TW202318663A - 半導體裝置與其形成方法 - Google Patents

半導體裝置與其形成方法 Download PDF

Info

Publication number
TW202318663A
TW202318663A TW111124735A TW111124735A TW202318663A TW 202318663 A TW202318663 A TW 202318663A TW 111124735 A TW111124735 A TW 111124735A TW 111124735 A TW111124735 A TW 111124735A TW 202318663 A TW202318663 A TW 202318663A
Authority
TW
Taiwan
Prior art keywords
layer
work function
type work
gate
dielectric
Prior art date
Application number
TW111124735A
Other languages
English (en)
Other versions
TWI835184B (zh
Inventor
邱詩航
吳仲強
王唯誠
陳嘉偉
陳建豪
劉冠廷
志安 徐
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202318663A publication Critical patent/TW202318663A/zh
Application granted granted Critical
Publication of TWI835184B publication Critical patent/TWI835184B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

提供半導體結構與其形成方法。半導體結構包括閘極結構。閘極結構包括閘極介電層,n型功函數層埋置於閘極介電層中,介電蓋層埋置於n型功函數層中,以及p型功函數層埋置於介電蓋層中。閘極結構的上表面露出n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面。半導體結構亦包括第一金屬蓋位於n型功函數層上,以及第二金屬蓋位於該p型功函數層上。第一金屬蓋與第二金屬蓋分開且不形成於介電蓋層上。

Description

半導體裝置與其形成方法
本發明實施例關於半導體裝置,更特別關於閘極電阻降低的半導體裝置。
半導體積體電路產業已經歷指數成長。積體電路材料與設計的技術進展使每一代的積體電路比前一代具有更小且更複雜的電路。在積體電路的演進中,功能密度(單位晶片面積的內連線裝置數目)通常隨著幾何尺寸(比如採用的製作製程所能產生的最小構件或線路)縮小而增加。尺寸縮小的製程通常有利於增加產能並降低相關成本。尺寸縮小亦會增加處理與製造積體電路的複雜度。
舉例來說,隨著電晶體構件的尺寸持續縮小,閘極電阻可能不利地增加。閘極電阻增加會負面影響裝置效能如速度。因此雖然現有的半導體裝置通常符合預期目的,但無法完全符合所有方面的需求。
本發明一例示性的實施例關於半導體裝置。半導體裝置包括主動區;閘極結構直接位於主動區上並包括:p型功函數層,介電蓋層沿著p型功函數層的側壁表面與下表面延伸,n型功函數層沿著介電蓋層的側壁表面與下表面延伸,以及閘極介電層與介電蓋層隔有n型功函數層。閘極結構的上表面包括n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面。半導體裝置亦包括導電蓋層,其包括第一部分位於n型功函數層的上表面上以及第二部分位於p型功函數層的上表面上,且第一部分與第二部分分開。
本發明另一例示性的實施例關於半導體裝置。半導體裝置包括n型電晶體,其包括奈米結構的第一堆疊,以及第一閘極結構位於奈米結構的第一堆疊上。第一閘極結構包括閘極介電層,n型功函數層埋置於閘極介電層中,介電蓋層埋置於n型功函數層中,以及p型功函數層埋置於介電蓋層中。第一閘極結構的上表面露出閘極介電層的上表面、n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面。半導體裝置亦包括第一導電蓋層位於p型功函數層上;以及第二導電蓋層位於p型功函數層上。第一導電蓋層的組成與第二導電蓋層的組成相同。
本發明又一例示性實施例關於半導體裝置的形成方法。方法包括提供工件,其包括主動區,以及閘極間隔物定義閘極溝槽於主動區上。方法亦包括形成閘極結構於閘極溝槽中。形成閘極結構的步驟包括順應性形成閘極介電層於工件上,閘極介電層包括水平部分位於主動區上以及垂直部分沿著閘極間隔物的側壁表面延伸;順應性沉積n型功函數層於閘極介電層上;順應性沉積介電蓋層於該n型功函數層上;以及沉積p型功函數層於介電蓋層上。方法亦包括回蝕刻閘極結構以露出n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面;以及在回蝕刻閘極結構之後,選擇性沉積導電蓋層於n型功函數層的上表面與p型功函數層的上表面之上,而不沉積導電蓋層於介電蓋層的上表面上。
下述詳細描述可搭配圖式說明,以利理解本發明的各方面。值得注意的是,各種結構僅用於說明目的而未按比例繪製,如本業常態。實際上為了清楚說明,可任意增加或減少各種結構的尺寸。亦需強調的是,圖式僅說明本發明的一般實施例,而不應視作侷限本發明實施例的範疇,因為本發明實施例同樣適用於其他實施例。
下述內容提供的不同實施例或實例可實施本發明的不同結構。下述特定構件與排列的實施例係用以簡化本發明內容而非侷限本發明。舉例來說,形成第一構件於第二構件上的敘述包含兩者直接接觸的實施例,或兩者之間隔有其他額外構件而非直接接觸的實施例。此外,本發明之多個實例可重複採用相同標號以求簡潔,但多種實施例及/或設置中具有相同標號的元件並不必然具有相同的對應關係。
此外,空間相對用語如「在…下方」、「下方」、「較低的」、「上方」、「較高的」、或類似用詞,用於描述圖式中一些元件或結構與另一元件或結構之間的關係。這些空間相對用語包括使用中或操作中的裝置之不同方向,以及圖式中所描述的方向。當裝置轉向不同方向時(旋轉90度或其他方向),則使用的空間相對形容詞也將依轉向後的方向來解釋。
此外,當數值或數值範圍的描述有「約」、「近似」、或類似用語時,旨在涵蓋合理範圍內的數值,如本技術領域中具有通常知識者考量到製造過程中產生的固有變化。舉例來說,基於與製造具有與數值相關的已知製造容許範圍,數值或範圍涵蓋包括所述數目的合理範圍,例如在所述數目的+/- 10%以內。舉例來說,材料層的厚度為約5 nm且本技術領域中具有通常知識者已知沉積材料層的製造容許範圍為15%時,其包含的尺寸範圍為4.25 nm至5.75 nm。此外,本發明之多種實例可重複採用相同標號以求簡潔,但多種實施例及/或設置中具有相同標號的元件並不必然具有相同的對應關係。
已導入多閘極裝置以增加閘極-通道耦合、減少關閉狀態電流、與減少短通道效應而改善閘極控制。多閘極裝置通常指的是具有閘極結構或其部分位於通道區的多側上的裝置。鰭狀場效電晶體與多橋通道電晶體為多閘極裝置的例子,其越來越普遍且為高效與低漏電流應用的有力候選。鰭狀場效電晶體具有隆起的通道,而閘極可包覆通道的多側。舉例來說,閘極可包覆自基板延伸的半導體材料的鰭狀物的頂部與側壁。多橋通道電晶體的閘極結構可部分地或完全延伸於通道區周圍,以接觸通道區的多側。由於閘極結構圍繞通道區,多橋通道電晶體亦可視作圍繞閘極電晶體或全繞式閘極電晶體。多橋通道電晶體的通道區可由奈米線、奈米片、其他奈米結構、及/或其他合適結構所形成。通道區的形狀亦可使多橋通道電晶體具有其他名稱如奈米片電晶體或奈米線電晶體。隨著尺寸持續縮小,閘極結構的尺寸與閘極間距縮小而負面地增加閘極電阻。
本發明實施例關於閘極電阻降低的半導體結構的形成方法。在一些實施例中,例示性的方法包括沉積n型功函數層於閘極介電層上、形成介電蓋層於n型功函數層上以避免n型功函數層氧化、形成p型功函數層於介電蓋層上、以及選擇性地直接形成第一金屬蓋於p型功函數層上,並選擇性地直接形成第二金屬蓋於n功函數層上,而不形成金屬蓋於閘極介電層或介電蓋層上。第一金屬蓋與第二金屬蓋可降低閘極電阻。可由穿透式電子顯微鏡或能量色散X光光譜儀檢查第一金屬蓋與第二金屬蓋。
本發明多種實施例將搭配圖式詳述。在此考量下,圖1係本發明實施例中,形成半導體結構的方法100的流程圖。方法100僅用於舉例,而非侷限本發明實施例至方法100實際說明處。在方法100之前、之中、與之後可提供額外步驟,而方法的額外實施例可置換、省略、或調換一些所述步驟。此處不說明所有步驟的細節以簡化說明。方法100將搭配圖2至22說明如下,其為工件200於圖1中的方法100的實施例的不同製作階段的部分剖視圖。為了避免疑問,圖2至22中的X、Y、及Z方向彼此垂直,且在圖2至22中所指的方向一致。由於工件200之後可製作成半導體結構,工件200可依內容需求而視作半導體結構。在本發明實施例中,類似標號用於標示類似結構,除非另外說明。
如圖1及2所示,方法100的步驟102接收工件200。工件200包括基板202。在一實施例中,基板202為基體矽基板,比如包括基體單晶矽。在多種實施例中,基板202可包括其他半導體材料,比如鍺、碳化矽、砷化鎵、磷畫家、磷化銦、砷化銦、銻化銦、矽鍺、磷砷化鎵、砷化鋁銦、砷化鋁鎵、砷化鎵銦、磷化鎵銦、磷砷化鎵銦、或上述之組合。在一些其他實施例中,基板202可為絕緣層上半導體基板,比如絕緣層上矽基板、絕緣層上矽鍺基板、或絕緣層上鍺基板,且可包括載板、載板上絕緣層、或絕緣層上半島導體層。基板202可包括多種摻雜區,其設置可依據半導體結構如工件200的設計需求。p型摻砸區可包括p型摻質如硼、二氟化硼、其他p型摻質、或上述之組合。n型摻雜區可包括n型摻質如磷、砷、其他n型摻質、或上述之組合。n型摻雜區可包括n型摻質如磷、砷、其他n型摻質、或上述之組合。舉例來說,多種摻雜區可直接形成於基板202之上及/或之中,以提供p型井結構、n型井結構、或上述之組合。可進行離子佈植製程、擴散製程、及/或其他合適的摻雜製程以形成多種摻雜區。如圖2所示,基板202包括第一區202N以用於形成n型多橋通道電晶體200N (如圖20所示),以及第二區202P以用於形成p型多橋通道電晶體200P (如圖20所示)。第一區202N可包括p型井,而第二區202P可包括n型井。
如圖2所示,工件200包括交錯的半導體層的垂直堆疊204位於第一區202N與第二區202P上。在一實施例中,垂直堆疊204包括交錯的數個通道層208與數個犧牲層206。通道層208可各自包括半導體材料如矽、鍺、碳化矽、矽鍺、鍺錫、矽鍺錫、矽鍺碳錫、其他合適的半導體材料、或上述之組合,而犧牲層206可各自具有不同於通道層208的組成。在一實施例中,通道層208包括矽,而犧牲層206包括矽鍺。接著可圖案化垂直堆疊204與基板202的一部分,以形成第一鰭狀結構(未標示)於第一區202N中,並形成第二鰭狀結構(未標示)於第二區202P中。雖然圖2未顯示,一些實施方式可形成介電隔離結構205 (如圖18所示)以隔離兩個相鄰的鰭狀結構。介電隔離結構205亦可視作淺溝槽隔離結構。介電隔離結構205可包括氧化矽、氮氧化矽、氟矽酸鹽玻璃、低介電常數的介電層、上述之組合、及/或其他合適材料。
如圖2所示,工件200亦包括數個虛置閘極堆疊210位於第一鰭狀結構與第二鰭狀結構的通道區204C上。通道區204C與虛置閘極堆疊210亦定義虛置閘極堆疊210未垂直重疊的源極/汲極區204SD。源極/汲極區可依內容視作單獨的源極區或汲極區或上述兩者。通道區204C各自沿著X方向位於兩個源極/汲極區204SD之間。在此實施例中,採用閘極置換製程(或閘極後製製程),其中一些虛置閘極堆疊210作為第一閘極結構250與第二閘極結構252 (如圖15所示)所用的占位物。形成第一閘極結構250與第二閘極結構252所用的其他製程亦屬可能。虛置閘極堆疊210包括虛置閘極介電層211、虛置閘極層212位於虛置閘極介電層211上、以及閘極頂部的硬遮罩層213位於虛置閘極層212上。虛置閘極介電層211可包括氧化矽。虛置閘極層212可包括多晶矽。閘極頂部的硬遮罩層213可包括氧化矽、氮化矽、其他合適材料、或上述之組合。閘極間隔物214可沿著虛置閘極堆疊210的側壁延伸。在一些實施例中,閘極間隔物214可包括碳氧化矽、碳氮化矽、氮化矽、氧化鋯、氧化鋁、或合適的介電材料。在一實施例中,閘極間隔物214包括氮化矽、碳氮化矽、或碳氮氧化矽,且閘極間隔物214的介電常數大於氧化矽的介電常數。
如圖1及3所示,方法100的步驟104使第一鰭狀結構與第二鰭狀結構的源極/汲極區204SD選擇性地凹陷,以形成源極/汲極開口216N於第一區202N上,並形成源極/汲極開口216P於第二區202P上。在一些實施例中,可非等向蝕刻虛置閘極堆疊210或閘極間隔物214未覆蓋的鰭狀結構的源極/汲極區204SD,以形成源極/汲極開口216N及216P,且非等向蝕刻可採用乾蝕刻或其他合適的蝕刻製程。如圖3所示,源極/汲極開口216N及216P中露出通道層208與犧牲層206的側壁。
如圖1及4所示,方法100的步驟106形成內側間隔物結構218。在形成源極/汲極開口216N及216P之後,可選擇性地使犧牲層206部分地凹陷而形成內側間隔物凹陷,且不明顯蝕刻露出的通道層208。接著形成內側間隔物結構218於內側間隔物凹陷中。內側間隔物結構218可包括氧化矽、氮化矽、碳氧化矽、碳氮氧化矽、碳氮化矽、金屬氮化物、或其他合適的介電材料。
如圖1及5所示,方法100的步驟108形成n型源極/汲極結構220N於源極/汲極開口216N中,並形成p型源極/汲極結構220P於源極/汲極開口216P中。源極/汲極結構可依內容視作單獨的源極或汲極或上述兩者。n型源極/汲極結構220N與p型源極/汲極結構220P可各自選擇性地自基板202其露出的上表面與通道層208其露出的側壁成長,其成長方法可採用磊晶製程如氣相磊晶、超高真空化學氣相沉積、分子束磊晶、及/或其他合適製程。n型源極/汲極結構220N可耦接至第一區202N上的通道區204C中的通道層208,且可包括矽、摻雜磷的矽、摻雜砷的矽、摻雜銻的矽、或其他合適材料,且可在磊晶製程時導入n型摻質如磷、砷、或銻以進行原位摻雜,或採用接面佈植製程進行異位摻雜。p型源極/汲極結構220P可耦接至第二區202P上的通道區204C中的通道層208,且可包括鍺、摻雜鎵的矽鍺、摻雜硼的矽鍺、或其他合適材料,且可在磊晶製程時導入p型摻質如硼或鎵以進行原位摻雜,或採用接面佈植製程進行異位摻雜。
如圖1及6所示,方法100的步驟110沉積接點蝕刻停止層222與層間介電層224於工件200上。接點蝕刻停止層222可包括氮化矽、氮氧化矽、及/或其他合適材料,且其形成方法可為原子層沉積製程、電漿輔助化學氣相沉積製程、及/或其他合適的沉積或氧化製程。在沉積接點蝕刻停止層222之後,可沉積層間介電層224於工件200上,且其沉積方法可為可流動的化學氣相沉積、化學氣相沉積製程、物理氣相沉積製程、或其他合適的沉積技術。層間介電層224包括的材料可為四乙氧基矽烷的氧化物、未摻雜的矽酸鹽玻璃、摻雜的氧化矽(如硼磷矽酸鹽玻璃、氟矽酸鹽玻璃、磷矽酸鹽玻璃、或硼矽酸鹽玻璃)、及/或其他合適的介電材料。在沉積接點蝕刻停止層222與層間介電層224之後,可進行平坦化製程如化學機械研磨移除多餘材料(包括閘極頂部的硬遮罩層213),以露書虛置閘極堆疊210的虛置閘極層212。
如圖1及7所示,方法100的步驟112使接點蝕刻停止層222與層間介電層224部分地凹陷,並形成硬遮罩層226於凹陷的接點蝕刻停止層222與凹陷的層間介電層224上。可實施合適的蝕刻製程(如乾式非等向蝕刻製程)以選擇性移除層間介電層224與接點蝕刻停止層222的頂部,而實質上不移除虛置閘極層212或閘極間隔物214。接著沉積硬遮罩層226於凹陷的接點蝕刻停止層222與凹陷的層間介電層224之上以及虛置閘極堆疊210之間。硬遮罩層226可包括氧化鋁、氮化矽、碳氮化矽、碳氧化矽、氮氧化矽、碳氮氧化矽、其他合適材料、或上述之組合,且其形成方法可為化學氣相沉積、原子層沉積、物理氣相沉積、其他合適方法、或上述之組合。在一實施例中,硬遮罩層226與閘極間隔物214均包括碳氮氧化矽,且硬遮罩層226中的氮濃度實質上等於閘極間隔物214中的氮濃度。
如圖1及8所示,方法100的步驟114選擇性移除虛置閘極堆疊210以形成閘極溝槽228於第一區202N上,並形成閘極溝槽229於第二區202P上。可實施蝕刻製程以選擇性移除虛置閘極層212與虛置閘極介電層211,而實質上不移除閘極間隔物214或硬遮罩層226。蝕刻製程可為乾蝕刻製程、濕蝕刻製程、或上述之組合,其可採用合適的蝕刻劑。在移除虛置閘極堆疊210之後,可選擇性移除通道區204C中的犧牲層206,並釋放通道層208以作為通道組件。選擇性移除犧牲層206,可形成閘極溝槽228之下的開口230與閘極溝槽229之下的開口231。犧牲層206的移除方法可採用選擇性乾蝕刻製程或選擇性濕蝕刻製程。選擇性乾蝕刻製程可採用一或多種氟為主的蝕刻劑如氟氣或碳氫氟化物。選擇性濕蝕刻製程可包括氫氧化銨、過氧化氫、與水的混合物的蝕刻。
如圖1及9所示,方法100的步驟116形成界面層232於第一區202N與第二區202P上的每一通道組件如通道層208上,以包覆每一通道組件如通道層208。在一些實施例中,界面層232可包括氧化矽或其他合適材料。在一些實施例中,界面層232的形成方法可採用合適方法如原子層沉積、化學氣相沉積、熱氧化、或其他合適方法。在一實施例中,以熱成長法形成界面層232,因此其只形成於通道組件如通道層208與基板202的表面上。界面層232不沿著閘極間隔物214的側壁表面延伸。界面層232可部分填入閘極溝槽228及229與開口230及231。
如圖9所示,形成界面層232之後,可形成閘極介電層234於工件200上的每一通道組件如通道層208上,以包覆每一通道組件如通道層208。在一實施例中,閘極介電層234順應性地沉積於工件200上,包括閘極間隔物214的上表面與側壁之上以及硬遮罩層226與界面層232的上表面之上。此處所用的用語「順應性」可方便說明在多種區域上具有實質上一致厚度的層狀物。在一些實施例中,閘極介電層234為介電常數大於氧化矽的介電常數(約3.9)的高介電常數的介電層。在一些實施方式中,閘極介電層234可包括氧化鈦、氧化鉭、氧化鉿矽、二氧化鋯、氧化鋯矽、氧化鋁、氧化鋯、氧化釔、鈦酸鍶、鈦酸鋇、氧化鋇鋯、氧化鋁矽、氧化鉿鉭、氧化鉿鈦、鈦酸鋇鍶、氮化矽、氮氧化矽、上述之組合、或其他合適材料。在形成閘極介電層234之後,閘極溝槽228具有沿著X方向的寬度W1,而閘極溝槽229具有沿著X方向的寬度W2。為了符合不同功能,寬度W1與寬度W2可相同或不同。在此實施例中,寬度W1等於或大於寬度W2 (即W1≥W2)。
如圖1及10所示,方法100的步驟118沉積n型功函數層236於閘極介電層234上,以形成於第一區202N與第二區202P上的每一通道組件如通道層208上而包覆每一通道組件如通道層208。值得注意的是,n型功函數層236可合併於第一區202N上的相鄰通道組件如通道層208之間,以避免後續層狀物進入相鄰的通道組件如通道層208之間的開口230。n型功函數層236可包括鈦鋁為主的金屬。在一實施例中,n型功函數層236包括碳化鈦鋁。在另一實施例中,n型功函數層236包括鈦鋁。n型功函數層236的沉積方法可採用原子層沉積或其他合適的沉積製程。在一些例子中,n型功函數層236沉積於工件上的厚度T1可一致。厚度T1可介於約2 nm至約5 nm之間。在一實施例中,厚度T1與寬度W1的比例可介於約0.04至約0.3之間,以形成n型多橋通道電晶體200N所用的合適閘極結構。
如圖1及11所示,方法100的步驟120沉積介電蓋層238於n型功函數層236上。介電蓋層238直接形成於n型功函數層236上,以在後續製程中(比如底抗反射塗層的移除製程)保護n型功函數層236免於氧化而形成氧化物層(如氧化鋁),進而穩定臨界電壓。在一實施例中,介電蓋層238包括氧化矽。在一些實施例中,介電蓋層238可為多層結構,其可包括第一層位於n型功函數層236上,以及第二層位於第一層上。第一層可包括鈦與矽(如鈦矽化物),而第二層可包括矽與氧(如氧化矽)。形成介電蓋層238可有利地減少n型功函數層236的氧化,因此可減少最終閘極結構的對應閘極電阻。值得注意的是,介電蓋層238沿著閘極溝槽228與閘極溝槽229的側壁,但不延伸至開口230及231中,因為已實質上填滿開口230及231。
如圖1與圖12及13所示,方法100的步驟122選擇性移除第二區202P上的介電蓋層238與n型功函數層236的部分。在圖12所示的實施例中,可形成遮罩膜240 (如底抗反射塗層)於工件200上,其形成方法可採用旋轉塗佈、可流動的化學氣相沉積、或其他合適製程。接著可圖案化遮罩膜240以覆蓋第一區202N上的介電蓋層238的一部分,並露出第二區202P上的介電蓋層238的一部分,如圖12所示。圖案化製程可包括微影製程(如光微影或電子束微影),其可包括塗佈光阻、軟烘烤、對準光罩、曝光、曝光後烘烤、顯影光阻、沖洗、乾燥、其他合適的微影技術、及/或上述之組合。在圖案化之後可移除光阻。由於圖案化的遮罩膜240覆蓋第一區202N上的介電蓋層238,可由選擇性濕蝕刻製程或選擇性乾蝕刻製程選擇性移除第二區202P上的介電蓋層238與n型功函數層236的部分,而實質上不蝕刻閘極介電層234。例示性的蝕刻製程可包括磷酸、硝酸、醋酸、氫氟酸、或上述之組合。例示性的乾蝕刻製程可包括含氟氣體(如四氟化碳)、含氯氣體(如氯氣或三氯化硼)、其他合適氣體及/或電漿、及/或上述之組合。
如圖13所示,選擇性移除第二區202P上的介電蓋層238與n型功函數層236之後,可由任何合適方法選擇性移除圖案化的遮罩膜240 (如底抗反射塗層),比如乾蝕刻製程(如氮氣、氫氣、及/或氧氣)或採用合適蝕刻劑的濕式清潔製程。在一些實施例中,底抗反射塗層的移除製程亦可移除第一區202N上的n型功函數層236上的介電蓋層238的一部分。在移除底抗反射塗層之後,閘極溝槽228具有寬度W3,而閘極溝槽229具有寬度W2。由於形成n型功函數層236與介電蓋層238於閘極溝槽228中,寬度W3小於寬度W2。應理解在移除圖案化的遮罩膜240時,介電蓋層238保護n型功函數層236免於氧化。
如圖1及14所示,方法100的步驟124形成p型功函數層244於工件200上。在一些實施例中,p型功函數層244沉積於工件200上的厚度T2一致。在一實施例中,厚度T2與寬度W2 (如圖13所示)的比例可介於約0.1至約0.4之間,使適當的第一閘極結構250可形成於第一區202N上,有利於之後選擇性形成金屬蓋(如圖17所示的第一金屬蓋261與第三金屬蓋263)於p型功函數層244上,因此有利於適當的閘極接點通孔著陸於金屬蓋上。在一實施例中,厚度T2可介於約2 nm至約10 nm之間,使裝置可整合至現有的製作製程。p型功函數層244的沉積方法可採用原子層沉積或其他合適製程。在一些例子中,p型功函數層244可包括鈦、鉭、鎢、鉬、鋯、釩、鈮、氮、碳、釕、鉑、或鎳。舉例來說,p型功函數層244可包括氮化鈦、碳氮化鎢、氮化鉭、或氮化鉬。
如圖14所示,p型功函數層244直接接觸第一區202N中的介電蓋層238,並直接接觸第二區202P中的閘極介電層234。p型功函數層244亦形成於開口231中(如圖8所示),以包覆第二區202P上的通道組件如通道層208。如圖14所示的實施例中,p型功函數層244具有縫隙246於第一區202N上,並具有縫隙248於第二區202P上。縫隙246與縫隙248可各自包括開口於p型功函數層244的上表面。在一些實施例中,縫隙248跨過的寬度(沿著X方向)可實質上等於縫隙246的寬度。在一些實施例中,沉積p型功函數層244之後可進行平坦化製程如化學機械研磨,使工件200具有平坦的上表面。形成於閘極溝槽228中的界面層232、閘極介電層234、n型功函數層236、介電蓋層238、與p型功函數層244可一起視作第一閘極結構250,而形成於閘極溝槽229中的界面層232、閘極介電層234、與p型功函數層244可一起視作第二閘極結構252。
如圖1及15所示,方法100的步驟126進行蝕刻製程253,使第一閘極結構250與第二閘極結構252凹陷,以形成閘極凹陷254於第一區202N上,並形成閘極凹陷256於第二區202P上,且實質上不損傷硬遮罩層226。在一些實施例中,蝕刻製程可包括乾蝕刻製程、濕蝕刻製程、或上述之組合。舉例來說,蝕刻製程253可採用氮氣、三氟化氮、氧氣、三氯化硼、氯氣、氧氣、上述之組合、及/或其他合適的蝕刻劑,使第一閘極結構250與第二閘極結構252凹陷。如圖15所示,蝕刻之後的凹陷的第一閘極結構250的上表面250t可露出閘極介電層234、n型功函數層236、介電蓋層238、與p型功函數層244。凹陷的第二閘極結構252的上表面252t可露出閘極介電層234與p型功函數層244。蝕刻製程253亦可稍微蝕刻閘極間隔物214。閘極間隔物214的上表面214t高於上表面250t與上表面252t,以分開接點蝕刻停止層222及層間介電層224與第一閘極結構250及第二閘極結構252。即使金屬蓋的選擇性沉積製程如原子層沉積製程260的選擇性不足,穿過接點蝕刻停止層222與層間介電層224的源極/汲極接點(如經由對應的矽化物層電性耦接至n型源極/汲極結構220N與p型源極/汲極結構220P的導電結構),可與之後形成的金屬蓋(如圖17所示的第二金屬蓋262與第三金屬蓋263)電性隔離,進而改善裝置可信度。閘極凹陷254露出上表面214t及250t,而閘極凹陷256露出上表面214t及252t。在一些實施例中,上表面250t與上表面252t為實質上平坦的上表面。
圖16顯示第一區202N上的凹陷的第一閘極結構250的放大部分,以及第二區202P上的凹陷的第二閘極結構252的放大部分。值得注意的是,由於上表面250t露出n型功函數層236的上表面,可氧化n型功函數層236的一部分以形成氧化物層258,如圖16所示。工件200可包括氧化物層258形成於n型功函數層236上。在n型功函數層236包括鈦鋁為主的材料的實施例中,氧化物層258包括氧化鋁形成於鈦鋁為主的n型功函數層236上。可實質上不氧化p型功函數層244。
如圖1及17所示,方法100的步驟128進行選擇性沉積製程如原子層沉積製程260以選擇性地形成第一金屬蓋261於第一區202N上的p型功函數層244上、形成第二金屬蓋262於第一區202N上的n型功函數層236上、並形成第三金屬蓋263於第二區202P上的p型功函數層244上。圖17係選擇性沉積製程如原子層沉積製程260之後的工件200的部分放大圖。在圖17所示的實施例中,可由共同的原子層沉積製程260形成第一金屬蓋261、第二金屬蓋262、與第三金屬蓋263。在一些實施例中,第一金屬蓋261、第二金屬蓋262、與第三金屬蓋263可包括鎢、鈷、鎳、鉬、釕、或其他合適材料。第一金屬蓋261至第三金屬蓋263的材料電阻低於p型功函數層244的電阻。形成第一金屬蓋261至第三金屬蓋263可降低閘極電阻並改善多橋通道電晶體的效能。在例示性的實施例中,選擇性沉積製程可包括進行原子層沉積製程260,以選擇性形成第一金屬蓋261、第二金屬蓋262、與第三金屬蓋263於位於製程腔室中的工件200之上。原子層沉積製程260為循環製程。每一循環可包括第一半循環與第二半循環。可重複多個循環直到p型功函數層244上的第一金屬蓋261與第三金屬蓋263達到厚度T3。
以形成鎢為主的第一金屬蓋261至第三金屬蓋263為例。將圖15及16所示的工件200載入製程腔室,準備進行原子層沉積製程260以形成鎢為主的第一金屬蓋261至第三金屬蓋263於凹陷的第一閘極結構250與凹陷的第二閘極結構252上。在第一半循環中,可暴露工件200至含鎢前驅物。可選擇含鎢前驅物,以選擇性地沉積於n型功函數層236與p型功函數層244的上表面上。在一實施例中,含鎢前驅物包括氯化鎢。值得注意的是,由於氧化物層258覆蓋n型功函數層236,原子層沉積製程260一開始的數個循環不沉積含鎢前驅物於n型功函數層236上,直到移除氧化物層258。可採用載氣以輸送含鎢前驅物到製程腔室。在一些實施例中,載氣可為惰氣如含氬氣體、其他合適的惰氣、或上述之組合。在一些實施例中,在將氯化鎢輸送至製程腔室之前,可加熱氯化鎢的溫度到介於約100℃至150℃之間。在第一半循環之後,可進行第一淨化製程而自製程腔室移除任何殘留的含鎢前驅物與副產物,以準備工件200的表面用於後續的第二半循環。
在第二半循環中,將共反應物傳輸至製程腔室,並暴露工件200至共反應物。在一實施例中,共反應物包括氫氣。載氣可用於輸送共反應物至製程腔室。共反應物可與第一半循環中沉積於p型功函數層244上的含鎢前驅物反應。含鎢前驅物與共反應物之間的反應,可選擇性形成鎢為主的第一金屬蓋261與第三金屬蓋263於p型功函數層244上並產生副產物。在含鎢前驅物包括氯化鎢且共反應物包括氫氣的實施例中,含鎢前驅物與共反應物之間的反應可選擇性形成鎢於p型功函數層244上,並產生含氯化氫的副產物。值得一提的是,副產物的氯化氫將與n型功函數層236上的氧化物層258 (如氧化鋁)反應。形成鎢為主的第一金屬蓋261與鎢為主的第三金屬蓋263於個別的p型功函數層244之上時,原子層沉積製程260的副產物可與n型功函數層236上的氧化物層258反應而移除氧化物層258,以露出n型功函數層236的上表面。在第二半循環之後,可進行第二淨化製程以自製程腔室移除任何殘留的共反應物與任何副產物。在進行原子層沉積製程260時,製程腔室中的溫度可維持在介於約400℃至500℃之間,而製程腔室中的壓力可維持在約10torr至約50 torr,以提供合適的沉積環境而有利於上述的化學反應。
值得注意的是,在移除氧化物層258與露出n型功函數層236的上表面之後,原子層沉積製程260可開始形成第二金屬蓋262於n型功函數層236的上表面上。原子層沉積製程260可選擇性地形成第一金屬蓋261、第二金屬蓋262、與第三金屬蓋263,而不形成金屬蓋於介電蓋層238或閘極介電層234上。換言之,形成於凹陷的第一閘極結構250的上表面250t上的金屬蓋不連續。換言之,第一金屬蓋261與第二金屬蓋262分開。由於原子層沉積製程260一開始的數個循環移除氧化物層258而不形成第二金屬蓋262於n型功函數層236上,n型功函數層236上的第二金屬蓋262的厚度T4 (如圖17所示)小於第一金屬蓋261的厚度T3 (如圖17所示)。在一實施例中,厚度T4與厚度T3的比例(即T4/T3)可介於約0.5至約1之間,以形成合適的p型功函數層244。在一些實施中,厚度T3介於約1 nm至約6 nm之間,使形成工件200的最終結構的方法易於整合至現有的半導體製作製程中。
如圖17所示,第一金屬蓋261實質上覆蓋閘極凹陷254所露出的p型功函數層244的上表面,而第一金屬蓋261沿著X方向的寬度可實質上等於寬度W3 (如圖13所示於上)。第二金屬蓋262實質上覆蓋閘極凹陷254所露出的n型功函數層236的上表面。在工件200的剖視圖中,第二金屬蓋262的寬度可實質上等於厚度T1。形成第二金屬蓋262於n型功函數層236上,可避免n型功函數層236進一步氧化。第二金屬蓋262的上視圖符合碟狀或甜甜圈狀。在一些實施例中,寬度W3與厚度T1的比例可介於約1至約5之間,以利閘極接點通孔著陸於第一金屬蓋261上。在一些實施例中,由於移除氧化物層258,第二金屬蓋262的下表面可低於第一金屬蓋261的下表面。第三金屬蓋263實質上覆蓋閘極凹陷256所露出的p型功函數層244的上表面,且第三金屬蓋263的寬度可實質上等於寬度W2 (如圖13所示於上)。第三金屬蓋263的厚度可實質上等於第一金屬蓋261的厚度T3。在第一金屬蓋261至第三金屬蓋263包括其他材料的實施例中,可對應調整前驅物及/或共反應物。舉例來說,當第一金屬蓋261至第三金屬蓋263包括鉬時,第一半循環中採用的前驅物可包括氯化鉬。
圖18係圖17所示的工件200沿著X方向的剖視圖。形成於閘極溝槽228中的第一閘極結構250可包括界面層232、閘極介電層234、n型功函數層236、介電蓋層238、與p型功函數層244。值得注意的是介電蓋層238可合併於第一區202N上的相鄰的通道組件如通道層208之間,以避免p型功函數層244、第一金屬蓋261、與第二金屬蓋262進入相鄰的通道組件如通道層208之間的開口230。形成於閘極溝槽229中的第二閘極結構252包括界面層232、閘極介電層234、與p型功函數層244。值得注意的是,p型功函數層244可合併於第二區202P上的相鄰的通道組件如通道層208之間,以避免第三金屬蓋263進入相鄰的通道組件如通道層208之間的開口231。
如圖1及19所示,方法100的步驟130形成第一自對準蓋介電層266於凹陷的第一閘極結構250與閘極間隔物214上以實質上填入閘極凹陷254,並形成第二自對準蓋介電層268於凹陷的第二閘極結構252與閘極間隔物214上以實質上填入閘極凹陷256。在一實施例中,沉積介電材料層於工件200上,接著可進行平坦化製程移除多餘的介電材料層與硬遮罩層226,以形成第一自對準蓋介電層266與第二自對準蓋介電層268。介電材料層的組成可為鉿矽化物、碳氧化係、氧化鋁、鋯矽化物、氮氧化鋁、氧化鋯、氧化鉿、氧化鈦、氧化鋯鋁、氧化鋅、氧化鉭、氧化鑭、氧化釔、碳氮化鉭、氮化矽、碳氮氧化矽、矽、氮化鋯、或碳氮化矽。在一實施例中,介電材料層的組成為氮化矽。如圖19所示,第一金屬蓋261與第二金屬蓋262隔有第一自對準蓋介電層266的一部分。第一自對準蓋介電層266的部分可直接接觸介電蓋層238。
如圖1及20所示,方法100的步驟132進行額外製程。這些額外製程可包括形成裝置層的接點,比如形成於源極/汲極結構上的源極/汲極接點(未圖示)以及形成於閘極結構(如第一閘極結構250與第二閘極結構252)上的閘極接點通孔(如閘極接點通孔281及282)。在圖20所示的實施例中,閘極接點通孔281著陸於第一金屬蓋261上而不著陸於第二金屬蓋262上,而閘極接點通孔282著陸於第三金屬蓋263上。藉由選擇性形成第一金屬蓋261與第二金屬蓋262於n型功函數層236與p型功函數層244上,可使n型多橋通道電晶體200N的閘極電阻有利地減少約80% (與不具有選擇性形成的第一金屬蓋261與第二金屬蓋262的n型多橋通道電晶體的閘極電阻相較)。這些額外製程亦可包括形成多層內連線結構(未圖示)於工件200上。多層內連線可包括多種內連線結構(比如通孔與導電線路)位於介電層(比如蝕刻停止層與層間介電層如層間介電層270)中。在一些實施例中,通孔為垂直內連線結構,其設置以內連線裝置層的接點。
上述實施例在圖15所示的蝕刻製程253之後,凹陷的第一閘極結構250的上表面250t與凹陷的第二閘極結構252的上表面252t可實質上平坦。在一些情況中,步驟126採用的蝕刻製程253可蝕刻p型功函數層244至更深的位置(與第一閘極結構250及第二閘極結構252的其他層相較)。在圖21所示的實施例中,蝕刻製程253之後形成於第一區202N上的p型功函數層244具有凹入的上表面244t1,而形成於第二區202P上的p型功函數層244具有凹入的上表面244t2。在一些實施例中,上表面244t2的最低點低於上表面244t1的最低點。在一些實施方式中,雖然氧化n型功函數層236的部分以形成氧化物層258於n型功函數層236上,未氧化的n型功函數層236的上表面可高於上表面244t1的最低點與上表面244t2的最低點。
接著對圖21所示的工件200進行步驟128,如搭配圖15至17說明的上述內容。如圖22所示,第一金屬蓋261的下表面延續上表面244t1的形狀,而第三金屬蓋263的下表面延續上表面244t2的形狀。在圖22所示的實施例中,第一金屬蓋261的下表面低於第二金屬蓋262的下表面,且第三金屬蓋263的下表面低於第一金屬蓋261的下表面。第一金屬蓋261與第三金屬蓋263的上表面亦可凹入。由於原子層沉積製程260,第一金屬蓋261與第三金屬蓋263的上表面的凹洞,可分別與第一金屬蓋261與第三金屬蓋263的下表面的對應凹洞相同。接著可進行搭配圖19及20說明的方法100的步驟130及132,以完成製作n型多橋通道電晶體200N與p型多橋通道電晶體200P。
本發明一或多個實施例提供許多優點至半導體結構與其形成方法,但不限於此。舉例來說,本發明實施例提供的半導體結構與其形成方法包括第一金屬蓋選擇性地形成於p型功函數層上,以及第二金屬蓋選擇性地形成於n型功函數層上。在此實施例中,選擇性形成的金屬蓋可降低半導體結構(特別是n型電晶體)的閘極電阻,進而改善半導體結構的整體效能。
本發明提供許多不同實施例。此處揭露半導體裝置與其形成方法。本發明一例示性的實施例關於半導體裝置。半導體裝置包括主動區;閘極結構直接位於主動區上並包括:p型功函數層,介電蓋層沿著p型功函數層的側壁表面與下表面延伸,n型功函數層沿著介電蓋層的側壁表面與下表面延伸,以及閘極介電層與介電蓋層隔有n型功函數層。閘極結構的上表面包括n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面。半導體裝置亦包括導電蓋層,其包括第一部分位於n型功函數層的上表面上以及第二部分位於p型功函數層的上表面上,且第一部分與第二部分分開。
在一些實施例中,n型功函數層可包括鈦與鋁。在一些實施例中,n型功函數層亦可包括碳。在一些實施例中,介電蓋層包括鈦、矽、與氧。在一些實施例中,導電蓋層可包括鎢或鉬。在一些實施例中,第一部分的厚度小於第二部分的厚度。在一些實施例中,第一部分的寬度小於第二部分的厚度。在一些實施例中,半導體裝置亦可包括介電保護層位於導電蓋層上,且第一部分與第二部分隔有介電保護層的一部分。在一些實施例中,半導體裝置亦可包括接點通孔延伸穿過介電保護層並電性耦接至閘極結構,且接點通孔直接接觸導電蓋層的第二部分。在一些實施例中,半導體裝置亦可包括閘極間隔物,閘極介電層的一部分可沿著閘極間隔物的側壁表面延伸,且閘極間隔物的上表面可高於閘極介電層的部分的上表面。在一些實施例中,主動區可包括奈米結構的堆疊,n型功函數層與閘極介電層亦可包覆奈米結構的堆疊的每一奈米結構。
本發明另一例示性的實施例關於半導體裝置。半導體裝置包括n型電晶體,其包括奈米結構的第一堆疊,以及第一閘極結構位於奈米結構的第一堆疊上。第一閘極結構包括閘極介電層,n型功函數層埋置於閘極介電層中,介電蓋層埋置於n型功函數層中,以及p型功函數層埋置於介電蓋層中。第一閘極結構的上表面露出閘極介電層的上表面、n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面。半導體裝置亦包括第一導電蓋層位於p型功函數層上;以及第二導電蓋層位於p型功函數層上。第一導電蓋層的組成與第二導電蓋層的組成相同。
在一些實施例中,第一導電蓋層可圍繞第二導電蓋層,且第一導電蓋層與第二導電蓋層分開。在一些實施例中,第一導電蓋層與第二導電蓋層可不位於介電蓋層的上表面上。在一些實施例中,第一導電蓋層可不位於閘極介電層的上表面上。在一些實施例中,半導體裝置亦可包括p型電晶體,其包括奈米結構的第二堆疊,以及第二閘極結構位於奈米結構的第二堆疊上。第二閘極結構包括閘極介電層,p型功函數層位於閘極介電層上,以及第三導電蓋層位於p型功函數層上。第二閘極結構可不含n型功函數層與介電蓋層,第三導電蓋層的組成與第二導電蓋層的組成相同,且第三導電蓋層的厚度與第二導電蓋層的厚度可實質上相同。在一些實施例中,第三導電蓋層的上表面凹入。
本發明又一例示性實施例關於半導體裝置的形成方法。方法包括提供工件,其包括主動區,以及閘極間隔物定義閘極溝槽於主動區上。方法亦包括形成閘極結構於閘極溝槽中。形成閘極結構的步驟包括順應性形成閘極介電層於工件上,閘極介電層包括水平部分位於主動區上以及垂直部分沿著閘極間隔物的側壁表面延伸;順應性沉積n型功函數層於閘極介電層上;順應性沉積介電蓋層於該n型功函數層上;以及沉積p型功函數層於介電蓋層上。方法亦包括回蝕刻閘極結構以露出n型功函數層的上表面、介電蓋層的上表面、與p型功函數層的上表面;以及在回蝕刻閘極結構之後,選擇性沉積導電蓋層於n型功函數層的上表面與p型功函數層的上表面之上,而不沉積導電蓋層於介電蓋層的上表面上。
在一些實施例中,回蝕刻閘極結構的步驟可部分地氧化n型功函數層而形成氧化物層。在一些實施例中,選擇性沉積導電蓋層的步驟可包括進行原子層沉積製程,且原子層沉積製程的副產物可移除氧化物層。
上述實施例之特徵有利於本技術領域中具有通常知識者理解本發明。本技術領域中具有通常知識者應理解可採用本發明作基礎,設計並變化其他製程與結構以完成上述實施例之相同目的及/或相同優點。本技術領域中具有通常知識者亦應理解,這些等效置換並未脫離本發明精神與範疇,並可在未脫離本發明之精神與範疇的前提下進行改變、替換、或更動。舉例來說,實施不同厚度的位元線導體與字元線導體,可達不同電阻的導體。然而亦可採用其他技術以改變金屬導體的電阻。
T1,T2,T3,T4:厚度 W1,W2,W3:寬度 100:方法 102,104,106,108,110,112,114,116,118,120,122,124, 126,128,130,132:步驟 200:工件 200N:n型多橋通道電晶體 200P:p型多橋通道電晶體 202:基板 202N:第一區 202P:第二區 204:垂直堆疊 204C:通道區 204SD:源極/汲極區 205:介電隔離結構 206:犧牲層 208:通道層 210:虛置閘極堆疊 211:虛置閘極介電層 212:虛置閘極層 213,226:硬遮罩層 214:閘極間隔物 214t,244t1,244t2,250t,252t:上表面 216N,216P:源極/汲極開口 218:內側間隔物結構 220N:n型源極/汲極結構 220P:p型源極/汲極結構 222:接點蝕刻停止層 224,270:層間介電層 228,229:閘極溝槽 230,231:開口 232:界面層 234:閘極介電層 236:n型功函數層 238:介電蓋層 240:遮罩膜 244:p型功函數層 246,248:縫隙 250:第一閘極結構 252:第二閘極結構 253:蝕刻製程 254,256:閘極凹陷 258:氧化物層 260:原子層沉積製程 261:第一金屬蓋 262:第二金屬蓋 263:第三金屬蓋 266:第一自對準蓋介電層 268:第二自對準蓋介電層 281,282:閘極接點通孔
圖1係本發明多種實施例中,形成半導體結構的方法的流程圖。 圖2至22係本發明多種實施例中,工件於圖1的方法的多種製作階段的部分剖視圖。
T1,T3,T4:厚度
W2,W3:寬度
200:工件
200N:n型多橋通道電晶體
200P:p型多橋通道電晶體
202N:第一區
202P:第二區
214:閘極間隔物
214t:上表面
222:接點蝕刻停止層
224:層間介電層
226:硬遮罩層
232:界面層
234:閘極介電層
236:n型功函數層
238:介電蓋層
244:p型功函數層
260:原子層沉積製程
261:第一金屬蓋
262:第二金屬蓋
263:第三金屬蓋

Claims (20)

  1. 一種半導體裝置,包括: 一主動區; 一閘極結構,直接位於該主動區上並包括: 一p型功函數層, 一介電蓋層,沿著該p型功函數層的側壁表面與下表面延伸, 一n型功函數層,沿著該介電蓋層的側壁表面與下表面延伸,以及 一閘極介電層,與該介電蓋層隔有該n型功函數層, 其中該閘極結構的上表面包括該n型功函數層的上表面、該介電蓋層的上表面、與該p型功函數層的上表面;以及 一導電蓋層,包括一第一部分位於該n型功函數層的上表面上以及一第二部分位於該p型功函數層的上表面上,且該第一部分與該第二部分分開。
  2. 如請求項1之半導體裝置,其中該n型功函數層包括鈦與鋁。
  3. 如請求項2之半導體裝置,其中該n型功函數層更包括碳。
  4. 如請求項1之半導體裝置,其中該介電蓋層包括鈦、矽、與氧。
  5. 如請求項1之半導體裝置,其中該導電蓋層包括鎢或鉬。
  6. 如請求項1之半導體裝置,其中該第一部分的厚度小於該第二部分的厚度。
  7. 如請求項1之半導體裝置,其中該第一部分的寬度小於該第二部分的厚度。
  8. 如請求項1之半導體裝置,更包括: 一介電保護層,位於該導電蓋層上, 其中該第一部分與該第二部分隔有該介電保護層的一部分。
  9. 如請求項8之半導體裝置,更包括: 一接點通孔,延伸穿過該介電保護層並電性耦接至該閘極結構, 其中該接點通孔直接接觸該導電蓋層的該第二部分。
  10. 如請求項1之半導體裝置,更包括: 一閘極間隔物, 其中該閘極介電層的一部分沿著該閘極間隔物的側壁表面延伸,以及 其中該閘極間隔物的上表面高於該閘極介電層的該部分的上表面。
  11. 如請求項1之半導體裝置, 其中該主動區包括多個奈米結構的一堆疊, 其中該n型功函數層與該閘極介電層更包覆該些奈米結構的該堆疊的每一該些奈米結構。
  12. 一種半導體裝置,包括: 一n型電晶體,包括: 奈米結構的一第一堆疊; 一第一閘極結構位於奈米結構的該第一堆疊上,且該第一閘極結構包括: 一閘極介電層, 一n型功函數層,埋置於該閘極介電層中, 一介電蓋層,埋置於該n型功函數層中,以及 一p型功函數層,埋置於該介電蓋層中, 其中該第一閘極結構的上表面露出該閘極介電層的上表面、該n型功函數層的上表面、該介電蓋層的上表面、與該p型功函數層的上表面; 一第一導電蓋層,位於該p型功函數層上;以及 一第二導電蓋層,位於該p型功函數層上, 其中該第一導電蓋層的組成與該第二導電蓋層的組成相同。
  13. 如請求項12之半導體裝置,其中該第一導電蓋層圍繞該第二導電蓋層,且該第一導電蓋層與該第二導電蓋層分開。
  14. 如請求項12之半導體裝置,其中該第一導電蓋層與該第二導電蓋層不位於該介電蓋層的上表面上。
  15. 如請求項12之半導體裝置,其中該第一導電蓋層不位於該閘極介電層的上表面上。
  16. 如請求項12之半導體裝置,更包括: 一p型電晶體,包括: 多個奈米結構的一第二堆疊; 一第二閘極結構,位於該些奈米結構的該第二堆疊上,且包括: 一閘極介電層, 該p型功函數層,位於該閘極介電層上,以及 一第三導電蓋層,位於該p型功函數層上, 其中該第二閘極結構不含該n型功函數層與該介電蓋層, 其中該第三導電蓋層的組成與該第二導電蓋層的組成相同,以及 其中該第三導電蓋層的厚度與該第二導電蓋層的厚度實質上相同。
  17. 如請求項16之半導體裝置,其中該第三導電蓋層的上表面凹入。
  18. 一種半導體裝置的形成方法,包括: 提供一工件,包括: 一主動區,以及 多個閘極間隔物,定義一閘極溝槽於該主動區上; 形成一閘極結構於該閘極溝槽中,且形成該閘極結構的步驟包括: 順應性形成一閘極介電層於該工件上,該閘極介電層包括一水平部分位於該主動區上以及一垂直部分沿著該些閘極間隔物的側壁表面延伸; 順應性沉積一n型功函數層於該閘極介電層上; 順應性沉積一介電蓋層於該n型功函數層上;以及 沉積一p型功函數層於該介電蓋層上; 回蝕刻該閘極結構以露出該n型功函數層的上表面、該介電蓋層的上表面、與該p型功函數層的上表面;以及 在回蝕刻該閘極結構之後,選擇性沉積一導電蓋層於該n型功函數層的上表面與該p型功函數層的上表面之上,而不沉積該導電蓋層於該介電蓋層的上表面上。
  19. 如請求項18之半導體裝置的形成方法,其中回蝕刻該閘極結構的步驟部分地氧化該n型功函數層而形成一氧化物層。
  20. 如請求項19之半導體裝置的形成方法, 其中選擇性沉積該導電蓋層的步驟包括進行一原子層沉積製程, 其中該原子層沉積製程的副產物移除該氧化物層。
TW111124735A 2021-07-09 2022-07-01 半導體裝置與其形成方法 TWI835184B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163219948P 2021-07-09 2021-07-09
US63/219,948 2021-07-09
US17/834,255 US20230010065A1 (en) 2021-07-09 2022-06-07 Metal caps for gate structures
US17/834,255 2022-06-07

Publications (2)

Publication Number Publication Date
TW202318663A true TW202318663A (zh) 2023-05-01
TWI835184B TWI835184B (zh) 2024-03-11

Family

ID=84675502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124735A TWI835184B (zh) 2021-07-09 2022-07-01 半導體裝置與其形成方法

Country Status (3)

Country Link
US (1) US20230010065A1 (zh)
CN (1) CN218241856U (zh)
TW (1) TWI835184B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4287241A4 (en) * 2022-04-18 2023-12-27 Changxin Memory Technologies, Inc. SEMICONDUCTOR STRUCTURE AND PRODUCTION PROCESS THEREOF

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692770B2 (en) * 2018-05-30 2020-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Geometry for threshold voltage tuning on semiconductor device

Also Published As

Publication number Publication date
CN218241856U (zh) 2023-01-06
TWI835184B (zh) 2024-03-11
US20230010065A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US11616061B2 (en) Cut metal gate with slanted sidewalls
TWI736884B (zh) 半導體裝置的形成方法
TW201913755A (zh) 半導體裝置及其形成方法
TWI786608B (zh) 半導體裝置及其製造方法
CN112563266A (zh) 半导体装置
US10818768B1 (en) Method for forming metal cap layers to improve performance of semiconductor structure
CN109801914A (zh) 衬底和隔离结构之间的蚀刻停止层
CN112531030A (zh) 半导体装置
TW202101596A (zh) 半導體結構的形成方法
KR20190024517A (ko) 랩-어라운드형 에피택셜 구조 및 방법
CN113725277A (zh) 半导体装置
TWI807398B (zh) 半導體裝置與其形成方法
TWI777530B (zh) 半導體裝置與其形成方法
TWI808374B (zh) 半導體裝置及其形成方法
TWI835184B (zh) 半導體裝置與其形成方法
TW201916120A (zh) 鰭式場效電晶體裝置的製造方法
TW202303746A (zh) 半導體裝置與其形成方法
TW202217979A (zh) 半導體裝置
CN110349908B (zh) 自对准接触结构及其形成方法
CN113224006A (zh) 金属栅极调制器及其原位形成方法
TW202143300A (zh) 半導體裝置及其製造方法
CN218004870U (zh) 多栅极装置
CN220873584U (zh) 半导体装置结构
TWI799185B (zh) 半導體結構與其形成方法
CN218004857U (zh) 半导体装置