TW202333185A - 含碳材料之催化熱沉積 - Google Patents

含碳材料之催化熱沉積 Download PDF

Info

Publication number
TW202333185A
TW202333185A TW111114598A TW111114598A TW202333185A TW 202333185 A TW202333185 A TW 202333185A TW 111114598 A TW111114598 A TW 111114598A TW 111114598 A TW111114598 A TW 111114598A TW 202333185 A TW202333185 A TW 202333185A
Authority
TW
Taiwan
Prior art keywords
carbon
silicon
semiconductor processing
containing precursor
precursor
Prior art date
Application number
TW111114598A
Other languages
English (en)
Inventor
沈澤清
波 戚
亞伯希吉特巴蘇 馬禮克
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202333185A publication Critical patent/TW202333185A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

半導體處理之範例方法可包括:將含矽前驅物及含碳前驅物提供至半導體製程腔室的處理區域。含碳前驅物的特徵可在於:碳-碳雙鍵或碳-碳參鍵。可將基板設置於半導體製程腔室的處理區域內。所述方法可包括:將含硼前驅物提供至半導體製程腔室的處理區域。所述方法可包括:在高於約250 °C之溫度下,使含矽前驅物、含碳前驅物及含硼前驅物進行熱反應。所述方法可包括:於基板上形成含矽及碳層。

Description

含碳材料之催化熱沉積
此申請案依專利法主張2021年4月20日提申之名稱為「CATALYTIC THERMAL DEPOSITION OF CARBON-CONTAINING MATERIALS」之美國專利申請案第17/235,241號之優先權,該美國專利申請案之整體以引用方式併入本文。
本技術與用於半導體處理之方法及部件有關。更具體而言,本技術與用於生產供半導體結構所用之含碳膜之系統及方法有關。
透過在基板表面上生產錯綜複雜圖案化的材料層之製程,可製作積體電路。在基板上產生經圖案化材料需要用於形成並移除材料之受控方法。隨著元件尺寸持續減小,特徵間之臨界尺寸可能減小,且由於材料粗糙度和其他特性,在處理操作期間維持這些結構的維度可能受到挑戰。發展可具有足夠的跨特徵共形性和應力特性之材料可能是挑戰。此外,隨著處理期間之待圖案化材料層的數量不斷擴增,生產相對於其他暴露的材料可具有改良的去除選擇性之材料,還要維持材料性質,正成為更大的挑戰。
因此,需要可用於產生高品質裝置及結構之改良的系統及方法。本技術可滿足這些及其他需求。
半導體處理之範例方法可包括:將含矽前驅物及含碳前驅物提供至半導體製程腔室的處理區域。含碳前驅物的特徵可在於:碳-碳雙鍵或碳-碳參鍵。基板可設置於半導體製程腔室的處理區域內。所述方法可包括:將含硼前驅物提供至半導體製程腔室的處理區域。所述方法可包括:在高於約250 °C之溫度下,使含矽前驅物、含碳前驅物及含硼前驅物進行熱反應。所述方法可包括:在基板上形成含矽及碳層。
在一些實施例中,在基板上形成含矽及碳層的同時,半導體製程腔室的處理區域可維持無電漿。膜內之硼濃度可維持在小於或約20原子%。基板的特徵可在於:一或多個特徵,且其中以大於或約90%之共形性圍繞所述一或多個特徵形成含矽及碳層。可在大於或約400 °C之溫度下,使含矽前驅物、含碳前驅物及含硼前驅物進行熱反應。含矽及碳層的特徵可在於:大於或約30原子%之碳濃度。含矽及碳層的特徵可在於:小於或約50原子%之矽濃度。碳摻入對矽摻入之比值可維持在大於或約3:1。所述方法可包括:停止輸送含矽前驅物。所述方法可包括:降低半導體製程腔室內之壓力。所述方法可包括:在降低半導體製程腔室內之壓力的同時,維持含碳前驅物之輸送。可以大於或約10:1之對含矽前驅物之流速比值提供含碳前驅物。所述方法可包括:將含矽及碳層暴露於含氧電漿。所述方法可包括:至少部分地蝕刻含矽及碳層。
本技術的一些實施例可涵蓋半導體處理方法。所述方法可包括:提供含矽前驅物及含碳前驅物至半導體製程腔室的處理區域。可以大於或約10:1之對含矽前驅物之流速比值提供含碳前驅物。基板可設置於半導體製程腔室的處理區域內。所述方法可包括:將含硼前驅物提供至半導體製程腔室的處理區域。所述方法可包括:在大於或約400 °C之溫度下,使含矽前驅物、含碳前驅物及含硼前驅物進行熱反應。所述方法可包括:在基板上形成含矽及碳層。
在一些實施例中,於半導體處理方法期間,半導體製程腔室的處理區域可維持無電漿。在形成含矽及碳層的同時,半導體製程腔室內的壓力可維持在大於或約12托耳。含矽及碳層的特徵可在於:小於或約0.5 nm之平均粗糙度。含矽及碳層的特徵可在於:正應力(positive stress)。含矽及碳層的特徵可在於:大於或約50原子%之碳濃度。含矽及碳層的特徵可在於:小於或約20原子%之矽濃度。含矽及碳層的特徵可在於:小於或約10原子%之硼濃度。所述方法可包括:停止輸送含矽前驅物。所述方法可包括:降低半導體製程腔室內之壓力。所述方法可包括:在降低半導體製程腔室內之壓力的同時,維持含碳前驅物之輸送。
本技術的一些實施例可涵蓋半導體處理方法。所述方法可包括:將含矽前驅物、第一含碳前驅物及第二含碳前驅物提供至半導體製程腔室的處理區域。基板可設置於半導體製程腔室的處理區域內。所述方法可包括:將催化前驅物提供至半導體製程腔室的處理區域。所述方法可包括:在大於或約300 °C之溫度下,使含矽前驅物、第一含碳前驅物、第二含碳前驅物及催化前驅物進行熱反應。所述方法可包括:在基板上形成含矽及碳層。
在一些實施例中,在基板上形成含矽及碳層的同時,半導體製程腔室的處理區域可維持無電漿。所述方法可包括:停止輸送含矽前驅物。所述方法可包括:降低半導體製程腔室內之壓力。所述方法可包括:在降低半導體製程腔室內之壓力的同時,維持含碳前驅物之輸送。
這樣的技術可相對於習用系統和技術提供許多益處。舉例而言,本技術的實施例可生產特徵在於與習用技術相比增加的碳濃度之含碳材料。此外,本技術可生產具有可調諧的膜性質之含碳膜。結合以下描述和附圖更詳細地描述這些和其他實施例以及它們的諸多優點及特徵。
隨著元件尺寸持續縮減,許多材料層的厚度和尺寸可能減小以便縮放元件。隨著元件內的結構越來越靠近,可能更難以維持跨結構之一致性。現有處理可能無法在結構的減小的臨界尺寸上生產具有足夠一致性或其他材料特性之膜。舉例而言,由於形成可能影響後續利用減小的線間距之操作,使得膜可能有較高的線邊緣粗糙度和線寬粗糙度等特徵。儘管有些習用技術可能會調諧膜內之材料及濃度,但這些調整也可能會改變膜特性,這可能會導致後續處理期間之應力變形或其他不利效果。
本技術藉由進行基於熱之材料沉積(在沉積製程期間可不利用電漿產生)來克服這些問題。此外,本技術可在形成期間利用一或多種催化前驅物,這可改善所生產的材料中之膜特性。藉由進行特定含碳前驅物與含矽前驅物間之熱反應,本技術可允許進行低溫化學氣相沉積,這可在任何數量的半導體結構上提供共形生長(conformal growth)。所進行之製程可允許增加對正在生產的膜之調諧,從而為不同的應用提供具有多種材料性質之膜。
儘管其餘揭示內容將例行地識別利用所揭示的技術之具體沉積製程,且將描述一種類型的半導體製程腔室,但將容易理解的是,可在任何數量的半導體製程腔室中進行所描述的製程,還可以就任何數量的處理操作(其中可併入所描述的膜)進行所描述的製程。因此,所述技術不應被視為僅限於與這些具體沉積製程或腔室一起使用之技術。在描述根據本技術的半導體處理方法之前,本揭示內容將討論可用於進行根據本技術的實施例之製程的一種可能的腔室。
第1圖繪示根據本技術的一些實施例之範例製程腔室100的剖面視圖。該圖可圖解系統的概觀,所述系統可結合本技術之一或多個態樣,及/或可被具體配置以進行根據本技術之實施例的一或多個操作。在下文中可進一步描述腔室100或所進行之方法的額外細節。根據本技術的一些實施例,可利用腔室100來形成膜層,儘管可理解到所述方法可類似地在其中可發生膜形成之任何腔室中進行。製程腔室100可包括腔室主體102、設置於腔室主體102內部之基板支撐件104,及耦接腔室主體102並將基板支撐件104封閉於處理容積120中之蓋組件106。可經由開口126將基板103提供至處理容積120,傳統可使用狹縫閥或門來密封開口126以進行處理。在處理期間,基板103可位於基板支撐件的表面105上。如箭頭145所指示,基板支撐件104可沿著軸147旋轉,而基板支撐件104的軸桿144可位於軸147上。或者,在沉積製程期間,可視需求將基板支撐件104升起來旋轉。
可於製程腔室100中設置電漿輪廓調變器111,以控制跨基板103之電漿分佈,所述基板103設置於基板支撐件104上。電漿輪廓調變器111可包括第一電極108,第一電極108可被設置在腔室主體102鄰近處,且可使腔室主體102與蓋組件106的其他部件分開。第一電極108可為蓋組件106的部分,或可為單獨的側壁電極。第一電極108可以是環形或類環構件,且可以是環電極。第一電極108可以是連續的圈套,位於環繞處理容積120之製程腔室100的周圍附近,或者若需要的話可在所選位置處不連續。第一電極108也可以是穿孔的電極,如穿孔的環或網狀電極,或可為板電極,如,舉例而言,副氣體分配器(secondary gas distributor)。
一或多個隔離器110a、110b可接觸第一電極108並將第一電極108與氣體分配器112電性地和熱性地隔離,並將第一電極108與腔室主體102電性地和熱性地隔離,所述隔離器110a、110b可為介電材料,如陶瓷或金屬氧化物,例如,氧化鋁及/或氮化鋁。氣體分配器112可界定孔118,孔118用於將製程前驅物分配進入處理容積120內。氣體分配器112可耦接第一電功率源142,如RF產生器、RF功率源、DC功率源、脈衝式DC功率源、脈衝式RF功率源或可耦接製程腔室之任何其他功率源。在一些實施例中,第一電功率源142可為RF功率源。
氣體分配器112可為導電性氣體分配器或非導電性氣體分配器。也可由導電性或非導電性部件形成氣體分配器112。舉例而言,氣體分配器112的主體可為導電性,而氣體分配器112的面板可為非導電性。可例如藉由第1圖中所示之第一電功率源142對氣體分配器112供電,或在一些實施例中可將氣體分配器112接地。
第一電極108可耦接第一調諧電路128,第一調諧電路128可控制製程腔室100之接地路徑。第一調諧電路128可包括第一電子感測器130及第一電子控制器134。第一電子控制器134可為或可包括可變電容器或其他電路元件。第一調諧電路128可為或可包括一或多個電感器132。第一調諧電路128可為任何電路,在處理期間存在於處理容積120中之電漿條件下,所述電路可實現可變或可控制之阻抗。在所示之一些實施例中,第一調諧電路128可包括並聯耦接在接地與第一電子感測器130之間的第一電路分路(circuit leg)和第二電路分路。第一電路分路可包括第一電感器132A。第二電路分路可包括第二電感器132B,第二電感器132B串聯耦接第一電子控制器134。可將第二電感器132B設置在第一電子控制器134與節點之間,所述節點將第一和第二電路分路二者都連接至第一電子感測器130。第一電子感測器130可為電壓或電流感測器,且可耦接第一電子控制器134,而第一電子控制器134可對處理容積120內之電漿環境提供一定程度的閉合迴路控制(closed-loop control)。
第二電極122可耦接基板支撐件104。可將第二電極122嵌設於基板支撐件104內,或耦接基板支撐件104的表面。第二電極122可為板、穿孔板、網、絲網或導電元件之任何其他分散式佈置。第二電極122可為調諧電極,且可藉由導管146耦接第二調諧電路136,舉例而言,所述導管146是,例如,設置在基板支撐件104的軸桿144中之具有所選電阻(如50歐姆)之電纜。第二調諧電路136可具有第二電子感測器138及第二電子控制器140,第二電子控制器140可為第二可變電容器。第二電子感測器138可為電壓或電流感測器,且可耦接第二電子控制器140,以對處理容積120中之電漿環境提供進一步控制。
第三電極124可耦接基板支撐件104,第三電極124可為偏壓電極及/或靜電夾吸電極。第三電極可經由濾波器148耦接第二電功率源150,濾波器148可為阻抗匹配電路。第二電功率源150可為DC功率、脈衝式DC功率、RF偏壓功率、脈衝式RF源或偏壓功率,或這些或其他功率源之組合。在一些實施例中,第二電功率源150可為RF偏壓功率。基板支撐件104也可包括一或多個加熱元件,所述加熱元件經配置以將基板加熱至處理溫度,所述處理溫度可介於約25 °C與約800 °C或更高溫之間。
可與用於電漿或熱處理之任何處理腔室一起使用第1圖之蓋組件106和基板支撐件104。在操作中,處理腔室100可提供對處理容積120中之電漿環境的即時控制。可將基板103設置在基板支撐件104上,且可根據任何期望的流動計畫使用入口114使製程氣體流經蓋組件106。氣體可經由出口152離開處理腔室100。電源可耦接氣體分配器112,以在處理容積120中創造電漿。在一些實施例中,可使用第三電極124讓基板經受電偏壓。
一旦在處理容積120中激發電漿,可在電漿與第一電極108之間建立位能差。亦可在電漿與第二電極122之間建立位能差。接著可使用電子控制器134、140來調整由兩個調諧電路128及136所代表之接地路徑的流動性質。可將設定點輸送到第一調諧電路128及第二調諧電路136,以提供對沉積速率及從中心至邊緣的電漿密度均勻性之獨立控制。在電子控制器可均為可變電容器之實施例中,電子感測器可調整可變電容器,以獨立地最大化沉積速率並最小化厚度不均勻性。
各調諧電路128、136可具有可變阻抗,可使用相應的電子控制器134、140來調整所述可變阻抗。當電子控制器134、140為可變電容器,則可選擇可變電容器的電容範圍,還有第一電感器132A和第二電感器132B的電感,以提供阻抗範圍。此範圍可取決於電漿的頻率和電壓特性,而在各可變電容器的電容範圍內可具有最小值。因此,當第一電子控制器134的電容為最小或最大時,第一調諧電路128的阻抗可為高,導致電漿形狀在基板支撐件上方具有最小空中覆蓋率(aerial coverage)或橫向覆蓋率。當第一電子控制器134的電容接近使第一調諧電路128的阻抗最小之值時,電漿的空中覆蓋率可成長到最大,而有效地覆蓋基板支撐件104的整個工作區域。當第一電子控制器134的電容偏離最小阻抗設置時,電漿形狀可從腔室壁縮減,且基板支撐件的空中覆蓋率可能下降。第二電子控制器140可具有類似效應,隨著第二電子控制器140的電容之改變,而可增加或減少基板支撐件上方之電漿的空中覆蓋率。
可使用電子感測器130、138在封閉迴路中調諧相應電路128、136。取決於所使用之感測器類型,可將針對電流或電壓之設定點安裝在各感測器中,且感測器可配備有控制軟體,所述控制軟體決定對各相應電子控制器134、140之調整,以使與設定點之偏差最小化。於是,可在處理期間選擇並動態控制電漿形狀。應理解的是,儘管以上討論是基於可為可變電容器之電子控制器134、140,但具有可調整特性之任何電子部件都可用以為調諧電路128及136提供可調整的阻抗。
如前文所論述,雖然電漿-製程腔室可用於根據本技術之膜處理的一或多種態樣,但在一些實施例中,可不利用電漿增進式製程來形成矽和碳膜。利用電漿可能限制藉由從前驅物進一步釋出碳而產生之膜的共形性,且這可限制藉由允許碳與其他自由基物種重組並從腔室流出而產生之膜中的碳摻入。在一些實施例中,本技術可至少在不產生電漿的情況下形成膜。第2圖顯示根據本技術的一些實施例之處理方法200中的範例操作。可以在各種製程腔室中進行所述方法,包括上述製程腔室100,還有可在其中進行所述操作之任何其他腔室,包括非電漿腔室。方法200可包括數個可選操作,所述操作可與根據本技術之方法的一些實施例具體相關或可不與根據本技術之方法的一些實施例具體相關。舉例而言,為了提供結構形式之更廣泛籌而描述了許多操作,但這些操作對技術而言並非關鍵,或者可藉由容易理解之替代方法來進行。方法200可包括處理方法,所述處理方法可包括用於顯影含矽及碳膜之數個操作,所述含矽及碳膜可包括膜內之碳的可調節比例。如將在下文進一步解釋的,修改矽、催化前驅物和碳的比例,以及材料如何在膜內整合,可提供多種特性以就多種結構促進元件處理。
於操作205,所述方法可包括:將含矽前驅物及含碳前驅物提供至半導體製程腔室的處理區域,其中基板容納於所述處理區域。於可與操作205同時發生,也可在操作205前或後發生之操作210,可將含硼前驅物或催化前驅物提供至半導體製程腔室的處理區域。於操作215,使含矽前驅物、催化前驅物及含碳前驅物在半導體製程腔室的處理區域內進行熱反應,這可於操作220在基板上形成含矽及碳層。因為在一些實施例中進行之反應,半導體製程腔室、基座或基板可維持在大於或約250 °C之溫度,且在一些實施例中可維持在以下溫度:大於或約300 °C、大於或約320 °C、大於或約340 °C、大於或約360 °C、大於或約380 °C、大於或約400 °C、大於或約420 °C、大於或約440 °C、大於或約460 °C、大於或約480 °C、大於或約500 °C、大於或約520 °C、大於或約540 °C、大於或約560 °C、大於或約580 °C、大於或約600 °C或更高。
如前文所論述,可在使基板處理區域維持無電漿的同時進行一些或所有形成操作。藉由進行熱化學氣相沉積,可產生更保形的材料形成,以及以增加的碳摻入為特徵之材料。根據本技術的一些實施例,可在處理期間使用之含矽前驅物的非限制性實例可包括:矽烷、二矽烷、四氟化矽、四氯化矽、二氯矽烷(dichlorosilane)、四乙基正矽酸鹽,還有可用於含矽膜形成之任何其他含矽前驅物。許多烴前驅物的特徵在於高熱解溫度,這對含碳材料的熱沉積造成了挑戰。本技術可利用前驅物促進硼前驅物或其他催化前驅物與碳前驅物間之催化反應,從而提供在較低溫度下進行之沉積操作。儘管可以使用任何數量之含硼前驅物及含碳前驅物,但在一些實施例中,可選擇前驅物以促進催化反應。舉例而言,在一些實施例中,含硼前驅物可為含硼及氫前驅物,例如硼的氫化物,其可包括硼和氫或由硼和氫組成,且其特徵可在於化學式B xH y,其中x及y可為任意數。範例含硼前驅物可包括:硼烷、二硼烷、四硼烷、五硼烷、六硼烷、十硼烷或任何其他含硼前驅物。
含碳前驅物可為或可包括任何數量的含碳前驅物。舉例而言,含碳前驅物可為或可包括任何烴,或包括碳和氫或由碳和氫組成之任何材料。在一些實施例中,為了促進碳前驅物與矽或氧前驅物間之反應,含碳前驅物的特徵可在於一或多個碳-碳雙鍵及/或一或多個碳-碳參鍵。因此,在一些實施例中,含碳前驅物可為或可包括烯烴或炔烴,如乙炔、乙烯、丙烯或任何其他含碳材料。前驅物可包括含碳及氫前驅物,其可包括任何量之碳和氫鍵結加上任何其他元素鍵結,儘管在一些實施例中,含碳前驅物可由碳對碳及碳對氫鍵結組成。
許多因素可能會影響膜內之矽、硼及碳濃度。舉例而言,在一些實施例中,所產生之膜可限於矽、氧、碳及氫或基本上由矽、氧、碳及氫組成,加上任何微量材料,所述微量材料可能會導致例如汙染物。在一些實施例中,膜內之矽濃度可維持在小於或約40%,這可有助於限制膜內增加的壓縮應力。通常,隨著含矽前驅物流速增加,含矽膜的沉積速率可能會增加。這通常可形成以材料間更鬆散的結合為特徵之更具張力的膜。然而,應力可以具有相對的拉伸性質,如相較於含硼膜,由於可用的三個結合位點而可具有增加的拉伸性質。因此,就根據本技術之材料而言,隨著矽摻入或流速增加,所生產之材料實際上可能比較低矽摻入的材料更具壓縮性。這可能影響正在生產之某些結構。舉例而言,在一些實施例中,可利用本技術,藉由在心軸結構上形成和蝕刻後使線加倍,來生產間隔物結構。一旦移除心軸結構,壓縮的間隔物膜可能會變形或以增加的粗糙度為特徵。然而,若薄膜應力更為拉伸,如當剩餘層的特徵在於遠離心軸之應力,則可能更容易移除心軸,並可產生改進的間隔物結構和較低的粗糙度。
因此,在一些實施例中,所生產之材料在退火前或後之特徵可在於:小於或約38%的矽濃度,且可維持在小於或約36%、小於或約34%、小於或約32%、小於或約30%、小於或約28%、小於或約26%、小於或約24%、小於或約22%、小於或約20%、小於或約18%、小於或約16%、小於或約15%、小於或約14%、小於或約13%、小於或約12%、小於或約11%、小於或約10%、小於或約9%、小於或約8%或更小。膜內之硼濃度可維持在低於或約20%,這可指示保留在膜中之碳及矽之量,其中較低的硼含量可指示可保留更高的碳濃度。因此,在一些實施例中,所生產之材料在退火前或後之特徵可在於:小於或約15%的硼濃度,且可維持在小於或約12%、小於或約10%、小於或約9%、小於或約8%、小於或約7%、小於或約6%、小於或約5%、小於或約4%、小於或約3%、小於或約2%、小於或約1%或更小。
許多因素可能會影響膜內之碳及硼濃度。碳濃度可為大於或約5%,且可為大於或約10%、大於或約15%、大於或約20%、大於或約25%、大於或約30%、大於或約35%、大於或約40%、大於或約45%、大於或約50%、大於或約55%、大於或約60%、大於或約65%、大於或約70%、大於或約75%、大於或約80%、大於或約85%、大於或約90%或更大。在一些實施例中,碳的流速可提供高達閾值(如小於或約50%)之碳濃度。舉例而言,可基於含矽前驅物的解離進行熱反應,其自由基流出物可促進含碳材料的解離。然而,矽-矽鍵之形成可能與矽-碳鍵之形成競爭,因此,取決於含碳前驅物,碳摻入的量可能被限制在約50%或更小的閾值。此外,包括碳-碳參鍵之含碳前驅物比僅包括一或多個碳-碳雙鍵之含碳前驅物更容易解離。因此,增加包括一或多個雙鍵之含碳前驅物的流速可能限於產生小於或約35%的碳摻入,而增加包括一或多個參鍵之含碳前驅物的流速可能提供達小於或約50%的閾值之碳摻入。
然而,本技術可藉由利用催化前驅物伴隨含矽前驅物及含碳前驅物,來進一步增加所生產的膜中之碳濃度。儘管可使用任何數量之催化前驅物,在一些實施例中,催化前驅物可為或可包括含硼前驅物。不欲受限於任何特定理論或反應機制,包括含硼前驅物可有助於降低反應溫度,且可進一步有助於解離含碳前驅物。這可增加可用於沉積之碳自由基物種的量,且與習用技術相比可允許碳濃度更高,且在一些實施例中允許高達90%或更高的碳濃度。因此,在一些實施例中,碳原子摻入對矽原子摻入的比值可為大於或約1:1,且可為大於或約1.5:1、大於或約2.0:1、大於或約2.5:1、大於或約3.0:1、大於或約3.5:1、大於或約4.0:1、大於或約5.0:1、大於或約6.0:1、大於或約7.0:1、大於或約8.0:1、大於或約9.0:1、大於或約10.0:1或更大。
此外,使用的碳前驅物可能會影響所生產的膜之應力特性。儘管特徵在碳-碳參鍵之前驅物可促進增加的碳摻入,但該前驅物也可能降低所生產的膜之拉伸應力,這可能會影響某些結構中之效用(如前所記載)。因此,在一些實施例中,可使用多種碳前驅物,其可包括具有碳-碳參鍵之前驅物及/或具有碳-碳雙鍵之前驅物的任何組合。這可允許增加的膜調諧,其中具有碳-碳參鍵之前驅物可允許增加所生產的膜之碳濃度,而具有碳-碳雙鍵之前驅物可允許增加所生產的膜之拉伸應力。因此,所生產的膜之特徵可在於:大於或約50 MPa,且所生產的膜之特徵可在於:大於或約100 MPa、大於或約150 MPa、大於或約200 MPa、大於或約250 MPa、大於或約300 MPa、大於或約350 MPa或更大之拉伸薄膜應力。
膜中之氫摻入可能會影響一或多種材料性質,還有所生產的膜之品質。儘管含碳前驅物及/或含矽前驅物可包括氫,但在一些實施例中可不提供額外的氫源。儘管可與含矽前驅物及含碳前驅物一起提供惰性前驅物或載氣,但在一些實施例中,可不與前驅物一起輸送其他化學反應性前驅物。藉由將提供至腔室之氫限制為含碳前驅物及含矽前驅物中所包括之氫,所產生的膜內之氫的原子比例可低於額外提供氫氣之情況。
膜粗糙度也可能受到膜的成分影響,其中含碳前驅物可能會增加粗糙度。舉例而言,在一些實施例中,較長鏈的烴可能有助於增加膜粗糙度。粗糙度可能受到所產生的膜厚度之影響,且在一些實施例中,下文記載之粗糙度特性可歸因於任何膜厚度,包括小於或約50 nm、小於或約20 nm、小於或約10 nm、小於或約5 nm或更小的沉積厚度。舉例而言,所沉積的膜之方均根粗糙度可為小於或約1.000 nm,且可為小於或約0.750 nm、小於或約0.600 nm、小於或約0.500 nm、小於或約0.450 nm、小於或約0.400 nm、小於或約0.350 nm、小於或約0.300 nm、小於或約0.250 nm、小於或約0.200 nm或更小。
為了生產特徵在於增加的碳摻入之膜,同時控制膜內之硼濃度,本技術可輸送前驅物以控制原子摻入,並促進矽與碳間之鍵結。舉例而言,在許多處理操作期間,硼和碳易於鍵結並在膜內形成。因此,即使在最小流速或更低的流速下,碳和硼膜中之硼摻入量通常也可能超過50%或更多。然而,在本技術的實施例中,可使硼濃度最小化,由於硼作為膜內之碳和矽摻入的催化劑起作用,且其中硼的特徵在於:減少的摻入。此外,可使含矽前驅物及含硼前驅物維持在低流速,以確保增加的碳材料摻入。舉例而言,在一些實施例中,可將含矽前驅物的流速維持在小於或約250 sccm,且可維持在小於或約200 sccm、小於或約150 sccm、小於或約100 sccm、小於或約90 sccm、小於或約80 sccm、小於或約70 sccm、小於或約60 sccm、小於或約50 sccm、小於或約40 sccm、小於或約30 sccm、小於或約20 sccm、小於或約10 sccm或更小。藉由維持足夠低的含矽前驅物流速,可在允許矽自由基促進碳材料解離的同時控制矽摻入。
類似地,維持較低的含硼前驅物流速可控制硼摻入,這可促進催化交互作用,且與即使在低流速下以類似習用技術之高百分比摻入硼不同的是,可將硼摻入限制在上文討論之百分比。因此,在一些本技術的實施例中,含硼前驅物的流速可維持在小於或約50 sccm,且可維持在小於或約40 sccm、小於或約30 sccm、小於或約20 sccm、小於或約10 sccm、小於或約5 sccm、小於或約4 sccm、小於或約3 sccm、小於或約2 sccm、小於或約1 sccm或更小。含碳前驅物可在較高的流速下流動,這可確保有充足的碳可用於與矽自由基物種之交互作用,且這可增加矽-碳鍵結,同時減少矽-矽鍵結。因此,在一些實施例中,含碳前驅物的流速可維持在大於或約500 sccm,且可維持在大於或約750 sccm、大於或約1000 sccm、大於或約1250 sccm、大於或約1500 sccm、大於或約1750 sccm、大於或約2000 sccm、大於或約2250 sccm、大於或約2500 sccm或更大。
以彼此間之某些比值提供前驅物也可有助於控制膜形成,以產生前述之性質和特徵。舉例而言,在一些實施例中,含碳前驅物的流速可維持在高於含矽前驅物,這可有助於增加膜內之碳摻入。因此,在一些實施例中,含碳前驅物對含矽前驅物之流速比值可維持在大於或約1:1,且可維持在大於或約2:1、大於或約4:1、大於或約6:1、大於或約8:1、大於或約10:1、大於或約12:1、大於或約14:1、大於或約16:1、大於或約18:1、大於或約20:1、大於或約25:1、大於或約30:1、大於或約35:1、大於或約40:1、大於或約45:1、大於或約50:1或更大。此外,含硼前驅物的流速可維持在低於含矽前驅物或含碳前驅物,這可有助於作為催化劑之操作,同時限制膜內之摻入。在一些實施例中,任何其他前驅物相對於含硼前驅物之流速比值可維持在大於或約10:1,且可維持在大於或約25:1、大於或約50:1、大於或約75:1、大於或約100:1、大於或約125:1、大於或約150:1、大於或約175:1、大於或約200:1、大於或約300:1、大於或約400:1、大於或約500:1、大於或約600:1、大於或約700:1、大於或約800:1、大於或約900:1、大於或約1000:1或更大。
可在任何數量的壓力狀態下進行含矽及碳結構的發展,如大於或約10托耳、大於或約12托耳、大於或約15托耳、大於或約20托耳、大於或約50托耳、大於或約100托耳、大於或約150托耳、大於或約200托耳、大於或約250托耳、大於或約300托耳或更高。在已經產生足夠的膜厚度之後,且當基板仍駐留在半導體製程腔室的處理區域中,可藉由使腔室排氣並降低壓力以增加真空條件來進行淨化操作。通常,處理將涉及停止所有沉積前驅物之輸送,接著進行減壓。因為本技術的實施例可以在如上所記載之相對高壓力下進行,所以可能需要相當時間將壓力排除到幾托耳的壓力。儘管可能容易地從處理區域排出碳,但矽電漿流出物可維持在處理區域中,所述處理區域通常維持在處理溫度下。所以,這可能導致在所生產的膜上形成富含矽的蓋體(silicon-rich cap)。因此,在一些本技術的實施例中,方法200可包括確保整個膜更均勻分佈之製程。
舉例而言,在一些實施例中,一旦沉積或形成的足夠的膜厚度,可於視情況的操作225停止含矽前驅物之輸送。接著可於視情況的操作230降低腔室中之壓力,例如藉由打開排放前級管線結構(foreline structure)中之節流閥。此外,在一些實施例中,於視情況的操作235,在抽吸或排空腔室的同時,可至少部分地維持一或多種含碳前驅物的流動。舉例而言,含碳前驅物的流速可完全維持,或可維持在流速的分率,如小於或約75%、小於或約50%、小於或約25%或更小。因此,剩餘的矽自由基流出物可更傾向於與碳材料交互作用,且所產生的膜之最終厚度(如小於或約5%、小於或約3%、小於或約1%或更小)之特徵可在於與膜主體具有相似或相同的原子結構。
藉由本技術生產之矽及碳材料可用於多種結構中,且可為遮罩、襯墊或間隔物,例如,其可在已進行後續處理之後被去除。基於所生產的材料的配置,在一些實施例中,可在不需要含鹵素電漿的情況下去除膜,這可能會影響相對於下方材料的蝕刻選擇性,且在一些實施例中,可能根本不需要電漿去除。舉例而言,在一些實施例中,在形成矽及碳材料和隨後的材料處理後,可在視情況的操作240中將矽及碳材料暴露於一或多種蝕刻劑。在一些實施例中,可藉由腔室的處理區域內之含氫或含氧前驅物形成原位電漿,如利用氧、水或任何其他含氧材料,這可在維持或實質上維持下方材料的同時提供矽及碳材料之灰化。
此外,當結構中包括膜,而可在所述結構進行選擇性去除單獨材料(如非晶碳膜)時,例如,可至少部分地保留所述膜。舉例而言,因為在薄膜中摻入矽,例如與僅限於硼和碳的材料相比,暴露於氧氣可能會產生一層氧化矽,其可能會抵抗從氧電漿進一步去除。因此,在一些實施例中,雖然可以至少部分地蝕刻含矽及碳層,但是由於氧化矽的形成,材料可能沒有被完全去除。此外,在一些實施例中,可進行濕式蝕刻以去除膜的某些或所有方面,包括殘留的氧化矽層。舉例而言,可將氧化材料施加至矽及碳材料,這可在一些實施例中去除材料,且隨後可進行酸蝕刻或乾式選擇性蝕刻以去除可能殘留的氧化矽。在一些實施例中,當碳摻入高於閾值(如大於或約30%、大於或約35%、大於或約40%或更高)時,可將氫氧化物溶液,例如可與酸(如硫酸)混合,施加至基板,這可以至少部分地去除矽及碳材料。
如前文所解說,在一些實施例中,基於熱之材料形成可提供更保形的膜,其可用作在半導體處理期間使用之襯墊、間隔物或其他材料。第3圖繪示根據本技術的一些實施例產生之範例沉積。舉例而言,基板305可具有形成的材料310,或可具有穿過基板形成之數個特徵,這可產生結構,如在一些實施例中之線結構。在一些本技術的實施例中,可在圖解的結構上方形成矽及碳膜315。應理解的是,此實例並非欲作為限制,因為本技術可以用於任何數量的處理操作中。可根據先前描述之方法或操作形成膜。
在一些實施例中,可限制特徵的深寬比,或所形成的特徵間之寬度。電漿沉積層可能無法進入溝槽內的更深處,且可能在特徵的頂部發生夾斷(pinch off)。然而,藉由本技術生產的矽及碳膜的特徵可在於完全覆蓋所示結構。舉例而言,沿著靠近結構頂部的側壁之膜的厚度和沿著靠近結構底部的側壁之膜的厚度可為實質上相同,其中所生產的膜是實質上保形的。因此,在一些實施例中,所沉積的膜之特徵可在於:在任何兩個區域(包括跨特徵的頂部、沿著側壁及/或特徵間的基部處之區域)間形成,還有沿著所形成的膜之任何位置之共形性或厚度的相似性大於或約80%。在一些實施例中,共形性可為大於或約85%、大於或約90%、大於或約92%、大於或約94%、大於或約96%、大於或約98%或更高。因此,與傳統上發展的膜相比,本技術可生產特徵在於受控的應力及增加的碳摻入之含矽及碳膜。
在前文描述中,出於解說之目的,已經闡述了諸多細節以便提供對本技術之各種實施例的理解。然而,對於本案所屬技術領域中具通常知識者將顯而易見的是,可在沒有這些細節中的某些細節或在有額外細節的情況下實踐某些實施例。
在已揭示若干實施例之後,本案所屬技術領域中具通常知識者將認識到,在不偏離實施例之精神的情況下可使用各種修改、替代構造及等效物。另外,為了避免不必要地混淆本技術,未描述若干已熟知的製程及元件。因此,上文描述不應視為限制本技術之範疇。
在提供一範圍之值之情況下,除非本文另有明確指定,應理解亦特定地揭示彼範圍之上限與下限之間的每一中間值,精確度為至下限單位的最小分位。將涵蓋在陳述範圍中之任一陳述值或未陳述的中間值與在彼陳述範圍中之任一其他陳述值或中間值之間的任何較窄範圍。此等較小範圍之上限及下限可獨立地包括於該範圍中或排除於該範圍之外,且在界限中任一者、沒有任一界限或兩界限皆包括於該等較小範圍中之每一範圍亦涵蓋於本技術內,所述每一範圍受所陳述範圍中任何特定排除之界限管轄。在所陳述範圍包括該等限制中一者或兩者之情況下,亦包括排除彼等包括之限制中一者或兩者之範圍。
如本文及隨附申請專利範圍中所使用,除非本文另有明確指定,否則單數形式「一(a)」、「一(an)」及「該(the)」包括複數參照。因此,例如,參照「一前驅物」包括複數個此類前驅物,且參照「該層」包括參照一或多種層及本案所屬技術領域中具通常知識者所知之等效物,等等。
又,當在本案說明書中及下文申請專利範圍中使用字彙「包含(comprise)」、「包含(comprising)」、「含有(contain)」「包括(include)」及「包括(including)」時,意欲指定陳述之特徵、整數、部件或操作之存在,但該等字彙不排除一或多個其他特徵、整數、部件、操作、動作或群組之存在或添加。
100:製程腔室 102:腔室主體 103:基板 104:基板支撐件 105:表面 106:蓋組件 108:電極 110a,110b:隔離器 112:氣體分配器 114:入口 118:孔 120:處理容積 122:電極 124:電極 126:開口 128:調諧電路 130:電子感測器 132A,132B:電感器 134:電子控制器 136:調諧電路 138:電子感測器 140:電子控制器 142:電功率源 144:軸桿 145:箭頭 146:導管 147:軸 148:濾波器 150:電功率源 152:出口 200:方法 205~240:操作 305:基板 310:材料 315:矽及碳膜
透過參考說明書的其餘部分及圖式,可進一步瞭解本文揭露之技術的本質與優點。
第1圖繪示根據本技術的一些實施例之範例電漿系統的示意剖面視圖。
第2圖繪示根據本技術的一些實施例之半導體處理方法中之操作。
第3圖繪示由根據本技術的一些實施例生產之範例材料層。
以示意方式包括數個圖式。應理解到,該等圖式僅用於說明之目的,且除非特別說明是按比例繪示,否則不應被視為按比例繪示。此外,作為示意圖,該等圖式用於幫助理解,且相較於現實的表現,可能不包括所有態樣或資訊,且出於說明之目的,可能包括誇大的材料。
在附圖中,類似的部件及/或特徵可以具有相同的元件符號。進一步而言,同類的各部件可透過在元件符號後加上字母(該字母區別類似部件)加以區別。若在說明書中僅使用第一元件符號,則該描述適用於具有相同第一元件符號之任何一個相似部件,無論第二符號為何。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
305:基板
310:材料
315:矽及碳膜

Claims (20)

  1. 一種半導體處理方法,包含以下步驟: 將一含矽前驅物及一含碳前驅物提供至一半導體製程腔室的一處理區域,其中該含碳前驅物的特徵在於:一碳-碳雙鍵或一碳-碳參鍵,且其中一基板設置於該半導體製程腔室的該處理區域內; 將一含硼前驅物提供至該半導體製程腔室的該處理區域; 在高於約250 °C之一溫度下,使該含矽前驅物、該含碳前驅物及該含硼前驅物進行熱反應;以及 於該基板上形成一含矽及碳層。
  2. 如請求項1所述之半導體處理方法,其中於該基板上形成該含矽及碳層的同時,使該半導體製程腔室的該處理區域維持無電漿。
  3. 如請求項1所述之半導體處理方法,其中該膜內之一硼濃度維持在小於或約20原子%。
  4. 如請求項1所述之半導體處理方法,其中該基板的特徵在於:一或多個特徵,且其中以大於或約90%之一共形性圍繞該一或多個特徵形成該含矽及碳層。
  5. 如請求項1所述之半導體處理方法,其中使該含矽前驅物、該含碳前驅物及該含硼前驅物進行熱反應係在大於或約400 °C之一溫度下進行。
  6. 如請求項1所述之半導體處理方法,其中該含矽及碳層的特徵在於:大於或約30原子%之碳濃度,且其中該含矽及碳層的特徵在於:小於或約50原子%之矽濃度。
  7. 如請求項6所述之半導體處理方法,其中碳摻入對矽摻入的比值維持在大於或約3:1。
  8. 如請求項1所述之半導體處理方法,進一步包含以下步驟: 停止輸送該含矽前驅物;以及 降低該半導體製程腔室內之壓力。
  9. 如請求項8所述之半導體處理方法,進一步包含以下步驟: 在降低該半導體製程腔室內之壓力的同時維持輸送該含碳前驅物。
  10. 如請求項1所述之半導體處理方法,其中以大於或約10:1之對該含矽前驅物之一流速比值提供該含碳前驅物。
  11. 如請求項1所述之半導體處理方法,進一步包含以下步驟: 將該含矽及碳層暴露於一含氧電漿;以及 至少部分地蝕刻該含矽及碳層。
  12. 一種半導體處理方法,包含以下步驟: 將一含矽前驅物及一含碳前驅物提供至一半導體製程腔室的一處理區域,其中以大於或約10:1之對該含矽前驅物之一流速比值提供該含碳前驅物,且其中一基板設置於該半導體製程腔室的該處理區域內; 將一含硼前驅物提供至該半導體製程腔室的該處理區域; 在大於或約400 °C之一溫度下,使該含矽前驅物、該含碳前驅物及該含硼前驅物進行熱反應;以及 於該基板上形成一含矽及碳層。
  13. 如請求項12所述之半導體處理方法,其中於該半導體處理方法期間,使該半導體製程腔室的該處理區域維持無電漿。
  14. 如請求項12所述之半導體處理方法,其中在形成該含矽及碳層的同時將該半導體製程腔室內之壓力維持在大於或約12托耳。
  15. 如請求項12所述之半導體處理方法,其中該含矽及碳層的特徵在於:小於或約0.5 nm之平均粗糙度,且其中該含矽及碳層的特徵在於:正應力(positive stress)。
  16. 如請求項12所述之半導體處理方法,其中該含矽及碳層的特徵在於:大於或約50原子%之碳濃度,且其中該含矽及碳層的特徵在於:小於或約20原子%之矽濃度,且其中該含矽及碳層的特徵在於:小於或約10原子%之硼濃度。
  17. 如請求項12所述之半導體處理方法,進一步包含以下步驟: 停止輸送該含矽前驅物; 降低該半導體製程腔室內之壓力;以及 在降低該半導體製程腔室內之壓力的同時維持輸送該含碳前驅物。
  18. 一種半導體處理方法,包含以下步驟: 將一含矽前驅物、一第一含碳前驅物及一第二含碳前驅物提供至一半導體製程腔室的一處理區域,其中一基板設置於該半導體製程腔室的該處理區域內; 將一催化前驅物提供至該半導體製程腔室的該處理區域; 在大於或約300 °C之一溫度下,使該含矽前驅物、該第一含碳前驅物、該第二含碳前驅物及該催化前驅物進行熱反應;以及 於該基板上形成一含矽及碳層。
  19. 如請求項18所述之半導體處理方法,其中於該基板上形成該含矽及碳層的同時,使該半導體製程腔室的該處理區域維持無電漿。
  20. 如請求項18所述之半導體處理方法,進一步包含以下步驟: 停止輸送該含矽前驅物; 降低該半導體製程腔室內之壓力;以及 在降低該半導體製程腔室內之壓力的同時維持輸送該含碳前驅物。
TW111114598A 2021-04-20 2022-04-18 含碳材料之催化熱沉積 TW202333185A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/235,241 2021-04-20
US17/235,241 US11682554B2 (en) 2021-04-20 2021-04-20 Catalytic thermal deposition of carbon-containing materials

Publications (1)

Publication Number Publication Date
TW202333185A true TW202333185A (zh) 2023-08-16

Family

ID=83601637

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114598A TW202333185A (zh) 2021-04-20 2022-04-18 含碳材料之催化熱沉積

Country Status (6)

Country Link
US (1) US11682554B2 (zh)
JP (1) JP2024516142A (zh)
KR (1) KR20230167437A (zh)
CN (1) CN117413343A (zh)
TW (1) TW202333185A (zh)
WO (1) WO2022225829A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228475A (ja) 1989-02-28 1990-09-11 Showa Denko Kk 炭化ケイ素被膜の製造方法
US5403434A (en) * 1994-01-06 1995-04-04 Texas Instruments Incorporated Low-temperature in-situ dry cleaning process for semiconductor wafer
JP5699980B2 (ja) 2011-06-16 2015-04-15 東京エレクトロン株式会社 成膜方法及び成膜装置
US20180347035A1 (en) * 2012-06-12 2018-12-06 Lam Research Corporation Conformal deposition of silicon carbide films using heterogeneous precursor interaction
US10832904B2 (en) * 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
JP6957442B2 (ja) 2018-11-30 2021-11-02 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2020136387A (ja) 2019-02-15 2020-08-31 東京エレクトロン株式会社 成膜方法、成膜処理用の処理容器のクリーニング方法及び成膜装置

Also Published As

Publication number Publication date
US11682554B2 (en) 2023-06-20
KR20230167437A (ko) 2023-12-08
JP2024516142A (ja) 2024-04-12
US20220336212A1 (en) 2022-10-20
WO2022225829A1 (en) 2022-10-27
CN117413343A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20230250531A1 (en) Method of forming structures using a neutral beam, structures formed using the method and reactor system for performing the method
US11637011B2 (en) Method of topology-selective film formation of silicon oxide
US11127589B2 (en) Method of topology-selective film formation of silicon oxide
KR20210095050A (ko) 박막 형성 방법 및 박막 표면 개질 방법
CN111593329A (zh) 包括处理步骤的循环沉积方法及用于其的装置
CN112071754A (zh) 使用重整气体形成电子结构的方法、系统和形成的结构
US20230203652A1 (en) Methods to reduce material surface roughness
JP2023535369A (ja) 流動性膜の形成及び処理
TW202333185A (zh) 含碳材料之催化熱沉積
TWI809674B (zh) 經摻雜的氧化矽的熱沉積
US20230360906A1 (en) Silicon-and-carbon-containing materials with low dielectric constants
US11894228B2 (en) Treatments for controlling deposition defects
US11626278B2 (en) Catalytic formation of boron and carbon films
TWI817522B (zh) 用於遮罩圖案化的氮化硼
US20240038527A1 (en) Forming films with improved film quality
JP2023539678A (ja) 高密度かつ高引張応力の膜を堆積するためのシステム及び方法
TW202412066A (zh) 低溫氧化矽間隙填充
TW202407758A (zh) 使用體積膨脹的大面積間隙填充
TW202132897A (zh) 高硼含量硬遮罩材料
CN114427085A (zh) 在阶梯结构上沉积材料的方法