粢 -1- —1 .n l>_B: _ V. Description of the invention (>) As shown in Figure 4. Next, a layer of titanium metal 16 (Titanium; Ti) 'is formed as shown in FIG. 5. Then, perform [Anneal] 'The [Temperature Treatment] so that [Titanium 16] and the silicon atoms on the surface of the [Semiconductor Substrate 2] undergo a silicidation reaction (Silicidation)' Miscellaneous source / drain 10] [Automatically aligned titanium silicide 18A] (TiSi2) is formed on the surface, and [Automatically aligned titanium silicide 18B] is formed on the surface of the [polycrystalline silicon gate 6], leaving The titanium metal 16A without the [siliconization reaction], as shown in Figure 6. Finally, remove the titanium metal 16A that has not undergone the [siliconization reaction], and [automatically align the titanium silicide 18] to form, as shown in Figure 7. The problem is that the integrated circuit components are continuously shrinking. The width of the [side wall sub 8A] on both sides of the [polycrystalline silicon gate 6] is getting shorter and shorter, even less than 0.1 micron, and as shown in FIG. 4, Award etch technology uranium to expose the [silicon dioxide layer 12] to form the [silicon dioxide layer 12A] pattern '[side wall sub 8A] will be etched again and the width of the [side wall sub 8A] will be shorter In this way, it is more likely to cause leakage between the [polysilicon gate 6] and [N + concentrated doped source / drain 10], resulting in a short circuit (Short). Therefore, it is a very important issue to provide a "self-aligning silicide" without leakage phenomenon. (3) Brief description of the invention The main purpose of the present invention is to provide a "Leakage" (automatic alignment | quasi-silicide) between the i-gate and the source / drain of the [metal oxide half field effect transistor] (Self Aligned Silicide; Salicide) manufacturing i I (please first "Notes on the back of 1 # and fill in the clothes f)-Install. 緢 粢 -1- —1 .n l >

Jlsi-· 恭紙張ΧΑ4Λ ( CNS ) ( 210X 297公纛) 钂蓊#*夹*袅马|二.'##<^肀.法.%?. 五、發明説明(3) 方法。 本發明的另一個目的是提供一種【低製造成本】之【金 氧半場效電晶體】之【自動對準砂化物】的製造方法。 本發明之主要製程如下。首先,在矽半導體基板上形成 【場氧化層】,作爲隔離電性元件之用,接著,形成【金氧 半場效電晶體】之閘極氧化層(以〖6〇\1(^),接著,形成 【金氧半場效電晶體】之複晶矽閘極(P〇lysilicon Gate Electrode)。然後,進行淡摻雜離子佈値,以形成 【N·淡摻雜源極/汲極】,然後,沉積一層介電層 (Dielectric),並利用蝕刻技術垂直單向性地對所述【介 電層】進行回蝕刻(Anisotropically Etchback),以在所 述【複晶矽閛極】之兩側產生側壁子(Spacer),然後,進 行N+濃摻雜離子佈値,以形成【N+濃摻雜源極/汲極】 (Heavily Doped Source/Drain)。 接著,利用微影技術形成光阻圖案,所述【光阻圖案】 出一部份的所述【N+濃摻雜源極/汲極】。然後,利用 離子佈植技術(Ion Implantation)將氮離子植入【砂半導 體基板表面】,以形成一層氮離子層(N2 Layer),所述 【氮離子層】之成份是氮化砂(SiHcon Nitride),作爲 後續金屬砂化之矽化保護罩(以1化丨{^衍011!1381()。 接著,形成一層鈦金屬(Titanium),然後,施行高溫 【回火處理】(Anneal) ’所述【回火處理】使【鈦金屬】 跟所述【矽半導體基板】表面之矽原子發生矽化反應 (Silicidation),以在【r濃摻雜源極/汲極】表面形 成【自動對準鈦矽化物】(TiSi2);所述【回火處理】亦使 ---------^------’ΤΓ------^. {請先《请實*之注意事項專填窝本寳) 用 t钃麵家屬» ( ( 210X 297公釐 >Jlsi- · Gong paper ΧΑ4Λ (CNS) (210X 297 gong) 钂 蓊 # * 夹 * 袅 马 | 二. '## < ^ 肀. 法. % ?. Fifth, the invention description (3) method. Another object of the present invention is to provide a [low manufacturing cost] [metal oxide half field effect transistor] [automatically aligned sands] manufacturing method. The main process of the present invention is as follows. First, the [field oxide layer] is formed on the silicon semiconductor substrate to isolate the electrical components, then, the gate oxide layer of the [gold oxide half field effect transistor] is formed (using 〖6〇 \ 1 (^), then , To form a polycrystalline silicon gate electrode (P〇lysilicon Gate Electrode) of [Gold Oxygen Half Field Effect Transistor]. Then, lightly doped ion distribution is performed to form [N · Lightly Doped Source / Drain], then , Deposit a dielectric layer (Dielectric), and use etching technology to vertically and unidirectionally etch back the [dielectric layer] (Anisotropically Etchback) to generate on both sides of the [polycrystalline silicon dendritic pole] Spacer, and then, N + concentrated doped ion distribution, to form [N + concentrated doped source / drain] (Heavily Doped Source / Drain). Then, using photolithography technology to form a photoresist pattern, so Describe [Photoresist pattern] a part of the [N + densely doped source / drain]. Then, use ion implantation technology (Ion Implantation) to implant nitrogen ions onto the surface of the [sand semiconductor substrate] to form A layer of nitrogen ion layer (N2 Layer), said [nitrogen ion layer The component is nitrided sand (SiHcon Nitride), which is used as a silicified protective cover for subsequent metal sanding (in 1 丨 {^ 衍 011! 1381 (). Then, a layer of titanium metal is formed, and then, high temperature is applied. Fire treatment] (Anneal) 'The [tempering treatment] causes the [titanium metal] to undergo a silicidation reaction with the silicon atoms on the surface of the [silicon semiconductor substrate], so that the [r concentrated doping source / drain ] Surface formation [Automatic alignment of titanium silicide] (TiSi2); The [tempering treatment] also makes --------- ^ ------ 'ΤΓ ------ ^. {Please first "Please note the precautions * Please fill in the nest treasure" family members with t 钃 面 »((210X 297mm >

VV

五、發明説明(ψ) 【鈦金屬】跟所述【複晶矽閘極】表面之矽原子發生矽化反 應,以在所述【複晶矽閘極】表面形成【自動對準鈦矽化 物】(TiSi2),而在所述【氮離子層】表面和所述【側壁子 表面】則留下未發生【矽化反應】之鈦金屬,最後,去除未 發生【矽化反應】之鈦金屬,【自動對準鈦矽化物】於焉形 成。 易知,本發明節省了傳統方法之【二氧化矽層12】的沉 積與電漿蝕刻步驟(圖3.到圖5),而以【氮離子層】作爲 矽化保護罩(N2 Layer Silicidation Mask )來取代傳統 氧化層保護罩(Oxide Layer Silicidation Mask ),除了 防止【側壁子】的寬度變短以外,更簡化製程’降低製造成 本。 (四) 圖示的簡要說明 圖1到圖7是【自動對準矽化物】之先前技藝的製程橫截 面示意圖(Prior Art Process Cross Sectional ) ° 圖8到圖13爲本發明之實施例的製程橫截面示意圖。 (五) 發明的詳細說明 此部份將配合圖示說明,圖示部份只畫出N通道金氧 半場效電晶體(N-Channel Metal . Oxide Semiconductor Field Effect Transistor ; NMOSFET),省略【P 通道金 氧半場效電晶體】結構,且此製程可自然延伸到與互補式金 氧半場效電晶體(Complementary Metal OxideV. Description of the invention (ψ) [Titanium metal] reacts with the silicon atoms on the surface of the [polycrystalline silicon gate] to form a [self-aligned titanium silicide] on the surface of the [polycrystalline silicon gate] (TiSi2), and on the surface of the [nitrogen ion layer] and the [side wall sub-surface], titanium metal that has not undergone the [silicidation reaction] is left. Align Titanium Silicide】 Yu Yan formation. It is easy to know that the present invention saves the deposition and plasma etching steps of the [silicon dioxide layer 12] in the traditional method (Figures 3 to 5), and uses the [nitrogen ion layer] as the silicidation protection mask (N2 Layer Silicidation Mask) To replace the traditional oxide layer protection mask (Oxide Layer Silicidation Mask), in addition to preventing the width of the [side wall] from becoming shorter, it simplifies the manufacturing process and reduces manufacturing costs. (4) Brief description of the drawings Figures 1 to 7 are prior art process cross section schematic diagrams of the prior art of [self-aligned silicide] (Prior Art Process Cross Sectional) ° Figures 8 to 13 are the processes of the embodiment of the present invention Schematic cross section. (5) Detailed description of the invention This part will be accompanied by the illustration. Only the N-Channel Metal Oxide Semiconductor Field Effect Transistor (NMOSFET) is drawn in the part of the figure, omitting the [P channel Metal Oxide Half Field Effect Transistor] structure, and this process can be naturally extended to complementary metal oxide half field effect transistor (Complementary Metal Oxide

Semiconductor Field Effect Transistor ; CM0SFET)製 程相結合。 (請先明請背«之注意事項鼻填寫本1) 装 订 衣紙Λ尺度遴用t麵鼸家_ ( CNS ) A4洗搞 ( 210·Χ 297公釐>Semiconductor Field Effect Transistor; CM0SFET) process. (Please note clearly the «Precautions on« nose fill in this book 1) Binding Bundling paper Λ scale selection with t 面 銸 家 _ (CNS) A4 shuffle (210 · Χ 297mm>

钂滌#·%:夭-♦1 马<x.:«f>»t.s. 五、發明説明(i:) 參考圖8。首先,以標準製程在晶格方向(100)的P 型矽半導體基板20上(Silicon Semiconductor Substrate)形成隔離電性活動區(Active Area)所需的 【場氧化層】,所述【場氧化層】厚度介於3000埃到 6000埃之間,作爲隔離電性元件之用。接著,熱氧化所述 【P型矽半導體基板20】之表面以形成【金氧半場效電晶 體】之閘氧化層22 (Gate Oxide),其厚度介於80到 200埃之間。然後,以低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition ; LPCVD)形成複晶 矽層24 (Polysilicon),所述【複晶矽層24】一般是以 同步磷攙雜(In-situ Phosphorus Doped)之低壓化學氣 相沉積法形成,反應氣體是PH3、SiH4與N2的混合氣 體,其反應溫度介於520到580 °C之間,其厚度介於 1000到3000埃之間。然後,利用微影技術和電漿蝕刻技 術蝕去所述【複晶矽層24】以形成複晶矽閘極24 (Gate ! Electrode)。所述對【複晶矽層2i】之電漿蝕刻可以利 用磁場增強式活性離子式電漿蝕刻(Magnetic Enhanced Reactive Ion Etching ; MERIE)或電子迴旋共振電策蝕刻 (Electron Cyclotron Resonance ; ECR)或傳統的活性離 子式電獎触刻技術(Reactive Ion Etching ; RIE),在次 微米技術領域,通常是利用【磁場增強式活性離子式電漿飽 刻技術】,其電漿反應氣體一般是Cl2和HBr等氣體。 再參考圖8。接著,沉積一層介電層26 (Dielectric),並利用電漿蝕刻技術對所述【介電層 26】進行單向性的回触刻(Anisotropical Etchback), {請先《請實面之注意事項再填) .装· 訂 粢 恭紙永尺度逋Λ令__*4» ( CNS ) A4規檑·( 210X 297公釐)钂 聚 # ·%: 夭-♦ 1 MA < x.: «F >» t.s. V. Description of the invention (i :) Refer to FIG. 8. First, a standard process is used to form the [field oxide layer] required to isolate the electrical active area on the P-type silicon semiconductor substrate 20 (Silicon Semiconductor Substrate) in the lattice direction (100). 】 The thickness is between 3000 Angstroms and 6000 Angstroms, which is used to isolate electrical components. Next, the surface of the [P-type silicon semiconductor substrate 20] is thermally oxidized to form a gate oxide layer 22 (Gate Oxide) with a thickness of 80 to 200 Angstroms. Then, a polysilicon layer 24 (Polysilicon) is formed by Low Pressure Chemical Vapor Deposition (LPCVD). The [polysilicon layer 24] is generally doped with synchronous phosphorus (In-situ Phosphorus Doped) The low-pressure chemical vapor deposition method is formed. The reaction gas is a mixed gas of PH3, SiH4 and N2. Its reaction temperature is between 520 and 580 ° C, and its thickness is between 1000 and 3000 Angstroms. Then, the [polysilicon layer 24] is etched away using lithography and plasma etching techniques to form a polysilicon gate electrode 24 (Gate! Electrode). The plasma etching of the [polycrystalline silicon layer 2i] can use Magnetic Enhanced Reactive Ion Etching (MERIE) or Electron Cyclotron Resonance (ECR) or traditional Reactive Ion Etching (RIE) technology, in the field of sub-micron technology, usually using [magnetic field enhanced active ion plasma saturation technology], the plasma reaction gas is generally Cl2 and HBr Wait for gas. Refer to Figure 8 again. Next, deposit a dielectric layer 26 (Dielectric), and use plasma etching technology to perform a one-way back etching (Anisotropical Etchback) on the [dielectric layer 26], {please first (Fill in). 装 · Order 粢 Christine paper permanent standard __ order __ * 4 »(CNS) A4 gauge · (210X 297mm)

五、發明説明(b) 以在所述【複晶矽閘極24】之旁側形成【側壁子26A】 (Spacer)。所述【介電層26】通常是利用【低壓化學 氣相沉積法】形成之二氧化砂層(silicon Dioxide) ’其 反應氣體是四乙基矽酸鹽(TetraEth0xySilane;TE0S ; Si(C2H50)4),其厚度介於1000到3000埃之間。所述對 【介電層26】之【單向性的回蝕刻】可以利用【磁場增強 式活性離子式電獎蝕刻】或【電子迴旋共振電漿蝕刻】或傳 統的【活性離子式電漿蝕刻技術】,在次微米技術領域,通 常是利用【磁場增強式活性離子式電漿蝕刻技術】,其電漿 反應氣體一般是CF4、CHF3和Ar等氣體。然後’進行 N+濃摻雜離子佈値,以形成【N+濃摻雜源極/汲極28】 (Heavily Doped Source/Drain)。 接著,利用微影技術形成光阻圖案30 (Photoresist Pattern),所述【光阻圖案30】在【開口 31】露出一部 份的所述【N+濃摻雜源極/汲極28】,如圖9所示。然 後,利用離子佈ώ技術(Ion Implantation)透過【開口 31】將氮離子植入【矽半導體基板20】,以在【矽半導體 基板20】表面形成一層氮離子層32 (N2 Layer),如圖 10所示。所述【氮離子層32】之成份是氮化政(Silicon Nitride ),預備作爲後續金屬矽化之矽化保護罩 (Silicidation Mask )。 去除所述【光阻圖案30】後,形成一層鈦金屬34 (Titanium) ’如圖11所示。然後,施行溫度介於650丨 °C到750°C之間的【回火處理】(Anneal),所述【回i | 火處理】使【鈦金屬34】跟所述【矽半導體基板20】表面i <请先《请背#之注意事項耳濞寫衣f > -装- 订 粢 ,钃_家厢·( CNS ) A4现格(210x297公釐)5. Description of the invention (b) The side wall 26A is formed beside the [polycrystalline silicon gate 24] (Spacer). The [dielectric layer 26] is usually a silicon dioxide layer formed by [low-pressure chemical vapor deposition method] whose reaction gas is tetraethyl silicate (TetraEth0xySilane; TE0S; Si (C2H50) 4) , Its thickness is between 1000 and 3000 angstroms. The [unidirectional etch back] of the [dielectric layer 26] can use [magnetic field enhanced active ion electric prize etching] or [electron cyclotron resonance plasma etching] or traditional [active ion plasma etching] [Technology], in the field of sub-micron technology, usually [magnetic field enhanced active ion plasma etching technology], the plasma reaction gas is generally CF4, CHF3 and Ar gas. Then, perform the N + concentrated doped ion distribution to form [N + concentrated doped source / drain 28] (Heavily Doped Source / Drain). Next, a photoresist pattern 30 (photoresist pattern) is formed by using lithography technology, and the [photoresist pattern 30] exposes a part of the [N + densely doped source / drain 28] at the [opening 31], such as Figure 9 shows. Then, the ion implantation technology (Ion Implantation) is used to implant nitrogen ions into the [silicon semiconductor substrate 20] through the [opening 31] to form a nitrogen ion layer 32 (N2 Layer) on the surface of the [silicon semiconductor substrate 20], as shown in the figure 10 is shown. The composition of the [nitrogen ion layer 32] is Silicon Nitride, which is prepared to be used as a silicidation mask for subsequent metal silicidation. After removing the [photoresist pattern 30], a layer of titanium 34 (Titanium) is formed as shown in FIG. Then, implement [Anneal] with a temperature between 650 丨 ° C and 750 ° C. The [return i | fire treatment] makes the [titanium metal 34] and the [silicon semiconductor substrate 20] Surface i < please pay attention to the "please note #early writing clothes f > -installed-ordered, 钃 _ 家 箱 · (CNS) A4 present grid (210x297mm)

五、發明説明(7 ) 之砂原子發生砂化反應(Silicidation),以在所述【N+ 濃摻雜源極·/汲極28】表面形成【自動對準鈦矽化物 36A】(TiSi2);所述【回火處理】亦使【鈦金屬34】跟 所述【複晶矽閘極24】表面之矽原子發生矽化反應,以在 所述【複晶矽閘極24】表面形成【自動對準鈦矽化物 36B】(TiSi2),而在所述【氮離子層32】表面和所述 【側擘子26】表面則留下未發生【矽化反應】之鈦金屬 34A,如圖12所示。最後,去除未發生【矽化反應】之 【鈦金屬34A】,一種無漏電現像之【自動對準鈦矽化物 36】於焉形成,如圖13所示。另外,上述之【砂化反應】 也可以利用【快速熱回火】(Rapid Thermal Anneal ; RTA)來完成。 以上係以最佳實施例來閫述本發明,而非限制本發明, 並且,熟知半導體技藝之人士皆能明瞭,適當而作些微的改 變及調整,仍將不失本發明之要義所在,亦不脫離本發明之 '精神和範圍。 {请先》請之注意事項專填寫衣I> 衣織&尺度邋用t··家雄舉(CNS ) Α441» ( 210 X 297公釐)Fifth, the description of the invention (7) sand atoms undergo a sanding reaction (Silicidation) to form a [self-aligned titanium silicide 36A] (TiSi2) on the surface of the [N + concentrated doped source / drain 28]; The [tempering treatment] also causes the [titanium metal 34] to react with the silicon atoms on the surface of the [polycrystalline silicon gate 24] to form an [automatic pairing] on the surface of the [polycrystalline silicon gate 24] Quasi-titanium silicide 36B] (TiSi2), and the titanium metal 34A without the [siliconization reaction] left on the surface of the [nitrogen ion layer 32] and the surface of the [side roller 26], as shown in FIG. 12 . Finally, remove [Titanium Metal 34A] where [Silylation Reaction] has not occurred, and a non-leakage phenomenon [Automatically Aligning Titanium Silicide 36] is formed in Yan, as shown in Figure 13. In addition, the above [sandification reaction] can also be completed by using [Rapid Thermal Anneal; RTA]. The above is a description of the present invention using the preferred embodiments, rather than limiting the present invention, and those skilled in the art of semiconductors can understand that appropriate and slight changes and adjustments will still lose the gist of the present invention. Without departing from the spirit and scope of the present invention. {Please First "Please pay attention to the matters you need to fill in the clothes I > clothes weaving & standard sloppy t ·· Home Xiongju (CNS) Α441» (210 X 297mm)

Claims (1)

經濟部中央襟莩局專Η消費合作社汸货 A8 B8 C8 ________ ------- 六、申請專利範圍 1. -種【自動對準矽化物】(Self-Aligned Silicide ; Salicide)的製造方法,係包含: 在砂半導體基板(Silicon Semiconductor Substrate) 形成隔離電性活動區(Active Area)所需的【場氧化層】; 形成【金氧半場效電晶體】之閘極氧化層(Gate Oxide)、複晶砂閘極(Gate Electrode)和【源極/汲極】 (Source/Drain); 利用微影技術形成光阻圖案(Photoresist Pattern), 所述【光阻圖案】裸露出一部份的所述【源極/汲極】之矽半 導體基板表面; 利用離子佈植技術(Ion Implantation)將氮離子植入所 述露裸之【矽半導體基板表面】,以在露裸之【矽半導體基板 表面】形成一層氮離子層(N2 Layer); 沉積一層【金屬】; 進行高溫【高溫回火】(Anneal),所述【高溫回火】使 【金屬】跟所述【矽半導體基板】表面之矽原子發生砂化反應 (Silicidation),以在所述【源極/汲極】表面形成【自動 對準金屬砂化物】(MetalSilicide),所述【高溫回火】亦 使【金屬】跟所述【複晶矽閘極】表面之矽原子發生矽化反 應,以在所述【複晶矽閘極】表面形成【自動對準金屬矽化 物】(Metal Silicide),而在所述【氮離子層】表面和所述 【側壁子】表面則留下未發生【矽化反應】之所述【金屬】; 去除未發生【矽化反應】之所述【金屬】。 2. 如申請專利範圍第1項之方法,其中所述【金屬】’是指鈦金 屬(Titanium)、鈷金屬(Cobalt)和鎢金屬(Tungsten)等頑 ..............r裳----(............訂............;^ (請先聞讀背面之注意事喟再填寫本頁) 本纸張尺度適用中國國家標潭(CNS)A4規格(210 X 297公釐〉 ABCD 六、申請專利範圍 固金屬(Refractory Metal)。 3.如申請專利』範圍_ 1項之方法,其中所述之【高溫回火】,可 以利用傳統爐管(Furnace)進行’也可以利用【快速熱回 火】(Rapid Thermal Anneal ; RTA)進行之。 :...................裝................·玎................線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員Η消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4规格(210Χ 297公釐)A8 B8 C8 ____ ------- Sixth, the scope of patent application 1.-Method of manufacturing [Self-Aligned Silicide] (Self-Aligned Silicide; Salicide) , Which includes: forming the [field oxide layer] required to isolate the electrical active area on the silicon semiconductor substrate (Silicon Semiconductor Substrate); forming the gate oxide layer (Gate Oxide) of the [gold oxide half field effect transistor] 、 Gate Electrode and 【Source / Drain】; Use photolithography technology to form a photoresist pattern, part of which is exposed The [source / drain] surface of the silicon semiconductor substrate; using ion implantation technology (Ion Implantation) to implant nitrogen ions into the exposed [silicon semiconductor substrate surface], so that the exposed [silicon semiconductor substrate Surface] Form a layer of nitrogen ion (N2 Layer); deposit a layer of [metal]; perform high temperature [high temperature tempering] (Anneal), the [high temperature tempering] makes the [metal] follow the surface of the [silicon semiconductor substrate] The silicon atom undergoes a sanding reaction (Silicidation) to form a [MetalSilicide] on the surface of the [source / drain], and the [high temperature tempering] also causes the [metal] to follow The silicon atoms on the surface of the [polycrystalline silicon gate] undergo a silicidation reaction to form an [automatically aligned metal silicide] (Metal Silicide) on the surface of the [polycrystalline silicon gate], and on the [nitrogen ion layer The surface and the surface of the [side wall] are left with the [metal] where the [silicidation reaction] has not occurred; removing the [metal] without the [silicidation reaction]. 2. The method as described in item 1 of the patent scope, where the "metal" refers to titanium, titanium, cobalt, and tungsten etc ... .... r skirt ---- (............ order ............; ^ (please read the notes on the back first and then fill in (This page) This paper scale applies to China National Standard (CNS) A4 (210 X 297 mm) ABCD VI. Patent application scope Refractory Metal 3. If you apply for a patent, scope_ 1 method, The "high temperature tempering" mentioned in it can be carried out using traditional furnace tubes (Furnace) or "rapid thermal annealing" (Rapid Thermal Anneal; RTA).: ... ......... installed ................................................................ (Please read the back first Please pay attention to this page and then fill out this page.) The paper printed by the Consumer Standards Bureau of the Central Standards Bureau of the Ministry of Economic Affairs applies the Chinese National Standard (CNS) A4 specification (210Χ 297 mm).
TW85100420A 1996-01-15 1996-01-15 Method for manufacturing the Salicide with N2 layer silicidation mask TW295720B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85100420A TW295720B (en) 1996-01-15 1996-01-15 Method for manufacturing the Salicide with N2 layer silicidation mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85100420A TW295720B (en) 1996-01-15 1996-01-15 Method for manufacturing the Salicide with N2 layer silicidation mask

Publications (1)

Publication Number Publication Date
TW295720B true TW295720B (en) 1997-01-11

Family

ID=51565300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85100420A TW295720B (en) 1996-01-15 1996-01-15 Method for manufacturing the Salicide with N2 layer silicidation mask

Country Status (1)

Country Link
TW (1) TW295720B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274816B2 (en) 2015-12-15 2022-03-15 Wangs Alliance Corporation LED lighting methods and apparatus
US11686459B2 (en) 2015-12-15 2023-06-27 Wangs Alliance Corporation LED lighting methods and apparatus
US11802682B1 (en) 2022-08-29 2023-10-31 Wangs Alliance Corporation Modular articulating lighting
US11812525B2 (en) 2017-06-27 2023-11-07 Wangs Alliance Corporation Methods and apparatus for controlling the current supplied to light emitting diodes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274816B2 (en) 2015-12-15 2022-03-15 Wangs Alliance Corporation LED lighting methods and apparatus
US11280483B2 (en) 2015-12-15 2022-03-22 Wangs Alliance Corporation Led lighting methods and apparatus
US11408597B2 (en) 2015-12-15 2022-08-09 Wangs Alliance Corporation LED lighting methods and apparatus
US11460177B2 (en) 2015-12-15 2022-10-04 Wangs Alliance Corporation LED lighting methods and apparatus
US11686459B2 (en) 2015-12-15 2023-06-27 Wangs Alliance Corporation LED lighting methods and apparatus
US11719422B2 (en) 2015-12-15 2023-08-08 Wangs Alliance Corporation LED lighting methods and apparatus
US11892150B2 (en) 2015-12-15 2024-02-06 Wangs Alliance Corporation LED lighting methods and apparatus
US11940135B2 (en) 2015-12-15 2024-03-26 Wangs Alliance Corporation LED lighting methods and apparatus
US11812525B2 (en) 2017-06-27 2023-11-07 Wangs Alliance Corporation Methods and apparatus for controlling the current supplied to light emitting diodes
US11802682B1 (en) 2022-08-29 2023-10-31 Wangs Alliance Corporation Modular articulating lighting

Similar Documents

Publication Publication Date Title
US7312138B2 (en) Semiconductor device and method of manufacture thereof
US6136636A (en) Method of manufacturing deep sub-micron CMOS transistors
US6200863B1 (en) Process for fabricating a semiconductor device having assymetric source-drain extension regions
US5972762A (en) Method of forming mosfets with recessed self-aligned silicide gradual S/D junction
US6165857A (en) Method for forming a transistor with selective epitaxial growth film
EP1382064A2 (en) Method of enhanced oxidation of mos transistor gate corners
TW295720B (en) Method for manufacturing the Salicide with N2 layer silicidation mask
TW501236B (en) Method of fabricating a MOS transistor using a self-aligned silicide technique
JPH0831602B2 (en) Method for manufacturing MIS field effect transistor
US6156649A (en) Method of forming uniform sheet resistivity salicide
TW399270B (en) Method for fabricating a field effect transistor with T-type gate electrode
TW396607B (en) Manufacturing method of bridge free MOSFET with self-aligned silicide
TW312850B (en) Manufacturing method of field effect device with narrow gate length
TW506080B (en) Manufacture method of deep sub-micro complementary metal oxide semiconductor with ultrashallow junction
TW299460B (en) Manufacturing method of integrated circuit device
KR100628253B1 (en) Method for Forming Self-Aligned Silcide of Semiconductor Device
TW301798B (en) Manufacturing method of transistor with local channel doping and titanium silicide gate
TW310450B (en) Forming method of polysilicon contact structure of integrated circuit
TW313705B (en) Manufacturing method of field effect device with fully overlap gate structure
TW306058B (en) Manufacturing method of self-aligned silicide device with extended path
TW311247B (en) Manufacturing method of deep-sub-micron field effect device with tungsten gate
TW316329B (en) Manufacturing method of field effect transistor with titan silicide shallow junction and narrow gate
TW424269B (en) Borderless contact process for a salicide device
JPH06295875A (en) Formation of resist pattern and fabrication of semiconductor device
TW396417B (en) Method for the formation of a deep-submicron CMOS with self-aligneded silicide contact and extended source/drain contact

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent