TW202413266A - 具埋入式量子點的半導體元件及相關方法 - Google Patents

具埋入式量子點的半導體元件及相關方法 Download PDF

Info

Publication number
TW202413266A
TW202413266A TW112123453A TW112123453A TW202413266A TW 202413266 A TW202413266 A TW 202413266A TW 112123453 A TW112123453 A TW 112123453A TW 112123453 A TW112123453 A TW 112123453A TW 202413266 A TW202413266 A TW 202413266A
Authority
TW
Taiwan
Prior art keywords
semiconductor
superlattice
layer
semiconductor layer
epitaxial
Prior art date
Application number
TW112123453A
Other languages
English (en)
Other versions
TWI858785B (zh
Inventor
馬瑞克 海太
奈爾斯溫 柯迪
羅勃J 米爾斯
竹內秀樹
凱斯多蘭 維克斯
Original Assignee
美商安托梅拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安托梅拉公司 filed Critical 美商安托梅拉公司
Publication of TW202413266A publication Critical patent/TW202413266A/zh
Application granted granted Critical
Publication of TWI858785B publication Critical patent/TWI858785B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一種半導體元件可包含至少一半導體層,當中包含一超晶格。該超晶格可包含複數個堆疊之層群組,各層群組包含堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該半導體元件可進一步包含隔開的量子點,量子點在該至少一半導體層中位於該超晶格上方且包含不同於該半導體層的一半導體材料。

Description

具埋入式量子點的半導體元件及相關方法
本發明一般而言涉及半導體元件,更具體而言,涉及半導體量子元件(semiconductor quantum devices)及相關方法。
利用諸如增強電荷載子之遷移率(mobility)增進半導體元件效能之相關結構及技術,已多有人提出。例如,Currie等人之美國專利申請案第2003/0057416號揭示了矽、矽-鍺及鬆弛矽之應變材料層,其亦包含原本會在其他方面導致效能劣退的無雜質區(impurity-free zones)。此等應變材料層在上部矽層中所造成的雙軸向應變(biaxial strain)會改變載子的遷移率,從而得以製作較高速與/或較低功率的元件。Fitzgerald等人的美國專利申請公告案第2003/0034529號則揭示了同樣以類似的應變矽技術為基礎的CMOS反向器。
授予Takagi的美國專利第6,472,685 B2號揭示了一半導體元件,其包含夾在矽層間的一層矽與碳層,以使其第二矽層的導帶及價帶承受伸張應變(tensile strain)。這樣,具有較小有效質量(effective mass)且已由施加於閘極上的電場所誘發的電子,便會被侷限在其第二矽層內,因此,即可認定其N型通道MOSFET具有較高的遷移率。
授予Ishibashi等人的美國專利第4,937,204號揭示了一超晶格,其中包含一複數層,該複數層少於八個單層(monolayer)且含有一部份(fractional)或雙元(binary)半導體層或一雙元化合物半導體層,該複數層係交替地以磊晶成長方式生長而成。其中的主電流方向係垂直於該超晶格之各層。
授予Wang等人的美國專利第5,357,119號揭示了一矽-鍺短週期超晶格,其經由減少超晶格中的合金散射(alloy scattering)而達成較高遷移率。依據類似的原理,授予Candelaria的美國專利第5,683,934號揭示了具較佳遷移率之MOSFET,其包含一通道層,該通道層包括矽與一第二材料之一合金,該第二材料以使該通道層處於伸張應力下的百分比替代性地存在於矽晶格中。
授予Tsu的美國專利第5,216,262號揭示了一量子井結構,其包括兩個阻障區(barrier region)及夾於其間的一磊晶生長半導體薄層。每一阻障區各係由厚度範圍大致在二至六個交替之SiO2/Si單層所構成。阻障區間則另夾有厚得多之一矽區段。
在2000年9月6日線上出版的應用物理及材料科學及製程(Applied Physics and Materials Science & Processing) pp. 391 – 402中,Tsu於一篇題為「矽質奈米結構元件中之現象」(Phenomena in silicon nanostructure devices)的文章中揭示了矽及氧之半導體-原子超晶格(semiconductor-atomic superlattice, SAS)。此矽/氧超晶格結構被揭露為對矽量子及發光元件有用。其中特別揭示如何製作並測試一綠色電輝光二極體(electroluminescence diode)結構。該二極體結構中的電流流動方向是垂直的,亦即,垂直於SAS之層。該文所揭示的SAS可包含由諸如氧原子等被吸附物種(adsorbed species) 及CO分子所分開的半導體層。在被吸附之氧單層以外所生長的矽,被描述為具有相當低缺陷密度之磊晶層。其中的一種SAS結構包含1.1 nm厚之一矽質部份,其約為八個原子層的矽,而另一結構的矽質部份厚度則有此厚度的兩倍。在物理評論通訊(Physics Review Letters),Vol. 89, No. 7 (2002年8月12日)中,Luo等人所發表的一篇題為「直接間隙發光矽之化學設計」(Chemical Design of Direct-Gap Light-Emitting Silicon)的文章,更進一步地討論了Tsu的發光SAS結構。
授予Wang等人之美國專利第7,105,895號揭示了薄的矽與氧、碳、氮、磷、銻、砷或氫的一阻障建構區塊,其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/阻障層容許低缺陷磊晶矽挨著絕緣層而沉積。
已公開之Mears等人的英國專利申請案第2,347,520號揭示,非週期性光子能帶間隙 (aperiodic photonic band-gap, APBG)結構可應用於電子能帶間隙工程(electronic bandgap engineering)中。詳細而言,該申請案揭示,材料參數(material parameters),例如能帶最小值的位置、有效質量等等,皆可加以調節,以獲致具有所要能帶結構特性之新非週期性材料。其他參數,諸如導電性、熱傳導性及介電係數(dielectric permittivity)或導磁係數(magnetic permeability),則被揭露亦有可能被設計於材料之中。
除此之外,授予Wang等人的美國專利第6,376,337號揭示一種用於製作半導體元件絕緣或阻障層之方法,其包括在矽底材上沉積一層矽及至少一另外元素,使該沉積層實質上沒有缺陷,如此實質上無缺陷的磊晶矽便能沉積於該沉積層上。作為替代方案,一或多個元素構成之一單層,較佳者為包括氧元素,在矽底材上被吸收。夾在磊晶矽之間的複數絕緣層,形成阻障複合體。
儘管已有上述方法存在,但為了實現半導體元件效能的改進,進一步強化先進半導體材料及處理技術的使用,是吾人所期望的。
一種半導體元件可包含至少一半導體層,當中包含一超晶格。該超晶格可包含複數個堆疊之層群組,其中各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該半導體元件可進一步包含隔開的複數個量子點,其在該至少一半導體層中位於該超晶格上方且包括不同於該半導體層的一半導體材料。
在一例示實施例中,該至少一半導體層可包括一半導體底材及該半導體底材上之一磊晶半導體層,該超晶格位於該磊晶半導體層的內部,且該複數個量子點可在該磊晶半導體層內位於該超晶格的上方。在一些實施例中,該半導體底材及該磊晶半導體層可包括矽,且該磊晶半導體層之矽28( 28Si)比例高於該半導體底材。舉例而言,該些量子點可包括鍺、砷化鎵等等。
在一例示實施中,該半導體元件亦可包含在該磊晶半導體層中隔開的源極區及汲極區,二者之間界定出一通道區,以及該磊晶半導體層上位於該通道區上方之一閘極。舉例而言,該閘極可包括至少一聚積閘極(accumulation gate)、至少一柱塞閘極(plunger gate)及/或至少一阻障閘極(barrier gate)。同時,舉例而言,該至少一非半導體單層可包括氧。
一種用於製作一半導體元件之方法可包含形成至少一半導體層使其當中包含一超晶格。該超晶格可包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該方法可進一步包含形成隔開的複數個量子點,使其在該至少一半導體層中位於該超晶格上方且包含不同於該半導體層的一半導體材料。
在一例示實施例中,形成該至少一半導體層可包含形成該半導體底材上之一磊晶半導體層使其當中包含一超晶格,且該複數個量子點可在該磊晶半導體層內位於該超晶格的上方。在一些實施例中,該半導體底材及該磊晶半導體層可包括矽,且該磊晶半導體層之矽28( 28Si)比例可高於該半導體底材。舉例而言,該些量子點可包括鍺、砷化鎵等等。
在一例示實施中,該方法亦可包含在該磊晶半導體層中形成隔開的源極區及汲極區,二者之間界定出一通道區,以及在該磊晶半導體層上形成位於該通道區上方之一閘極。舉例而言,該閘極可包括至少一聚積閘極、至少一柱塞閘極及/或至少一阻障閘極。同時,舉例而言,該至少一非半導體單層可包括氧。
茲參考說明書所附圖式詳細說明例示性實施例,圖式中所示者為例示性實施例。不過,實施例可以許多不同形式實施,且不應解釋為僅限於本說明書所提供之特定例示。相反的,這些實施例之提供,僅是為了使本發明所揭示之發明內容更為完整詳盡。在本說明書及圖式各處,相同圖式符號係指相同元件,而撇號(‘)則用以標示不同實施方式中之類似元件。
一般而言,本發明涉及內部具有一增強型半導體超晶格(enhanced semiconductor superlattice)以提供效能增強特性之半導體元件。在本揭示內容中,增強型半導體超晶格亦可稱為MST層或「MST技術」。
詳言之,MST技術涉及進階的半導體材料,例如下文將進一步說明之超晶格25。申請人之理論認為(但申請人並不欲受此理論所束縛),本說明書所述之超晶格結構可減少電荷載子之有效質量,並由此而帶來較高之電荷載子遷移率。有效質量之各種定義在本發明所屬技術領域之文獻中已有說明。為衡量有效質量之改善程度,申請人分別為電子及電洞使用了「導電性反有效質量張量」(conductivity reciprocal effective mass tensor) 為電子之定義,且: 為電洞之定義,其中f為費米-狄拉克分佈(Fermi-Dirac distribution),EF為費米能量(Fermi energy),T為溫度,E(k,n)為電子在對應於波向量k及第n個能帶狀態中的能量,下標i及j係指直交座標x,y及z,積分係在布里羅因區(Brillouin zone,B.Z.)內進行,而加總則是在電子及電洞的能帶分別高於及低於費米能量之能帶中進行。
申請人對導電性反有效質量張量之定義為,一材料之導電性反有效質量張量之對應分量之值較大者,其導電性之張量分量 (tensorial component)亦較大。申請人再度提出理論(但並不欲受此理論所束縛)認為,本說明書所述之超晶格可設定導電性反有效質量張量之值,以增進材料之導電性,例如電荷載子傳輸之典型較佳方向。適當張量項數之倒數,在此稱為導電性有效質量(conductivity effective mass)。換句話說,若要描述半導體材料結構的特性,如上文所述,在載子預定傳輸方向上計算出電子/電洞之導電性有效質量,便可用於分辨出較佳之材料。
申請人已分辨出可用於半導體元件之改進材料或結構。更具體而言,申請人所分辨出之材料或結構所具有之能帶結構,其電子及/或電洞之適當導電性有效質量之值,實質上小於對應於矽之值。這些結構除了有較佳遷移率之特點外,其形成或使用之方式,亦使其得以提供有利於各種不同元件類型應用之壓電、焦電及/或鐵電特性,下文將進一步討論。
參考圖1及圖2,所述材料或結構是超晶格25的形式,其結構在原子或分子等級上受到控制,且可應用原子或分子層沉積之已知技術加以形成。超晶格25包含複數個堆疊排列之層群組45a~45n,如圖1之概要剖視圖所示。
如圖所示,超晶格25之每一層群組45a~45n包含複數個堆疊之基底半導體單層46,其界定出各別之基底半導體部份46a~46n與其上之一能帶修改層50。為清楚呈現起見,該能帶修改層50於圖1中以雜點表示。
如圖所示,該能帶修改層50包含一非半導體單層,其係被拘束在相鄰之基底半導體部份之一晶格內。「被拘束在相鄰之基底半導體部份之一晶格內」一語,係指來自相對之基底半導體部份46a~46n之至少一些半導體原子,透過該些相對基底半導體部份間之非半導體單層50,以化學方式鍵結在一起,如圖2所示。一般而言,此一組構可經由控制以原子層沉積技術沉積在半導體部份46a~46n上面之非半導體材料之量而成為可能,這樣,可用之半導體鍵結位置便不會全部(亦即非完全或低於100%之涵蓋範圍)被連結至非半導體原子之鍵結佔滿,下文將進一步討論。因此,當更多半導體材料單層46被沉積在一非半導體單層50上面或上方時,新沉積之半導體原子便可填入該非半導體單層下方其餘未被佔用之半導體原子鍵結位置。
在其他實施方式中,使用超過一個此種非半導體單層是可能的。應注意的是,本說明書提及非半導體單層或半導體單層時,係指該單層所用材料若形成爲塊狀,會是非半導體或半導體。亦即,一種材料(例如矽)之單一單層所顯現之特性,並不必然與形成爲塊狀或相對較厚層時所顯現之特性相同,熟習本發明所屬技術領域者當可理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),能帶修改層50與相鄰之基底半導體部份46a~46n,可使超晶格25在平行層之方向上,具有較原本為低之電荷載子適當導電性有效質量。換一種方向思考,此平行方向即正交於堆疊方向。該能帶修改層50亦可使超晶格25具有一般之能帶結構,同時有利地發揮作為該超晶格垂直上下方之多個層或區域間之絕緣體之作用。
再者,此超晶格結構亦可有利地作為超晶格25垂直上下方多個層之間之摻雜物及/或材料擴散之阻擋。因此,這些特性可有利地允許超晶格25為高K值介電質提供一界面,其不僅可減少高K值材料擴散進入通道區,還可有利地減少不需要之散射效應,並改進裝置行動性,熟習本發明所屬技術領域者當可理解。
本發明之理論亦認為,包含超晶格25之半導體元件可因為較原本為低之導電性有效質量,而享有較高之電荷載子遷移率。在某些實施方式中,因為本發明而實現之能帶工程,超晶格25可進一步具有對諸如光電元件等尤其有利之實質上之直接能帶間隙。
如圖所示,超晶格25亦可在一上部層群組45n上方包含一頂蓋層52。該頂蓋層52可包含複數個基底半導體單層46。頂蓋層52可具有基底半導體的2至100個之間的單層,較佳者為10至50個之間的單層。
每一基底半導體部份46a~46n可包含由 IV 族半導體、 III-V 族半導體及 II-VI 族半導體所組成之群組中選定之一基底半導體。當然, IV 族半導體亦包含 IV-IV 族半導體,熟習本發明所屬技術領域者當可理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
每一能帶修改層50可包含由,舉例而言,氧、氮、氟、碳及碳-氧所組成之群組中選定之一非半導體。該非半導體亦最好具有在沈積下一層期間保持熱穩定之特性,以從而有利於製作。在其他實施方式中,該非半導體可為相容於給定半導體製程之另一種無機或有機元素或化合物,熟習本發明所屬技術領域者當能理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
應注意的是,「單層(monolayer)」一詞在此係指包含一單一原子層,亦指包含一單一分子層。亦應注意的是,經由單一單層所提供之能帶修改層50,亦應包含層中所有可能位置未完全被佔據之單層(亦即非完全或低於100%之涵蓋範圍)。舉例來說,參照圖2之原子圖,其呈現以矽作為基底半導體材料並以氧作為能帶修改材料之一4/1重複結構。氧原子之可能位置僅有一半被佔據。
在其他實施方式及/或使用不同材料的情況中,則不必然是二分之一的佔據情形,熟習本發明所屬技術領域者當能理解。事實上,熟習原子沈積技術領域者當能理解,即便在此示意圖中亦可看出,在一給定單層中,個別的氧原子並非精確地沿著一平坦平面排列。舉例來說,較佳之佔據範圍是氧的可能位置有八分之一至二分之一被填滿,但在特定實施方式中其他佔據範圍亦可使用。
由於矽及氧目前廣泛應用於一般半導體製程中,故製造商將能夠立即應用本說明書所述之材質。原子沉積或單層沉積亦是目前廣泛使用之技術。因此,依照本發明之結合超晶格25之半導體元件,可立即加以採用並實施,熟習本發明所屬技術領域者當能理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),對一超晶格而言,例如所述矽/氧超晶格,矽單層之數目理想應為七層或更少,以使該超晶格之能帶在各處皆為共同或相對均勻,以實現所欲之優點。圖1及圖2所示之矽/氧 4/1重複結構,已經過模型化以表示電子及電洞在X方向上之較佳遷移率。舉例而言,電子(就塊狀矽而言具等向性)之計算後導電性有效質量為0.26,而X方向上的4/1 矽/氧超晶格之計算後導電性有效質量則為0.12,兩者之比為0.46。同樣的,在電洞之計算結果方面,塊狀矽之值為0.36,該4/1 矽/氧超晶格之值則為0.16,兩者之比為0.44。
雖然此種方向上優先(directionally preferential)之特點可有利於某些半導體元件,其他半導體元件亦可得益於遷移率在平行於層群組之任何方向上更均勻之增加。電子及電洞兩者之遷移率同時增加,或僅其中一種電荷載子遷移率之增加,亦皆可有其好處,熟習本發明所屬技術領域者當可理解。
超晶格25之4/1 矽/氧實施方式之較低導電性有效質量,可不到非超晶格25者之導電性有效質量之三分之二,且此情形就電子及電洞而言皆然。當然,超晶格25可更包括至少一種類型之導電性摻雜物在其中,熟習本發明所屬技術領域者當能理解。
茲另參考圖3說明依照本發明之具有不同特性之超晶格25’之另一實施方式。在此實施方式中,其重複模式為3/1/5/1。更詳細而言,最底下的基底半導體部份46a’有三個單層,第二底下的基底半導體部份46b’則有五個單層。此模式在整個超晶格25’重複。每一能帶修改層50’可包含一單一單層。就包含矽/氧之此種超晶格25’ 而言,其電荷載子遷移率之增進,係獨立於該些層之平面之定向。圖3中其他元件在此未提及者,係與前文參考圖1所討論者類似,故不再重複討論。
在某些元件實施例中,其超晶格之每一基底半導體部份可為相同數目之單層之厚度。在其他實施方式中,其超晶格之至少某些基底半導體部份可為相異數目之單層之厚度。在另外的實施方式中,其超晶格之每一基底半導體部份可為相異數目之單層之厚度。
圖4A-4C呈現使用密度功能理論(Density Functional Theory, DFT)計算出之能帶結構。在本發明所屬技術領域中廣為習知的是,DFT通常會低估能帶間隙之絕對值。因此,間隙以上的所有能帶可利用適當之「剪刀形更正」(scissors correction)加以偏移。不過,能帶的形狀則是公認遠較為可靠。縱軸之能量應從此一角度解釋之。
圖4A呈現塊狀矽 (以實線表示)及圖1之4/1 矽/氧超晶格25 (以虛線表示)兩者由迦碼點(G)計算出之能帶結構。圖中該些方向係指該4/1 矽/氧結構之單位晶格(unit cell)而非指矽之一般單位晶格,雖然圖中之方向(001)確實對應於一般矽單位晶格之方向(001),並因此而顯示出矽導帶最小值之預期位置。圖中方向(100)及方向(010)係對應於一般矽單位晶格之方向(110)及方向(-110)。熟習本發明所屬技術領域者當可理解,圖中之矽能帶係被摺疊收攏,以便在該4/1 矽/氧結構之適當反晶格方向(reciprocal lattice directions)上表示。
由圖中可見,與塊狀矽相較,該4/1 矽/氧結構之導帶最小值係位於G點,而其價帶最小值則出現在方向(001)上布里羅因區之邊緣,吾人稱為Z點之處。吾人亦可注意到,與矽之導帶最小值曲率比較下,該4/1 矽/氧結構之導帶最小值之曲率較大,此係因額外氧層引入之微擾(perturbation)造成能帶分裂(band splitting)之故。
圖4B呈現塊狀矽(實線)及該4/1 矽/氧超晶格25 (虛線)兩者由Z點計算出之能帶結構。此圖描繪出價帶在方向(100)上之增加曲率。
圖4C呈現塊狀矽(實線)及圖3之5/1/3/1 矽/氧超晶格25’ (虛線)兩者由迦碼點及Z點計算出之能帶結構之曲線圖。由於該5/1/3/1 矽/氧結構之對稱性,在 方向(100)及方向(010)上計算出之能帶結構是相當的。因此,在平行於各層之平面中,亦即垂直於堆疊方向(001)上,導電性有效質量及遷移率可預期為等向性。請注意,在該5/1/3/1 矽/氧之實施例中,導帶最小值及價帶最大值兩者皆位於或接近Z點。
雖然曲率增加是有效質量減少的一個指標,但適當的比較及判別可經由導電性反有效質量張量之計算而進行。此使得本案申請人進一步推論,該5/1/3/1超晶格25’實質上應為直接能帶間隙。熟習本發明所屬技術領域者當可理解,光躍遷(optical transition)之適當矩陣元素(matrix element)是區別直接及間接能帶間隙行為之另一指標。
茲另參考圖5-6,上述超晶格結構可有利地用於製作包含埋入式量子點的半導體晶圓及元件。作爲背景說明,已分辨出對量子元件應用很重要的幾個特徵。首先為可擴展性(scalability),即成爲具有明確定義之量子位元(qubit)之可擴展性物理系統的能力。另一特徵為初始化(initialization),該系統應可初始化成簡單的基準狀態(fiducial state),例如|000…>。另一特徵為退相干(decoherence),該系統的閘極操作時間應遠小於退相干時間(例如,10 4-10 5x 「鐘時(clock time)」,則誤差修正是可行的)。第四特徵為通用性(universality),該系統應具有一套通用的量子邏輯閘(universal set of quantum gate,CNOT)。最後一個特徵為測量(measurement),該系統應具有特定量子位元之高真實度測量能力(high-fidelity measurement capability)。此等特徵可透過基於矽自旋的量子位元(silicon spin-based qubit)來實現。然而,在許多情況下,此可能需要相對純的 28Si底材。
更具體而言, 28Si在半導體量子元件方面具備某些優點及挑戰。其優點包含熱導率更高、散熱更佳,以及退相干時間更長,以實現量子位元。然而, 28Si亦可能受到矽交互擴散(silicon inter-diffusion)之影響,且生長成本相對較高。
圖5所示之金屬氧化物半導體(metal oxide semiconductor,MOS)元件30為自旋量子位元元件(spin qubit device),其概要地包含矽底材31,其可為天然或常規之矽材料(例如,非富集 28Si,non- 28Si enriched)。富集 28Si之磊晶層32生長在底材31上,但在其他實施例中可能使用非富集 28Si磊晶或其他半導體材料(例如鍺)。在圖式示例中,磊晶層32當中更包含超晶格25。亦即,可在磊晶層生長期間執行MST薄膜形成模組,使得超晶格25生長在相對較薄的磊晶富集 28Si之晶種層上,且超晶格之頂蓋層界定出磊晶層32的上部部份。如上所述,富集 28Si材料之晶格穿過超晶格層25,從而磊晶層32在本說明書中被視為具有埋入式MST薄膜的單層,儘管其亦可被視為兩個單獨的磊晶富集 28Si層,二者之間具有MST薄膜。在一些實施例中,如有需要,可在磊晶層32內部納入另一MST薄膜,或在其頂部生長另一MST薄膜。
如圖所示,半導體元件30進一步包含隔開的複數個量子點33,其在磊晶層32中位於超晶格25上方。量子點33包含不同於磊晶層32的半導體材料。詳言之,例如,量子點33可包含鍺(Ge)或砷化鎵(GaAs)等半導體,但在不同實施例中可使用其他適合材料。
底材31及具有超晶格25及量子點33之磊晶層32可統稱為 28Si量子底材,其為量子應用提供了許多優點。首先,相較於需要相對較厚層來防止不樂見的同位素互相混合(isotope intermixing)的常規 28Si方法,本發明允許使用相對較少量或較薄量的 28Si。由於 28Si沉積成本較高,這點意義重大,因 28Si量子底材在形成期間需要較少的 28Si氣體。此外在 28Si量子底材中摻入MST薄膜可有利地消除點缺陷(point defects),提供更好的熱穩定性,且有助於保留更高的 28Si純度。特別是,前文討論的超晶格25之摻雜劑阻隔性質,有助於阻隔污染物(例如,硼)向量子點33遷移。其中可使用 28Si量子底材之例示元件包含矽自旋量子位元(如圖5所示者),以及量子感測器、單電子電晶體(Single Electron Transistor,SET)、共振穿隧二極體(Resonant Tunneling Diode,RTD),以及溝槽FET (trench FET,TFET)元件。
如圖所示,半導體元件30更包含在磊晶半導體層32中隔開的源極區及汲極區34、35,二者之間界定出一通道區,其為量子點33所在位置。個別的源極接點/汲極接點36、37形成在源極區及汲極區34、35上面。此外,一閘極結構位於磊晶層32上之通道區上方,如圖所示,其概要包含聚積閘極電極38、阻障閘極電極39及柱塞閘極電極40,以及閘極介電層41。在圖6示例中,量子點為鍺,矽及鍺之對應eV值顯示在示例的右側。
以下參考圖7A-7F說明製作如上所述之 28Si量子底材的第一例示方法。在底材31上形成磊晶層32之後(圖7A),在磊晶(晶體)層32中形成小孔(例如小於10奈米)或凹坑60的圖案(圖7B)。隨後,小孔60可填充量子點材料(例如鍺)61,如圖7C及7D所示,並清潔磊晶層32之表面(例如使用CMP),以移除多餘的鍺並界定出量子點33(圖7E)。磊晶生長額外的矽(例如富集 28Si)以使量子點33被埋入磊晶層32中(圖7F)。在此階段, 28Si量子底材可用於製作各種量子元件,例如前文所述者。
以下參考圖8A-8F說明一替代實施例,在形成具有超晶格25'之磊晶層32'之後(圖8A),形成在磊晶層上形成一氧化物光罩62',其用於在期望之位置界定出小孔60'(圖8C),量子點材料61'通過該氧化物光罩而沉積(圖8D)。隨後,移除氧化物光罩62’(圖8E),且在結構上磊晶生長額外的矽,以產生埋入式的量子點33’(圖8F)。
舉例而言,磊晶層32、32’具有的 28Si同位素濃度舉例而言可大於93%、尤其是大於99%。有關 28Si及MST薄膜之進一步細節可參美國專利申請案第2022/0344155號及第2022/0352322號,兩者皆為Hytha等人提出,且兩者皆通過引用將其全部內容併入本說明書。
一般而言,上述方法有利地提供一種用於生長非常小且均勻分佈之量子點33、33’的方法,由於其尺寸及庫侖障礙(Coulomb blockade),這些量子點基本上為單電子(洞)量子點。在一些實施中,該方法可與閘極控制結合,如上文所述。此外,應當注意, 28Si僅為磊晶層32、32’的選項之一,儘管其有助於量子位元應用,但並非諸如單電子電晶體(SET)等其他應用所必需。也應當注意,在一些實施例中,MST薄膜不需要存在於磊晶層32、32’中。
如上文所指出,除了具有鍺/砷化鎵量子點的矽以外,在不同實施例中可使用其他材料。作為示例,替代性底材/磊晶層材料可使用諸如SiC或GaN等寬帶隙半導體。可用於量子點之其他例示材料包含Si、SiC、GaN、InP等等。
熟習本發明所屬技術領域者將受益於本說明書揭示之內容及所附圖式而構思出各種修改及其他實施方式。因此,應了解的是,本發明並非僅限於本說明書所述之特定實施方式,而是也包含其他修改例及實施例。
21,21’:底材 25,25’:超晶格 30:MOS元件 31:底材 32,32':磊晶層 33,33’:量子點 34:源極區 35:汲極區 36:源極接點 37:汲極接點 38:聚積閘極電極 39:阻障閘極電極 40:柱塞閘極電極 41:閘極介電層 45a~45n,45a’~45n’:層群組 46,46’:基底半導體單層 46a~46n,46a’~46n’:基底半導體部份 50,50’:能帶修改層 52,52’:頂蓋層 60,60':小孔 61,61':量子點材料 62':氧化物光罩
圖1為依照一例示實施例之半導體元件用超晶格之放大概要剖視圖。
圖2為圖1所示超晶格之一部份之透視示意原子圖。
圖3為依照另一例示實施例之超晶格放大概要剖視圖。
圖4A為習知技術之塊狀矽及圖1-2所示之4/1 矽/氧超晶格兩者從迦碼點(G)計算所得能帶結構之圖。
圖4B為習知技術之塊狀矽及圖1-2所示之4/1 矽/氧超晶格兩者從Z點計算所得能帶結構之圖。
圖4C為習知技術之塊狀矽及圖3所示之5/1/3/1 矽/氧超晶格兩者從G點與Z點計算所得能帶結構之圖。
圖5為依照一例示實施例之具有超晶格之磊晶層中包含埋入式量子點的半導體元件之剖視圖。
圖6為圖5之半導體元件的局部視圖,其繪示不同部份的電子伏特(electronvolt,eV)等級。
圖7A-7F為一系列之剖視圖,其繪示在一例示實施例中,在內有超晶格之磊晶層中製作埋入式量子點之一例示方法。
圖8A-8F為一系列之剖視圖,其繪示在一例示實施例中,在內有超晶格之磊晶層中製作埋入式量子點之另一例示方法。
25:超晶格
30:MOS元件
31:底材
32:磊晶層
33:量子點
34:源極區
35:汲極區
36:源極接點
37:汲極接點
38:聚積閘極電極
39:阻障閘極電極
40:柱塞閘極電極
41:閘極介電層

Claims (20)

  1. 一種半導體元件,其包括: 至少一半導體層,當中包含一超晶格,該超晶格包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層;以及 隔開的複數個量子點,其在該至少一半導體層中位於該超晶格上方且包含不同於該半導體層的一半導體材料。
  2. 如請求項1之半導體元件,其中該至少一半導體層包括一半導體底材及該半導體底材上之一磊晶半導體層;其中該超晶格位於該磊晶半導體層的內部;且其中該複數個量子點在該磊晶半導體層內位於該超晶格的上方。
  3. 如請求項2之半導體元件,其中該半導體底材及該磊晶半導體層包含矽;且其中該磊晶半導體層之矽28( 28Si)比例高於該半導體底材。
  4. 如請求項1之半導體元件,其中該複數個量子點包含鍺。
  5. 如請求項1之半導體元件,其中該複數個量子點包含砷化鎵。
  6. 如請求項2之半導體元件,其更包括在該磊晶半導體層中隔開的源極區及汲極區,二者之間界定出一通道區,以及該磊晶半導體層上位於該通道區上方之一閘極。
  7. 如請求項6之半導體元件,其中該閘極包括至少一聚積閘極。
  8. 如請求項6之半導體元件,其中該閘極包括至少一柱塞閘極。
  9. 如請求項6之半導體元件,其中該閘極包括至少一阻障閘極。
  10. 如請求項1之半導體元件,其中該至少一非半導體單層包含氧。
  11. 一種用於製作一半導體元件之方法,其包括: 形成至少一半導體層使其當中包含一超晶格,該超晶格包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層;以及 形成隔開的複數個量子點,使其在該至少一半導體層中位於該超晶格上方且包含不同於該半導體層的一半導體材料。
  12. 如請求項11之方法,其中形成該至少一半導體層包括形成一半導體底材及該半導體底材上之一磊晶半導體層,其中該超晶格位於該磊晶半導體層的內部;且其中該複數個量子點在該磊晶半導體層內位於該超晶格的上方。
  13. 如請求項12之方法,其中該半導體底材及該磊晶半導體層包含矽;且其中該磊晶半導體層之矽28( 28Si)比例高於該半導體底材。
  14. 如請求項11之方法,其中該複數個量子點包含鍺。
  15. 如請求項11之方法,其中該複數個量子點包含砷化鎵。
  16. 如請求項12之方法,其更包括在該磊晶半導體層中形成隔開的源極區及汲極區,二者之間界定出一通道區,以及在該磊晶半導體層上形成位於該通道區上方之一閘極。
  17. 如請求項16之方法,其中該閘極包括至少一聚積閘極。
  18. 如請求項16之方法,其中該閘極包括至少一柱塞閘極。
  19. 如請求項16之方法,其中該閘極包括至少一阻障閘極。
  20. 如請求項11之方法,其中該至少一非半導體單層包含氧。
TW112123453A 2022-06-21 2023-06-21 具埋入式量子點的半導體元件及相關方法 TWI858785B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263366698P 2022-06-21 2022-06-21
US63/366,698 2022-06-21

Publications (2)

Publication Number Publication Date
TW202413266A true TW202413266A (zh) 2024-04-01
TWI858785B TWI858785B (zh) 2024-10-11

Family

ID=

Also Published As

Publication number Publication date
US20230411491A1 (en) 2023-12-21
US20230411557A1 (en) 2023-12-21
WO2024054282A2 (en) 2024-03-14
WO2024054282A9 (en) 2024-05-02
WO2024054282A3 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
CN111133582B (zh) 具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法
CN107112354B (zh) 包括超晶格和替换金属栅极结构的半导体装置和相关方法
TWI543362B (zh) 包含超晶格貫穿中止層之垂直式半導體元件及其相關方法
AU2006344095B2 (en) Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
JP2017126747A (ja) 酸素源としてのn2oを使用する原子層構造を包含する半導体デバイスの製造方法
CN112074959A (zh) 用于制造包括超晶格的倒t形沟道场效应晶体管(itfet)的器件和方法
JP2008535265A (ja) 半導体接合を画定する領域を有する超格子を有する半導体素子
JP2008538052A (ja) 半導体接合を画定するドーピングされた領域を有する超格子及び隣接する半導体層を有する半導体素子
WO2007098138A2 (en) Semiconductor device comprising a lattice matching layer and associated methods
JP2009510727A (ja) 表側の歪んでいる超格子層、裏側の応力層を有する半導体装置及び関連する方法
US12046470B2 (en) Method for making semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11923418B2 (en) Semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
TWI816399B (zh) 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
TW202413266A (zh) 具埋入式量子點的半導體元件及相關方法
TWI806553B (zh) 包含超晶格及富集矽28磊晶層之半導體元件及相關方法
TWI852792B (zh) 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
TWI747378B (zh) 設有含分隔超晶格之突陡接面區之半導體元件及相關方法
CN114258594A (zh) 具有包括超晶格的超突变结区域的半导体器件及相关方法
CN114270535A (zh) 具有包括超晶格的超突变结区域的变容二极管及相关方法
TW202105725A (zh) 設有含分隔超晶格之突陡接面區之可變電容器及相關方法
CN112005340A (zh) 包括化合物半导体材料和阻挡杂质和点缺陷的超晶格的半导体器件及方法