TW202401420A - 記憶體驅動器、記憶體系統以及操作記憶體陣列的操作方法 - Google Patents

記憶體驅動器、記憶體系統以及操作記憶體陣列的操作方法 Download PDF

Info

Publication number
TW202401420A
TW202401420A TW112119188A TW112119188A TW202401420A TW 202401420 A TW202401420 A TW 202401420A TW 112119188 A TW112119188 A TW 112119188A TW 112119188 A TW112119188 A TW 112119188A TW 202401420 A TW202401420 A TW 202401420A
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
capacitor
word line
coupled
Prior art date
Application number
TW112119188A
Other languages
English (en)
Inventor
田村元樹
薮内誠
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202401420A publication Critical patent/TW202401420A/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4099Dummy cell treatment; Reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

記憶體驅動器包括字元線驅動器電路、參考電路及偏壓電路。字元線驅動器電路耦接至字元線並用以根據輸入訊號將參考電壓自參考節點選擇性地提供至字元線。參考電路具有耦接至參考節點的電容器。參考電路用以將參考電壓儲存於電容器上,並在參考電壓由字元線驅動電路自參考節點提供至字元線時,將參考電壓自第一電壓位準降低至第二電壓位準。偏壓電路耦接至參考節點並用以藉由第二電壓位準調節參考節點處的參考電壓。

Description

記憶體驅動器、記憶體系統以及操作方法
記憶體裝置已用於各種應用中。一般而言,記憶體裝置包括例如靜態隨機存取記憶體(static random access memory,SRAM)及動態隨機存取記憶體(dynamic random access memory,DRAM)。SRAM裝置通常用於高速通訊、影像處理以及晶片上系統(system-on-chip,SOC)應用。
在SRAM上執行讀取操作時,讀取操作期間的不可接受現象稱為讀取干擾。讀取干擾係SRAM中電晶體臨限電壓改變的結果,在一些情況下會導致讀取操作產生與實際儲存值相反的值。為了將讀取干擾降低至可接受水準,將SRAM記憶體的字元線下驅動至低於操作電壓的值。這一下驅動稱為讀取輔助。
以下揭示內容提供用於實施所提供標的物的不同特徵的許多不同實施例、或實例。下文描述組件及配置的特定實例以簡化本揭示的一些實施例。當然,這些僅為實例且非意欲為限制性的。舉例而言,在以下描述中第一特徵於第二特徵上方或上的形成可包括第一特徵與第二特徵直接接觸地形成的實施例,且亦可包括額外特徵可形成於第一特徵與第二特徵之間使得第一特徵與第二特徵可不直接接觸的實施例。此外,本揭示的一些實施例在各種實例中可重複參考數字及/或字母。此重複係出於簡單及清楚之目的,且本身且不指明所論述之各種實施例及/或組態之間的關係。
此外,為了便於描述,在本文中可使用空間相對術語,諸如「在……下方」、「在……之下」、「下部」、「在……之上」、「上部」、「在……上」、「在……上方」及類似者,來描述諸圖中圖示之一個元件或特徵與另一(多個)元件或特徵之關係。空間相對術語意欲涵蓋除了諸圖中所描繪的定向以外的裝置在使用或操作時的不同定向。器件可另外定向(旋轉90度或處於其他定向),且本文中所使用之空間相對描述符可類似地加以相應解釋。源極/汲極區可係指源極或汲極,單獨或集體地取決於上下文。
第1圖根據一些實施例圖示記憶體系統1。記憶體系統1包括記憶體陣列10及記憶體驅動器11。記憶體陣列10包括由複數個字元線WL1~WLn控制的複數個記憶體單元MC。記憶體驅動器11經由字元線WL1~WLn耦接至記憶體陣列10。記憶體驅動器11用以根據輸入訊號IN1~INn控制字元線WL1~WLn上的電壓,因此當對應輸入訊號係啟用(即,邏輯1)時,可在耦接至被選字元線的記憶體單元MC上執行寫入操作(亦稱為程式化操作)或讀取操作中之至少一者。
在至少一個實施例中,記憶體陣列10包含以行與列配置的複數個記憶體單元。各個記憶體單元MC可係靜態隨機存取記憶體(static random access memory,SRAM)單元。將SRAM單元設計,諸如4電晶體設計(4T)或6電晶體設計(6T)或8電晶體設計(8T)或具有更多電晶體的其他組態設計為使SRAM單元呈雙穩態,這意謂只要將足夠的功率供應至SRAM,SRAM單元就將其輸出維持在二元狀態。一般而言,SRAM可以比DRAM更高的速度操作,因此電腦快取記憶體傾向於使用SRAM。其他SRAM應用可包括嵌入式記憶體及網路連結設備記憶體。
記憶體單元MC中之各者耦接至字元線中之對應一者,並由記憶體驅動器11透過對應字元線進一步控制。字元線WL1~WLn組態用於傳輸待自其讀取及/或待寫入其中或類似者的記憶體單元MC的位址。字元線WL1~WLn有時稱為「位址線」。各個記憶體單元MC由對應字元線控制,因此當對應字元線上的電壓控制於啟用電壓位準時,可自記憶體單元中之各者讀取資料或將資料寫入記憶體單元中之各者。儘管未圖示,但記憶體陣列10進一步包含至少一個位元線。至少一個位元線用以傳輸待寫入記憶體單元MC及/或自記憶體單元MC讀取的資料,記憶體單元MC由對應字元線上的位址或類似者指示。至少一個位元線有時稱為「資料線」。記憶體陣列10中的各種數目的字元線及位元線在各種實施例的範疇內。
在至少一個實施例中,記憶體驅動器11包括參考電路12、偏壓電路13及字元線驅動器14。記憶體驅動器11用以接收輸入訊號IN1~INn以分別控制字元線WL1~WLn上的電壓。具體地,參考電路12用以根據啟用訊號GEN藉由將電容器連接至操作電壓端子VDD(第1圖中未顯示)選擇性地對電容器充電,並將儲存於電容器上的參考電壓Vr1提供至參考節點Nr。當輸入訊號IN1~INn中之一者經選擇並啟用時,參考節點Nr處的參考電壓Vr1由字元線驅動器14提供至藉由啟用輸入訊號選擇的對應字元線中之一者。同時,當參考節點Nr耦接至被選字元線並將參考電壓Vr1提供至被選字元線時,參考電路12由啟用訊號GEN控制,以將參考節點Nr自操作電壓端子VDD斷開,因此參考電壓Vr1由電容器提供,並經由電容器與被選字元線的等效電容之間的電荷分享而自高電壓位準降低至啟用電壓位準。更具體地,啟用電壓位準自操作電壓端子VDD處的高電壓位準降低,同時維持高於記憶體單元的存取電晶體的臨限電壓,使得能夠與被選字元線上的記憶體單元MC進行資料傳輸。如此,可以更快地達到操作電壓端子VDD的高電壓位準與記憶體單元的存取電晶體的臨限電壓之間的啟用電壓位準並維持一定的時間段,從而改善與被選字元線上的記憶體單元MC的資料傳輸。藉由用處於較低的啟用電壓位準而非操作電壓端子VDD處的高電壓位準的參考電壓Vr1來驅動被選字元線,可能達成一或多個優勢,包括但不限於較低的開關功率、較少的讀取干擾或類似者。
在至少一個實施例中,記憶體驅動器11包括分別對應於字元線WL1~WLn的緩衝器141~14n。緩衝器141~14n中之各者包括串聯耦接的反向器INV1、INV2,以接收用於控制對應字元線上的電壓的對應輸入訊號。舉例而言,在緩衝器141中,反向器INV1、INV2串聯連接以接收輸入訊號IN1並相應地控制字元線WL1上的電壓。在反向器INV1、INV2的串聯連接中,藉由反向器INV1將輸入訊號IN1反向並將經反向輸入訊號IN2提供至反向器INV2來產生輸出。由於反向器INV2供應有參考節點Nr及地面電壓端子VSS(第1圖中未顯示)處的電壓,故反向器INV2組態為字元線驅動器,以根據來自反向器INV1的輸出,藉由將參考節點Nr處的電壓或地面電壓端子VSS處的電壓提供至字元線來驅動字元線WL1。
在至少一個實施例中,參考電路12用以根據啟用訊號GEN藉由連接至操作電壓端子VDD來選擇性地對電容器充電,並將儲存於電容器上的參考電壓Vr1供應至參考節點Nr。儘管第1圖中未圖示並在下文中參考第2A圖更充分地描述,參考電路12包括耦接至參考節點Nr的電容器。參考電路12由啟用訊號GEN控制並用以在啟用訊號GEN係禁用(即,邏輯0)時用操作電壓端子VDD將電容器充電至參考電壓Vr1。此外,當參考電壓Vr1由字元線驅動器14自參考節點Nr供應至被選字元線時,參考電路12由係啟用(即,邏輯1)的啟用訊號GEN控制,以將參考節點Nr自操作電壓端子VDD斷開,並使參考電壓Vr1能夠自操作電壓端子VDD處的高電壓位準降低至啟用電壓位準。
在至少一個實施例中,偏壓電路13亦耦接至參考節點Nr。偏壓電路13由啟用訊號KEN控制並用以在參考節點Nr處產生處於啟用電壓位準的參考電壓Vr2,因此當偏壓電路13經啟用時,被選字元線上的電壓經調節或維持。在至少一個實施例中,由偏壓電路13產生的參考電壓Vr2處於與由參考電路12產生的降低的參考電壓Vr1相同的啟用電壓位準。舉例而言,偏壓電路13可係由被動或主動電阻器實施的分壓器,因此參考電壓Vr2可由電阻器基於啟用電壓位準來偏壓及產生。
第2A圖根據一些實施例圖示記憶體系統1a。記憶體系統1a包括記憶體陣列10a及記憶體驅動器11a。第2A圖中的記憶體陣列10a類似於第1圖中的記憶體陣列10,而為了清楚起見,未顯示字元線WL1~WLn中之各者上的記憶體單元MC。相反,字元線WL1~WLn中之各者的等效電路如第2A圖中所繪示,顯示耦接至各個字元線的記憶體單元MC可以表示為串聯耦接至地面電壓端子VSS的等效電阻與等效電容。
記憶體驅動器11a包括參考電路12a、偏壓電路13a及字元線驅動器14a。如第2A圖中所繪示的參考電路12a、偏壓電路13a及字元線驅動器14a中之各者均可在記憶體驅動器11中實施,以替代如第1圖中所繪示的參考電路12、偏壓電路13及字元線驅動14中之各者。參考電路12a用以根據啟用訊號GEN藉由將電容器連接至操作電壓端子VDD來選擇性地對電容器充電,並將儲存於電容器上的參考電壓Vr1提供至參考節點Nr。此外,字元線驅動器14a由輸入訊號IN1~INn控制,以在對應輸入訊號係啟用(即,邏輯1)時,選擇性地將參考節點Nr耦接至被選字元線。同時,當參考電壓Vr1自參考節點Nr提供至被選字元線時,由參考電路12a將參考節點Nr自操作電壓端子VDD斷開,以使參考節點N處的參考電壓Vr1能夠降低至啟用電壓位準,因此耦接至被選字元線的記憶體單元MC可經啟用以供存取資料。接著,偏壓電路13a可經啟用以將參考電壓Vr2供應至參考節點Nr,以將被選字元線上的電壓調節為啟用電壓位準。
在至少一個實施例中,緩衝器141a~14na中之各者包括串聯耦接的反向器INV1、INV2,以接收對應輸入訊號並相應地控制對應字元線上的電壓。舉例而言,在緩衝器141a中,反向器INV1、INV2串聯耦接以接收輸入訊號INV1。反向器INV1包括PMOS 1411及NMOS 1412。PMOS 1411及NMOS 1412的汲極分別耦接至操作電壓端子VDD及地面電壓端子VSS。PMOS 1411及NMOS 1412的閘極耦接在一起以接收輸入訊號IN1,而PMOS 1411及NMOS 1412的源極耦接在一起,以藉由反向輸入訊號INV1來產生輸出。類似地,反向器INV2包括PMOS 1413及NMOS 1414,形成一反向器,以將由反向器INV1產生的輸出反向。然而,反向器INV2由參考節點Nr及地面電壓端子VSS處的電壓供應。因此,反向器INV2組態為字元線驅動器,以根據由反向器NV1產生的經反向輸入訊號INV1,在其輸出處將參考節點Nr處的電壓或地面電壓端子VSS處的電壓選擇性地提供至對應字元線。當輸入訊號IN1係禁用(即,邏輯0)並提供至緩衝器141a時,反向器INV2選擇地面電壓端子VSS來供應字元線WL1。另一方面,當輸入訊號IN1係啟用(即,邏輯1)時,INV2將參考節點Nr耦接至字元線WL1,並因此將參考節點Nr處的電壓提供至字元線WL1。
在至少一個實施例中,參考電路12a用以藉由連接至操作電壓端子VDD來選擇性地對電容器充電,並將儲存於電容器上的參考電壓Vr1提供至參考節點Nr。在一些態樣中,參考電路12a用以根據啟用訊號GEN來控制參考節點Nr與操作電壓端子VDD之間的連接。參考電路12a包括串聯耦接於操作電壓端子VDD與地面電壓端子VSS之間的開關120及電容器121。開關120由啟用訊號GEN控制,以用操作電壓端子VDD選擇性地對電容器121充電。參考電壓Vr1在開關120與電容器121之間的節點處產生並提供至參考節點Nr。當啟用訊號GEN禁用(即,邏輯0)時,將開關120控制為閉合(導通),因此操作電壓端子VDD耦接至電容器121的頂板。因此,高電壓位準的參考電壓Vr1輸出至參考節點Nr。當啟用訊號GEN係啟用(即,邏輯1)時,開關120打開(不導通),因此電容器121的頂板自操作電壓端子VDD斷開。輸出至參考節點Nr的參考電壓Vr1由儲存於電容器121上的電壓供應。參考節點Nr自操作電壓端子VDD斷開使電容器121的頂板及參考節點Nr呈浮接,並在參考節點Nr進一步耦接至被選字元線時,經由電容器121與被選字元線的等效電容(例如,等效電容CL1)之間的電荷分享,進一步使參考電壓Vr1能夠降低。在至少一個實施例中,開關120可使用PMOS來實施,如第2A圖的左側上所繪示。
第2B圖根據一些實施例圖示第2A圖中的參考電路12a如何驅動參考節點Nr及被選字元線的表格200。
以啟用訊號GEN係禁用(即,邏輯0)開始,參考電路12a的開關120閉合(導通),因此電容器121的頂板接收高電壓位準VLH,且電容器121充電有操作電壓VDD,因此處於高電壓位準的參考電壓Vr1輸出至參考節點Nr。接著,字元線驅動器14a根據輸入訊號IN1選擇具有高電壓位準VLH的參考電壓Vr1或處於低電壓位準VLL的地面電壓VSS以驅動字元線WL1。
當提供具有個別邏輯1及0的啟用訊號GEN及輸入訊號IN1時,參考電路12a的開關120及PMOS 1413兩者均相應地打開(不導通),導致電容器121的頂板與參考節點Nr耦接在一起並浮接。假如電容器121充電有操作電壓VDD,則輸出至參考節點Nr的參考電壓Vr1由電容器121維持在高電壓位準VLH。當輸入訊號IN1自邏輯0切換至邏輯1時,參考節點Nr由字元線驅動器14a耦接至字元線WL1,導致電容器121的頂板耦接至字元線WL1,因此儲存於電容器121上的電荷在電容器121與字元線WL2的等效電容CL1之間分享及重新分配。結果,參考電壓Vr1自高電壓位準VLH降低,而字元線WL1的等效電容CL1上的電壓VWL1經由電荷分享自低電壓位準VLL升高。隨後,參考電壓Vr1及字元線WL1上的電壓VWL1兩者均達到啟用電壓位準VLE。由參考電路12a產生的啟用電壓位準VLE可表示如下: , 其中C121及CL1分別表示電容器121的電容及字元線WL1的等效電容CL1。自以上等式可以觀察到,啟用電壓位準VLE與操作電壓端子VDD處的電壓位準VLH之比與電容器121的電容與電容器121的電容與字元線WL1的等效電容CL1之和之比正相關。因此,可藉由適當地選擇電容器121的電容來調整啟用電壓位準VLE。參考電路12a的其他設計亦在各種實施例的範疇內,只要處於啟用電壓位準VLE的參考電壓Vr1係經由電荷分享來產生的。
在至少一個實施例中,偏壓電路13a由啟用訊號KEN控制並用以在偏壓電路13a經啟用時提供處於啟用電壓VLE的參考電壓Vr2。更具體地,偏壓電路13a可係分壓器,以在經啟用時以與參考電壓Vr1相同的啟用電壓VLE提供參考電壓Vr2。偏壓電路13a包括PMOS 130、131及反向器132。PMOS 130、131串聯耦接於操作電壓端子VDD與地面電壓端子VSS之間,而PMOS 130及131的兩個閘極經耦接以接收由反向器132藉由反向啟用訊號KEN而提供的輸出。結果,當啟用訊號KEN係啟用(即,邏輯1)時,在耦接於PMOS 130、131之間的節點處產生處於啟用電壓位準VLE的參考電壓Vr2。藉由基於PMOS 130、131的電阻對操作電壓端子VDD處的高電壓位準VLH進行分壓來產生啟用電壓位準VLE。由偏壓電路13a產生的啟用電壓位準VLE可表示如下: , 其中R130、R131分別表示PMOS 130、131的導通電阻。因此,參考電壓位準Vr2的啟用電壓位準VLE與操作電壓端子VDD處的高電壓位準VLH之比等於PMOS 131的導通電阻除以PMOS 130、131的導通電阻之和。藉由適當地選擇PMOS 130、131的大小,參考電壓Vr2的啟用電壓位準VLE可偏壓於適當電壓位準,以控制記憶體單元MC係可存取的,從而允許與耦接於字元線WL1上的記憶體單元MC進行資料傳輸。偏壓電路13a的其他設計亦在各種實施例的範疇內,只要處於啟用電壓位準VLE的參考電壓Vr2係在啟用時經由分壓產生的。
第2C圖根據一些實施例圖示第2A圖中的偏壓電路13a如何驅動參考節點Nr及被選字元線的表格202。
當啟用訊號KEN係禁用(即,邏輯0)時,PMOS 130、131兩者均關斷,且偏壓電路13a經禁用而不產生參考電壓Vr2。由此,參考節點Nr處的電壓由參考電路12a的電容器121而非偏壓電路13a供應。當啟用訊號KEN係啟用(即,邏輯1)時,PMOS 130、131兩者均接通,因此參考電壓Vr2由PMOS 130及131偏壓於啟用電壓位準VLE並提供至參考節點Nr。接著,字元線驅動器14a根據輸入訊號IN1將參考節點Nr或地面電壓端子VSS選擇性地耦接至字元線WL1。
第2D圖根據一些實施例圖示第2A圖中的記憶體系統1a的操作波形。
在時間段T20中,當啟用訊號GEN、KEN兩者均處於邏輯0時,參考節點Nr處的電壓由參考電路12a驅動,而偏壓電路13a經禁用。更具體地,參考節點Nr耦接至操作電壓端子VDD並提供有儲存於電容器121上的處於高電壓位準VLH的參考電壓Vr1。
在輸入訊號IN1及啟用訊號GEN升高至邏輯1之後的時間段T210中,電容器121自操作電壓端子VDD斷開且字元線WL1藉由字元驅線驅動器14a耦接至參考節點Nr,導致儲存於電容器121上的電荷在電容器121與字元線的等效電容CL1之間基於其電容進行重新分配。在電荷分享或電荷重新分配階段期間,參考節點Nr處的參考電壓Vr1自高電壓位準VLH降低,且字元線WL1上的電壓VWL1自低電壓位準VLL升高。當電荷分享或電荷重新分配階段在時間段T210的末端處結束時,參考節點Nr處的參考電壓Vr及字元線WL1上的電壓VWL1兩者均達到啟用電壓位準VLE,因此耦接於字元線WL1上的記憶體單元MC由啟用電壓位準VLE控制為係可存取的。儘管未明確圖示,但在時間段T210內,啟用訊號GEN的上升邊緣先於輸入訊號IN1的上升邊緣,因此電容器121及參考節點Nr自操作電壓端子VDD的斷開發生在參考節點Nr耦接至被選字元線WL1之前,此舉確保儲存於電容器121上的參考電壓Vr1可以固定而不洩漏。
在時間段T210之後的時間段T211中,啟用訊號KEN自邏輯0切換至邏輯1,使偏壓電路13a能夠提供參考電壓Vr2至參考節點Nr。更具體地,由偏壓電路13a產生的參考電壓Vr2處於與參考電壓Vr1的啟用電壓位準VLE相同的啟用位準VLE。因此,在電壓VWL1達到啟用電壓位準VLE之後,偏壓電路13a可經啟用以提供處於參考電壓Vr1的相同啟用電壓位準VLE的參考電壓Vr2,因此字元線WL1上的電壓VWL1可經調節或穩定化。
在至少一個實施例中,記憶體系統1a用以利用參考電路12a以供產生參考電壓Vr1並將參考電壓Vr1提供至參考節點Nr。此外,經由電荷分享,參考電壓Vr1降低至啟用電壓位準VLE。在將參考電壓Vr1提供至被選字元線並降低至啟用電壓位準VLE之後,偏壓電路13a經啟用,以經由分壓提供處於相同啟用電壓位準VLE的參考電壓Vr2。在這種情況下,可能達成一或多個優勢,包括但不限於:經由電荷分享達成更高的操作速度及更低的功率消耗、且亦經由分壓降低參考節點Nr上的雜訊。
第3A圖根據一些實施例圖示參考電路32a。第3A圖中的參考電路32a類似於第2A圖中的參考電路12a,不同之處在於參考電路32a進一步包括偏壓串列122及電阻器123。參考電路32a可用於記憶體系統1a中以替代參考電路12a。如本文所使用的,偏壓串列係其上具有固定或可控電壓的元件,因此偏壓串列用以選擇性地限制參考節點Nr處的電壓。
在至少一個實施例中,偏壓串列122並聯耦接至電容器121。更具體地,偏壓串列122耦接至電容器121的兩個末端,並包括NMOS 1220~1222。NMOS 1220~1222中之各者均係二極體連接的,即,各個NMOS的汲極與閘極耦接在一起。此外,二極體連接的NMOS 1220~1222串聯耦接於電容器121的兩個末端之間。此外,電阻器123耦接於開關120與電容器121之間,用於限制流動穿過偏壓串列122的電流。參考電壓Vr1在電阻器123與電容器121之間的節點處產生。
在至少一個實施例中,當開關120藉由啟用訊號GEN閉合(導通)時,電容器121藉由經由開關120及電阻器123連接至端子VDD而充電至操作電壓。然而,各個二極體連接的NMOS上的電壓限制為小於或等於各個NMOS的臨限電壓。當電容器121的參考電壓Vr1充電為大於或等於NMOS 1220~1222的臨限電壓之和時,NMOS 1220~1222接通(導通),並藉由偏壓串列122產生電流路徑以經由電容器121的頂板對電容器121放電。結果,參考電壓Vr1由偏壓串列122限制為不大於NMOS 1220~1222的臨限電壓之和。假設各個NMOS 1220~1222的臨限電壓等於Vthn,則當開關120閉合且電容器121由操作電壓端子VDD充電時,參考電壓Vr1由偏壓串列122限制於3*Vthn的電壓位準並儲存於電容器121上。應理解,偏壓串列122的不同結構,諸如偏壓串列中不同數目的二極體連接的MOS或適用於在偏壓串列中使用的其他適合的半導體裝置,亦在各種實施例的範疇內。
此外,當啟用訊號GEN及輸入訊號INx中之一者為邏輯1時,參考節點Nr自操作電壓端子VDD斷開並耦接至被選字元線,因此由電容器121儲存的電荷與被選字元線上的等效電容分享,啟用電壓位準VLE經調整並表示如下: 。 具體地,由於電容器121的頂板處的電壓位準由偏壓串列122限制於3*Vthn而非高電壓位準VLH,故產生自重新分配由電容器121儲存的電荷的啟用電壓位準VLE由偏壓串列122相應地調整。藉由用偏壓串列122限制參考電壓Vr1,可能達成一或多個優勢,包括但不限於降低自操作電壓端子VDD的變化。
第3B圖根據一些實施例圖示參考電路32b。第3B圖中的參考電路32b類似於第3A圖中的參考電路32a,不同之處在於參考電路32b進一步包括開關124,開關124在一個末端處耦接至電容器121及偏壓串列122,在另一末端處耦接至地面電壓端子VSS。類似於參考電路32a,參考電路32b亦可用於第2A圖中所繪示的記憶體系統1a中,以替代參考電路12a。
在至少一個實施例中,電容器121與偏壓串列122並聯耦接於開關120與124之間。當啟用訊號GEN係禁用(即,邏輯0)時,開關124由啟用訊號GEN控制為打開(不導通),而當啟用開關GEN係啟用(即,邏輯1)時,開關124閉合(導通)。舉例而言,開關124由單個NMOS實施,其閘極耦接以接收啟用訊號GEN。
因此,當啟用訊號GEN係禁用(即,邏輯0)時,開關120及124分別閉合及打開。電容器121由操作電壓端子VDD處的高電壓位準VLH充電。另一方面,由於電容器121上的電壓由偏壓串列122限制於3*Vthn的位準,故電容器121的底板亦經由偏壓串列122藉由連接至操作電壓端子VDD而充電至VLH-3*Vth n的電壓位準。當啟用訊號GEN係啟用(即,邏輯1)時,開關120及124分別打開及閉合,導致電容器121的頂板浮接,且電容器121的底板耦接至地面電壓端子VSS。由於電容器121的浮接頂板將電容器121上的電壓維持於3*Vthn的位準,故在電容器121的底板由地面電壓端子VSS拉至低電壓位準VLL之後,電容器121的頂板對應地拉至3*Vthn的電壓位準。因此,參考電路32b能夠輸出由偏壓串列122限制的處於3*Vthn的電壓位準的參考電壓Vr1。
第3C圖根據一些實施例圖示參考電路32c。第3C圖中的參考電路32c類似於第2A圖中的參考電路12a,不同之處在於參考電路32c進一步包括並聯耦接至電容器121的電容器微調電路125。參考電路32c可替代參考電路12a,並用於第2A圖中的記憶體系統1a中。
電容器微調電路125包括與電容器1251串聯耦接的開關1250。開關1250與電容器1251的串聯組合耦接於電容器121的兩個末端之間,即,與電容器121並聯。開關1250由微調訊號TRC控制。當開關1250閉合(導通)時,電容器1251耦接至電容器121。因此,當電容器微調電路125經啟用且電容器1251耦接至電容器121時,參考電路32c的等效電容增加以進一步調整參考電壓Vr1的啟用電壓位準VLE。因此,由製程變化引起的參考電壓Vr1的啟用電壓位準VLE的偏移可由電容器微調電路125調整及校準。
第3D圖根據一些實施例圖示參考電路32d。第3D圖中的參考電路32d類似於第3A圖中的參考電路32a,不同之處在於參考電路32d進一步包括耦接至偏壓串列122的偏壓微調電路126。類似地,參考電路32d可替代參考電路12a,並用於第2A圖中的記憶體系統1a中。
偏壓微調電路126包括耦接至偏壓串列122的開關1260。具體地,開關1260耦接於NMOS 1222的汲極與地面電壓端子VSS之間,並由微調訊號TRV控制。當開關1260閉合(導通)時,NMOS 1222經旁路,使得在偏壓串列122中起作用的NMOS的總數由偏壓微調電路126微調為2。對應地,當開關120接通(導通)時,由於偏壓串列122中的NMOS 1220~1222中之一者經旁路,電容器121上的電壓限制於電壓位準2*Vthn。換言之,藉由偏壓微調電路126將電容器121上充電的高電壓位準VLH自3*Vthn調整至2*Vthn,並進一步調整啟用電壓位準VLE。
第3E圖根據一些實施例圖示參考電路32e。第3E圖中的參考電路32e類似於第3A圖中的參考電路32a,不同之處在於參考電路32e進一步包括耦接至偏壓串列122的偏壓微調電路127。類似地,參考電路32e可替代參考電路12a,並用於第2A圖中的記憶體系統1a中。
在至少一個實施例中,偏壓微調電路127包括多個開關1270及1271。開關1270耦接於NMOS 1221的汲極與地面電壓端子VSS之間,而開關1271耦接於NMOS1222的汲極與地面電壓端子VSS之間。開關1270及1271分別由微調訊號TRV1、TRV2控制。因此,當開關1271藉由微調訊號TRV2閉合(導通)時,NMOS 1222經旁路,且偏壓串列122中的NMOS的總數調整為2。此外,當開關1270藉由微調訊號TRV1閉合(導通)時,NMOS 1221及1222兩者均經旁路,且偏壓串列122中的NMOS的總數調整為1。因此,藉由部署耦接至偏壓串列122中不同NMOS的汲極的多個開關1270、1271,可以達成偏壓串列中NMOS的不同總數。
第3F圖根據一些實施例圖示參考電路32f。第3F圖中的參考電路32f類似於第3B圖中的參考電路32b,不同之處在於參考電路32f進一步包括耦接至偏壓串列122的偏壓微調電路128。類似地,參考電路32f可替代參考電路12a,並用於第2A圖中的記憶體系統1a中。
在至少一個實施例中,偏壓微調電路128包括多個開關1280及1281。開關1280並聯耦接至NMOS 1120,而開關1281並聯耦接至NMOS 1221。開關1280及1281分別藉由微調訊號TRV3、TRV4控制。更具體地,開關1280及1281分別用於使NMOS 1220及1221經旁路。當開關1280及1281中之一者閉合(導通)時,偏壓串列122中的NMOS的總數調整為2。當開關1280及1281均閉合(導通)時,偏壓串列122中的NMOS的總數調整為1。因此,藉由部署耦接至偏壓串列122中的不同NMOS的多個開關1280、1281,可以達成偏壓串列中NMOS的不同總數。
第4A圖根據一些實施例圖示偏壓電路43a。第4A圖中的偏壓電路43a類似於第2A圖中的偏壓電路13a,不同之處在於偏壓電路43a進一步包括PMOS 133。偏壓電路43a可替代偏壓電路13a,並用於第2A圖中的記憶體系統1a中。
PMOS 133耦接於PMOS 130與131之間,且參考電壓Vr2在PMOS 131與130之間的節點處產生。更具體地,當偏壓電路43a藉由啟用訊號KEN啟用時,由偏壓電路13a產生的啟用電壓位準VLE可表示如下: , 其中R130、R131、R133分別表示PMOS 130、131、133的導通電阻。藉由耦接PMOS 131、133,由製程非理想性引起的啟用電壓位準的變化可經平均化並減小,從而改善偏壓電路43a的穩定性。
第4B圖根據一些實施例圖示偏壓電路43b。第4B圖中的偏壓電路43b類似於第2A圖中的偏壓電路13a,不同之處在於偏壓電路43b進一步包括電阻器R1、R2,且第2A圖中的PMOS 131由第4B圖中的NMOS 134替代。偏壓電路43b可替代偏壓電路13a,並用於第2A圖中的記憶體系統1a中。
電阻器R1、R2串聯耦接於PMOS 130的汲極與NMOS 134的汲極之間。參考電壓Vr2在電阻器R1、R2之間的節點處產生。更具體地,R1、R2的電阻遠大於PMOS 130及NMOS 134的導通電阻。因此,當偏壓電路43a藉由啟用訊號KEN啟用時,由偏壓電路13a產生的啟用電壓位準VLE可表示如下: 。 由於電阻器R1、R2的電阻遠大於PMOS 130及NMOS 134的導通電阻,故啟用電壓位準VLE由電阻器支配,且上式中的PMOS 130及NMOS 134的導通電阻經忽略。因此,偏壓電路43b可藉由經由電阻器R1、R2對操作電壓端子VDD處的高電壓位準VLH進行分壓而產生處於啟用電壓位準VLE的參考電壓Vr2。
第4C圖根據一些實施例圖示偏壓電路43c。第4C圖中的偏壓電路43c類似於第4B圖中的偏壓電路43b,不同之處在於第4B圖中的電阻R2由偏壓串列135替代。類似地,偏壓電路43c可替代偏壓電路13a,並用於第2A圖中的記憶體系統1a中。
偏壓串列135耦接於電阻R1與NMOS 134的汲極之間。偏壓串列135包含串聯耦接於電阻器R1與NMOS 134之間的NMOS 1350、1351。更具體地,NMOS 1350、1351中之各者係二極體連接的,意謂針對NMOS 1350及1351中之各者,各個汲極耦接至各個閘極。當偏壓電路43c藉由啟用訊號KEN啟用時,偏壓串列135藉由操作電壓端子VDD處的高電壓位準接通。由於二極體連接的NMOS 1350、1351中之各者上的電壓限制為Vthn,故由偏壓電路43c產生的參考電壓Vr2限制於2*Vthn的啟用電壓位準VLE,因為偏壓串列135中有兩個二極體連接的PMOS 1350、1351。
第4D圖根據一些實施例圖示偏壓電路43d。第4D圖中的偏壓電路43d類似於第4A圖中的偏壓電路43a,不同之處在於偏壓電路43d進一步包含並聯耦接至PMOS 131、133的微調電路136。類似地,偏壓電路43d可替代偏壓電路13a,並用於第2A圖中的記憶體系統1a中。
具體地,微調電路136包括串聯耦接於PMOS 133的源極與地面電壓端子VSS之間的PMOS 1360、1361。PMOS 1360、1361分別藉由微調訊號TRV5及啟用訊號KEN控制。當偏壓電路43d藉由啟用訊號KEN啟用且PMOS 1360藉由微調訊號TRV5接通(導通)時,由偏壓電路43d產生的參考電壓Vr2的啟用電壓位準VLE可表示如下: , 其中R130、R131、R1361分別表示PMOS 130、131、1361的導通電阻。具體地,當PMOS 1360藉由微調訊號TRV5啟用時,PMOS 1361並聯耦接至PMOS 131,因此下拉電阻自R131+R133調整至(R131+R133)//(R1360+R1361)。因此,由偏壓電路43d產生的參考電壓Vr2的啟用電壓位準VLE可由微調電路136調整。
第4E圖根據一些實施例圖示偏壓電路43e。第4E圖中的偏壓電路43e類似於第4B圖中的偏壓電極43b,不同之處在於偏壓電路43e進一步包括並聯耦接至電阻器R2及NMOS 134的微調電路137。類似地,偏壓電路43e可替代偏壓電路13a,並用於第2A圖中的記憶體系統1a中。
微調電路137包括串聯耦接於電阻器R1與地面電壓端子VSS之間的電阻器R3及NMOS 1370、1371。NMOS 1370、1371分別藉由微調訊號TRV6及啟用訊號KEN控制。當微調訊號TRV6及啟用電壓KEN兩者均係啟用時,由偏壓電路43e產生的參考電壓Vr2的啟用電壓位準VLE可表示如下: 由於電阻器R1、R2、R3的電阻遠大於PMOS 130及NMOSO 134的導通電阻,故啟用電壓位準VLE由電阻器支配,且上式中PMOS 130及NMOS134的導通電阻可忽略。因此,偏壓電路43e可產生處於由微調電路137調整的啟用電壓位準VLE的參考電壓Vr2。
第4F圖根據一些實施例圖示偏壓電路43f。第4F圖中的偏壓電路43f類似於第4E圖中的偏壓電路43e,不同之處在於第4E圖中的微調電路137由第4F圖中的微調電路137'替代。類似地,偏壓電路43f可用於第2A圖中的記憶體系統1a中,以替代偏壓電路13a。
微調電路137'並聯耦接至電阻器R2及NMOS 134。除包括於微調電路137中的電阻器R3及NMOS 1370、1371以外,微調電路137'進一步包括電阻器R4及NMOS 1372、1373。更具體地,R4及NMOS 1372、1373串聯耦接於電阻器R1與地面電壓端子VSS之間。NMOS 1372、1373分別藉由微調訊號TRV7及啟用訊號KEN控制。換言之,微調電路137'提供並聯耦接的另一電阻器R4,以供調整參考電壓Vr2的啟用電壓位準VLE。因此,偏壓電路43f可藉由調整耦接至微調電路137'中的電阻器R2的電阻而產生處於不同的啟用電壓位準VLE的參考電壓Vr2。
第4G圖根據一些實施例圖示偏壓電路43g。第4G圖中的偏壓電路43g類似於第4C圖中的偏壓電路43c,不同之處在於偏壓電路43g進一步包括耦接至偏壓串列135的微調電路138。類似地,偏壓電路43g可用於第2A圖中的記憶體系統1a中,以替代偏壓電路13a。
微調電路138並聯耦接至偏壓串列135的NMOS 1351。微調電路138包括耦接於NMOS 1351的汲極與源極之間的開關1380。開關1380藉由微調訊號TRV8控制。當開關1380打開(不導通)時,偏壓串列135中的NMOS的總數為2。然而,當開關1380閉合(導通)時,偏壓串列135中的NMOS的總數調整為1。因此,偏壓電路43g藉由微調電路135的控制來調整在偏壓串列135中起作用的NMOS的總數,並進一步調整參考電壓Vr2的啟用電壓位準VLE。
第5A圖根據一些實施例圖示記憶體系統5。記憶體系統5包括記憶體陣列10及記憶體驅動器21。記憶體驅動器21包括參考電路12-1、12-2、偏壓電路13及字元線驅動器14。關於第5A圖中記憶體陣列10、參考電路12-1、12-2、偏壓電路13及字元線驅動器14的細節與上文參考第1圖所述的記憶體陣列12、參考電路12、偏壓電路13及字元線驅動14以及參考第2A圖所述的參考電路12a、偏壓電路13a及字元線驅動器14a實質上相同,在此不再重複。
更具體地,記憶體驅動器21包括兩個參考電路12-1、12-2,而非如第1圖中所繪示的僅一個參考電路12。參考電路12-1、12-2中之各者類似於第1圖中的參考電路12。參考電路12-1、12-2及偏壓電路13耦接至參考節點Nr。參考電路12-11、12-2分別藉由啟用訊號GEN1、GEN2控制,並分別經由開關SW1、SW2耦接至參考節點Nr。儘管未圖示,但參考電路12-1、12-2各個包括電容器,並用以根據對應啟用訊號GEN1、GEN2選擇性地對各個電容器充電。分別儲存於電容器上的參考電壓Vr11、Vr12經由藉由啟用訊號GEN1、GEN2控制的開關SW1、SW2提供至參考節點Nr。此外,當提供參考電壓Vr11、Vr12中之一者以驅動被選字元線時,參考電壓Vr11或Vr12經由電荷分享降低至啟用電壓位準VLE。關於電荷分享的細節在上文中結合第2A圖、第2B圖進行了描述,在此不再重複。
第5B圖根據一些實施例圖示第5A圖中的記憶體系統5的操作波形。
操作波形藉由啟用訊號GEN1、GEN2的狀態劃分為時間段T51~T54。時間段T51~T54中之各者用於驅動字元線WL1~WL4中之不同者。舉例而言,輸入訊號IN1~IN4分別在時間段T51~T54中啟用,因此字元線WL1~WL4分別在時間段T51~T55中經驅動。此外,啟用訊號GEN1、GEN2交替地啟用,且啟用訊號GEN1、GEN2的啟用週期不重疊。具體地,啟用訊號GEN1在時間段T51、T53中啟用,而啟用訊號GEN2在時間段T52、T54中啟用,因此字元線WL1、WL3在時間段T51、T53中由參考電路12-1驅動,而字元線WL2、WL4在時間段S52、T54中由參考電路12-2驅動。
在時間段T51中,啟用訊號GEN1切換為啟用(即,邏輯1),因此開關SW1閉合(導通),以供參考節點Nr藉由由參考電路12-1產生的參考電壓Vr11驅動。具體地,參考電路12-1的電容器121的頂板自操作電壓端子VDD斷開並耦接至參考節點Nr。因此,將充電至高電壓位準VLH的參考電壓Vr11提供至參考節點N。
在時間段T51的時間段T510中,輸入訊號IN1亦切換為啟用(邏輯1),因此字元線WL1藉由字元線驅動器14耦接至參考節點Nr,並將參考電壓Vr11提供至字元線WL1。因為電容器121的頂板係浮接的,所以將參考節點Nr耦接至字元線WL1導致由參考電路12-1的電容器121儲存的電荷與字元線WL1上的等效電容CL1分享。在電荷分享或電荷重新分配階段期間,參考節點Nr處的參考電壓Vr11自高電壓位準VLH降低,而字元線WL1上的電壓VWL1自低電壓位準VLL升高。當在時間段T510結束時完成電荷分享或電荷重新分配階段時,參考節點Nr處的參考電壓Vr11及字元線WL1上的電壓VWL1兩者均達到啟用電壓位準VLE,因此字元線WL2處的記憶體單元MC控制為在啟用電壓位準VLE下可存取。
在時間段T510之後的時間段T511中,啟用訊號KEN自邏輯0切換至邏輯1,此舉啟用偏壓電路13並將參考電壓Vr2提供至參考節點Nr。更具體地,由偏壓電路13產生的參考電壓Vr2處於由參考電路12-1產生的參考電壓Vr11的相同啟用電壓位準VLE。因此,在字元線WL1上的電壓VWL1達到啟用電壓位準VLE之後,藉由提供處於參考電壓Vr1的相同啟用電壓位準VLE的參考電壓Vr2,偏壓電路13經啟用,以穩定化或調節電壓VWL1。
在時間段T51之後,啟用訊號GEN1切換至邏輯0,而啟用訊號GEN2升高至邏輯1,並進入時間段T52。此外,輸入訊號IN2亦升高至邏輯1。結果,字元線WL2在時間段T52中藉由參考電路12-2用參考電壓Vr12驅動。
在類似於時間段T510的時間段T520中,參考電壓Vr12及電壓VWL2經由電荷分享達到啟用電壓位準VLE。接著,在時間段T521中,偏壓電路13藉由啟用訊號KEN啟用,以藉由提供處於參考電壓Vr12的相同啟用電壓位準VLE的參考電壓Vr2來調節電壓VWL2。
在隨後的時間段T53及T54中,輸入訊號IN3及IN4分別切換為係啟用,因此字元線驅動器14經控制以在個別時間段T53及T53中驅動字元線WL3、WL4。簡言之,藉由參考電路12-1及12-2重複類似製程,以在時間段T530、T540中將處於啟用電壓位準VLE的參考電壓Vr11、Vr12提供至參考節點Nr並進行降低,且藉由偏壓電路13重複類似製程,以在時間段T531、T541中提供處於相同啟用電壓VLE的參考電壓Vr2。
因此,可交替地啟用參考電路12-1、12-2以驅動不同的字元線。當參考電路12-1及12-2中之一者正在充電或重置時,參考電路12-1及12-2中之另一者用於將參考電壓Vr11或Vr12提供至參考節點Nr。因此,由於將參考電路12-1、12-2配置為平行輸出參考電壓Vr11、Vr12,記憶體系統5的資料吞吐量可得以提高。
第6圖根據一些實施例圖示操作方法600。操作方法600可應用於記憶體系統1、1a及5中以操作記憶體陣列10,如第1圖、第2A圖、第5A圖中所繪示。操作方法600包括步驟S601~S603。
在步驟S601中,參考電壓儲存於電容器上,且電容器耦接至參考節點以將參考電壓提供至參考節點,參考電壓選擇性地提供至記憶體陣列的被選字元線。在步驟S602中,當參考電壓自參考節點提供至記憶體陣列100中的複數個字元線中的被選字元線時,藉由電容器與被選字元線上的等效電容之間的電壓分享,將參考電壓自第一電壓位準降低至第二電壓位準。在步驟S603中,降低的參考電壓在參考節點處經調節。
舉例而言,在步驟S601中,如第2A圖中所繪示的記憶體系統1a在參考電路12a的電容器121上儲存參考電壓Vr1。電容器121耦接至參考節點Nr,並基於藉由字元線驅動器14a的控制進一步耦接至記憶體陣列10a的被選字元線。因此,儲存於電容器121上的參考電壓Vr1選擇性地提供至被選字元線。
在步驟S602中,當字元線驅動器14a由對應於被選字元線的輸入訊號控制以將參考節點Nr耦接至被選字元線時,將參考電壓Vr1自參考節點Nr提供至被選字元線。同時,參考節點Nr藉由參考電路12a自操作電壓端子VDD斷開,以使參考節點Nr處的參考電壓Vr1能夠經由電荷分享自操作電壓端子VDD的電壓位準VLH降低至啟用電壓位準VLE,因此耦接至被選字元線的記憶體單元MC可藉由用於存取資料的降低的參考電壓Vr1來啟用。更具體地,啟用電壓位準VLE與操作電壓端子VDD處的電壓位準VLH之比與電容器121的電容與電容器121的電容與被選字元線的等效電容之和之比成比例。
在步驟S603中,可在參考電壓自參考節點Nr提供至被選字元線之後啟用偏壓電路13a,因此提供參考電壓Vr2至參考節點Nr,以供將被選字元線上的電壓調節為處於啟用電壓位準VLE。更具體地,偏壓電路13a用以經由分壓提供參考電壓Vr2。為了將被選字元線上的電壓調節為處於啟用電壓VLE,PMOS 131的導通電阻除以PMOS 130、131的導通電阻之和之比經選擇以等於電容器121的電容與電容器121的電容與被選字元線的等效電容之和之比。
在實施例中,記憶體驅動器包括字元線驅動器電路、參考電路及偏壓電路。字元線驅動器電路耦接至字元線並用以根據輸入訊號將參考電壓自參考節點選擇性地提供至字元線。參考電路具有耦接至參考節點的電容器。參考電路用以將參考電壓儲存於電容器上,並在參考電壓由字元線驅動電路自參考節點提供至被選的字元線時,將參考電壓自第一電壓位準降低至第二電壓位準。偏壓電路耦接至參考節點並用以調節參考節點處的降低的參考電壓。
在實施例中,記憶體系統包括記憶體陣列及記憶體驅動器。記憶體陣列包括由複數個字元線控制的複數個記憶體單元。記憶體驅動器包括字元線驅動器電路、參考電路及偏壓電路。字元線驅動器電路耦接至複數個字元線,並用以根據輸入訊號將參考電壓自參考節點選擇性地提供至複數個字元線中的被選字元線。參考電路包括耦接至參考節點的電容器。參考電路用以將參考電壓儲存於電容器上,以在參考電壓由字元線驅動電路自參考節點提供至被選字元線時,根據電容器的電容及被選字元線上的等效電容來引起電荷分享。偏壓電路耦接至參考節點並用以在參考電壓自參考節點提供至被選字元線之後調節參考電壓。
在實施例中,利用一種操作方法來操作記憶體陣列。記憶體陣列包含由複數個字元線控制的複數個記憶體單元。操作方法包括:將參考電壓儲存於電容器上並將電容器耦接至參考節點以將參考電壓提供至參考節點;將參考電壓選擇性地提供至複數個字元線的被選字元線;當參考電壓自參考節點提供至複數個字元線的被選字元線時,藉由電容器與被選字元線的等效電容之間的電壓分享將參考電壓自第一電壓位準降低至第二電壓位準;及調節參考節點處的降低的參考電壓。
如本文所用,術語「近似」、「實質上」、「實質」及「約」用於描述及考慮微小的變化。當與事件或情況一起使用時,這些術語可以指事件或情況精確發生的情況,以及事件或情況近似發生的情況。舉例而言,當與數值一起使用時,這些術語可以指小於或等於該數值的±10%的變化範圍,諸如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%或者小於或等於±0.05%。舉例而言,若兩個數值之間的差值小於或等於這些值的平均值的±10%,諸如小於或等於±5%、小於或等於4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於等於±0.5%、小於或等於±0.1%或者小於或等於±0.05%,則兩個數值可視為「實質上」相同或相等。舉例而言,「實質上」平行可以指相對於0°的角度變化範圍,該範圍小於或等於±10°,諸如小於或等於±5°、小於或等於±4°、小於或等於±3°、小於或等於±2°、小於或等於±1°、小於或等於±0.5°、小於或等於±0.1°或者小於或等於±0.05°。舉例而言,「實質上」垂直可以指相對於90°的角度變化範圍,該範圍小於或等於±10°,諸如小於或等於±5°、小於或等於±4°、小於或等於±3°、小於或等於±2°、小於或等於±0.5°、小於或等於±0.1°或者小於或等於±0.05°。
前述內容概述若干實施例的特徵,使得熟習此項技術者可更佳地理解本揭示的一些實施例的態樣。熟習此項技術者應瞭解,其可易於使用本揭示的一些實施例作為用於設計或修改用於實施本文中引入之實施例之相同目的及/或達成相同優勢之其他製程及結構的基礎。熟習此項技術者亦應認識到,此類等效構造並不偏離本揭示的一些實施例的精神及範疇,且此類等效構造可在本文中進行各種改變、取代、及替代而不偏離本揭示的一些實施例的精神及範疇。
1:記憶體系統 1a:記憶體系統 5:記憶體系統 10:記憶體陣列 10a:記憶體陣列 11:記憶體驅動器 11a:記憶體驅動器 12:參考電路 12a:參考電路 12-1:參考電路 12-2:參考電路 13:偏壓電路 13a:偏壓電路 14:字元線驅動器 14a:字元線驅動器 21:記憶體驅動器 32a~32f:參考電路 43a~43g:偏壓電路 120:開關 121:電容器 122:偏壓串列 123:電阻器 124:開關 125:電容器微調電路 126:偏壓微調電路 127:偏壓微調電路 128:偏壓微調電路 130:PMOS 131:PMOS 132:反向器 133:PMOS 134:NMOS 135:偏壓串列 136:微調電路 137:微調電路 137':微調電路 138:微調電路 141~14n:緩衝器 141a、14na:緩衝器 200:表格 202:表格 600:操作方法 1220:NMOS 1221:NMOS 1222:NMOS 1250:開關 1251:電容器 1260:開關 1270:開關 1271:開關 1280:開關 1281:開關 1350:NMOS 1351:NMOS 1360:PMOS 1361:PMOS 1370:NMOS 1371:NMOS 1372:NMOS 1373:NMOS 1380:開關 1411、14n1:PMOS 1412、14n2:NMOS 1413、14n3:PMOS 1414、14n4:NMOS
本揭示的一些實施例的態樣在與隨附圖式一起研讀時自以下詳細描述內容來最佳地理解。應注意,根據行業中的標準規範,各種特徵未按比例繪製。實際上,各種特徵的尺寸可為了論述清楚經任意地增大或減小。 第1圖根據一些實施例圖示記憶體系統。 第2A圖根據一些實施例圖示記憶體系統。 第2B圖根據一些實施例圖示第2A圖中的參考電路如何驅動被選字元線處的參考節點的表格。 第2C圖根據一些實施例圖示第2A圖中的偏壓電路如何驅動參考節點及被選字元線的表格。 第2D圖根據一些實施例圖示第2A圖中記憶體系統的操作波形。 第3A圖至第3F圖根據一些實施例圖示參考電路。 第4A圖至第4G圖根據一些實施例圖示偏壓電路。 第5A圖根據一些實施例圖示記憶體系統。 第5B圖根據一些實施例圖示第5A圖中記憶體系統的操作波形。 第6圖根據一些實施例圖示操作方法。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
600:操作方法
S601~S603:步驟

Claims (20)

  1. 一種記憶體驅動器,包含: 一字元線驅動器電路,耦接至一字元線並用以根據一輸入訊號將一參考電壓自一參考節點選擇性地提供至該字元線; 一參考電路,具有耦接至該參考節點的一電容器,該參考電路用以將該參考電壓儲存於該電容器上,並在該參考電壓由該字元線驅動電路自該參考節點提供至被選的該字元線時,將該參考電壓自一第一電壓位準降低至一第二電壓位準;及 一偏壓電路,耦接至該參考節點並用以調節該參考節點處的降低的該參考電壓。
  2. 如請求項1所述之記憶體驅動器,其中在該參考電壓由該參考電路降低至該第二電壓位準之後,該偏壓電路經啟用以調節該參考節點處的該參考電壓。
  3. 如請求項1所述之記憶體驅動器,其中當該參考電壓由該字元線驅動器電路自該參考節點提供至該字元線時,該字元線由該字元線驅動器耦接至該參考節點。
  4. 如請求項1所述之記憶體驅動器,其中該第二電壓位準與該第一電壓位準的一比與該電容器的一電容與該電容器的該電容與該字元線的一等效電容之一和的一比正相關。
  5. 如請求項1所述之記憶體驅動器,其中該參考電路用以用一操作電壓在該參考節點處對該電容器充電,該參考電路進一步包含: 一偏壓串列,並聯耦接至該電容器以將該電容器上的一電壓限制於該第一電壓位準。
  6. 如請求項5所述之記憶體驅動器,其中該偏壓串列包含複數個互補金屬氧化物矽電晶體,各個互補金屬氧化物矽電晶體係二極體連接的,且該些互補金屬氧化物矽電晶體串聯耦接於該電容器的各個末端之間,該第一電壓位準由該偏壓串列限制為小於或等於該些互補金屬氧化物矽電晶體的多個臨限電壓之一和。
  7. 如請求項6所述之記憶體驅動器,進一步包含: 一電壓微調電路,耦接至該偏壓串列並用以調整串聯耦接於該偏壓字符串中的該些互補金屬氧化物矽電晶體的一總數。
  8. 如請求項7所述之記憶體驅動器,其中該電壓微調電路包含與該些互補金屬氧化物矽電晶體中的一第一互補金屬氧化物矽電晶體並聯耦接的一開關,因此當該開關閉合時,該第一互補金屬氧化物矽電晶體經旁路。
  9. 如請求項1所述之記憶體驅動器,進一步包含: 一電容器微調電路,與該電容器並聯耦接並用以調整耦接至該參考節點的一總電容。
  10. 如請求項9所述之記憶體驅動器,其中該電容器微調電路包含與一微調電容器串聯耦接的一開關,該開關與該微調電容器的一串聯組合與該電容器並聯耦接,且當該開關閉合時,耦接至該參考節點的該總電容調整為該電容器的該電容與該微調電容器的一電容之一和。
  11. 一種記憶體系統,包含: 一記憶體陣列,包含由複數個字元線控制的複數個記憶體單元;及 一記憶體驅動器,包含: 一字元線驅動器電路,耦接至該些字元線並用以根據一輸入訊號將一參考電壓自一參考節點選擇性地提供至該些字元線中的一被選字元線; 一參考電路,包含耦接至該參考節點的一電容器,該參考電路用以將該參考電壓儲存於該電容器上,以在該參考電壓由該字元線驅動電路自該參考節點提供至該被選字元線時,根據該電容器的一電容及該被選字元線的一等效電容來引起電荷分享;及 一偏壓電路,耦接至該參考節點並用以在該參考電壓自該參考節點提供至該被選字元線之後調節該參考電壓。
  12. 如請求項11所述之記憶體系統,其中該參考電壓經由該電荷分享自一第一電壓位準降低至一第二電壓位準,該第二電壓位準與該第一電壓位準的一比與該電容器的一電容與該電容器的該電容與該被選字元線的該等效電容之一和的一比成比例。
  13. 如請求項12所述之記憶體系統,其中該偏壓電路包含一第一開關及一第二開關,該第一開關耦接於該參考節點與一操作電壓端子之間,且該第二開關耦接於該參考節點與一地面電壓端子之間,該第一開關及該第二開關兩者均用以回應於一啟用訊號來閉合,且 該偏壓電路用以在該啟用訊號係啟用時,經由分壓產生處於該第二電壓位準的該參考電壓。
  14. 如請求項13所述之記憶體系統,其中該參考節點與該操作電壓端子之間的一第一等效電阻器具有一第一電阻,且該參考節點與該地面電壓端子之間的一第二等效電阻器具有一第二電阻,且 該第二電阻與該第一電阻與該第二電阻之一和的一比等於該第二電壓位準與該第一電壓位準的一比。
  15. 如請求項13所述之記憶體系統,進一步包含一電阻微調電路,該電阻微調電路包括一第三開關及一第四開關,該第三開關與該第四開關串聯耦接於該參考節點與該地面電壓端子之間,該第三開關由一微調訊號控制,且該第四開關由該啟用訊號控制, 其中該電阻微調電路用以在該微調訊號係啟用時調整耦接於該參考節點與該地面電壓端子之間的一等效電阻。
  16. 如請求項12所述之記憶體系統,其中該偏壓電路包含耦接於該參考節點與一地面電壓端子之間的一偏壓串列,該偏壓串列包含複數個互補金屬氧化物矽電晶體,各個互補金屬氧化物矽電晶體係二極體連接的,且該些互補金屬氧化物矽電晶體串聯耦接於該參考節點與該地面電壓端子之間,該第二電壓位準由該偏壓串列限制為小於或等於該些互補金屬氧化物矽電晶體的多個臨限電壓之一和。
  17. 如請求項16所述之記憶體系統,進一步包含: 一電壓微調電路,耦接至該偏壓串列並用以調整串聯耦接於該偏壓串列中的該些互補金屬氧化物矽電晶體的一總數。
  18. 如請求項11所述之記憶體系統,其中該電容器係一第一電容器,該參考電路包含: 一第一參考電路,包含該第一電容器,該第一參考電路藉由一第一啟用訊號啟用以將一第一參考電壓提供至該參考節點,並在該第一參考電壓由該字元線驅動電路自該參考節點提供至該些字元線中的一第一被選字元線時,降低該第一參考電壓;及 一第二參考電路,包含一第二電容器,該第二參考電壓藉由一第二啟用訊號啟用以將一第二參考訊號提供至該參考節點,並在該第二參考電壓由該字元線驅動電路自該參考節點提供至該些字元線中的一第二被選字元線時,降低該第二參考電壓。
  19. 一種用於操作一記憶體陣列的操作方法,該記憶體陣列包含由複數個字元線控制的複數個記憶體單元,該操作方法包含: 將一參考電壓儲存於一電容器上並將該電容器耦接至一參考節點以將該參考電壓提供至該參考節點; 將該參考電壓選擇性地提供至該些字元線中的一被選字元線; 當該參考電壓自該參考節點提供至該些字元線中的該被選字元線時,藉由該電容器與該被選字元線的一等效電容之間的電壓分享將該參考電壓自一第一電壓位準降低至一第二電壓位準;及 調節該參考節點處的降低的該參考電壓。
  20. 如請求項19所述之操作方法,其中該第二電壓位準與該第一電壓位準的一比與該電容器的一電容與該電容器的該電容與該被選字元線的一等效電容之一和的一比正相關。
TW112119188A 2022-06-15 2023-05-23 記憶體驅動器、記憶體系統以及操作記憶體陣列的操作方法 TW202401420A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202263366466P 2022-06-15 2022-06-15
US63/366,466 2022-06-15
US202263380947P 2022-10-26 2022-10-26
US63/380,947 2022-10-26
US18/150,181 US20230410883A1 (en) 2022-06-15 2023-01-04 Memory driver, memory system, and operating method
US18/150,181 2023-01-04

Publications (1)

Publication Number Publication Date
TW202401420A true TW202401420A (zh) 2024-01-01

Family

ID=89169182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112119188A TW202401420A (zh) 2022-06-15 2023-05-23 記憶體驅動器、記憶體系統以及操作記憶體陣列的操作方法

Country Status (2)

Country Link
US (1) US20230410883A1 (zh)
TW (1) TW202401420A (zh)

Also Published As

Publication number Publication date
US20230410883A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US10510400B2 (en) Semiconductor storage device
US11651804B2 (en) Memory macro and method of operating the same
JP2004259352A (ja) 半導体記憶装置
US10636457B2 (en) Overvoltage protection for a fine grained negative wordline scheme
US7934181B2 (en) Method and apparatus for improving SRAM cell stability by using boosted word lines
JP2002198444A (ja) Pmosドライバーを備えた無負荷4tsramセル
TW202401420A (zh) 記憶體驅動器、記憶體系統以及操作記憶體陣列的操作方法
TWI699764B (zh) 記憶體寫入裝置及方法
TWI681391B (zh) 資料線控制電路及相關的資料線控制方法
JP6522186B2 (ja) 半導体記憶装置
CN116884457A (zh) 存储器驱动器、存储器系统和操作方法
US11682453B2 (en) Word line pulse width control circuit in static random access memory
JP4127523B2 (ja) 半導体集積回路およびその駆動方法
JP2005129109A (ja) 半導体記憶装置