TW202244027A - 磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法 - Google Patents

磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法 Download PDF

Info

Publication number
TW202244027A
TW202244027A TW111108807A TW111108807A TW202244027A TW 202244027 A TW202244027 A TW 202244027A TW 111108807 A TW111108807 A TW 111108807A TW 111108807 A TW111108807 A TW 111108807A TW 202244027 A TW202244027 A TW 202244027A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
seed
epitaxial growth
aforementioned
Prior art date
Application number
TW111108807A
Other languages
English (en)
Inventor
久保田芳宏
久保埜一平
Original Assignee
日商信越化學工業股份有限公司
日商信越半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司, 日商信越半導體股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TW202244027A publication Critical patent/TW202244027A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明之目的在於獲得結晶缺陷少且高品質而便宜之AlN、Al xGa 1-xN(0<x<1)、GaN等之III族氮化物之磊晶及無垢磊晶成長用種基板。 本發明之磊晶成長用種基板具備支撐基板、設於支撐基板的上面之0.5~3μm的平坦化層、及設於平坦化層的上面之種晶層。支撐基板包含III族氮化物之多晶陶瓷之核,與密封核的0.05~1.5μm之密封層。種晶層係藉由薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(Oxidation induced Stacking Fault:OSF)為10個/cm 2以下的Si<111>單晶的表層而設置。

Description

磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法
本發明有關氮化鋁(AlN)、氮化鋁鎵(Al xGa 1-xN (但,0<x<1)、氮化鎵(GaN)等之少缺陷高特性之III族氮化物之磊晶及無垢之磊晶成長用種基板及其製法。若進一步言之,則有關結晶缺陷及翹曲、孔洞極少、高品質且低成本之AlN、Al xGa 1-xN(0<x<1)、GaN系等之III族氮化物之磊晶及無垢之磊晶成長用種基板及其製法。
AlN系、GaN系等之III族氮化物之結晶基板具有較廣的帶隙,且具有短波長之發光性及高耐壓優異之高頻率特性。因此,III族氮化物之基板,被期待於發光二極體(LED)、雷射、肖特基二極體、功率元件、高頻元件等元件之應用。例如,AlN系結晶基板因最近之新型冠狀病毒等之流行,基於細菌及病毒去除之目的,尤其是AlN及/或Al xGa 1-xN(0.5<x<1)之單晶的深紫外線區域(UV:200~280nm)之發光二極體用基板之需求增加。然而,現狀因該等AlN及/或Al xGa 1-xN(0.5<x<1)之單晶基板缺陷較多、低品質、高價格,即使作成各種元件仍無法獲得期待之特性,因此該等基板之廣泛普及及用途擴大受到限制。另一方面,GaN系結晶基板於5G通信開始及車輛EV化進展之同時,而被要求更高的高頻特性及更高之耐壓性能。其結果,GaN系結晶基板亦被渴望為結晶缺陷極少,且低價格之磊晶及無垢基板。但是,現狀,與AlN系同樣,GaN系結晶基板儘管亦係結晶缺陷等較多且為低品質但價格仍高,阻礙了對前述元件等之廣泛普及,仍期望進一步改良。
例如,關於AlN單晶基板,如非專利文獻1、非專利文獻2所記載,AlN由於不具有熔點,故矽(Si)單晶等之以一般融液法製造困難,通常係以碳化矽(SiC)或AlN作為種晶於1700~2250℃ N 2環境下以昇華法製造(改良瑞利法),或是如專利文獻1、非專利文獻3所揭示,於藍寶石基板或以昇華法所得之AlN基板上以氫化物氣相磊晶(HVPE)法製作。昇華法之AlN單晶因於結晶成長要求高溫,且因裝置之限制現狀最高為ϕ2~ϕ4吋直徑之小口徑基板,因此極為昂貴。所得之AlN單晶之錯位密度<10 5cm -2而較少,但相反地,因源自坩鍋與隔熱材等之碳材等之碳與金屬雜質之汙染而使結晶著色,具有電阻率低、紫外線透過率亦低之缺點。另一方面,於藍寶石基板上以氫化物氣相磊晶(HVPE)法製作之AlN單晶雖比較便宜,且著色較少,但因AlN與藍寶石間之晶格常數之差異,成為AlN結晶之錯位密度較高且電阻率較低者。又,於昇華法之AlN基板上進行HVPE成膜所得之AlN結晶之錯位密度雖相對較少,但因來自基底基板之AlN之著色物汙染,對於深紫外發光為不透明,且為低電阻率。除此之外,過去因直接以高價的昇華法AlN結晶作為兼作種晶之基底基板使用,故有成本變得極高之缺點。
關於GaN基板,於液體氨或Na助熔劑等之液中使GaN結晶成長之整體GaN基板相對缺陷較少且高品質,但因需要高溫高壓裝置,故極為昂貴。又,因與上述昇華法之AlN基板同樣,直接作為兼作種晶之基底基板使用,故成本變得極高。另一方面,若使用以氣相進行結晶成長之MOCVD法與氫化物氣相磊晶(HVPE法、THVPE法)於藍寶石基板等進行異質磊晶成長,則結晶之高品質化與大型化原理上為可能,但實際上因生成之GaN結晶與基底基板之藍寶石間之晶格常數及熱膨脹率大為不同,故製造中大量發生結晶缺陷及破裂,無法獲得高品質之結晶。
作為對於該等課題之突破對策之一,於專利文獻2揭示具備具有AlN陶瓷‧核與以SiO 2/P-Si/SiO 2/Si 3N 4之多層膜將前述AlN陶瓷‧核密封之密封層之支撐基板,與於前述支撐基板上面之SiO 2等之平坦化層,進而具有於前述平坦化層之上面薄膜轉印有作為種晶之Si<111>之種晶層,即所謂的QST(商品名)基板。
然而,此方法於密封核之各多層膜間,或密封層、平坦化層、種晶層間容易產生熱膨脹率差。又,基於熱膨脹率差之熱應力於密封層、平坦化層,或種晶層間,或於後步驟之磊晶成膜步驟等形成之各層間發生破裂或缺陷,或變形等。其結果,得知因AlN陶瓷‧核中之雜質擴散於種晶引起汙染及各種變形,對隨後之磊晶成長亦造成不良影響,成為結晶缺陷較多的低特性之磊晶成長膜。
因此,尤其於結晶缺陷少、高特性為必要之例,以結晶缺陷少、高品質且低價格獲得於極超短波之深紫外線區域(UVC:200~ 280nm)使用之發光二極體用基板之AlN及/或Al xGa 1-xN(0<x<1),或適用於伴隨5G通信與車輛EV化之高頻化、高耐壓化之GaN結晶基板具有困難,而期望更新的解決對策。
因此本發明人等試圖解決上述問題而進行各種檢討之結果,完成了本發明。亦即,本發明之重要構成要素之一,係極力減小密封上述核之各多層膜間,或密封層、平坦化層、種晶層間之熱膨脹率差,並使密封層、平坦化層、種晶層間之膜厚均衡良好地最適化,其中,密封層之組成與厚度之最適化,及/或根據需要亦附加應力調整層,而實現熱應力之最小化,更低應力化。
另一方面,迄今,即使已理解種晶之角色,但針對其特徵並無更深的檢討。尤其,Si<111>種晶之特徵與其後之磊晶成膜之因果關未被充分地完全研究。因此本發明人等,將於前述各層間引起之熱應力差所致之變形與來自核之汙染等之要因,藉由進行使各層組成之最適化與各層間之熱應力之最小化,而極力排除,並對Si<111>種晶之特徵對磊晶成膜賦予之效果進行調查。
其結果,為了以少缺陷且高特性、低成本獲得AlN、AlN xGa 1-xN(0<x<1)、GaN等之III族氮化物之磊晶成長用種基板,發現除了上述變形與污染以外,於Si<111>種晶之特性中於專利文獻3記載之氧化誘導堆疊缺陷(Oxidation induced Stacking Fault:OSF)具有較大之影響。亦即,發現Si<111>種晶中之OSF愈少則磊晶成膜中之缺陷愈少,隨後之元件特性亦愈良好。
過去因於磊晶膜中存在多數結晶缺陷,故一般認知Si<111>種晶中之氧化誘導堆疊缺陷(OSF)之多寡對磊晶成膜之缺陷幾乎無影響。但是,本發明人等以更顯著化之條件下再檢討磊晶成膜中之缺陷之結果,發現Si<111>種晶之特徵與磊晶成膜中之缺陷間具有大的因果關係,作為本發明之又一重要構成要素,而完成本發明。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利第6042545號 [專利文獻2]日本專利第6626607號 [專利文獻3]日本專利第2936916號 [非專利文獻]
[非專利文獻1] Japanese Journal of Applied Physics; Vol. 46, No. 17, 2007, pp.L389-L391 [非專利文獻2] SEI Technical Review:No.177號,p88~p91 [非專利文獻3] Fujikura Technical Journal:No.119號,2010年Vol. 2,p33~p38 [非專利文獻4] LEDs Magazine Japan:2016年12月,p30~p31
[發明欲解決之課題]
本發明係鑑於上述情形而完成者,目的在於獲得結晶缺陷少且高品質而便宜之AlN、Al xGa 1-xN (0<x<1)、GaN等之III族氮化物之磊晶及無垢磊晶成長用種基板。為了達成此目的,本發明之磊晶成長用種基板係藉由使密封成為基底基板之核之各多層膜間,或密封層、平坦化層、Si<111>種晶層間之組成及各膜厚最適化,而使熱膨脹率差最小化、低應力化,及於平坦化層之上面薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(OSF)為10個/cm 2以下的Si<111>單晶,作為種晶層。且,本發明之氧化誘導堆疊缺陷(OSF)之數(個/cm 2)係以專利文獻3之評價方法測定。種晶層之厚度愈薄缺陷密度之測定愈困難,認為係不因薄膜轉印而缺陷密度有變化者。
本發明重要的是儘可能將各多層膜間、或密封層、平坦化層、種晶層間之熱膨脹率差最小化,因此將密封層、平坦化層、種晶層間之組成與膜厚均衡良好地最適化是不可或缺。尤其,密封層之組成與厚度之最適化,及/或根據需求附加應力調整層,並更低應力化,及於平坦化層之上面薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(OSF)為10個/cm 2以下的Si<111>單晶而成為種晶層,而可使所期待之結晶缺陷少、高特性且低價格化。 [用以解決課題之手段]
本發明為了達成上述目的,本發明之實施形態之磊晶成長用種基板係具備支撐基板、設於支撐基板的上面之0.5~3μm的平坦化層、及設於平坦化層的上面之種晶層。支撐基板包含III族氮化物之多晶陶瓷之核,與密封核的0.05~1.5μm之密封層。種晶層係藉由薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(Oxidation induced Stacking Fault:OSF)為10個/cm 2以下的Si<111>單晶的表層而設置。
於本發明,成為核之III族氮化物之多晶陶瓷較佳為AlN陶瓷。
於本發明,密封層較佳至少包含Si 3N 4之層。
於本發明,平坦化層較佳係由SiO 2及/或氧氮化矽(Si xO yN z)或AlAs而成。
於本發明,成為種晶層之Si<111>之電阻率(室溫)較佳為1kΩ‧cm以上。
於本發明,支撐基板之最下面較佳進而具備應力調整層。
於本發明,密封層較佳藉由LPCVD法成膜。
於本發明,平坦化層較佳於支撐基板之上面單側或全面藉由電漿CVD法、LPCVD法、低壓MOCVD法之任一者成膜SiO 2及/或氧氮化矽(Si xO yN z)或AlAs者。
於本發明,種晶層較佳藉由對OSF為10個/cm 2以下,且電阻率(室溫)為1kΩ‧cm以上的Si<111>單晶離子注入氫及/或He後,藉由450℃以下之物理手段轉印0.1~1.5μm之薄膜而設置。
於本發明,應力調整層較佳係具備平坦化層後,可自具有可矯正其翹曲之熱膨脹率之SiO 2、Si 3N 4、非晶Si、多晶Si等之單獨或該等之組合等選擇。此處,考慮到於元件製造步驟中製程裝置與靜電卡盤對應之情況,於支撐基板之最下層較佳係自至少以選自濺鍍法、電漿CVD、LPCVD法之方法作成之多晶Si中選擇。進而,為了提高密封層與應力調整層之親和性,較佳為使SiO 2及/或氧氮化矽(Si xO yN z)介隔於多晶Si層與支撐基盤之間。使用兼作應力調整層與對靜電卡盤之卡盤膜之多晶Si膜之情況,可直接成膜多晶Si,或如前述成膜非晶Si後,以加熱或雷射照射等進行多晶化。此處將多晶Si膜設置於最下層之理由,於考慮製程裝置與靜電卡盤對應之情況,靜電卡盤表面與卡盤對應膜之距離愈小,或卡盤對應膜之電阻率愈低則靜電吸附力愈強之故。
又,本發明之實施形態之半導體基板之特徵係於上述任一磊晶成長用種基板之上面成膜III-V族半導體薄膜。III-V族半導體膜膜較佳為包含Ga及/或Al之氮化物半導體薄膜。
又,本發明之實施形態之磊晶成長用種基板之製造方法具備下述步驟:準備由III族氮化物之多晶陶瓷之核所成的核之步驟;以包埋核之方式成膜厚度0.05μm以上1.5μm以下之密封層成為支撐基板之步驟;於支撐基板之上面成膜厚度0.5μm以上3.0μm以下之平坦化層之步驟;及於平坦化層之上面,藉由薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(Oxidation induced Stacking Fault:OSF)為10個/cm 2以下的Si<111>單晶的表層而設置種晶層之步驟。
於本發明,密封層較佳係藉由LPCVD法成膜。
於本發明,平坦化層較佳係於支撐基板之上面單側或全面藉由電漿CVD法、LPCVD法、低壓MOCVD法之任一者成膜SiO 2及/或氧氮化矽(Si xO yN z)或AlAs者。
於本發明,較佳對OSF為10個/cm 2以下,且電阻率(室溫)為1kΩ‧cm以上的Si<111>單晶離子注入氫及/或He後,藉由450℃以下之物理手段轉印0.1~1.5μm之薄膜而設置種晶層。
於本發明,較佳進而具備於支撐基板之最下面進而設置應力調整層之步驟。該應力調整層較佳於具備平坦化層之後,具有可進而矯正其翹曲之熱膨脹率,並至少由藉由選自濺鍍法、LPCVD法之方法作成之多晶Si所成。
又,本發明之實施形態之半導體基板之製造方法,具備下述步驟:藉由上述任一磊晶成長用種基板之製造方法製造磊晶成長用種基板之步驟;及於磊晶成長用種基板之上面成膜III-V族半導體薄膜之步驟。 [發明效果]
藉由本發明可以缺陷少、高品質且便宜地提供於深紫外線區域(UVC:200~280nm)中使用之發光二極體用基板等之AlN及/或Al xGa1 1-xN(0<x<1),或適用於伴隨5G通信及車輛EV化之高頻化、高耐壓化等之GaN結晶基板等之III族氮化物之磊晶及無垢之磊晶成長用種基板。
以下,針對本發明之實施形態詳細說明,但本發明不限定於此等者。
本實施形態之III族氮化物之磊晶成長用種基板(以下有時簡稱為「種基板」)1之剖面構造示於圖1。圖1所示之種基板1具有於支撐基板3上積層平坦化層4及Si<111>之種晶層2之構造。又,根據需要,可於支撐基板3之與積層平坦化層4之面相反之面(下面)設置應力調整層5。
支撐基板3具備成為該支撐基板3之芯材之核31及覆蓋核31之密封層32。
核31係藉由III族氮化物之多晶陶瓷形成。具體而言,可使用AlN、Si 3N 4、GaN或該等之混合體,但基於與目的之III族氮化物結晶之晶格常數、熱膨脹率接近、高熱傳導性且便宜故較佳為多晶AlN之陶瓷。基於元件加工之方面,較佳選擇上半導體之產線之厚度200~ 1000μm之鏡面拋光之晶圓。AlN陶瓷之製法有各式各樣的,但基於其生產性,一般為所謂的薄片成型/常壓燒結法。於薄片成型/常壓燒結法,係將AlN粉與燒結助劑、有機黏合劑、溶劑等混合,作成晶圓狀之陶瓷生坯後,脫脂,於N 2環境下燒結後、研磨形成製品。作為燒結助劑,可選自Y 2O 3、Al 2O 3、CaO等,但通常較佳為於燒結後之基板展現最高熱傳導性之Y 2O 3
若AlN陶瓷直接使用作為核31,則源自原料AlN及Y 2O 3粉中金屬雜質及燒結時之隔熱材及爐材、容器等之碳、氧、其他雜質將成為汙染源,對目的之單晶造成結晶缺陷及著色等之不良影響。
因此,可設置將多晶陶瓷之核31包覆密封之密封層32。具體而言係於將核31以密封層32密封時,為了使熱應力儘可能小,使熱傳導儘可能大,必須考慮構成密封層32之各層其組成與膜厚。本發明中基於製造成本面,密封層32之總膜厚較佳於0.05~1.5μm之範圍內而實現最適化。
密封層32之組成可考慮熱膨脹率、熱傳導而適宜選擇,但為了更提高其雜質擴散防止能,較佳為至少以由氮化矽(Si 3N 4)所成之膜將全體覆蓋密封。
該密封層32中根據需求,例如於欲使用靜電卡盤之情況,較佳設置作為靜電卡盤用層之p-Si。該p-Si之層可於AlN陶瓷與Si 3N 4層之間成膜,亦可根據情況與後述之應力調整層5同時或設置於其下層。此情況,於p-Si及AlN核及Si 3N 4之接著性不足之情況,可考量各層間之親和力及熱膨脹率,介隔接著性能較高之SiO 2或氧氮化矽(Si xO yN z)等之膜。
於用途為高頻,尤其兆赫或毫米波等之超高頻用之GaN等之III族氮化物之磊晶成長用種基板,為了避免利用使用該種基板成長之磊晶層製作之元件之高頻損失,上述之Si<111>之種晶層2之電阻率(室溫)較佳為1kΩ‧cm以上。其原因為電阻率(室溫)為1kΩ‧cm以下之Si<111>種晶層2,因兆赫及毫米波所致之高頻損失變大而使元件發熱,電力消耗亦大且無法展現特性之故。
設置靜電卡盤用p-Si膜之情況,其電阻於顯現必要吸附力之範圍,較佳為更高電阻之p-Si,其位置成膜於儘可能遠離積層磊晶成膜之種晶層2的核31之下層,或成膜於應力調整層5之下部,或亦可與應力調整層5同時進行多層成膜。高電阻之p-Si因高頻損失少,配置於支撐基板3之下部時與靜電卡盤接近,故即使為高電阻仍可產生充分的靜電力。因此,即使無摻雜亦可充分吸附基板。於進而減低高頻損失時,更佳於元件製作之最後藉由基板之背面研磨去除p-Si層。設置應力調整層5時,較佳極力維持p-Si之電阻於較高,但對產生必要之靜電力所需之最低限的硼(B)及磷(P)等摻雜物並未限制。
於密封層32於各層厚度過厚時因熱膨脹率差導致各層間之應力變大會於各層間產生剝離。因此即使選擇各種組成之膜並組合,密封層32之厚度亦會為1.5μm以上而欠佳。另一方面,基於密封雜質之機能之觀點,厚度為0.05μm以下對防止雜質擴散不足。根據以上,密封層32之厚度較佳為0.05~1.5μm之範圍。且,密封層之成膜方法,可選自通常之MODVC、常壓CVD、LPCVD、濺鍍法等之成膜法,但基於膜質、膜之覆蓋性、防止雜質擴散能則特佳使用LPCVD法。
於支撐基板3之至少上面之密封層32上積層0.5~3μm之平坦化層4。該平坦化層4選自SiO 2、Al 2O 3、Si 3N 4、SiC或氮氧化矽(Si xO yN z)等之一般陶瓷之膜材及多用於屢屢於蝕刻等作為犧牲層之Si、GaAs、AlAs等,但較佳為選自平坦化時之研削及研磨容易且獲得無垢基板等時之分離容易的SiO 2及/或氮氧化矽(Si xO yN z)或AlAs。
又,平坦化層4基於成本面通常僅於密封層32上單側積層,但於翹曲較大時亦可以覆蓋密封層32全體予以成膜。平坦化層4之厚度必須為可將核31、密封層32等之孔洞及凹凸埋填,且可獲得可轉印種晶之充分平滑性之厚度。但是,過厚的平坦化層4將成為種基板1之翹曲及破裂等之原因故而欠佳。因此,較佳至少於上面設置0.5~3μm厚。該等若未滿0.5μm則無法將AlN陶瓷之核31及密封層32之孔洞及凹凸完全埋填,若為3μm以上則容易發生平坦化層4所致之翹曲之故。
平坦化層4之成膜方法,基於其必要膜質與成膜效率之觀點,較佳為電漿CVD法或LPCVD法,或低壓MOCVD法等。經積層之SiO 2及/或氮氧化矽(Si xO yN z)或AlAs根據膜之狀況,實施以焠火為目的之熱處理或為了平滑性而實施CMP研磨,以備後述之種晶層2之薄膜轉印。
種晶可選擇與本發明作為對象之AlN、Al xGa 1-xN(0<x<1)、GaN等之III族氮化物類似之結晶構造之基板。因此可考慮Si<111>、SiC、SCAM、AlN、AlGaN、藍寶石等,但基於大口徑化之容易度、有市售品、成本便宜等之點較佳為Si<111>。其中,Si<111>結晶中氧化誘導堆疊缺陷(OSF)為10個/cm 2以下之Si<111>單晶亦特佳如前述。
其原因係次步驟之成為磊晶成膜之種的Si<111>種晶之OSF為10個/cm 2以下時,經磊晶成膜之結晶亦隨著種晶,缺陷較少,進而使用其之元件亦成為高特性,良率亦較佳,故成為低成本,相較之下,若OSF超過10個/cm 2則磊晶成膜之結晶缺陷亦急遽增加使元件特性亦惡化,必然會使良率惡化,而成為高成本之故。
又,將於種基板1磊晶成膜所得之磊晶及無垢基板用於高頻,尤其是5G以後之高頻用元件之情況,作為Si<111>種晶較佳選擇電阻率(室溫)為1kΩ‧cm以上者。其原因係Si<111>種晶之電阻率(室溫)未達1kΩ‧cm時因其電阻而發生高頻損失,消耗電力增加,發熱而使元件之特性劣化之故。
Si<111>種晶實施限定於對單晶基板之電阻率影響較小的氫及/或氦(He)之離子種之離子注入後,將Si<111>種晶之離子注入面接合至平坦化層4上面,於450℃以下使用爪等之物理手段將0.1~1.5μm之薄膜剝離轉印至平坦化層4,成為種晶層2。氫及He等之輕元素係與硼(B)等之重元素不同的離子注入所致之種晶之損傷較小,且電阻率亦不會降低之方面適用於對種晶之離子注入。又,藉由於450℃以下之低溫下進行剝離‧轉印,可避免以通常之智能切割法之700℃以上之高溫之熱剝離‧轉印,可防止Si<111>種晶之熱損傷。
種晶層2之轉印厚度較佳為0.1~1.5μm。於離子注入中,僅破壞層約為接近0.1μm之厚度,若未達0.1μm將無法獲得良好的種晶。又,轉印厚度為1.5μm以上之厚度時離子注入機必須有高輸出之離子能量,將使離子注入機變得巨大尺寸,且需要莫大的投資,並不經濟。且,種晶層2之厚度若薄(例如1.0μm以下)將有難以直接測定缺陷密度之可能性,但因認為缺陷密度不因薄膜轉印而變化,故推測種晶層2中OSF之缺陷密度與Si<111>種晶相同為10個/cm 2以下。
若更具體描述實施方法,則對種晶於0.2~ 3.5μm深度離子注入氫及/或He後,將前述平坦化層4的上面與種晶之離子注入面接合。隨後,較佳於450℃以下之溫度以氣壓或爪等之物理方法將種晶剝離。其理由係若於超過450℃之高溫,則因雜質擴散或熱應力所致之應力或熱損傷容易發生於經轉印之薄膜種晶。
隨後,較佳藉CMP研磨及/或藥液將經轉印之薄膜的上面輕微蝕刻,將不可避免之離子注入損傷層去除,獲得厚度0.1~1.5μm之種單晶薄膜(種晶層2)。且,於離子注入,要求更高均一性之情況,較佳根據需要於種基板之離子注入面成膜SiO 2等之後,進行離子注入。
本發明可進而根據需要於前述支撐基板3之最下面,附加應力調整層5。應力調整層5係選擇具有可矯正因形成平坦化層4所產生之種基板1之翹曲的熱膨脹率之膜材及厚度。例如,應力調整層5可選自SiO 2、Si 3N 4、非晶Si、多晶Si等之單獨或該等之組成等。此處,考量到與元件製造步驟之製程裝置之靜電卡盤對應之情況,於支撐基板之最下層較佳至少選自以自濺鍍法、電漿CVD、LPCVD法中選擇之方法作成之多晶Si。通常,作為應力調整層5,較佳成膜兼具與靜電卡盤對應之多晶Si(p-Si)。又,基於翹曲之矯正及與密封層32之親和性之觀點,可於多晶Si及密封層間介隔SiO 2及/或氮氧化矽(Si xO yN z)等。作為應力調整層5,於使用兼具對靜電卡盤之卡盤膜之多晶Si膜之情況,可將多晶Si直接成膜,或成膜非晶Si後,藉加熱或雷射照射等予以多晶化。藉由將多晶Si膜設置於最下層,可將靜電卡盤表面與卡盤對應膜之距離縮短同時使膜之電阻率降低,提高靜電吸附力。
接著,參照圖2,說明本實施形態之III族氮化物系磊晶成長用種基板1之製造方法之順序。又,關於對各層之形成適合之方法,於與種基板1之各子部之構成一併既已說明之情況,將省略此處之重複說明。
首先,準備由氮化物陶瓷所成之核31(圖2之S01)。接著,以包入核31之方式以厚0.05μm~1.5μm之厚度成膜密封層32作成支撐基板3(圖2之S02)。此時,密封層32較佳藉由LPCVD法成膜。接著,於支撐基板3之上面成膜厚度0.5μm以上0.3μm以下之平坦化層4(圖2之S03)。又,根據需求,於支撐基板3之下面成膜應力調整層5(圖2之S04)。又,亦可同時製膜平坦化層4及應力調整層5。
又,與S01~S04另外,準備用以剝離轉印種晶層2之種晶的S1<111>單晶基板20(圖2之S11)。接著,自單晶基板20之1面(離子注入面)進行離子注入,於單晶基板20內形成剝離位置(脆化層)21(圖2之S12)。
接著,將單晶基板20之離子注入面與形成於支撐基板3上之平坦化層4接合成為接合基板(圖2之S21)。接著,於接合基板中之單晶基板20之剝離位置21,將單晶基板20分離(圖2之S22)。藉由如此,於支撐基板3上之平坦化層4上薄膜轉印Si<111>單晶膜作為種晶層2。另一方面,經分離之Si<111>單晶基板20之剩餘部分,可藉由再度研磨該表面作成離子注入面,進而重複利用於製作其他III族氮化物系複合基板時用以供種晶層薄膜轉印者。
以上,針對磊晶成長用種基板1之構成及製造方法進行說明。如此本發明,係顯示1)藉由使各層間尤其是密封層之組成與膜厚最適化而使熱應力極小化,2)利用優良之種晶進行優良之磊晶膜結晶之育成之二個必須構成要素之相乘效果者,次要具有下述效果:3)以根據需要之應力調整層進而低應力化,及4)限定於氫及/或He之輕元素之離子注入及,以450℃以下藉由爪等之物理手段進行薄膜轉印。根據本發明,可經濟地獲得翹曲、孔洞、結晶缺陷等極少、元件之高頻損失極少之磊晶基板及無垢基板。
本發明之基板可大幅提高元件例如深紫外線區域(UVC:200nm~ 280nm)所用之發光二極體及5G通信及EV車輛用之高頻元件或高耐壓元件等之特性,且顯著改善元件之製造良率者。 [實施例]
以下舉例實施例及比較例,更具體說明本發明,但本發明並非限定於該等實施例者。
[實施例1] (支撐基板之準備) 準備以密封層32覆蓋多晶陶瓷之核31的構造之支撐基板3。多晶陶瓷之核31係使用市售品之AlN基板。該AlN基板係使用將AlN粉100重量份及作為燒結助劑之Y 2O 35重量份與有機黏合劑、溶劑等混合,作成坯片後,進行脫脂、於N 2環境下1900℃燒結,且兩面研磨之ϕ8吋×t725μm者。密封層32係藉由LPCVD法以0.1μm厚之氮氧化矽層將AlN陶瓷之核31全體包埋而覆蓋,此外進而使用其他LPCVD裝置,以0.4μm厚之Si 3N 4層將全體密封而形成。密封層32之總厚度為0.5μm。基於使該Si 3N 4層上更平坦化之目的,以電漿CVD法(ICP-CVD裝置)僅於上層單側積層6μm厚之SiO 2。隨後,以1000℃焠火後,藉由CMP研磨,將SiO 2平坦化至2μm厚度(Ra=0.2nm)為止,備於種晶之薄膜轉印。
(種晶之準備) 準備以專利文獻3之評價而氧化誘導堆疊缺陷(OSF)為8個/cm 2且電阻率(室溫)為1.5kΩ‧cm之ϕ8吋、厚度725μm之Si<111>單晶基板作為種晶基板。對該Si基板以100keV且深度0.6μm,劑量8×10 17cm -2之條件進行氫之離子注入。
對先前準備設置之支撐基板3之平坦化層4(厚度2μm),薄膜轉印該經離子注入之Si<111>單晶之表層0.6μm部分。以CMP將離子注入與轉印時之Si<111>單晶受到之損傷部分輕輕研磨,使Si<111>單晶層之厚度為0.4μm作為種晶層2。所得之種基板1,關於密封層32之各層間及密封層32、平坦化層4、種晶層2,將膜厚以各熱應力均衡之結果,為不具有破裂、膜剝離及翹曲者。
且,薄膜轉印後之其餘部分之Si<111>單晶基板,藉由數次重複實施離子注入,可作為多數種晶重複利用,極為經濟。
藉由本實施可獲得於具有AlN陶瓷之核31與密封層32之構造之支撐基板3上,具備2μm厚之平坦化層4及0.4μm厚之Si<111>單晶種晶層2之種基板1。針對該種晶板1之作為GaN磊晶成長用種基板之特性,進行以下之簡便評價。
將上述種基板1載置於MOCVD裝置之反應器內,進行磊晶成長。此時,磊晶層係自種基板1側朝成長方向依序成膜AlN、AlGaN,隨後使GaN磊晶成長。磊晶層之構造不限於此,例如可不成膜AlGaN,或亦可成膜AlGaN後進而成膜AlN。此次之評價中,將AlN層製膜100nm、AlGaN層製膜150nm。又磊晶層之合計總膜厚為5μm。磊晶成長時,作為Al源可使用TMAl(三甲基鋁)、作為Ga源可使用TMGa (三甲基鎵)、作為N源可使用NH 3,但不限定於該等。又,載體氣體可為N 2及H 2乃至其任一者,製程溫度較佳為900~1200℃左右。
隨後,為了評價錯位密度而進行藉由熔融鹼(KOH)蝕刻法而產生蝕孔之蝕孔密度(Etch Pit Density,以下稱EPD)之測定。又作為結晶性之評價則進行X射線擺動曲線(XRC)測定。
其結果,顯示EPD為0.2×10 4cm -2之極低錯位密度。又,基板之GaN(0002)面之XRC測定的半高寬FWHM(以下,簡稱「0002XRC之FWHM」)為135arcsec,獲得高品質之GaN單晶。根據該等結果,得知本實施例之種基板1作為磊晶成長用基板之性質優異。將於該種基板1上設置磊晶層之磊晶基板使用於30GHz/20Gbps之高頻元件用,結果元件之表面溫度為43℃,未見到特別成為問題程度之高頻損失所致之溫度上升。
[比較例1] 除了使用氧化誘導堆疊缺陷(OSF)為16個/cm 2、電阻率(室溫)為0.2kΩ‧cm的ϕ8吋之單晶Si<111>單晶基板作為種基板,薄膜轉印厚度1.3μm之種晶層2以外,以與實施例1同樣條件製作種基板1。對該種基板1亦與實施例1同樣藉由MOCVD法成膜5μm之GaN。其結果,顯示EPD為15×10 4cm -2之極大錯位密度。又,0002XRC之FWHM為930arcsec,相較實施例1係結晶性較差的GaN單晶。又,將該磊晶基板使用於30GHz/20Gbps之高頻元件用之處,因高頻損失使元件表面溫度成為125℃之高溫,無法長期使用。
[實施例2] (支撐基板之準備) 準備以密封層32覆蓋多晶陶瓷之核31之構造的支撐基板3。多晶陶瓷之核31,與實施例1同樣使用市售品之AlN基板。密封層32係首先將AlN陶瓷之核31全體藉由LPCVD法以0.3μm厚之SiO 2層包埋,此外藉由進而使用其他LPCVD裝置,以0.8μm厚之Si 3N 4層將全體密封而形成。密封層32之總厚度為1.1μm。以使該Si 3N 4層上進而平坦化之目地,僅對密封層32之上層藉由LPCVD法積層5μm氮氧化矽。隨後,將氮氧化矽層以CMP研磨成2.5μm厚。於該階段,基板全體為約30μm之較大翹曲。為了矯正該翹曲,於最下面進而以電漿CVD成膜5μm厚氮氧化矽及0.2μm厚之兼作靜電卡盤吸附用之未摻雜多晶Si作為應力調整層5。其結果,解除翹曲,對於靜電卡盤仍可進行充分之吸脫附。
(種晶之準備) 準備以專利文獻3評價之氧化誘導堆疊缺陷(OSF)為0個/cm 2且電阻率(室溫)為2.3kΩ‧cm之ϕ8吋、厚度725μm之單晶Si<111>基板作為種晶基板。對該Si基板以130keV且深度1.4μm、劑量9.5×10 17cm -2之條件進行氫之離子注入。
對先前準備設置之支撐基板3之平坦化層32(厚度2.5μm),薄膜轉印該經離子注入之Si<111>單晶之表層1.4μm部分。以CMP將離子注入及轉印時之Si<111>單晶受到之損傷部分輕輕研磨,使Si<111>單晶層厚度為1μm作為種晶層2。所得之種基板1,關於密封層32之各層間及密封層32、平坦化層4、種晶層2,將膜厚以各熱應力均衡之結果,為不具有破裂、膜剝離及翹曲者。
且,薄膜轉印後之其餘部分之Si<111>單晶基板,藉由與實施例1同樣重複實施數次離子注入,可重複利用作為多數種晶,極為經濟。
藉由本實施可獲得於具有AlN陶瓷之核31與密封層32之構造之支撐基板3上具備2.5μm厚之平坦化層4及1μm厚之Si<111>單晶之種晶層2之種基板1。針對該種晶板1作為AlN的磊晶成長用種基板之特性,進行以下之簡便評價。
對該種基板1以AlCl 3及NH 3作為原料藉THVPE法成膜600μm之AlN單晶。以線鋸將該成膜之AlN單晶切開,研磨製作平滑之ϕ8吋基板。又該經切開之AlN單晶基板無著色,以膜厚100μm換算之波長220nm之光的透過率為約80%。其次,以該基板作為AlN之磊晶成長用種基板進行以下之簡便評價。
於上述AlN基板上以MOCVD法成膜2μm之AlN,與實施例1之評價同樣,為了評價錯位密度,進行藉由熔融鹼(KOH)蝕刻法而發生蝕孔之EPD測定。又,作為結晶性之評價係進行X射線擺動曲線(XRC)測定。
其結果,顯示EPD為0.5×10 4cm -2之極低錯位密度。又0002XRC之FWHM為110arcsec,獲得高品質之AlN單晶。該AlN單晶作為深紫外線區域用之LED基板為缺陷極少、元件特性亦高且便宜之優異基板。
[實施例3] 除了實施例1之平坦化層4設為以下層為2μm厚之AlAs與上層為0.5μm之SiO 2層構成之總厚度為2.5μm之SiO 2/AlAs之2層構造的平坦化層4以外,與實施例1同樣條件,獲得磊晶成長用之種基板1。
又,薄膜轉印後之其餘部分之Si<111>單晶基板,藉由重複實施數次離子注入,可作為多數之種晶重複利用極為經濟。
藉由本實施於可獲得於具有AlN陶瓷之核31與密封層32之構造之支撐基板3上具備總厚為2.5μm之SiO 2/AlAs之經複合平坦化層4及於其上之0.4μm厚之Si<111>單晶的種晶層2之種基板1。使用該種晶板1作為GaN磊晶成長用之種基板,使GaN之厚膜磊晶成長。
對上述種基板1以MOCVD法成膜30μm之GaN後,以HF水溶液將SiO 2/AlAs之平坦化層4溶解,獲得約30μm厚之GaN之無垢基板。
為了評價該GaN之無垢基板之錯位密度,與實施例1之評價同樣,進行藉由熔融鹼(KOH)蝕刻法產生蝕孔之EPD之測定。又作為結晶性之評價係進行X射線擺動曲線(XRC)測定。
其結果,顯示EPD為0.05×10 4cm -2之極低錯位密度。又0002XRC之FWHM為101arcsec,獲得高品質之GaN單晶。根據該等數值得知本實施例之種基板1作為用以獲得無垢基板之磊晶成長用種基板極為優異。將使用該種基板1磊晶成長用所得之GaN之無垢基板使用於30GHz/20Gbps之高頻元件用,結果元件之表面溫度為38℃,係高頻損失所致之發熱較小的優異基板。
1:種基板 2:種晶層 3:支撐基板 4:平坦化層 5:應力調整層 20:種晶之單晶基板 21:剝離位置
[圖1]顯示種基板1之剖面構造之圖。 [圖2]顯示製造種基板1之順序之圖。
2:種晶層
3:支撐基板
4:平坦化層
5:應力調整層
20:種晶之單晶基板
21:剝離位置
31:核
32:密封層

Claims (21)

  1. 一種磊晶成長用種基板,其具備 支撐基板、 設於前述支撐基板的上面之0.5~3μm的平坦化層、及 設於前述平坦化層的上面之種晶層; 前述支撐基板包含 III族氮化物之多晶陶瓷之核,與 密封前述核的0.05~1.5μm之密封層; 前述種晶層係藉由薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷(oxidation induced stacking fault:OSF)為10個/cm 2以下的Si<111>單晶的表層而設置。
  2. 一種磊晶成長用種基板,其具備 支撐基板、 設於前述支撐基板的上面之0.5~3μm的平坦化層、及 設於前述平坦化層的上面之種晶層; 前述支撐基板包含 III族氮化物之多晶陶瓷之核,與 密封前述核的0.05~1.5μm之密封層; 前述種晶層係氧化誘導堆疊缺陷為10個/cm 2以下,且厚度為0.1~ 1.5μm。
  3. 如請求項1或2之磊晶成長用種基板,其中成為前述核之III族氮化物之多晶陶瓷係AlN陶瓷。
  4. 如請求項1至3中任一項之磊晶成長用種基板,其中前述密封層至少包含Si 3N 4之層。
  5. 如請求項1至4中任一項之磊晶成長用種基板,其中前述平坦化層係由SiO 2及/或氧氮化矽(Si xO yN z)或AlAs而成。
  6. 如請求項1至5中任一項之磊晶成長用種基板,其中成為前述種晶層之Si<111>之電阻率(室溫)為1kΩ‧cm以上。
  7. 如請求項1至6中任一項之磊晶成長用種基板,其中於前述支撐基板之最下面進而具備應力調整層。
  8. 如請求項7之磊晶成長用種基板,其中前述應力調整層係於具備前述平坦化層之後,具有可進而矯正其翹曲之熱膨脹率,至少由藉由選自濺鍍法、電漿CVD法及LPCVD法之方法作成之多晶Si而成。
  9. 如請求項7或8之磊晶成長用種基板,其中前述應力調整層係於前述支撐基板下面之正下方,介隔SiO 2及/或氧氮化矽(Si xO yN z)作為多晶Si而設者。
  10. 如請求項1至9中任一項之磊晶成長用種基板,其中前述密封層係藉由LPCVD法成膜。
  11. 如請求項1至10中任一項之磊晶成長用種基板,其中前述平坦化層係於前述支撐基板之上面單側或全面藉由電漿CVD法、LPCVD法、低壓MOCVD法之任一者成膜SiO 2及/或氧氮化矽(Si xO yN z)或AlAs者。
  12. 如請求項1至11中任一項之磊晶成長用種基板,其中前述種晶層係藉由對氧化誘導堆疊缺陷為10個/cm 2以下,且電阻率(室溫)為1kΩ‧cm以上的Si<111>單晶離子注入氫及/或He後,藉由450℃以下之物理手段轉印0.1~1.5μm之薄膜而設置。
  13. 一種半導體基板,其係於如請求項1至12中任一項之磊晶成長用種基板的上面成膜III-V族半導體薄膜而成。
  14. 如請求項13之半導體基板,其中前述III-V族半導體薄膜係包含Ga及/或Al之氮化物半導體薄膜。
  15. 一種磊晶成長用種基板之製造方法,其係具備下述步驟: 準備由III族氮化物之多晶陶瓷之核而成的核之步驟, 以包埋前述核之方式成膜厚度0.05μm以上1.5μm以下之密封層成為支撐基板之步驟, 於前述支撐基板之上面成膜厚度0.5μm以上3.0μm以下之平坦化層之步驟, 於前述平坦化層之上面,藉由薄膜轉印0.1~1.5μm之氧化誘導堆疊缺陷為10個/cm 2以下的Si<111>單晶的表層而設置種晶層之步驟。
  16. 如請求項15之磊晶成長用種基板之製造方法,其中前述密封層係藉由LPCVD法成膜。
  17. 如請求項15或16之磊晶成長用種基板之製造方法,其中前述平坦化層係於前述支撐基板之上面單側或全面藉由電漿CVD法、LPCVD法、低壓MOCVD法之任一者成膜SiO 2及/或氧氮化矽(Si xO yN z)或AlAs者。
  18. 如請求項15至17中任一項之磊晶成長用種基板之製造方法,其中於前述設置種晶層之步驟中,藉由對氧化誘導堆疊缺陷為10個/cm 2以下,且電阻率(室溫)為1kΩ‧cm以上的Si<111>單晶離子注入氫及/或He後,藉由450℃以下之物理手段轉印0.1~1.5μm之薄膜而設置前述種晶層。
  19. 如請求項15至18中任一項之磊晶成長用種基板之製造方法,其中進而具備於前述支撐基板之最下面進而設置應力調整層之步驟。
  20. 如請求項19之磊晶成長用種基板之製造方法,其中前述應力調整層係於具備前述平坦化層之後,具有可進而矯正其翹曲之熱膨脹率,至少由藉由選自濺鍍法、電漿CVD法及LPCVD法之方法作成之多晶Si而成。
  21. 一種半導體基板之製造方法,其係具備如下步驟:藉由如請求項15至20中任一項之磊晶成長用種基板之製造方法製造磊晶成長用種基板之步驟,及 於前述磊晶成長用種基板之上面成膜III-V族半導體薄膜之步驟。
TW111108807A 2021-03-10 2022-03-10 磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法 TW202244027A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021038731 2021-03-10
JP2021-038731 2021-03-10
JP2021098993 2021-06-14
JP2021-098993 2021-06-14

Publications (1)

Publication Number Publication Date
TW202244027A true TW202244027A (zh) 2022-11-16

Family

ID=83227830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108807A TW202244027A (zh) 2021-03-10 2022-03-10 磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法

Country Status (6)

Country Link
US (1) US20240141552A1 (zh)
EP (1) EP4306689A1 (zh)
JP (1) JPWO2022191079A1 (zh)
KR (1) KR20230153370A (zh)
TW (1) TW202244027A (zh)
WO (1) WO2022191079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098137A (ja) * 2021-12-28 2023-07-10 信越化学工業株式会社 高特性エピタキシャル成長用基板とその製造方法
JP2024060665A (ja) * 2022-10-20 2024-05-07 信越半導体株式会社 窒化物半導体エピタキシャルウエーハの製造方法及び窒化物半導体エピタキシャルウエーハ用複合基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936916B2 (ja) 1992-09-10 1999-08-23 信越半導体株式会社 シリコン単結晶の品質評価方法
JP3628079B2 (ja) * 1995-08-11 2005-03-09 Hoya株式会社 炭化珪素薄膜製造方法並びに炭化珪素薄膜および積層基板
WO2014031119A1 (en) 2012-08-23 2014-02-27 National University Corporation Tokyo University Of Agriculture And Technology Highly transparent aluminum nitride single crystalline layers and devices made therefrom
CN114256068A (zh) * 2016-06-14 2022-03-29 克罗米斯有限公司 用于功率应用和射频应用的工程化衬底结构
EP3475975B1 (en) * 2016-06-24 2021-12-15 Qromis, Inc. Method of manufacture of a polycrystalline ceramic substrate

Also Published As

Publication number Publication date
JPWO2022191079A1 (zh) 2022-09-15
WO2022191079A1 (ja) 2022-09-15
US20240141552A1 (en) 2024-05-02
EP4306689A1 (en) 2024-01-17
KR20230153370A (ko) 2023-11-06

Similar Documents

Publication Publication Date Title
US6794276B2 (en) Methods for fabricating a substrate
US10796905B2 (en) Manufacture of group IIIA-nitride layers on semiconductor on insulator structures
KR20090093887A (ko) 단결정 박막을 갖는 기판의 제조 방법
TW202244027A (zh) 磊晶成長用種基板及其製造方法,以及半導體基板及其製造方法
WO2022004165A1 (ja) 大口径iii族窒化物系エピタキシャル成長用基板とその製造方法
JP2021195299A (ja) Iii族窒化物系エピタキシャル成長用基板とその製造方法
WO2022181163A1 (ja) 窒化物半導体基板およびその製造方法
WO2021250991A1 (ja) Iii族窒化物系エピタキシャル成長用基板とその製造方法
JP2005001928A (ja) 自立基板およびその製造方法
WO2023074045A1 (ja) エピタキシャル成長用種基板およびその製造方法、ならびに半導体基板およびその製造方法
WO2023127249A1 (ja) 高特性エピタキシャル成長用基板とその製造方法
CN116940720A (zh) 外延生长用种子基板及其制造方法、和半导体基板及其制造方法
WO2023176185A1 (ja) 高特性エピ用種基板、高特性エピ用種基板の製造方法、半導体基板、および半導体基板の製造方法
WO2023233781A1 (ja) Iii族窒化物単結晶基板の製造方法
TW202331794A (zh) 氮化物半導體基板及氮化物半導體基板的製造方法
JP2024042982A (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法