TW202320238A - 半導體裝置及其形成方法 - Google Patents

半導體裝置及其形成方法 Download PDF

Info

Publication number
TW202320238A
TW202320238A TW111128904A TW111128904A TW202320238A TW 202320238 A TW202320238 A TW 202320238A TW 111128904 A TW111128904 A TW 111128904A TW 111128904 A TW111128904 A TW 111128904A TW 202320238 A TW202320238 A TW 202320238A
Authority
TW
Taiwan
Prior art keywords
layer
silicide
drain region
forming
type
Prior art date
Application number
TW111128904A
Other languages
English (en)
Inventor
王振翰
林耕竹
洪宗佑
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202320238A publication Critical patent/TW202320238A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

提供具有不同配置的接觸結構的半導體裝置及其製造方法。方法包括:在基底上形成第一與第二鰭狀物結構;分別在第一與第二鰭狀物結構上形n型與p型源極/汲極區;分別在n型與p型源極/汲極區上形成第一與第二氧化停止層;分別在第一與第二氧化停止層上磊晶成長第一與第二半導體層;分別將第一與第二半導體層轉換為第一與第二半導體氧化物層;在p型源極/汲極區上形成第一矽化物─鍺化物層;以及在第一矽化物─鍺化物層上與n型源極/汲極區上形成第二矽化物─鍺化物層。

Description

半導體裝置及其形成方法
本發明實施例是關於半導體製程,特別是關於半導體裝置及其形成方法。
隨著半導體技術的進步,對於較高儲存容量、較快的處理系統、較高性能及較低成本有日益增加的需求。為了達成這些需求,半導體產業持續縮小半導體裝置(例如金屬─氧化物─半導體場效電晶體(metal oxide semiconductor field effect transistors;MOSFETs),其包括平面式的金屬─氧化物─半導體場效電晶體及鰭式場效電晶體(fin field effect transistors;finFETs))的尺寸。這樣的尺寸縮減已經增加半導體製造過程的複雜度。
一實施例是關於一種半導體裝置的形成方法。上述半導體裝置的形成方法包括:在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構。上述半導體裝置的形成方法又包括:分別在上述第一鰭狀物結構上與上述第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區。上述半導體裝置的形成方法又包括:分別在上述n型源極/汲極區與上述p型源極/汲極區上形成一第一氧化停止層與一第二氧化停止層。上述半導體裝置的形成方法又包括:分別在上述第一氧化停止層與上述第二氧化停止層上磊晶成長一第一半導體層與一第二半導體層。上述半導體裝置的形成方法又包括:分別將上述第一半導體層與上述第二半導體層轉換為一第一半導體氧化物層與一第二半導體氧化物層。上述半導體裝置的形成方法又包括:在上述p型源極/汲極區上形成一第一矽化物─鍺化物層。上述半導體裝置的形成方法還包括:在上述第一矽化物─鍺化物層上與上述n型源極/汲極區上形成一第二矽化物─鍺化物層。
另一實施例是關於一種半導體裝置的形成方法。上述半導體裝置的形成方法包括:在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構。上述半導體裝置的形成方法又包括:分別在上述第一鰭狀物結構與上述第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區。上述半導體裝置的形成方法又包括:在上述n型源極/汲極區上與上述p型源極/汲極區上沉積一矽化停止層。上述半導體裝置的形成方法又包括:在上述p型源極/汲極區上形成一p型功函數金屬(p-type work function metal;pWFM)矽化物層。上述半導體裝置的形成方法還包括:在上述p型功函數金屬矽化物層上與上述n型源極/汲極區上形成一n型功函數金屬(n-type work function metal;nWFM)矽化物層。
又另一實施例是關於一種半導體裝置。上述半導體裝置包括一基底。上述半導體裝置又包括一第一鰭狀物結構與一第二鰭狀物結構,置於上述基底上。上述半導體裝置又包括複數個第一奈米結構層的一堆疊物,置於上述第一鰭狀物結構的一第一部分上。上述半導體裝置又包括複數個第二奈米結構層的一堆疊物,置於上述第二鰭狀物結構的一第一部分上。上述半導體裝置又包括一第一閘極結構,圍繞上述第一奈米結構層中的至少一個。上述半導體裝置又包括一第二閘極結構,圍繞上述第二奈米結構層中的至少一個。上述半導體裝置又包括一第一源極/汲極區與一第二源極/汲極區,分別置於上述第一鰭狀物結構的一第二部分上與上述第二鰭狀物結構的一第二部分上。上述半導體裝置又包括一第一金屬矽化物─鍺化物層,置於上述第一源極/汲極區上。上述半導體裝置又包括一第二金屬矽化物─鍺化物層,置於上述第一金屬矽化物─鍺化物層上與上述第二源極/汲極區上。上述半導體裝置還包括一第一接觸插塞與一第二接觸插塞,分別置於上述第一金屬矽化物─鍺化物層上與上述第二金屬矽化物─鍺化物層上,其中上述第一接觸插塞的一金屬與上述第二接觸插塞的一金屬相同。
參考所配合的圖式敘述圖示的實施例。在圖式中,類似的元件符號一般是代表相同、功能上類似及/或結構上類似的元件。
以下揭露內容提供了許多不同的實施例或範例,用於實施所提供之申請專利之發明的不同部件。組件和配置的具體範例描述如下,以簡化本發明實施例的說明。當然,這些僅僅是範例,並非用以限定本發明的實施例。舉例而言,以下敘述中提及第一部件形成於第二部件的上方,可能包含第一與第二部件直接接觸的實施例,也可能包含額外的部件形成於第一與第二部件之間,使得第一與第二部件不直接接觸的實施例。如本文所使用,在第二部件上形成第一部件,意指將第一部件形成為與第二部件直接接觸。此外,本發明實施例在各種範例中可能重複元件符號的數字及/或字母,此重複並非在討論的各種實施例及/或組態之間指定其關係。
在此可使用空間相對用詞,例如「在……下方」、「在……下」、「低於」、「下方的」、「在……上」、「高於」、「上方的」及類似的用詞以助於描述圖中所示之其中一個元件或部件相對於另一(些)元件或部件之間的關係。這些空間相對用詞是用以涵蓋圖式所描繪的方向以外,使用中或操作中之裝置的不同方向。裝置可能被另行轉向(旋轉90度或其他方向),且可與其相應地解釋在此使用之空間相對描述。
要注意的是,在本專利說明書提及的「一種實施例」、「一實施例」、「一例示實施例」、「例示的」等等,是指所述的實施例可能包括一特定部件、結構或特徵,但每個實施例不一定包括上述特定部件、結構或特徵。還有,這樣的用語不一定指的是相同的實施例。另外,當敘述一特定部件、結構或特徵與一實施例有關,無論是否有明確記載,在所屬技術領域中具有通常知識者的所知範圍,會實現這樣的部件、結構或特徵與其他實施例的關聯。
要瞭解的是,本文的措辭或術語是為了說明的目的而不是限制的目的,而使本專利說明書的措辭或術語將由所屬技術領域中具有通常知識者按照本文的教示來解釋。
在一些實施例中,「約」及「實質上」的用詞可用來指出一個值所被賦予的數量在其值的百分之五的範圍內變化(舉例而言:其值的±1 %、±2 %、±3 %、±4 %、±5 %)。如所屬技術領域中具有通常知識者按照本文的教示來解釋,「約」及「實質上」的用詞可以與上述值的百分比有關。
可以藉由任何適當的方法,將本文揭露的鰭狀物結構圖形化。例如,可使用一或多道光學微影製程,包括雙重圖形化或多重圖形化製程來將鰭狀物結構圖形化。雙重圖形化或多重圖形化製程可以結合光學微影及自對準製程,得以使所形成的圖形比使用單一、直接的光學微影製程可獲得的圖案具有更小的截距(例如)。例如,將一犧牲層形成於一基底的上方,並使用一光學微影製程對上述犧牲層進行圖形化。使用一自對準製程,在上述圖形化的犧牲層旁側形成複數個間隔物。然後,移除上述犧牲層,餘留的間隔物可在後續用於鰭狀物的圖形化。
本發明實施例提供了具有場效電晶體(舉例而言:鰭式場效電晶體(finFETs))的例示性半導體裝置,其場效電晶體具有彼此不同的源極/汲極(source/drain;S/D)接觸結構;本發明實施例並且提供了形成具有矽化停止層的這樣的接觸結構的例示性方法。上述例示性方法在半導體裝置的n型場效電晶體(n-type field effect transistor;NFET)及p型場效電晶體(p-type field effect transistor;PFET)的鰭狀物結構上分別形成n型源極/汲極區及p型源極/汲極區的陣列。在一些實施例中,n型源極/汲極區上的接觸結構具有矽化物層(在本文,除非有其他說明,亦稱為「矽化物─鍺化物層」(silicide-germanide layers)),其與p型源極/汲極區上之接觸結構的矽化物層不同。
源極/汲極區與源極/汲極接觸結構之間的接觸電阻是正比於源極/汲極區的材料及源極/汲極接觸結構的矽化物層之間的肖特基能障高度(Schottky barrier heights;SBH)。對於n型源極/汲極區而言,減小矽化物層的功函數值與源極/汲極區的n型材料的導帶能量之間的差,可以減小n型源極/汲極區及源極/汲極接觸結構之間的肖特基能障高度。相反地,對於p型源極/汲極區而言,減小矽化物層的功函數值與源極/汲極區的p型材料的價帶能量之間的差,可以減小p型源極/汲極區及源極/汲極接觸結構之間的肖特基能障高度。在一些實施例中,由於n型場效電晶體及p型場效電晶體的源極/汲極區是由各自的n型及p型材料所形成,所以n型場效電晶體及p型場效電晶體的源極/汲極接觸結構是由與彼此不同的矽化物層所形成,以減少源極/汲極接觸結構與源極/汲極區的不同材料之間的接觸電阻。
在一些實施例中,n型場效電晶體的源極/汲極接觸結構是以n型功函數金屬(n-type work function metal;nWFM)矽化物層(舉例而言:矽化─鍺化鈦(titanium silicide-germanide))所形成,其具有相較於n型源極/汲極區之價帶能量而言更接近導帶能量的功函數值。相反地,p型場效電晶體的源極/汲極接觸結構是以p型功函數金屬(p-type work function metal;pWFM)矽化物層(舉例而言:矽化─鍺化鎳(nickel silicide-germanide)或矽化─鍺化鈷(cobalt silicide-germanide))所形成,其具有相較於p型源極/汲極之導帶能量而言更接近價帶能量的功函數值。可以由n型源極/汲極區以及設置於n型源極/汲極區上的n型功函數金屬層之間的矽化反應(或是,矽化及鍺化反應),來形成n型功函數金屬矽化物層。可以由型源極/汲極區及設置於p型源極/汲極區上的p型功函數金屬層之間的矽化反應(或是,矽化及鍺化反應),來形成p型功函數金屬矽化物層。
在一些實施例中,在p型源極/汲極區上選擇性地形成p型功函數金屬層的方法,包括在n型源極/汲極區上與p型源極/汲極區上沉積p型功函數金屬層之前,在n型源極/汲極區上形成矽化停止層。上述矽化停止層可以避免p型功函數金屬層與n型源極/汲極區之間的矽化反應。在一些實施例中,在n型源極/汲極區上形成矽化停止層可以包括:在n型源極/汲極區上沉積或磊晶成長半導體材料(舉例而言:矽或矽鍺(silicon germanium;SiGe));以及將上述半導體材料氧化。比起p型功函數金屬層的金屬原子,半導體材料與氧原子具有較強的化學鍵結。其結果,上述矽化停止層的被氧化的半導體材料並未與p型功函數金屬層的金屬反應,而避免上述矽化停止層下方的p型功函數金屬層的金屬與n型源極/汲極區之間的化學性的交互作用。在一些實施例中,可以在上述矽化停止層與上述n型源極/汲極區之間沉積或磊晶成長氧化停止層,以保護n型源極/汲極區的材料而免於在形成上述矽化停止層的期間遭到氧化。
第1A圖繪示根據一些實施例具有n型場效電晶體102N與p型場效電晶體102P的半導體裝置100的等角視圖。第1B圖繪示沿著第1A圖的線A-A的n型場效電晶體102N的剖面圖。第1C圖繪示沿著第1A圖的線B-B的p型場效電晶體102P的剖面圖。第1B與1C圖繪示半導體裝置100的剖面圖,並顯示半導體裝置100所具有的為了簡化而未繪示於第1A圖的額外結構。除非另有敘述,對於具有相同元件符號的n型場效電晶體102N與p型場效電晶體102P的元件的討論適用於彼此。
請參考第1A圖,n型場效電晶體102N可以包括閘極結構112N的陣列,其置於鰭狀物結構106N上;而p型場效電晶體102P可以包括閘極結構112P的陣列,其置於鰭狀物結構106P上。n型場效電晶體102N還可以包括複數個奈米結構通道區121的堆疊物以及複數個源極/汲極區110N的陣列(源極/汲極區110N中的一個可見於第1A圖),其中複數個閘極結構112N圍繞奈米結構通道區121的堆疊物,源極/汲極區110N的陣列是置於鰭狀物結構106N未被閘極結構112N覆蓋的部分上。類似地,p型場效電晶體102P還可以包括複數個奈米結構通道區121的堆疊物以及複數個源極/汲極區110P的陣列(源極/汲極區110P中的一個可見於第1A圖),其中複數個閘極結構112P圍繞奈米結構通道區121的堆疊物,源極/汲極區110P的陣列是置於鰭狀物結構106P未被閘極結構112P覆蓋的部分上。如本文使用的「奈米結構」(nanostructured)的用語是定義一結構、層及/或區域,其具有小於例如約100 nm的一水平尺寸(舉例而言:沿著X軸及/或Y軸)及/或一垂直尺寸(舉例而言:沿著Z軸),例如小於約90 nm、約50 nm、約10 nm或小於約100 nm的其他值。
半導體裝置100可以更包括複數個閘極間隔物114、複數個淺溝槽隔離(shallow trench isolation;STI)區116、複數個蝕刻停止層(etch sstop layers;ESLs)117及複數個層間介電(interlayer dielectric;ILD)層118。層間介電層118可以置於蝕刻停止層117上。蝕刻停止層117可以被設置來保護閘極結構112N與112P及/或源極/汲極區110N與110P。在一些實施例中,閘極間隔物114、淺溝槽隔離區116、蝕刻停止層117與層間介電層118可以包括一絕緣材料,例如氧化矽、 氮化矽(SiN)、氮碳化矽(silicon carbon nitride;SiCN)、氮碳氧化矽(silicon oxycarbon nitride;SiOCN)及氧化矽鍺(silicon germanium oxide)。
半導體裝置100可以形成在一基底104上,並具有形成在基底104的不同區域上的n型場效電晶體102N與p型場效電晶體102P。在基底104上,可能有其他場效電晶體及/或結構(舉例而言:隔離結構)形成在n型場效電晶體102N與p型場效電晶體102P之間。基底104可以是一半導體材料,例如矽、鍺(Ge)、矽鍺(silicon germanium;SiGe)、一絕緣體上覆矽(silicon-on-insulator;SOI)結構及上述之組合。另外,基底104可以摻雜有p型摻雜物(舉例而言:硼、銦、鋁或鎵)或n型摻雜物(舉例而言:磷或砷)。在一些實施例中,鰭狀物結構106N至106P可以包括類似於基底104的材料,並沿著X軸延伸。
請參考第1B至1C圖,n型場效電晶體102N與p型場效電晶體102P可以包括複數個奈米結構通道區121的堆疊物、閘極結構112N與112P、源極/汲極區110N與110P及置於源極/汲極區110N與110P上的源極/汲極接觸結構110N與110P。
在一些實施例中,奈米結構通道區121可以包括類似於或不同於基底104的半導體材料。在一些實施例中,奈米結構通道區121可以包括矽、矽砷(SiAs)、磷化矽(silicon phosphide;SiP)、碳化矽(SiC)、磷化矽碳(SiCP)、矽鍺(SiGe)、矽鍺硼(Silicon Germanium Boron;SiGeB)、鍺硼(Germanium Boron;GeB)、矽鍺錫硼(Silicon-Germanium-Tin-Boron;SiGeSnB)、一III-V族半導體化合物或其他適當的半導體材料。儘管顯示奈米結構通道區121的矩形剖面,奈米結構通道區121可以具有其他幾何形狀(舉例而言:圓形、橢圓形、三角形或多邊形)的剖面。
在一些實施例中,閘極結構112N與112P可以是多層結構且可以圍繞每個奈米結構通道區121,可以將這樣的閘極結構112N與112P稱為「全繞式閘極結構」(gate-all-around structures;GAA structures)或「水平全繞式閘極結構」(horizontal gate-all-around structures;horizontal GAA structures)。可以將n型場效電晶體102N稱為「全繞式閘極場效電晶體102N」或「全繞式閘極n型場效電晶體102N」,而可以將p型場效電晶體102P稱為「全繞式閘極場效電晶體102P」或「全繞式閘極p型場效電晶體102P」。可以藉由內間隔物113,將閘極結構112N與112P圍繞奈米結構通道區121的部分電性隔離於相鄰的源極/汲極區110N與110P。內間隔物113可以包括類似於閘極間隔物114的材料。在一些實施例中,n型場效電晶體102N與p型場效電晶體102P可以是鰭式場效電晶體並具有鰭狀物區(未繪示)而不是奈米結構通道區121。
在一些實施例中,每個閘極結構112N與112P可以包括:一界面氧化物(interfacial oxide;IO)層122;一高介電常數(high-k;HK)閘極介電層124,置於界面氧化物層122上;一功函數金屬(work function metal;WFM)層126,置於高介電常數閘極介電層124上;一閘極金屬填充層128,置於功函數金屬層126上;一導體蓋層130,置於高介電常數閘極介電層上、功函數金屬層126上及閘極金屬填充層128上;以及一絕緣蓋層132,置於導體蓋層130上。
界面氧化物層122可以包括氧化矽(silicon oxide;SiO 2)、氧化矽鍺(SiGeO x)或氧化鍺(GeO x)。高介電常數閘極介電層124可以包括一高介電常數介電材料,例如氧化鉿(HfO 2)、氧化鈦(TiO 2)、氧化鉿鋯(HfZrO)、氧化鉭(Ta 2O 3)、矽酸鉿(HfSiO 4)、氧化鋯(ZrO 2)及矽酸鋯(ZrSiO 4)。閘極結構112N的功函數金屬層126可以包括鈦鋁(TiAl)、碳化鈦鋁(TiAlC)、鉭鋁(TaAl)、碳化鉭鋁(TaAlC)、摻雜鋁的鈦、摻雜鋁的TiN、摻雜鋁的鉭、摻雜鋁的TaN、上述之組合或其他適當的鋁基(Al-based)材料。閘極結構112P的功函數金屬層126可以包括實質上無鋁(舉例而言:不含鋁)的鈦基(Ti-based)或鉭基(Ta-based)氮化物或合金,例如氮化鈦(TiN)、氮化鈦矽(TiSiN)、鈦金(Ti-Au) 合金、鈦銅(Ti-Cu)合金、氮化鉭(TaN)、氮化矽鉭(TaSiN)、鉭金(Ta-Au)合金、鉭銅(Ta-Cu)合金以及上述之組合。閘極金屬填充層128可以包括一適當的導體材料,例如鎢(W)、鈦(Ti)、銀(Ag)、釕(Ru)、鉬(Mo)、銅(Cu)、鈷(Co)、鋁(Al)、銥(Ir)、鎳(Ni)、金屬合金及上述之組合。
絕緣蓋層132保護下方的導體蓋層130,避免在半導體裝置的後續製程的期間在結構上及/或組成上劣化。在一些實施例中,絕緣蓋層132可以包括例如氮化矽等的氮化物材料,並可以具有約5 nm至約10 nm的厚度用於對下方的導體蓋層130提供足夠的保護。
導體蓋層130提供閘極金屬填充層128與閘極接觸結構(未繪示)之間的導體界面,以將閘極金屬填充層128電性連接於閘極接觸結構而不直接在閘極金屬填充層128上或範圍內形成閘極接觸結構。閘極接觸結構不直接在閘極金屬填充層128上或範圍內形成,以避免由用於閘極接觸結構的形成的製程材料的任一種造成的污染。閘極金屬填充層128的污染可以導致裝置特性的劣化。因此,在導體蓋層130的使用之下,閘極結構112N與112P可以電性連接至閘極接觸結構,而不需要犧牲閘極結構112N與112P的集積度。
在一些實施例中,導體蓋層130可以具有約4 nm至約5 nm的厚度用於在閘極金屬填充層128與一閘極接觸結構之間提供足夠的導電界面,而不需要在裝置尺寸及製造成本做出折衷。在一些實施例中,為了對下方的導體蓋層130提供足夠的保護,導體蓋層130的厚度與絕緣蓋層132的厚度之間的比例,可以在約1:1至約1:2的範圍。在一些實施例中,導體蓋層130可以包括一金屬材料,例如W、Ru、Ir、Mo、其他適當的金屬材料及上述之組合。在一些實施例中,可以使用五氯化鎢(tungsten pentachloride;WCl 5)或六氯化鎢(tungsten hexachloride;WCl 6)的一前驅物氣體來形成導體蓋層130,而其結果,導體蓋層130可以包括帶有氯原子不純物的鎢。氯原子不純物的濃度,可以在每個導體蓋層130的原子總濃度的約一個原子百分比至約十個原子百分比的範圍。
請參考第1B圖,源極/汲極區110N可以包括磊晶層的一堆疊物——磊晶成長在鰭狀物結構106N上的一輕摻雜(lightly doped;LD)n型層(未繪示)以及磊晶成長在上述輕摻雜n型層上的一重摻雜(heavily doped;HD)n型層(未繪示)。在一些實施例中,輕摻雜n型層及重摻雜n型層可包括磊晶成長的半導體材料,例如矽以及n型摻雜物,上述n型摻雜物例如磷及其他合適的n型摻雜物。輕摻雜n型層可以包括在約10 15原子/cm 3至約10 18原子/cm 3的範圍內的摻雜濃度,其低於重摻雜n型層的摻雜濃度,重摻雜n型層的摻雜濃度可以在約10 19原子/cm 3至約10 23原子/cm 3的範圍內。在一些實施例中,重摻雜n型層比輕摻雜n型層厚。
請參考第1C圖,源極/汲極區110P可包括磊晶層的一堆疊物——磊晶成長在鰭狀物結構106P上的一輕摻雜p型層(未繪示)以及磊晶成長在輕摻雜p型層上的一重摻雜p型層(未繪示)。在一些實施例中,輕摻雜p型層及重摻雜 p型層可以包括磊晶成長的半導體材料,例如SiGe以及p型摻雜物,上述p型摻雜物例如硼及其他合適的p型摻雜物。輕摻雜p型層可包括在約10 15原子/cm 3至約10 18原子/cm 3範圍內的摻雜濃度,其低於重摻雜p型層的摻雜濃度,上述重摻雜p型層的摻雜濃度可在約10 19原子/cm 3至約10 23原子/cm 3的範圍內。在一些實施例中,輕摻雜p型層可包括在約5原子百分比至約45原子百分比的範圍內的Ge濃度,其低於重摻雜p型層的Ge濃度,上述重摻雜p型層的Ge濃度可在約50原子百分比至約80%的原子百分比的範圍內。在一些實施例中,重摻雜p型層比輕摻雜p型層厚。
請參考第1B圖,源極/汲極接觸結構120N設置在源極/汲極區110N上。在一些實施例中,源極/汲極接觸結構120N可以包括(i)一n型功函數金屬矽化物層134N(亦稱為「n型功函數金屬矽化物─鍺化物層134N」),設置在源極/汲極區110N上;以及(ii)一接觸插塞136N設置在n型功函數金屬矽化物134N上。在一些實施例中,n型功函數金屬矽化物層134N可以包括一金屬或一金屬矽化物─鍺化物,其具有的功函數值相較於源極/汲極區110N之材料的價帶邊緣能量(valence band-edge energy)而言更接近導帶邊緣能量(conduction band-edge energy)。例如,上述金屬或上述金屬矽化物─鍺化物可以具有小於4.5eV(舉例而言:約3.5eV至約4.4eV)的功函數值,其相較於源極/汲極區110N的Si基(Si-based)或SiGe基(SiGe-based)材料的價帶能量(舉例而言:Si的5.2eV或SiGe的4.8eV)而言,可更接近導帶能量(舉例而言:Si的4.1eV或SiGe 的3.8eV)。在一些實施例中,n型功函數金屬矽化物─鍺化物層134N的金屬矽化物─鍺化物可以包括矽化─鍺化鈦(titanium silicide-germanide;Ti xSi yGe z)、矽化─鍺化鉭(tantalum silicide-germanide;Ta xSi yGe z)、矽化─鍺化鉬(molybdenum silicide-germanide;Mo xSi yGe z)、矽化─鍺化鋯(zirconium silicide-germanide;Zr xSi yGe z)、矽化─鍺化鉿(hafnium silicide-germanide;Hf xSi yGe z)、矽化─鍺化鈧(scandium silicide-germanide;Sc xSi yGe z)、矽化─鍺化釔(yttrium silicide-germanide;Y xSi yGe z)、矽化─鍺化鋱(terbium silicide-germanide;Tb xSi yGe z)、矽化─鍺化鎦(lutetium silicide-germanide;Lu xSi yGe z)、矽化─鍺化鉺(erbium silicide-germanide;Er xSi yGe z)、矽化─鍺化鐿(ybtterbium silicide-germanide;Yb xSi yGe z)、矽化─鍺化銪(europium silicide-germanide;Eu xSi yGe z)、矽化─鍺化釷(thorium silicide-germanide;Th xSi yGe z)或上述之組合。
在一些實施例中,接觸插塞136N可以包括導電材料,例如:鈷(cobalt;Co)、鎢(tungsten;W)、釕(ruthenium;Ru)、銥(iridium;Ir)、鎳(nickel;Ni)、鋨(osmium;Os)、銠(rhodium;Rh)、鋁(aluminum;Al)、鉬(molybdenum;Mo)、銅(copper;Cu)、鋯(zirconium;Zr)、錫(tin;Sn)、銀(silver;Ag)、金(gold;Au)、鋅(zinc;Zn)、鎘(cadmium;Cd)及上述之組合。
請參考第1C圖,源極/汲極接觸結構120P設置在源極/汲極區110P上。在一些實施例中,源極/汲極接觸結構120P可以包括(i)一p型功函數金屬矽化物層131(亦稱為「p型功函數金屬矽化物─鍺化物層131」),設置在源極/汲極區110P上;(ii)一n型功函數金屬矽化物層134P(亦稱為「n型功函數金屬矽化物─鍺化物層134P」),設置在p型功函數金屬矽化物層131上;以及(iii)一接觸插塞136P設置在n型功函數金屬矽化物134P上。接觸插塞136N沿著Z軸的高度大於接觸插塞136P沿著Z軸的高度,相差約為n型功函數金屬矽化物層134P沿著Z軸的厚度。除非另有敘述,將針對接觸插塞136N所做說明應用於接觸插塞136P。
在一些實施例中,p型功函數金屬矽化物層131可以包括一金屬或一金屬矽化物─鍺化物,其具有的功函數值比源極/汲極區110P之材料的導帶邊緣能量更接近價帶邊緣能量。例如,上述金屬或上述金屬矽化物─鍺化物可以具有大於4.5eV(例如,約4.5eV至約5.5eV)的功函數值,其相較於源極/汲極區110P的Si基或SiGe基材料的導帶能量(例如,Si的4.1eV或SiGe的3.8eV)而言,可更接近價帶能量(例如,Si的5.2eV或SiGe的4.8eV)。在一些實施例中,p型功函數金屬矽化物層131的金屬矽化物─鍺化物可包括例如下列:矽化─鍺化鎳(nickel silicide-germanide;Ni xSi yGe z)、矽化─鍺化鈷(cobalt silicide-germanide;Co xSi yGe z)、矽化─鍺化錳(manganese silicide-germanide;Mn xSi yGe z)、矽化─鍺化鎢(tungsten silicide-germanide;W xSi yGe z)、矽化─鍺化鐵(iron silicide-germanide;Fe xSi yGe z)、矽化─鍺化銠(rhodium silicide-germanide;Rh xSi yGe z)、矽化─鍺化鈀(palladium silicide-germanide;Pd xSi yGe z)、矽化─鍺化釕(ruthenium silicide-germanide;Ru xSi yGe z)、矽化─鍺化鉑(platinum silicide-germanide;Pt xSi yGe z)、矽化─鍺化銥(iridium silicide-germanide;Ir xSi yGe z)、矽化鋨(osmium silicide;OsxSiy)或上述之組合。p型功函數金屬矽化物層131的金屬矽化物─鍺化物不同於n型功函數金屬矽化物層134N與134P的金屬矽化物─鍺化物,並可以具有一功函數值,其大於n型功函數金屬矽化物層134N與134P的功函數值。在一些實施例中,n型功函數金屬矽化物層134P可以與n型功函數金屬矽化物層134N同時形成,且其包括的一金屬矽化物─鍺化物可以類似於n型功函數金屬矽化物層134N。
第2圖是根據一些實施例用以製造半導體裝置100的n型場效電晶體102N與p型場效電晶體102P的一例示的方法200的流程圖。為了圖示的目的,參考如第3A至8A、3B至8B、9A至9C、10A至16A與10B至16B圖所示的用以製造n型場效電晶體102N與p型場效電晶體102P的例示的製造製程來說明示於第2圖的操作。第3A至16A圖是根據一些實施例在各個製造階段的n型場效電晶體102N沿著第1A圖的線A-A的剖面圖,第3B至16B圖是根據一些實施例在各個製造階段的p型場效電晶體102P沿著第1A圖的線B-B的剖面圖。依特定的應用,操作可以以不同的順序進行或是不進行。要注意的是,方法200可能不會製造一完整的n型場效電晶體102N與p型場效電晶體102P。因此,要瞭解的是,在方法200之前、過程中或之後可以提供額外的製程,而在本文可能對有些其他製程僅作簡短說明。在第3A至8A、3B至8B、9A至9C、10A至16A與10B至16B圖的元件具有與第1A至1C圖的元件相同元件符號者,其如上所述。
請參考第2圖,在操作205,在鰭狀物結構上形成超晶格結構,以及在用於一n型場效電晶體與一p型場效電晶體的上述超晶格結構上形成多晶矽結構。例如,如第3A、3B圖所示,在鰭狀物結構106N、106P上形成超晶格結構323,在超晶格結構323上形成多晶矽結構312N、312P。超晶格結構323可以包括排列成一交錯配置的奈米結構層121與321。在一些實施例中,奈米結構層121與321包括彼此不同的材料。奈米結構層321亦稱為犧牲層321。在後續處理的期間,可以在一閘極替換製程替換掉多晶矽結構312N、312P與犧牲層321,以形成閘極結構112N與112P。
請參考第2圖,在操作210,在上述鰭狀物結構上形成複數個n型源極/汲極區與p型源極/汲極區。例如,如第3A、3B所示,在鰭狀物結構106N、106P上形成複數個源極/汲極區110N、110P。在一些實施例中,可以在鰭狀物結構106N、106P上磊晶成長源極/汲極區110N、110P。如第3A、3B圖所示,在源極/汲極區110N、110P的形成之前,可以在超晶格結構323形成複數個內間隔物113。如第3A、3B圖所示,在源極/汲極區110N、110P的形成之後,可以形成蝕刻停止層117與層間介電層118。
請參考第2圖,在操作215,以閘極結構來替換上述多晶矽結構與上述犧牲層。例如,如參考第4A、4B、5A、5B、6A與6B圖所作說明,以閘極結構112N與112P來替換多晶矽結構312N與312P以及犧牲層321。閘極結構112N與112P的形成可以包括以下連續的操作:(i)從第3A至3B圖所示的結構移除多晶矽結構312N與312P以及犧牲層312,以形成複數個閘極開口(未繪示);(ii)如第4A至4B圖所示,在上述閘極開口內形成界面氧化物層122;(iii)如第4A至4B圖所示,在界面氧化物層122上形成高介電常數閘極介電層124;(iv)如第4A至4B圖所示,在高介電常數閘極介電層124上形成功函數金屬層126;(v)如第4A至4B圖所示,在功函數金屬層126上形成閘極金屬填充層128;(vi)如第5A至5B圖所示,蝕刻閘極間隔物114、高介電常數閘極介電層124、功函數金屬層126以及閘極金屬填充層128;(vii)如第6A至6B圖所示,在高介電常數閘極介電層124、功函數金屬層126以及閘極金屬填充層128上形成導體蓋層130;以及(viii)如第6A至6B圖所示,在導體蓋層130上形成絕緣蓋層132。
請參考第2圖,在操作220,在上述n型源極/汲極區上及上述p型源極/汲極區上形成複數個接觸開口。例如,如第7A至7B圖所示,藉由移除部分的蝕刻停止層117及層間介電層118,在源極/汲極區110N、110P上形成複數個接觸開口740。在形成接觸開口740之後,如第7A至7B圖所示,可以沿著接觸開口740的側壁形成擴散阻障層138。在一些實施例中,擴散阻障層138可以包括一介電質氮化物,例如氮化矽(Si xN y)、氮氧化矽(SiON)、氮碳化矽(SiCN)及其他適合的介電質氮化物材料。擴散阻障層138可以避免後續形成的接觸插塞136N與136P的氧化,藉由避免氧原子從鄰近的結構擴散至接觸插塞136N與136P。
請參考第2圖,在操作225,在上述n型源極/汲極區上及上述p型源極/汲極區上形成氧化停止層。例如,如第8A至8B圖所示,在源極/汲極區110N、110P上形成氧化停止層842。在一些實施例中,可以藉由在源極/汲極區110N、110P上磊晶成長一半導體材料,來形成氧化停止層842。氧化停止層842的上述半導體材料可以避免下層的源極/汲極區110N、110P在對後續形成的半導體層844進行的氧化製程的期間遭受氧化,如後文所述。在一些實施例中,在用於將後續形成的半導體層844氧化的溫度,氧化停止層842的上述半導體材料可以實質上抵抗氧化。在一些實施例中,氧化停止層842的上述半導體材料可以包括矽或其他適合的半導體材料。在一些實施例中,氧化停止層842可以具有沿著Z軸的約1 nm至約3 nm的厚度。若氧化停止層842的厚度小於約1 nm,氧化停止層842可能不足以避免源極/汲極區110N、110P的氧化。另一方面,若氧化停止層842的厚度大於約3 nm,會增加用於移除氧化停止層842的製程時間,結果會增加裝置的製造成本。
請參考第2圖,在操作230,在上述氧化停止層上形成矽化停止層。例如,如參考第8A至8D、9A至9D圖所作說明,在氧化停止層842上形成矽化停止層944。在一些實施例中,矽化停止層944的形成可以包括以下連續的操作:(i)如第8A至8B圖所示,在氧化停止層842上磊晶成長半導體層844;以及(ii)在100 °C至約400 °C的氧化溫度,對第8A至8B圖的結構施行一加熱氧化製程,以形成第9A至9B圖的結構。氧化停止層842的上述半導體材料在100 °C至約400 °C的上述氧化溫度不會實質上氧化(舉例而言:在上述加熱氧化製程之後,在氧化停止層842的氧原子的濃度等於約零或約0.01原子百分比至約2原子百分比)。其結果,氧化停止層842未實質上氧化並在上述加熱氧化製程的期間避免源極/汲極區110N、110P的氧化。
在一些實施例中,半導體層844可以包括與氧形成的化學鍵結強過與例如鎳、鈷、錳、鎢、鐵、銠、鈀、釕、鉑、銥與鋨等的p型功函數金屬的化學鍵結的一半導體材料。其結果,如後文所述,藉由將半導體層844(第8A至8B圖)氧化而形成的矽化停止層944(第9A至9B圖)不會實質上與後續沉積的p型功函數金屬層1231反應而形成p型功函數金屬矽化物(舉例而言:p型功函數金屬矽化物層131)。
在一些實施例中,半導體層844可以包括矽鍺或其他適合的半導體材料,而矽化停止層944可以包括矽鍺或其他適合的半導體材料的氧化物(舉例而言:SiGeO x)。在一些實施例中,SiGeO x具有與氧形成的化學鍵結強過與p型功函數金屬的化學鍵結,結果如後文所述,在操作240不會打斷與氧的化學鍵結而不會實質上與後續沉積的p型功函數金屬層1231反應而在源極/汲極區110N形成p型功函數金屬矽化物(舉例而言:在矽化停止層944的矽原子的濃度等於約零或約0.01原子百分比至約2原子百分比)。
在一些實施例中,鍺作為用於氧化半導體層844中的矽鍺的氧化催化劑。在一些實施例中,半導體層844可以具有約25原子百分比至約55原子百分比的鍺濃度。若鍺濃度低於約25原子百分比,在半導體層844的矽鍺可能不足以在上述加熱氧化製程的期間氧化。另一方面,若鍺濃度高於約55原子百分比,用於針對半導體層844的矽鍺的磊晶成長的複雜度及製程時間會增加,結果增加裝置的製造成本。
在一些實施例中,半導體層844可以具有沿著Z軸約2 nm至約5 nm的厚度,且可以厚於氧化停止層842。若半導體層844 的厚度少於2 nm,在半導體層844 的氧化之後形成的矽化停止層944 可能不夠厚而無法避免在源極/汲極區110N形成p型功函數金屬矽化物。另一方面,若半導體層844的厚度大於5 nm,上述加熱氧化製程的時間會增加,結果增加裝置的製造成本。
在一些實施例中,矽化停止層944可以具有沿著Z軸約10 nm至約30 nm的厚度,且可以厚於氧化停止層842。若矽化停止層944的厚度少於10 nm,則矽化停止層944 可能不足以避免在源極/汲極區110N形成p型功函數金屬矽化物。另一方面,若矽化停止層944的厚度大於30 nm,用於移除矽化停止層944的製程時間會增加,結果增加裝置的製造成本。
第8C圖顯示在對具有矽鍺的半導體層844施行上述加熱氧化製程之前的第8A至8B圖的結構的一部分843的放大圖。第8D圖顯示越過第8C圖的線C-C的矽濃度輪廓850與鍺濃度輪廓854。第9C圖顯示在對具有矽鍺的半導體層844施行上述加熱氧化製程之後而形成矽化停止層944的第9A至9B圖的結構的一部分943的放大圖。由於矽較鍺優先氧化,在上述加熱氧化製程的期間,將在半導體層844的鍺原子推至半導體層844的底部。其結果,在一些實施例中,在具有矽鍺的半導體層844的氧化之後,可以將矽化停止層944形成為具有氧化矽(SiO x)的一頂層946與SiGeO x的一底層948(如第9C圖所示)。
在一些實施例中,如第9D圖所示,亦將在半導體層844的鍺原子推至氧化停止層842中以及源極/汲極區110N、110P的頂部中。第9D圖顯示越過第9C圖的線D-D的矽濃度輪廓950與氧濃度輪廓952以及鍺濃度輪廓954。在具有矽鍺的半導體層844的氧化的期間的鍺原子的遷移,可以藉由比較第8D與9D圖的鍺濃度輪廓854與954來觀察。第8D圖顯示在上述加熱氧化製程之前,相較於氧化停止層842以及源極/汲極區110N、110P,半導體層844具有較高的鍺濃度。第9D圖顯示在上述加熱氧化製程之後,鍺濃度在半導體層844中減少而在氧化停止層842以及源極/汲極區110N、110P中增加。
請參考第2圖,在操作235,在上述p型源極/汲極區佈植p型摻雜物。例如,如第10A至10B圖所示,在p型源極/汲極區110P佈植例如硼等的p型摻雜物1058。上述p型摻雜物佈植製程可以包括以下連續的操作:(i)如第10A圖所示,在n型場效電晶體102N上形成一遮罩層1056;以及(ii)以p型摻雜物1058對第10A至10B圖的結構施行一離子佈植製程。在一些實施例中,可以在源極/汲極區110P佈植約10 20atoms/cm 3至約10 21atoms/cm 3的p型摻雜物濃度。
請參考第2圖,在操作240,在上述p型源極/汲極區上選擇性地形成一p型功函數金屬矽化物層。例如,如參考第11A至14A、11B至14B圖所作說明,在p型源極/汲極區110P上選擇性地形成一p型功函數金屬矽化物層131。p型功函數金屬矽化物層131的選擇性形成可以包括以下連續的操作:(i)如第11B圖所示,對第10A至10B圖的結構施行一蝕刻製程(舉例而言:以稀釋的氫氟酸來蝕刻),以從第10B圖的結構移除氧化停止層842與矽化停止層944;(ii)在從第11A圖的結構移除遮罩層1056之後,在第11A至11B圖的結構上沉積一p型功函數金屬層1231,以形成第12A至12B圖的結構;以及(iii)在約400 °C至約500 °C的溫度,對第12A至12B圖的結構施行一退火製程,以起始源極/汲極區110P與p型功函數金屬層1231的底部之間的矽化反應,以如第13B圖所示形成p型功函數金屬矽化物層131。
在一些實施例中,p型功函數金屬層1231可以包括一功函數值,其相較於源極/汲極區110P的材料的導帶邊緣能量(conduction band-edge energy)而言更接近價帶邊緣能量(valence band-edge energy)。例如,p型功函數金屬層1231可以包括具有大於4.5eV(舉例而言:約4.5eV至約5.5eV)之功函數值的金屬,上述功函數值相較於源極/汲極區110P之Si的導帶能量4.1eV或SiGe的導帶能量3.8eV而言,可更接近源極/汲極區110P之Si的價帶能量5.2eV或SiGe的價帶能量4.8eV。在一些實施例中,p型功函數金屬層1231可以包括Ni、Co、Mn、W、Fe、Rh、Pd、Ru、Pt、Ir、Os或上述之組合。在一些實施例中,p型功函數金屬層1231的金屬與源極/汲極區110P中的矽原子反應,並與先前在操作230的上述加熱氧化製程的期間被推至源極/汲極區110P中的鍺原子反應。其結果,在一些實施例中,p型功函數金屬矽化物層131可以包括金屬矽化物─鍺化物(金屬矽化物與金屬鍺化物的混合物)。
p型功函數金屬層1231的沉積可以包括在約160°C至約220℃的溫度範圍內及約5 Torr至約10 Torr的壓力下藉由化學氣相沉積(chemical vapor deposition;CVD)製程或原子層沉積(atomic layer deposition;ALD)製程,沉積約0.5nm至約5nm厚的p型功函數金屬層。在一些實施例中,上述原子層沉積製程可包括約10個循環至數百個循環,其中一個循環可以包括依下列順序的週期:(i)金屬前驅物、反應物、及載氣混合物的流動(flow);以及(ii)約3秒至約15秒的期間的一驅氣(gas purging)製程。在一些實施例中,上述反應物氣體可以包括氨(ammonia;NH 3),載氣可以包括氮或氬,而滌洗氣(purging gas)可包括一稀有氣體。
隨著在源極/汲極區110N上的矽化停止層944避免p型功函數金屬層1231與矽化停止層944及/或源極/汲極區110N反應,p型功函數金屬層1231在源極/汲極區110N上的部分未與矽化停止層944及/或源極/汲極區110N的材料反應而未形成金屬矽化物。矽化停止層944的矽-氧(Si-O)鍵結在約400 °C至約500 °C的矽化溫度並未打斷,其結果,矽化停止層944的矽原子並未與p型功函數金屬層1231的金屬反應而未形成金屬矽化物。
在一些實施例中,在形成p型功函數金屬矽化物層131之後,可以藉由一溼式蝕刻製程來移除p型功函數金屬層1231的未反應部分、氧化停止層842與矽化停止層944,而形成第14A至14B圖的結構。
請參考第2圖,在操作245,在上述n型源極/汲極區上及上述p型功函數金屬矽化物層上形成一n型功函數金屬矽化物層。例如,如參考第15A、15B、16A、16B圖所作說明,分別在n型源極/汲極區110N上及p型功函數金屬矽化物層131上形成n型功函數金屬矽化物層134N與134P。n型功函數金屬矽化物層134N與134P的形成可以包括以下連續的操作:(i)在第14A至14B圖的結構上沉積一n型功函數金屬層1534;以及(ii)在約400 °C至約500 °C的溫度,對第15A至15B圖的結構施行一退火製程。上述退火製程可以在以下起始矽化反應:(i)源極/汲極區110N與n型功函數金屬層1534的底部之間,以形成n型功函數金屬矽化物層134N,如第16A圖所示;以及(ii)經由p型功函數金屬矽化物層131而在n型功函數金屬層1534的底部與源極/汲極區110P之間,以形成n型功函數金屬矽化物層134P,如第16B圖所示。
在一些實施例中,n型功函數金屬層1534的沉積可包括在約300℃至約500℃的溫度範圍內使用一化學氣相沉積製程或一原子層沉積製程來沉積金屬,上述金屬具有的功函數值相較於源極/汲極區110N之材料的價帶邊緣能量更接近導帶邊緣能量。例如,n型功函數金屬層1534可以包括具有的功函數值小於4.5eV(舉例而言:約3.5eV至約4.4eV)的金屬,上述功函數值相較於源極/汲極區110N之Si的價帶能量5.2eV或SiGe的價帶能量4.8eV而言,更接近源極/汲極區110N之Si的導帶能量4.1eV或SiGe的的導帶能量3.8eV。在一些實施例中,n型功函數金屬層1534可以包括Ti、Ta、Mo、Zr、Hf、Sc、Y、Ho、Tb、Gd、Lu、Dy、Er、Yb或上述之組合。在一些實施例中,n型功函數金屬層1534的金屬與源極/汲極區110N中的矽原子反應,並與先前在操作230的上述加熱氧化製程的期間被推至源極/汲極區110N中的鍺原子反應。其結果,在一些實施例中,n型功函數金屬矽化物層134N可以包括金屬矽化物─鍺化物(金屬矽化物與金屬鍺化物的混合物)。
在一些實施例中,在形成n型功函數金屬矽化物層134N與134P之後,如第16A至16B圖所示,可以藉由一溼式蝕刻製程,將n型功函數金屬層1534的未反應部分移除。
請參考第2圖,在操作250,在上述接觸開口內的上述n型功函數金屬矽化物層上,形成接觸插塞。例如,如第16A至16B圖所示,在接觸開口740內的n型功函數金屬矽化物層134N與134P上,形成接觸插塞136N與136P。
第17圖是根據一些實施例用以製造半導體裝置100的n型場效電晶體102N與p型場效電晶體102P的另一例示的方法1700的流程圖。為了圖示的目的,參考如第3A至7A、3B至7B、18A至24A、18B至24B圖所示的用以製造n型場效電晶體102N與p型場效電晶體102P的例示的製造製程來說明示於第2圖的操作。第3A至7A、18A至24A圖是根據一些實施例在各個製造階段的n型場效電晶體102N沿著第1A圖的線A-A的剖面圖,第3B至7B、18B至24B圖是根據一些實施例在各個製造階段的p型場效電晶體102P沿著第1A圖的線B-B的剖面圖。依特定的應用,操作可以以不同的順序進行或是不進行。要注意的是,方法1700可能不會製造一完整的n型場效電晶體102N與p型場效電晶體102P。因此,要瞭解的是,在方法1700之前、過程中或之後可以提供額外的製程,而在本文可能對有些其他製程僅作簡短說明。在第18A至24A、18B至24B圖的元件具有與第1A至1C、3A至8A、3B至8B、9A至9C、10A至16A與10B至16B圖的元件相同元件符號者,其如上所述。
請參考第17圖,操作1705至1720分別類似於操作205至220。在操作1720之後,形成類似於第7A至7B圖的結構之結構,如第18A至18B圖所示。
請參考第17圖,在操作1725,在上述接觸開口沉積矽化停止層。例如,如第19A至19B圖所示,在接觸開口740沉積矽化停止層1964。在一些實施例中,矽化停止層1964包括半導體材料的氧化物,例如SiO x,且可以使用原子層沉積製程來沉積。在一些實施例中,矽化停止層1964可以具有沿著Z軸約2 nm至約10 nm的厚度。若矽化停止層1964的厚度少於2 nm,則矽化停止層1964 可能不足以避免在源極/汲極區110N形成p型功函數金屬矽化物。另一方面,若矽化停止層1964的厚度大於10 nm,用於沉積及移除矽化停止層1964的製程時間會增加,結果增加裝置的製造成本。
請參考第17圖,在操作1730,在上述p型源極/汲極區佈植p型摻雜物。例如,如第20A至20B圖所示,在p型源極/汲極區110P佈植例如硼等的p型摻雜物1058。上述p型摻雜物佈植製程可以包括以下連續的操作:(i)如第20A圖所示,在n型場效電晶體102N上形成一遮罩層2066;以及(ii)以p型摻雜物1058對第20A至20B圖的結構施行一離子佈植製程。在一些實施例中,可以在源極/汲極區110P佈植約10 20atoms/cm 3至約10 21atoms/cm 3的p型摻雜物濃度。
請參考第17圖,在操作1735,在上述p型源極/汲極區上選擇性地形成一p型功函數金屬矽化物層。例如,如參考第21A至23A、21B至23B圖所作說明,在p型源極/汲極區110P上選擇性地形成一p型功函數金屬矽化物層131。p型功函數金屬矽化物層131的選擇性形成可以包括以下連續的操作:(i)對第20A至20B圖的結構施行一蝕刻製程(舉例而言:以稀釋的氫氟酸來蝕刻),以從第20B圖的結構移除該部分的矽化停止層1964,而形成第21B圖的結構;(ii)在從第21A圖的結構移除遮罩層2066之後,在第21A至21B圖的結構上沉積一p型功函數金屬層1231,以形成第22A至22B圖的結構;以及(iii)在約400 °C至約500 °C的溫度,對第22A至22B圖的結構施行一退火製程,以起始源極/汲極區110P與p型功函數金屬層1231的底部之間的矽化反應,以如第23B圖所示形成p型功函數金屬矽化物層131。
隨著在源極/汲極區110N上的矽化停止層1964避免p型功函數金屬層1231與矽化停止層1964及/或源極/汲極區110N反應,p型功函數金屬層1231在源極/汲極區110N上的部分未與矽化停止層1964及/或源極/汲極區110N的材料反應而未形成金屬矽化物。矽化停止層1964的矽-氧(Si-O)鍵結在約400 °C至約500 °C的矽化溫度並未打斷,其結果,矽化停止層1964的矽原子並未與p型功函數金屬層1231的金屬反應而未形成金屬矽化物。
在一些實施例中,在形成p型功函數金屬矽化物層131之後,可以藉由一溼式蝕刻製程來移除p型功函數金屬層1231的未反應部分與矽化停止層1964,而形成第23A至23B圖的結構。
請參考第17圖,操作1740至1745分別類似於操作245至250。在操作1750之後,形成第24A至24B圖的結構。
在一些實施例中,以方法1700形成的n型功函數金屬矽化物層134N不包括金屬鍺化物,其與以方法200形成的n型功函數金屬矽化物層134N不同。矽化停止層1964不包括鍺原子,其結果,不會從矽化停止層1964將鍺原子引入源極/汲極區110N;而在方法200的操作230,則將鍺原子從矽化停止層944引入源極/汲極區110N。在一些實施例中,n型功函數金屬矽化物層134N可以包括金屬矽化物,例如矽化鈦(titanium silicide;Ti xSi y)、矽化鉭(tantalum silicide;Ta xSi y)、矽化鉬(molybdenum silicide;Mo xSi y)、矽化鋯(zirconium silicide;Zr xSi y)、矽化鉿(hafnium silicide;Hf xSi y)、矽化鈧(scandium silicide;Sc xSi y)、矽化釔(yttrium silicide;Y xSi y)、矽化鋱(terbium silicide;Tb xSi y)、矽化鎦(lutetium silicide;Lu xSi y)、矽化鉺(erbium silicide;Er xSi y)、矽化鐿(ybtterbium silicide;Yb xSi y)、矽化銪(europium silicide;Eu xSi y)、矽化釷(thorium silicide;Th xSi y)或上述之組合。
本發明實施例提供了具有場效電晶體(舉例而言:全繞式閘極n型場效電晶體102N與全繞式閘極p型場效電晶體102P)的例示性半導體裝置,其全繞式閘極場效電晶體具有彼此不同的源極/汲極(source/drain;S/D)接觸結構;本發明實施例並且提供了形成具有矽化停止層的這樣的接觸結構的例示性方法。上述例示性方法在半導體裝置的n型場效電晶體(n-type field effect transistor;NFET)及p型場效電晶體(p-type field effect transistor;PFET)的鰭狀物結構上分別形成n型源極/汲極區及p型源極/汲極區的陣列。在一些實施例中,n型源極/汲極區上的接觸結構具有矽化物層(在本文,除非有其他說明,亦稱為「矽化物─鍺化物層」(silicide-germanide layers)),其與p型源極/汲極區上之接觸結構的矽化物層不同。
在一些實施例中,上述p型場效電晶體的源極/汲極接觸結構(舉例而言:接觸結構120P)的p型功函數金屬矽化物層(舉例而言:p型功函數金屬矽化物層131)是選擇性地形成在上述p型源極/汲極區(舉例而言:源極/汲極區110P)上。相反地,上述n型場效電晶體的源極/汲極接觸結構(舉例而言:接觸結構120N)的n型功函數金屬矽化物層(舉例而言:n型功函數金屬矽化物層134N)是形成在上述n型源極/汲極區(舉例而言:源極/汲極區110N)上與上述p型功函數金屬矽化物層上。上述p型功函數金屬矽化物層可以從上述p型源極/汲極區與置於上述p型源極/汲極區上的一p型功函數金屬層(舉例而言:p型功函數金屬層1231)之間的矽化反應而形成。上述n型功函數金屬矽化物層可以從上述n型源極/汲極區與置於上述n型源極/汲極區上與上述p型功函數金屬矽化物層上的一n型功函數金屬層(舉例而言:n型功函數金屬層1534)之間的矽化反應而形成。
在一些實施例中,在p型源極/汲極區上選擇性地形成p型功函數金屬矽化物層的方法(舉例而言:方法200與1700)包括:在n型源極/汲極區與p型源極/汲極區上沉積p型功函數金屬層之前,在n型源極/汲極區上形成矽化停止層(舉例而言:矽化停止層944與1964)。上述矽化停止層可以避免上述p型功函數金屬層與上述n型源極/汲極區之間的矽化反應。在一些實施例中,在n型源極/汲極區上形成矽化停止層可以包括:在上述n型源極/汲極區上沉積或磊晶成長一半導體材料(舉例而言:半導體層844);以及使上述半導體材料氧化。上述半導體材料與氧原子的化學鍵結強過與上述p型功函數金屬層的金屬原子的化學鍵結。其結果,上述矽化停止層的被氧化的半導體材料並未與上述p型功函數金屬層的金屬反應,而避免上述矽化停止層下方的p型功函數金屬層的金屬與n型源極/汲極區之間的化學性的交互作用。在一些實施例中,可以在上述矽化停止層與上述n型源極/汲極區之間沉積或磊晶成長氧化停止層(舉例而言:氧化停止層842),以保護n型源極/汲極區的材料而免於在形成上述矽化停止層的期間遭到氧化。
根據一實施例,提供一種半導體裝置的形成方法。上述半導體裝置的形成方法包括:在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構。上述半導體裝置的形成方法又包括:分別在上述第一鰭狀物結構上與上述第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區。上述半導體裝置的形成方法又包括:分別在上述n型源極/汲極區與上述p型源極/汲極區上形成一第一氧化停止層與一第二氧化停止層。上述半導體裝置的形成方法又包括:分別在上述第一氧化停止層與上述第二氧化停止層上磊晶成長一第一半導體層與一第二半導體層。上述半導體裝置的形成方法又包括:分別將上述第一半導體層與上述第二半導體層轉換為一第一半導體氧化物層與一第二半導體氧化物層。上述半導體裝置的形成方法又包括:在上述p型源極/汲極區上形成一第一矽化物─鍺化物層。上述半導體裝置的形成方法還包括:在上述第一矽化物─鍺化物層上與上述n型源極/汲極區上形成一第二矽化物─鍺化物層。
在一實施例中,形成上述第一氧化停止層與上述第二氧化停止層包括在上述n型源極/汲極區上與上述p型源極/汲極區上磊晶成長矽層。
在一實施例中,磊晶成長上述第一半導體層與上述第二半導體層包括在上述第一氧化停止層上與上述第二氧化停止層上磊晶成長矽鍺(silicon germanium;SiGe)層。
在一實施例中,將上述第一半導體層與上述第二半導體層轉換為上述第一半導體氧化物層與上述第二半導體氧化物層,包括對上述第一半導體層與上述第二半導體層施行一加熱氧化製程。
在一實施例中,將上述第一半導體層轉換為上述第一半導體氧化物層,包括:將上述第一半導體層的一第一部分轉換為氧化矽(SiO x)層;以及將上述第一半導體層的一第二部分轉換為氧化矽鍺(SiGeO x)層。
在一實施例中,形成上述第一矽化物─鍺化物層包括移除上述第二半導體氧化物層。
在一實施例中,形成上述第一矽化物─鍺化物層包括移除上述第二氧化停止層。
在一實施例中,形成上述第一矽化物─鍺化物層包括在上述第一半導體氧化物層上與上述p型源極/汲極區上沉積一p型功函數金屬(p-type work function metal;pWFM)層。
在一實施例中,形成上述第二矽化物─鍺化物層包括在上述第一矽化物─鍺化物層上與上述n型源極/汲極區上沉積一n型功函數金屬(n-type work function metal;nWFM)層。
在一實施例中,上述半導體裝置的形成方法更包括隊上述第二半導體氧化物層施行一p型摻雜物佈植。
根據另一實施例,提供一種半導體裝置的形成方法。上述半導體裝置的形成方法包括:在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構。上述半導體裝置的形成方法又包括:分別在上述第一鰭狀物結構與上述第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區。上述半導體裝置的形成方法又包括:在上述n型源極/汲極區上與上述p型源極/汲極區上沉積一矽化停止層。上述半導體裝置的形成方法又包括:在上述p型源極/汲極區上形成一p型功函數金屬(p-type work function metal;pWFM)矽化物層。上述半導體裝置的形成方法還包括:在上述p型功函數金屬矽化物層上與上述n型源極/汲極區上形成一n型功函數金屬(n-type work function metal;nWFM)矽化物層。
在一實施例中,沉積上述矽化停止層包括在上述n型源極/汲極區上與上述p型源極/汲極區上沉積半導體氧化物層或氧化矽層。
在一實施例中,上述半導體裝置的形成方法更包括:在上述第一鰭狀物結構上形成交互配置的複數個第一奈米結構層與複數個第二奈米結構層的一第一堆疊物,其中上述第一奈米結構層與上述第二奈米結構層包括彼此不同的半導體材料;以及在上述第二鰭狀物結構上形成交互配置的複數個第三奈米結構層與複數個第四奈米結構層的一第二堆疊物,其中上述第三奈米結構層與上述第四奈米結構層包括彼此不同的半導體材料。
在一實施例中,半導體裝置的形成方法,更包括對上述矽化停止層在上述p型源極/汲極區上的部分施行一p型摻雜物佈植。
在一實施例中,形成上述p型功函數金屬矽化物層包括移除上述矽化停止層在上述p型源極/汲極區上的部分。
在一實施例中,形成上述n型功函數金屬矽化物層包括移除上述矽化停止層在上述n型源極/汲極區上的部分。
根據又另一實施例,提供一種半導體裝置。上述半導體裝置包括一基底。上述半導體裝置又包括一第一鰭狀物結構與一第二鰭狀物結構,置於上述基底上。上述半導體裝置又包括複數個第一奈米結構層的一堆疊物,置於上述第一鰭狀物結構的一第一部分上。上述半導體裝置又包括複數個第二奈米結構層的一堆疊物,置於上述第二鰭狀物結構的一第一部分上。上述半導體裝置又包括一第一閘極結構,圍繞上述第一奈米結構層中的至少一個。上述半導體裝置又包括一第二閘極結構,圍繞上述第二奈米結構層中的至少一個。上述半導體裝置又包括一第一源極/汲極區與一第二源極/汲極區,分別置於上述第一鰭狀物結構的一第二部分上與上述第二鰭狀物結構的一第二部分上。上述半導體裝置又包括一第一金屬矽化物─鍺化物層,置於上述第一源極/汲極區上。上述半導體裝置又包括一第二金屬矽化物─鍺化物層,置於上述第一金屬矽化物─鍺化物層上與上述第二源極/汲極區上。上述半導體裝置還包括一第一接觸插塞與一第二接觸插塞,分別置於上述第一金屬矽化物─鍺化物層上與上述第二金屬矽化物─鍺化物層上,其中上述第一接觸插塞的一金屬與上述第二接觸插塞的一金屬相同。
在一實施例中,上述第一金屬矽化物─鍺化物層的一金屬不同於上述第二金屬矽化物─鍺化物層的一金屬。
在一實施例中,上述第一金屬矽化物─鍺化物層包括一p型功函數金屬(p-type work function metal;pWFM)矽化物層。
在一實施例中,上述第二金屬矽化物─鍺化物層包括一n型功函數金屬(n-type work function metal;nWFM)矽化物層。
前述內文概述了許多實施例的特徵,使所屬技術領域中具有通常知識者可以從各個方面更佳地了解本發明實施例。所屬技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。所屬技術領域中具有通常知識者也應了解這些均等的結構並未背離本發明實施例的發明精神與範圍。在不背離本發明實施例的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。
100:半導體裝置 102N:n型場效電晶體 102P:p型場效電晶體 104:基底 106N,106P:鰭狀物結構 110N,110P:源極/汲極區 112N,112P:閘極結構 113:內間隔物 114:閘極間隔物 116:淺溝槽隔離區 117:蝕刻停止層 118:層間介電層 120N,120P:源極/汲極接觸結構 121:奈米結構通道區 122:界面氧化物層 124:高介電常數閘極介電層 126:功函數金屬層 128:閘極金屬填充層 130:導體蓋層 131:p型功函數金屬矽化物層(p型功函數金屬矽化物─鍺化物層) 132:絕緣蓋層 134N,134P:n型功函數金屬矽化物層(n型功函數金屬矽化物─鍺化物層) 136N,136P:接觸插塞 138:擴散阻障層 200:方法 205,210,215,220,225,230,235,240,245,250:操作 312N,312P:多晶矽結構 321:奈米結構層(犧牲層) 323:超晶格結構 740:接觸開口 842:氧化停止層 843,943:部分 844:半導體層 850,950:矽濃度輪廓 854,954:鍺濃度輪廓 944:矽化停止層 946:頂層 948:底層 952:氧濃度輪廓 1056:遮罩層 1058:p型摻雜物 1231:p型功函數金屬層 1534:n型功函數金屬層 1700:方法 1705,1710,1715,1720,1725,1730,1735,1740,1745:操作 C-C,D-D:線 1964:矽化停止層 2066:遮罩層
藉由以下的詳述配合所附圖式可更加理解本文揭露的內容。要強調的是,根據產業上的標準作業,各個部件(feature)並未按照比例繪製,且僅用於說明目的。事實上,為了能清楚地討論,可能任意地放大或縮小各個部件的尺寸。 第1A圖繪示根據一些實施例的一半導體裝置的等角視圖。 第1B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置的剖面圖。 第1C圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置的剖面圖。 第2圖是根據一些實施例的用以製造具有不同接觸結構的一半導體裝置的方法的流程圖。 第3A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第3B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第4A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第4B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第5A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第5B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第6A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第6B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第7A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第7B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第8A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第8B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第8C圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第8D圖繪示根據一些實施例的一半導體裝置在其製造過程的各個階段的裝置特性。 第9A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第9B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第9C圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第9D圖繪示根據一些實施例的一半導體裝置在其製造過程的各個階段的裝置特性。 第10A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第10B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第11A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第11B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第12A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第12B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第13A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第13B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第14A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第14B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第15A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第15B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第16A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第16B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第17圖是根據一些實施例的用以製造具有不同接觸結構的一半導體裝置的另一方法的流程圖。 第18A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第18B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第19A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第19B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第20A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第20B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第21A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第21B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第22A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第22B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第23A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第23B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第24A圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。 第24B圖繪示根據一些實施例的具有不同接觸結構的一半導體裝置在其製造過程的各個階段的剖面圖。
200:方法
205,210,215,220,225,230,235,240,245,250:操作

Claims (20)

  1. 一種半導體裝置的形成方法,包括: 在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構; 分別在該第一鰭狀物結構上與該第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區; 分別在該n型源極/汲極區與該p型源極/汲極區上形成一第一氧化停止層與一第二氧化停止層; 分別在該第一氧化停止層與該第二氧化停止層上磊晶成長一第一半導體層與一第二半導體層; 分別將該第一半導體層與該第二半導體層轉換為一第一半導體氧化物層與一第二半導體氧化物層; 在該p型源極/汲極區上形成一第一矽化物─鍺化物層;以及 在該第一矽化物─鍺化物層上與該n型源極/汲極區上形成一第二矽化物─鍺化物層。
  2. 如請求項1所述之半導體裝置的形成方法,其中形成該第一氧化停止層與該第二氧化停止層包括在該n型源極/汲極區上與該p型源極/汲極區上磊晶成長矽層。
  3. 如請求項1所述之半導體裝置的形成方法,其中磊晶成長該第一半導體層與該第二半導體層包括在該第一氧化停止層上與該第二氧化停止層上磊晶成長矽鍺(silicon germanium;SiGe)層。
  4. 如請求項1所述之半導體裝置的形成方法,其中將該第一半導體層與該第二半導體層轉換為該第一半導體氧化物層與該第二半導體氧化物層,包括對該第一半導體層與該第二半導體層施行一加熱氧化製程。
  5. 如請求項1所述之半導體裝置的形成方法,其中將該第一半導體層轉換為該第一半導體氧化物層,包括: 將該第一半導體層的一第一部分轉換為氧化矽(SiO x)層;以及 將該第一半導體層的一第二部分轉換為氧化矽鍺(SiGeO x)層。
  6. 如請求項1所述之半導體裝置的形成方法,其中形成該第一矽化物─鍺化物層包括: 移除該第二半導體氧化物層。
  7. 如請求項1所述之半導體裝置的形成方法,其中形成該第一矽化物─鍺化物層包括移除該第二氧化停止層。
  8. 如請求項1所述之半導體裝置的形成方法,其中形成該第一矽化物─鍺化物層包括在該第一半導體氧化物層上與該p型源極/汲極區上沉積一p型功函數金屬(p-type work function metal;pWFM)層。
  9. 如請求項1所述之半導體裝置的形成方法,其中形成該第二矽化物─鍺化物層包括在該第一矽化物─鍺化物層上與該n型源極/汲極區上沉積一n型功函數金屬(n-type work function metal;nWFM)層。
  10. 如請求項1所述之半導體裝置的形成方法,更包括對該第二半導體氧化物層施行一p型摻雜物佈植。
  11. 一種半導體裝置的形成方法,包括: 在一基底上形成一第一鰭狀物結構與一第二鰭狀物結構; 分別在該第一鰭狀物結構與該第二鰭狀物結構上形成一n型源極/汲極區與一p型源極/汲極區; 在該n型源極/汲極區上與該p型源極/汲極區上沉積一矽化停止層; 在該p型源極/汲極區上形成一p型功函數金屬(p-type work function metal;pWFM)矽化物層;以及 在該p型功函數金屬矽化物層上與該n型源極/汲極區上形成一n型功函數金屬(n-type work function metal;nWFM)矽化物層。
  12. 如請求項11所述之半導體裝置的形成方法,其中沉積該矽化停止層包括在該n型源極/汲極區上與該p型源極/汲極區上沉積半導體氧化物層或氧化矽層。
  13. 如請求項11所述之半導體裝置的形成方法,更包括: 在該第一鰭狀物結構上形成交互配置的複數個第一奈米結構層與複數個第二奈米結構層的一第一堆疊物,其中該些第一奈米結構層與該些第二奈米結構層包括彼此不同的半導體材料;以及 在該第二鰭狀物結構上形成交互配置的複數個第三奈米結構層與複數個第四奈米結構層的一第二堆疊物,其中該些第三奈米結構層與該些第四奈米結構層包括彼此不同的半導體材料。
  14. 如請求項11所述之半導體裝置的形成方法,更包括對該矽化停止層在該p型源極/汲極區上的部分施行一p型摻雜物佈植。
  15. 如請求項11所述之半導體裝置的形成方法,其中形成該p型功函數金屬矽化物層包括移除該矽化停止層在該p型源極/汲極區上的部分。
  16. 如請求項11所述之半導體裝置的形成方法,其中形成該n型功函數金屬矽化物層包括移除該矽化停止層在該n型源極/汲極區上的部分。
  17. 一種半導體裝置,包括: 一基底; 一第一鰭狀物結構與一第二鰭狀物結構,置於該基底上; 複數個第一奈米結構層的一堆疊物,置於該第一鰭狀物結構的一第一部分上; 複數個第二奈米結構層的一堆疊物,置於該第二鰭狀物結構的一第一部分上; 一第一閘極結構,圍繞該些第一奈米結構層中的至少一個; 一第二閘極結構,圍繞該些第二奈米結構層中的至少一個; 一第一源極/汲極區與一第二源極/汲極區,分別置於該第一鰭狀物結構的一第二部分上與該第二鰭狀物結構的一第二部分上; 一第一金屬矽化物─鍺化物層,置於該第一源極/汲極區上; 一第二金屬矽化物─鍺化物層,置於該第一金屬矽化物─鍺化物層上與該第二源極/汲極區上;以及 一第一接觸插塞與一第二接觸插塞,分別置於該第一金屬矽化物─鍺化物層上與該第二金屬矽化物─鍺化物層上,其中該第一接觸插塞的一金屬與該第二接觸插塞的一金屬相同。
  18. 如請求項17所述之半導體裝置,其中該第一金屬矽化物─鍺化物層的一金屬不同於該第二金屬矽化物─鍺化物層的一金屬。
  19. 如請求項17所述之半導體裝置,其中該第一金屬矽化物─鍺化物層包括一p型功函數金屬(p-type work function metal;pWFM)矽化物層。
  20. 如請求項17所述之半導體裝置,其中該第二金屬矽化物─鍺化物層包括一n型功函數金屬(n-type work function metal;nWFM)矽化物層。
TW111128904A 2021-08-04 2022-08-02 半導體裝置及其形成方法 TW202320238A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163229156P 2021-08-04 2021-08-04
US63/229,156 2021-08-04
US17/833,607 2022-06-06
US17/833,607 US20230038822A1 (en) 2021-08-04 2022-06-06 Dual silicide layers in semiconductor devices

Publications (1)

Publication Number Publication Date
TW202320238A true TW202320238A (zh) 2023-05-16

Family

ID=84241554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128904A TW202320238A (zh) 2021-08-04 2022-08-02 半導體裝置及其形成方法

Country Status (3)

Country Link
US (1) US20230038822A1 (zh)
CN (1) CN115440594A (zh)
TW (1) TW202320238A (zh)

Also Published As

Publication number Publication date
CN115440594A (zh) 2022-12-06
US20230038822A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
CN111987096B (zh) 半导体器件的栅极结构及其形成方法
TWI705504B (zh) 具有高k間隔件及自對準觸點覆蓋層之finfet
US10727310B2 (en) Contact formation on germanium-containing substrates using hydrogenated silicon
US20240332393A1 (en) Contact Structures In Semiconductor Devices
US20240282859A1 (en) Gate Contact And Via Structures In Semiconductor Devices
TWI793659B (zh) 半導體裝置及其製造方法
TWI840704B (zh) 半導體裝置結構及其形成方法
US11189724B2 (en) Method of forming a top epitaxy source/drain structure for a vertical transistor
JP4635070B2 (ja) 半導体装置
US20210359125A1 (en) Structure and formation method of semiconductor device with high contact area
CN114975268A (zh) 半导体装置的形成方法
TW202320238A (zh) 半導體裝置及其形成方法
TWI854525B (zh) 半導體裝置、其製造方法及在金屬閘極結構的上方形成連續的金屬蓋的方法
US20230093025A1 (en) Increased gate length at given footprint for nanosheet device
US20240008242A1 (en) Stacked fet sram
TW202314957A (zh) 半導體裝置及其製造方法
CN115566069A (zh) 半导体结构
TW202343583A (zh) 半導體裝置及其形成方法
TW202310015A (zh) 半導體裝置的製造方法
TW202437463A (zh) 半導體裝置及其製造方法
TW202437359A (zh) 半導體裝置及其形成方法
CN113851424A (zh) 制作半导体元件的方法
TW202414835A (zh) 半導體裝置、其製造方法及在金屬閘極結構的上方形成連續的金屬蓋的方法
CN118355507A (zh) 具有非共享功函数金属的堆叠fet
CN118280839A (zh) 半导体器件及其制造方法