TW202349433A - 檢查裝置、檢查元件及檢查方法 - Google Patents

檢查裝置、檢查元件及檢查方法 Download PDF

Info

Publication number
TW202349433A
TW202349433A TW112112406A TW112112406A TW202349433A TW 202349433 A TW202349433 A TW 202349433A TW 112112406 A TW112112406 A TW 112112406A TW 112112406 A TW112112406 A TW 112112406A TW 202349433 A TW202349433 A TW 202349433A
Authority
TW
Taiwan
Prior art keywords
detection element
ray
sample
electronic
electron
Prior art date
Application number
TW112112406A
Other languages
English (en)
Inventor
阿南義弘
大橋健良
今村伸
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202349433A publication Critical patent/TW202349433A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

提高檢查裝置的性能。例如,在具備電子檢測用元件(30)、及X線檢測用元件(40)的檢查裝置(100)中,電子檢測用元件(30)配置在可配置試料(20)的試料台(14)與電子源(10)之間,並且X線檢測用元件(40)配置在電子檢測用元件(30)與電子源(10)之間,以在平面視下,電子檢測用元件(30)與X線檢測用元件(40)相重疊的方式作配置。

Description

檢查裝置、檢查元件及檢查方法
本發明係關於檢查裝置、檢查元件及檢查技術,例如關於適用於半導體裝置的檢查所使用的檢查裝置、檢查元件及檢查方法而為有效的技術。
在日本專利第6416199號公報(專利文獻1)係記載關於可檢測X線及電子的檢測器及電子檢測裝置的技術。 先前技術文獻 專利文獻
專利文獻1:日本專利第6416199號公報
(發明所欲解決之問題)
以半導體裝置的檢查工程而言,有檢查形成在半導體裝置的深孔(例如接觸孔或通孔)的蝕刻不良的工程。在該檢查工程中係使用例如藉由檢測使在電子源所發生的一次電子對深孔照射而由深孔被射出的二次電子及反射電子,來檢查深孔的蝕刻不良的檢查裝置(掃描型電子顯微鏡)。其中,在本說明書中,在不需要特別區分二次電子及反射電子時,係僅稱之為電子。
關於此點,近年來,伴隨半導體裝置的高集積化及微細化,深孔的長寬比(aspect ratio)逐漸增高。若如上所示深孔的長寬比變高,由深孔的底部所發生的電子在深孔的側壁被吸收的機率增高。結果,發生了難以取得深孔底部的資訊的事態。此意指難以檢測深孔的蝕刻不良,有改善的必要。
因此,嘗試使用透過率高的X線,來取得深孔底部的資訊。具體而言,檢討將檢測電子的電子檢測用元件與檢測X線的X線檢測用元件設在檢查裝置。但是,在所檢討的技術中,考慮電子檢測用元件與X線檢測用元件未重疊配置的構成。
但是,若為具有如上所示之構成的檢查裝置,電子由深孔入射至電子檢測用元件的立體角及X線由深孔入射至X線檢測用元件的立體角變小。此意指變得無法高效率地以電子檢測用元件檢測電子,並且變得無法高效率地以X線檢測用元件檢測X線。
因此,在將檢測電子的電子檢測用元件與檢測X線的X線檢測用元件設在檢查裝置的技術中,期望開發一種可高精度檢查長寬比高的深孔的蝕刻不良的檢查裝置。亦即,在包含電子檢測用元件及X線檢測用元件的檢查裝置中,期望用以可高精度檢查長寬比高的深孔的蝕刻不良的設計。 (解決問題之技術手段)
一實施形態中的檢查裝置係具備:電子源,其係使一次電子發生且使其入射至試料;電子檢測用元件,其係位於可配置試料的試料台與電子源之間;及X線檢測用元件,其係位於電子檢測用元件與電子源之間。在此,電子檢測用元件係包含:檢測由試料被射出的電子的閃爍器,X線檢測用元件係構成為檢測由試料被射出的X線且透過電子檢測用元件的X線。
一實施形態中的檢查元件係可組入至檢查裝置的檢查元件,該檢查裝置係檢測使在電子源所發生的一次電子入射至配置在試料台的試料而由試料被射出的電子及X線。在此,檢查元件係具備:電子檢測用元件,其係可配置在試料台與電子源之間;及X線檢測用元件,其係可配置在電子檢測用元件與電子源之間。接著,電子檢測用元件係包含檢測由試料被射出的電子的閃爍器,X線檢測用元件係構成為檢測由試料被射出的X線且透過電子檢測用元件的X線。
一實施形態中的檢查方法係具備:使一次電子在電子源發生且使其入射至試料的工程;藉由位於配置試料的試料台與電子源之間且包含閃爍器的電子檢測用元件,檢測由試料被射出的電子,並且藉由位於電子檢測用元件與電子源之間的X線檢測用元件,檢測由試料被射出的X線且透過電子檢測用元件的X線的工程。 (發明之效果)
藉由一實施形態,可提高檢查裝置的性能。
在用以說明實施形態的所有圖中,原則上對同一構件標註同一符號,且省略其反覆說明。其中,為了使圖面易於瞭解,即使為平面圖亦有標註影線的情形。
<檢查裝置的構成> 圖1係顯示檢查裝置100的模式構成的圖。 在圖1中,檢查裝置100係具有:電子源10、聚光透鏡11、偏向器12、對物透鏡13、試料台14、檢查元件50、及控制部60。
電子源10係構成為使複數一次電子發生。接著,聚光透鏡11係具有使由在電子源10所生成的複數一次電子所成的一次電子束收斂的功能,對物透鏡13係具有使一次電子束成像在配置在試料台14上的試料20的功能。此外,偏向器12係構成為可改變一次電子束的行進方向,藉由該偏向器12,可沿著檢查範圍掃描試料20上的一次電子束的照射位置。
檢查元件50係構成為可檢測藉由使一次電子入射至試料20而被射出的電子及X線,具備有:檢測電子的電子檢測用元件30、及檢測X線的X線檢測用元件40。
如圖1所示,電子檢測用元件30係設在配置試料20的試料台14與電子源10之間。更詳言之,電子檢測用元件30係設在試料台14與對物透鏡13之間。另一方面,X線檢測用元件40係設在電子檢測用元件30與電子源10之間。更詳言之,X線檢測用元件40係設在電子檢測用元件30與對物透鏡13之間。
接著,電子檢測用元件30係構成為例如包含:檢測由試料20被射出的電子的閃爍器、及將在閃爍器所發生的光放大的光電倍增管。此外,X線檢測用元件40係構成為檢測由試料20被射出的X線且透過電子檢測用元件30的X線,由例如矽漂移偵測器所代表的半導體檢測器、或閃爍器與光電倍增管的組合所構成。其中,在本實施形態中係形成為電子檢測用元件30由閃爍器與光電倍增管的組合所構成,並且X線檢測用元件40亦由閃爍器與光電倍增管的組合所構成者。
圖2(a)係模式顯示在與一次電子的入射方向呈垂直的平面觀看時的電子檢測用元件30的平面形狀的圖,圖2(b)係模式顯示在與一次電子的入射方向呈垂直的平面觀看時的X線檢測用元件40的平面形狀的圖。
如圖2(a)所示,電子檢測用元件30的平面形狀係呈在中央部具有供一次電子通過的空洞部的同心圓形狀,電子檢測用元件30係由所謂「環型元件」所構成。同樣地,如圖2(b)所示,X線檢測用元件40的平面形狀係呈在中央部具有供一次電子通過的空洞部的同心圓形狀,X線檢測用元件40亦由所謂「環型元件」所構成。
構成為如上所示的檢查元件50係不僅被組入在檢測使在電子源10所發生的一次電子(一次電子束)入射至配置在試料台14的試料20而由試料20被射出的電子及X線的檢查裝置100而被一體製造販賣,檢查元件50單獨亦可能被製造販賣。
接著,控制部60係構成為控制檢查裝置100的動作。具體而言,控制部60係構成為進行:用以使藉由聚光透鏡11與對物透鏡13所致之一次電子束收斂的控制、用以進行藉由偏向器12所致之一次電子束的掃描的控制、用以進行對來自檢查元件50的輸出訊號的訊號處理的控制、根據來自檢查元件50的輸出訊號的畫像生成處理及畫像顯示處理的控制等。 如以上所示構成本實施形態中的檢查裝置100。
<檢查裝置的動作> 接著,一邊參照圖1一邊說明檢查裝置100的動作。 首先,在試料台14上配置試料20。接著,在電子源10使複數一次電子發生,將由複數一次電子所成的一次電子束由電子源10射出。由電子源10被射出的一次電子束係在聚光透鏡11收斂之後,通過偏向器12,藉此調整行進方向。之後,在偏向器12調整了行進方向的一次電子束係藉由對物透鏡13而被照射至試料20的第1區域。
若在試料20的第1區域被照射一次電子束,例如,一次電子衝撞被構成試料20的原子(分子)所束縛的電子的結果,被構成試料20的原子所束縛的電子被散射而由原子跳出。該跳出的電子為二次電子。此外,一次電子亦有由構成試料20的原子被散射而作後方散射的情形,該一次電子被後方散射而由試料20被射出的電子為反射電子。
如上所示,若在試料20被照射一次電子束,由試料20被射出二次電子或反射電子。再者,由被散射的二次電子或反射電子等藉由制動放射而放射X線。由此若一次電子束被照射至試料20,由試料20不僅二次電子或反射電子(總括稱為「電子」),亦射出X線。
接著,由試料20被射出的「電子」係入射至配置在對物透鏡13與試料台14之間的電子檢測用元件30。接著,入射至電子檢測用元件30的「電子」係在以作為電子檢測用元件30的構成要素的閃爍器被轉換為光之後,以閃爍器予以轉換的光係以作為電子檢測用元件30的構成要素的光電倍增管予以光電轉換且被放大,由電子檢測用元件30被輸出作為輸出訊號。
另一方面,由試料20被射出的X線係在透過電子檢測用元件30之後,入射至配置在對物透鏡13與電子檢測用元件30之間的X線檢測用元件40。接著,入射至X線檢測用元件40的X線係在以作為X線檢測用元件40的構成要素的閃爍器被轉換為光之後,以閃爍器予以轉換的光係以作為X線檢測用元件40的構成要素的光電倍增管予以光電轉換且被放大,由X線檢測用元件40被輸出作為輸出訊號。
接著,由電子檢測用元件30被輸出的輸出訊號係例如在被轉換為畫像訊號之後,根據該畫像訊號,取得電子畫像,而顯示電子畫像。另一方面,由X線檢測用元件40被輸出的輸出訊號係例如在被轉換為畫像訊號之後,根據該畫像訊號,取得X線畫像,而顯示X線畫像。
之後,以偏向器12變更一次電子束的行進方向,一次電子束由試料20的第1區域被掃描至第2區域。接著,在試料20的第2區域中,反覆與在第1區域的動作相同的動作。 如上所示,檢查裝置100進行動作。
<實施形態中的特徵> 接著,說明本實施形態中的特徵點。 本實施形態中的第1特徵點在例如圖1所示,在具備電子檢測用元件30與X線檢測用元件40的檢查裝置100中,電子檢測用元件30配置在可配置試料20的試料台14與電子源10之間,並且X線檢測用元件40配置在電子檢測用元件30與電子源10之間,以在平面視下,電子檢測用元件30與X線檢測用元件40相重疊的方式作配置。
藉此,藉由第1特徵點,由試料20所射出的「電子」係在配置在X線檢測用元件40的跟前的電子檢測用元件30被吸收。結果,抑制「電子」被入射至X線檢測用元件40,藉此可提高在X線檢測用元件40的X線的檢測精度。亦即,即使「電子」入射至X線檢測用元件40亦發生輸出訊號,因此起因於該「電子」的輸出訊號成為雜訊。因此,為了提高X線的檢測精度,以「電子」盡可能不入射至X線檢測用元件40為宜。
關於此點,藉由第1特徵點,由於電子檢測用元件30被配置在接近試料20之側,因此該電子檢測用元件30作為抑制「電子」入射至X線檢測用元件40的遮蔽構件來發揮功能。由此,藉由第1特徵點,可提高藉由X線檢測用元件40所致之X線的檢測精度。
在此,為了使電子檢測用元件30作為遮蔽構件發揮功能,較宜為電子檢測用元件30的膜厚係具有充分供吸收「電子」用的膜厚,並且具有充分供吸收「電子」用的密度。此時,在電子檢測用元件30被吸收的「電子」變多,因此藉由第1特徵點,亦可提高在電子檢測用元件30的「電子」的檢測效率。
其中,由試料20被射出的X線由於透過率高,因此透過位於跟前的電子檢測用元件30而入射至X線檢測用元件40。因此,即使採用第1特徵點的構成,在X線的檢測亦沒有問題。
基於以上,藉由第1特徵點,無須使對X線檢測用元件40入射X線成為犠牲,可使電子檢測用元件30作為抑制對X線檢測用元件40入射「電子」的遮蔽構件發揮功能。結果,藉由本實施形態中的檢查裝置100,可提高X線的檢測精度。
接著,本實施形態中的第2特徵點在於例如圖2(a)及圖2(b)所示,電子檢測用元件30為「環型元件」、並且X線檢測用元件40亦為「環型元件」。換言之,第2特徵點可謂為在於電子檢測用元件30的平面形狀呈在中央部具有供一次電子通過的空洞部的同心圓形狀,同樣地,X線檢測用元件40的平面形狀亦呈在中央部具有供一次電子通過的空洞部的同心圓形狀。
藉此,藉由第2特徵點,可加大「電子」由試料20入射至電子檢測用元件30的立體角及X線由試料20入射至X線檢測用元件40的立體角。此意指可以電子檢測用元件30高效率地將「電子」轉換為光,並且可以X線檢測用元件40高效率地將X線轉換為光。因此,藉由第2特徵點,可提高檢查裝置100中的「電子」的檢測效率與X線的檢測效率。
基於以上,藉由本實施形態中的檢查裝置100,可藉由上述第1特徵點與第2特徵點的相乘效果,提高檢查裝置100的性能。
<效果的驗證> 藉由上述之特徵點,說明可提高檢查裝置100中的X線的檢測精度的驗證結果。驗證係藉由計算對深孔試料的反射電子強度(BSE(Back Scattered Electron(背向散射電子))強度)與X線強度來進行。具體而言,驗證係藉由根據來自深孔的底部的訊號強度,計算SNR(Signal Noise Ratio(訊號雜訊比):對比)所進行。
圖3(a)係顯示根據來自深孔的底部的反射電子強度所算出的「SNR」的計算結果的圖表,圖3(b)係顯示根據來自深孔的底部的X線強度所算出的「SNR」的計算結果的圖表。
如圖3(a)及圖3(b)所示,可知根據反射電子強度的「SNR」為2左右(以圓圈記號包圍的點),相對於此,根據X線強度的「SNR」為8左右(以圓圈記號包圍的點)。此意指相較於根據反射電子強度的「SNR」,根據X線強度的「SNR」的對比高4倍左右。亦即,藉由上述驗證結果,可知相較於利用藉由電子檢測用元件30所致之反射電子的檢測,對來自深孔的底部的資訊的感度係以利用藉由X線檢測用元件40所致之X線的檢測較為優異。由如上所示之驗證結果可知,支持藉由本實施形態中的檢查裝置100,藉由利用來自X線檢測用元件40的輸出,可精度佳地檢測來自深孔的底部的資訊。亦即,藉由使用本實施形態中的檢查裝置100,可高精度地檢查例如長寬比高的深孔的蝕刻不良。
<變形例> 接著,說明變形例。 圖4係說明變形例的構成的圖。在圖4中,在本變形例中係在電子檢測用元件30與X線檢測用元件40之間設有串擾抑制部70,其係抑制由電子檢測用元件30所包含的閃爍器所發生的光、與由X線檢測用元件40所包含的閃爍器所發生的光的串擾。
藉此,藉由本變形例,可抑制在電子檢測用元件30所發生的光侵入X線檢測用元件40而在X線檢測用元件40的光電倍增管予以檢測的情形、及在X線檢測用元件40所發生的光侵入電子檢測用元件30而在電子檢測用元件30的光電倍增管予以檢測的情形。亦即,藉由本變形例,在電子檢測用元件30及X線檢測用元件40的各個中,可減低雜訊訊號重疊。結果,藉由本變形例,可提高藉由電子檢測用元件30所致之「電子」的檢測精度、及藉由X線檢測用元件40所致之X線的檢測精度。
例如,串擾抑制部70係可由遮蔽由電子檢測用元件30所包含的閃爍器所發生的光、及由X線檢測用元件40所包含的閃爍器所發生的光的遮蔽膜所構成。
但是,串擾抑制部70係不僅由上述遮蔽膜所構成,亦可由例如具有與構成電子檢測用元件30的材料的折射率及構成X線檢測用元件40的材料的折射率不同的折射率的膜、或具有與構成電子檢測用元件30的材料的折射率及構成X線檢測用元件40的材料的折射率不同的折射率的空間區域所構成。
具體而言,串擾抑制部70係可由具有小於構成電子檢測用元件30的材料的折射率及構成X線檢測用元件40的材料的折射率的折射率的膜、或者具有小於構成電子檢測用元件30的材料的折射率及構成X線檢測用元件40的材料的折射率的折射率的空間區域所構成。
此時,由電子檢測用元件30所包含的閃爍器所發生的光係藉由在電子檢測用元件30與串擾抑制部70的交界的折射率差作全反射。換言之,由電子檢測用元件30所包含的閃爍器所發生的光係被封入電子檢測用元件30的內部。同樣地,由X線檢測用元件40所包含的閃爍器所發生的光係藉由在X線檢測用元件40與串擾抑制部70的交界的折射率差作全反射。換言之,由X線檢測用元件40所包含的閃爍器所發生的光係被封入X線檢測用元件40的內部。藉此,抑制在電子檢測用元件30所發生的光侵入X線檢測用元件40或在X線檢測用元件40所發生的光侵入電子檢測用元件30,結果可提高藉由電子檢測用元件30所致之「電子」的檢測精度、及藉由X線檢測用元件40所致之X線的檢測精度。
<更進一步的設計點> 如上所述,本實施形態中的檢查裝置100係具備有:檢測由試料20被射出的「電子」的電子檢測用元件30;及檢測由試料20被射出的X線的X線檢測用元件40。在此,X線檢測用元件40係具有例如可精度佳地檢測來自深孔的底部的資訊的優點。另一方面,電子檢測用元件30係具有可精度佳地檢測深孔的表面形狀(來自表面的資訊)的優點。
因此,考慮藉由將X線檢測用元件40的優點與電子檢測用元件30的優點加以組合,例如根據深孔的底部的資訊與關於表面形狀的資訊,可高精度檢查長寬比高的深孔的蝕刻不良及深孔的表面形狀不良(開口徑的不良)。亦即,本實施形態中的檢查裝置100係具備有優點彼此不同的電子檢測用元件30及X線檢測用元件40,因此藉由施行將各自的優點加以組合的設計,可達成檢查裝置100更進一步的性能提高。以下說明該設計點。
<<控制部的功能區塊構成>> 圖5係顯示控制部60的功能區塊構成的圖。 在圖5中,控制部60係具有:輸入部201、第1畫像訊號轉換部202、第2畫像訊號轉換部203、電子畫像取得部204、X線畫像取得部205、第1特徵畫像取得部206、第2特徵畫像取得部207、合成畫像取得部208、輸出部209、及資料記憶部210。
輸入部201係構成為輸入由電子檢測用元件30被輸出的第1輸出訊號、及由X線檢測用元件40被輸出的第2輸出訊號。在此,例如,若構成為電子檢測用元件30包含第1閃爍器,而且X線檢測用元件40包含第2閃爍器時,由電子檢測用元件30被輸出的第1輸出訊號係根據將「電子」在第1閃爍器進行了轉換的光的訊號。此外,由X線檢測用元件40被輸出的第2輸出訊號係根據將X線在第2閃爍器進行了轉換的光的訊號。此時,由電子檢測用元件30被輸出的第1輸出量係根據將「電子」在第1閃爍器進行了轉換的光量的訊號量。此外,由X線檢測用元件40被輸出的第2輸出量係根據將X線在第2閃爍器進行了轉換的光量的訊號量。
第1畫像訊號轉換部202係具有將被輸入至輸入部201的第1輸出訊號轉換為第1畫像訊號的功能。另一方面,第2畫像訊號轉換部203係具有將被輸入至輸入部201的第2輸出訊號轉換為第2畫像訊號的功能。
接著,電子畫像取得部204係構成為根據在第1畫像訊號轉換部202被轉換的第1畫像訊號,生成電子畫像。接著,在電子畫像取得部204所取得的電子畫像係被記憶在例如資料記憶部210。
X線畫像取得部205係構成為根據在第2畫像訊號轉換部203被轉換的第2畫像訊號,生成X線畫像。接著,在X線畫像取得部205所取得的X線畫像係被記憶在例如資料記憶部210。X線畫像的畫素的諧調係根據將X線以閃爍器進行了轉換的光量,光量亦可為一定時間內的光量的總和,或者亦可為將一定時間內作為基準的光量以上(或達至基準的光量以下)作為1單位而為該單位的和。
第1特徵畫像取得部206係構成為在由資料記憶部210讀出在電子畫像取得部204所生成的電子畫像之後,取得由該電子畫像抽出特徵的第1特徵畫像。接著,第1特徵畫像係被記憶在資料記憶部210。
第2特徵畫像取得部207係構成為在由資料記憶部210讀出在X線畫像取得部205所生成的X線畫像之後,取得由該X線畫像抽出特徵的第2特徵畫像。接著,第2特徵畫像係被記憶在資料記憶部210。
接著,合成畫像取得部208係構成為根據在第1特徵畫像取得部206所取得的第1特徵畫像、及在第2特徵畫像取得部207所取得的第2特徵畫像,取得將第1特徵畫像所包含的特徵及第2特徵畫像所包含的特徵加以組合的合成畫像。該合成畫像係被記憶在例如資料記憶部210。
輸出部209係構成為將在合成畫像取得部208所取得的合成畫像輸出至例如顯示部80。藉此,在顯示部80顯示合成畫像。如以上所示構成控制部60。
<<檢查裝置的動作>> 接著,說明對應更進一步的設計點的檢查裝置100的動作。 圖6係說明檢查裝置100的動作的流程圖。 在圖6中,首先,將表示試料20的第N區域的變數N設定為「N=1」(S101)。接著,將由電子源10被射出的一次電子(一次電子束)照射至試料20的第1區域(S102)。藉此,由試料20的第1區域係被射出「電子」及X線。被射出的「電子」係在電子檢測用元件30被檢測(S103A)。另一方面,所被射出的X線係透過電子檢測用元件30,而在X線檢測用元件40被檢測(S103B)。例如,由試料20的第1區域被射出的「電子」在電子檢測用元件30檢測、與由試料20的第1區域被射出的X線在X線檢測用元件40檢測係同時進行。
接著,若在電子檢測用元件30檢測「電子」,由電子檢測用元件30輸出對應「電子」的檢測的第1輸出訊號。接著,由電子檢測用元件30被輸出的第1輸出訊號係在被輸入至輸入部201之後,在第1畫像訊號轉換部202被轉換為第1畫像訊號(S104A)。
另一方面,若在X線檢測用元件40檢測X線,由X線檢測用元件40輸出對應X線的檢測的第2輸出訊號。接著,由X線檢測用元件40被輸出的第2輸出訊號係在被輸入至輸入部201之後,在第2畫像訊號轉換部203被轉換為第2畫像訊號(S104B)。
接著,電子畫像取得部204係根據在第1畫像訊號轉換部202被轉換的第1畫像訊號,取得電子畫像(S105A)。另一方面,X線畫像取得部205係根據在第2畫像訊號轉換部203被轉換的第2畫像訊號,取得X線畫像(S105B)。所取得的電子畫像及X線畫像係被記憶在資料記憶部210。
之後,第1特徵畫像取得部206係由在電子畫像取得部204所取得的電子畫像抽出特徵,而取得第1特徵畫像(S106A)。另一方面,第2特徵畫像取得部207係由在X線畫像取得部205所取得的X線畫像抽出特徵,而取得第2特徵畫像(S106B)。在此,所取得的第1特徵畫像及第2特徵畫像係被記憶在資料記憶部210。
接著,合成畫像取得部208係根據在第1特徵畫像取得部206所取得的第1特徵畫像、及在第2特徵畫像取得部207所取得的第2特徵畫像,取得將第1特徵畫像所包含的特徵及第2特徵畫像所包含的特徵加以組合的合成畫像(S107)。此時,所取得的合成畫像係被記憶在資料記憶部210。
接著,輸出部209係將在合成畫像取得部208所取得的合成畫像,輸出至例如顯示部80(S108)。藉此,在顯示部80顯示合成畫像。
之後,控制部60係判斷試料20的第N區域是否為檢查的最終掃描區域(Nmax)(S109)。結果,若試料20的第N區域非為檢查的最終掃描區域(Nmax),形成為「N=N+1」,返回至S102,在試料20的第N+1區域反覆同樣的動作。相對於此,若試料20的第N區域為檢查的最終掃描區域(Nmax),即結束檢查裝置100的動作。 如以上所示,檢查裝置100進行動作。
<<更進一步的設計點的特徵>> 更進一步的設計點的特徵係在於生成將根據來自電子檢測用元件30的輸出的電子畫像所包含的特徵、及根據來自X線檢測用元件40的輸出的X線畫像所包含的特徵加以組合的合成畫像。接著,根據所生成的合成畫像,實施試料20的檢查,藉此可實施高精度的檢查。亦即,藉由更進一步的設計點,可將電子檢測用元件30的長處與X線檢測用元件40的長處加以組合而有效活用,因此可提高檢查裝置100中的檢查性能。
<<具體例>> 以下使用具體例加以說明。 圖7係顯示深孔試料的模式圖。在圖7中係圖示出深孔CNT1及深孔CNT2。深孔CNT2係以達至配線WL的方式予以蝕刻,表示正常的深孔。另一方面,深孔CNT1並未達至配線WL,表示蝕刻不良的深孔。以下考慮以本實施形態中的檢查裝置100來檢查圖7所示之深孔試料。
圖8(a)係模式顯示根據來自電子檢測用元件30的輸出所生成的電子畫像的圖,圖8(b)係模式顯示根據來自X線檢測用元件40的輸出所生成的X線畫像的圖。此外,圖8(c)係顯示將電子畫像的特徵與X線畫像的特徵加以組合的合成畫像的圖。
在圖8(a)中,在電子檢測用元件30中,由於難以取得來自長寬比高的深孔的底部的資訊,因此在電子畫像所包含的深孔CNT1與深孔CNT2的對比未產生差異。由此,以電子畫像單獨,並無法區分圖7所示之蝕刻不良的深孔CNT1與正常的深孔CNT2。
但是,根據電子檢測用元件30的輸出的電子畫像的長處在於正確反映試料的表面形狀。因此,圖8(a)中的深孔CNT1的開口徑及深孔CNT2的開口徑為正確。亦即,圖8(a)所示之電子畫像的特徵(長處)在於深孔CNT1的開口徑及深孔CNT2的開口徑為正確。
接著,在圖8(b)中,在X線檢測用元件40係可得來自長寬比高的深孔的底部的資訊,因此可知在X線畫像所包含的深孔CNT1與深孔CNT2的對比產生了差異。亦即,在圖8(b)所示之X線畫像中,可根據對比差,來區分圖7所示之蝕刻不良的深孔CNT1與正常的深孔CNT2。如上所示,圖8(b)所示之X線畫像的特徵(長處)在於對蝕刻不良的深孔CNT1與正常的深孔CNT2產生對比差。
但是,相較於根據電子檢測用元件30的輸出的電子畫像,根據X線檢測用元件40的輸出的X線畫像係較難以正確地反映試料的表面形狀。亦即,在圖8(b)所示之X線畫像中,深孔CNT1的開口徑及深孔CNT2的開口徑成為不正確,比圖8(a)所示之電子畫像更為放大。亦即,在圖8(b)所示之X線畫像中,深孔CNT1的開口徑及深孔CNT2的開口徑成為不正確,比圖8(a)所示之電子畫像較為模糊。
如以上所示,圖8(a)所示之電子畫像的長處在於深孔CNT1的開口徑及深孔CNT2的開口徑為正確,圖8(b)所示之X線畫像的長處在於可藉由對比差來區分蝕刻不良的深孔CNT1與正常的深孔CNT2。因此,在檢查裝置100中係將圖8(a)所示之電子畫像的長處與圖8(b)所示之X線畫像的長處加以組合而生成合成畫像。
如圖8(c)所示,可知在合成畫像被取入圖8(a)所示之電子畫像的長處(深孔CNT1及深孔CNT2的輪廓)、及圖8(b)所示之X線畫像的長處(深孔CNT1與深孔CNT2的對比差)。
因此,藉由使用圖8(c)所示之合成畫像的檢查,可由深孔CNT1與深孔CNT2的對比差來特定蝕刻不良的深孔CNT1。此外,可由深孔CNT1及深孔CNT2的輪廓來檢查開口徑有無異常。由以上,藉由具備「更進一步的設計點」的檢查裝置100,可達成檢查精度的提高。換言之,可提高檢查裝置100的性能。
以上根據該實施形態,具體說明了藉由本發明人所完成的發明,惟本發明並非為限定於前述實施形態者,可在未脫離其要旨的範圍內作各種變更,自不待言。
10:電子源 11:聚光透鏡 12:偏向器 13:對物透鏡 14:試料台 20:試料 30:電子檢測用元件 40:X線檢測用元件 50:檢查元件 60:控制部 70:串擾抑制部 80:顯示部 100:檢查裝置 201:輸入部 202:第1畫像訊號轉換部 203:第2畫像訊號轉換部 204:電子畫像取得部 205:X線畫像取得部 206:第1特徵畫像取得部 207:第2特徵畫像取得部 208:合成畫像取得部 209:輸出部 210:資料記憶部 CNT1:深孔 CNT2:深孔 WL:配線
[圖1]係顯示檢查裝置的模式構成的圖。 [圖2](a)係模式顯示在與一次電子的入射方向呈垂直的平面觀看時的電子檢測用元件的平面形狀的圖,(b)係模式顯示在與一次電子的入射方向呈垂直的平面觀看時的X線檢測用元件的平面形狀的圖。 [圖3](a)係顯示根據來自深孔的底部的反射電子強度所算出的「SNR」的計算結果的圖表,(b)係顯示根據來自深孔的底部的X線強度所算出的「SNR」的計算結果的圖表。 [圖4]係說明變形例的構成的圖。 [圖5]係顯示控制部的功能區塊構成的圖。 [圖6]係說明檢查裝置的動作的流程圖。 [圖7]係顯示深孔試料的模式圖。 [圖8](a)係模式顯示根據來自電子檢測用元件的輸出所生成的電子畫像的圖,(b)係模式顯示根據來自X線檢測用元件的輸出所生成的X線畫像的圖,(c)係顯示將電子畫像的特徵與X線畫像的特徵加以組合的合成畫像的圖。
10:電子源
11:聚光透鏡
12:偏向器
13:對物透鏡
14:試料台
20:試料
30:電子檢測用元件
40:X線檢測用元件
50:檢查元件
60:控制部
100:檢查裝置

Claims (24)

  1. 一種檢查裝置,其係具備: 電子源,其係使一次電子發生且使其入射至試料; 電子檢測用元件,其係位於可配置前述試料的試料台與前述電子源之間;及 X線檢測用元件,其係位於前述電子檢測用元件與前述電子源之間, 前述電子檢測用元件係包含:檢測由前述試料被射出的電子的第1閃爍器, 前述X線檢測用元件係構成為檢測由前述試料被射出的X線且透過前述電子檢測用元件的前述X線。
  2. 如請求項1之檢查裝置,其中,前述X線檢測用元件係包含第2閃爍器。
  3. 如請求項1之檢查裝置,其中,前述電子檢測用元件係環型元件, 前述X線檢測用元件係環型元件。
  4. 如請求項1之檢查裝置,其中,在與前述一次電子的入射方向呈垂直的平面觀看時, 前述電子檢測用元件的平面形狀係同心圓形狀, 前述X線檢測用元件的平面形狀係同心圓形狀。
  5. 如請求項1之檢查裝置,其中,前述電子檢測用元件中的前述電子的檢測、與前述X線檢測用元件中的前述X線的檢測係同時進行。
  6. 如請求項1之檢查裝置,其中,前述檢查裝置係具有: 第1畫像訊號轉換部,其係將來自前述電子檢測用元件的輸出轉換為第1畫像訊號; 電子畫像取得部,其係根據前述第1畫像訊號來取得電子畫像; 第2畫像訊號轉換部,其係將來自前述X線檢測用元件的輸出轉換為第2畫像訊號;及 X線畫像取得部,其係根據前述第2畫像訊號來取得X線畫像。
  7. 如請求項6之檢查裝置,其中,前述X線檢測用元件係包含第2閃爍器, 來自前述X線檢測用元件的輸出量係根據將前述X線在前述第2閃爍器進行了轉換的光量的訊號量。
  8. 如請求項7之檢查裝置,其中,前述X線畫像中的畫素的諧調係根據一定的時間內以前述X線檢測用元件的前述第2閃爍器所轉換的光量的總和的量。
  9. 如請求項6之檢查裝置,其中,若將前述一次電子照射至前述試料的第1區域, 前述電子檢測用元件係檢測由前述第1區域被射出的電子, 前述X線檢測用元件係檢測由前述第1區域被射出的X線, 前述電子畫像取得部係取得對應前述第1區域的第1電子畫像, 前述X線畫像取得部係取得對應前述第1區域的第1X線畫像。
  10. 如請求項9之檢查裝置,其中,前述檢查裝置係具有: 第1特徵畫像取得部,其係取得抽出了前述第1電子畫像的特徵的第1特徵畫像; 第2特徵畫像取得部,其係取得抽出了前述第1X線畫像的特徵的第2特徵畫像;及 合成畫像取得部,其係由前述第1特徵畫像與前述第2特徵畫像,取得合成畫像。
  11. 如請求項1之檢查裝置,其中,由前述試料被射出的電子朝向前述X線檢測用元件的入射係藉由設在前述試料台與前述X線檢測元件之間的前述電子檢測用元件予以抑制。
  12. 如請求項2之檢查裝置,其中,在前述電子檢測用元件與前述X線檢測用元件之間設有:串擾抑制部,其係抑制由前述電子檢測用元件所包含的前述第1閃爍器所發生的光、與由前述X線檢測用元件所包含的前述第2閃爍器所發生的光的串擾。
  13. 如請求項12之檢查裝置,其中,前述串擾抑制部係由遮蔽膜所構成,該遮蔽膜係遮蔽由前述電子檢測用元件所包含的前述第1閃爍器所發生的光、與由前述X線檢測用元件所包含的前述第2閃爍器所發生的光。
  14. 如請求項12之檢查裝置,其中,前述串擾抑制部係由具有與構成前述電子檢測用元件的材料的折射率及構成前述X線檢測用元件的材料的折射率為不同的折射率的膜、或者具有與構成前述電子檢測用元件的材料的折射率及構成前述X線檢測用元件的材料的折射率為不同的折射率的空間區域所構成。
  15. 一種檢查元件,其係可組入至檢查裝置的檢查元件,該檢查裝置係檢測使在電子源所發生的一次電子入射至配置在試料台的試料而由前述試料被射出的電子及X線, 前述檢查元件係具備: 電子檢測用元件,其係可配置在前述試料台與前述電子源之間;及 X線檢測用元件,其係可配置在前述電子檢測用元件與前述電子源之間, 前述電子檢測用元件係包含檢測由前述試料被射出的電子的第1閃爍器, 前述X線檢測用元件係構成為檢測由前述試料被射出的X線且透過前述電子檢測用元件的前述X線。
  16. 如請求項15之檢查元件,其中,前述X線檢測用元件係包含第2閃爍器。
  17. 如請求項15之檢查元件,其中,前述電子檢測用元件係環型元件, 前述X線檢測用元件係環型元件。
  18. 如請求項15之檢查元件,其中,在與前述一次電子的入射方向呈垂直的平面觀看時, 前述電子檢測用元件的平面形狀係同心圓形狀, 前述X線檢測用元件的平面形狀係同心圓形狀。
  19. 如請求項15之檢查元件,其中,前述電子檢測用元件中的前述電子的檢測、與前述X線檢測用元件中的前述X線的檢測係同時進行。
  20. 如請求項16之檢查元件,其中,來自前述X線檢測用元件的輸出量係根據將前述X線在前述第2閃爍器進行了轉換的光量的訊號量。
  21. 如請求項15之檢查元件,其中,由前述試料被射出的電子朝向前述X線檢測用元件的入射係藉由設在前述試料台與前述X線檢測元件之間的前述電子檢測用元件予以抑制。
  22. 如請求項16之檢查元件,其中,在前述電子檢測用元件與前述X線檢測用元件之間設有:串擾抑制部,其係抑制由前述電子檢測用元件所包含的前述第1閃爍器所發生的光、與由前述X線檢測用元件所包含的前述第2閃爍器所發生的光的串擾。
  23. 一種檢查方法,其係具備: 使一次電子在電子源發生且使其入射至試料的工程; 藉由位於配置前述試料的試料台與前述電子源之間且包含閃爍器的電子檢測用元件,檢測由前述試料被射出的電子,並且藉由位於前述電子檢測用元件與前述電子源之間的X線檢測用元件,檢測由前述試料被射出的X線且透過前述電子檢測用元件的前述X線的工程。
  24. 如請求項23之檢查方法,其中,前述電子檢測用元件係環型元件, 前述X線檢測用元件係環型元件。
TW112112406A 2022-06-08 2023-03-31 檢查裝置、檢查元件及檢查方法 TW202349433A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/023154 WO2023238287A1 (ja) 2022-06-08 2022-06-08 検査装置、検査素子および検査方法
WOPCT/JP2022/023154 2022-06-08

Publications (1)

Publication Number Publication Date
TW202349433A true TW202349433A (zh) 2023-12-16

Family

ID=89117737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112112406A TW202349433A (zh) 2022-06-08 2023-03-31 檢查裝置、檢查元件及檢查方法

Country Status (2)

Country Link
TW (1) TW202349433A (zh)
WO (1) WO2023238287A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448481A (en) * 1977-09-26 1979-04-17 Jeol Ltd Electron ray unit
JP3869588B2 (ja) * 1999-09-01 2007-01-17 株式会社日立製作所 回路パターン検査装置
JP2013026152A (ja) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp 電子顕微鏡
JP6267529B2 (ja) * 2014-02-04 2018-01-24 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び画像生成方法
JP6656728B2 (ja) * 2015-10-01 2020-03-04 学校法人 中村産業学園 相関顕微鏡
JP7085258B2 (ja) * 2018-04-13 2022-06-16 株式会社ホロン 超高速電子検出器および該検出器を組み込んだ走査型電子ビーム検査装置

Also Published As

Publication number Publication date
WO2023238287A1 (ja) 2023-12-14

Similar Documents

Publication Publication Date Title
JP6668408B2 (ja) Semオーバーレイ計測のシステムおよび方法
US7236564B2 (en) Linear array detector system and inspection method
US20080061234A1 (en) Inspection apparatus and method
KR20190015531A (ko) 엑스선 현미경 관찰을 위한 방법 및 장치
JP4741986B2 (ja) 光学式検査方法および光学式検査装置
JP2013178242A (ja) X線検査装置、検査方法およびx線検出器
JP2008014848A (ja) 表面検査方法及び表面検査装置
WO2013168557A1 (ja) 欠陥検査方法および欠陥検査装置
JP4641143B2 (ja) 表面検査装置
US9568437B2 (en) Inspection device
JP2008084643A (ja) 電子顕微鏡及び立体観察方法
TWI808554B (zh) 使用陰極發光測量判別半導體材料中的位錯類型和密度的裝置與方法
TW202349433A (zh) 檢查裝置、檢查元件及檢查方法
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
JP2007240510A (ja) X線トポグラフィー測定装置、および、x線トポグラフィー測定方法
JP2015225053A (ja) X線撮像システムおよびx線撮像方法
JP2015090311A (ja) X線計測装置
JP4861864B2 (ja) 閾値決定方法
US6811314B2 (en) Edge phantom
JP2011153903A (ja) パターン検査装置及びパターン検査方法
JP2008256587A (ja) X線検査装置およびx線検査方法
JP2017044588A (ja) X線検出器およびx線撮像システム
JP2004045247A (ja) X線画像検査装置
JP2009088026A (ja) 半導体ウェハの表面検査装置、及び半導体ウェハの表面検査方法
JPH05164854A (ja) X線検知装置