TW202225851A - 同軸穿透式對準成像系統 - Google Patents

同軸穿透式對準成像系統 Download PDF

Info

Publication number
TW202225851A
TW202225851A TW110130324A TW110130324A TW202225851A TW 202225851 A TW202225851 A TW 202225851A TW 110130324 A TW110130324 A TW 110130324A TW 110130324 A TW110130324 A TW 110130324A TW 202225851 A TW202225851 A TW 202225851A
Authority
TW
Taiwan
Prior art keywords
pattern
wafer
image
imaging system
light source
Prior art date
Application number
TW110130324A
Other languages
English (en)
Inventor
安東 J 德維利耶
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202225851A publication Critical patent/TW202225851A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/245Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本揭露內容的實施態樣提供一種成像系統。舉例來說,在該成像系統中一第一光源可產生第一波長的第一光束,一第二光源可產生第二波長的第二光束,該第二光束具有功率足以穿過一晶圓的厚度的至少一部分,一對準模組可將該第二光束與該第一光束加以同軸對準,一同軸模組可將經同軸對準的第一與第二光束分別聚焦在位於該晶圓的正面上的一第一圖案上、及位於該第一圖案下方的一第二圖案上,且一圖像擷取模組可擷取該第一圖案的第一圖像、及該第二圖案的第二圖像。該第二圖像可藉由量子穿隧成像或IR透射成像加以擷取。

Description

同軸穿透式對準成像系統
相關專利及申請案的交互參照:本揭露內容主張於西元2020年8月17日申請的發明名稱“Method for Producing Overlay Results with Absolute Reference for Semiconductor Manufacturing”之美國臨時專利申請案第63/066,779號的優先權,其全部內容通過引用併入本文。
本揭露內容大致關於用於製造半導體裝置的方法,且特別關於疊覆誤差。
半導體製造涉及多個不同的步驟和製程。 一種典型的製造製程稱為光刻法(也稱為微刻)。光刻使用輻射(例如紫外線或可見光)在半導體裝置設計中生成精細圖案。可以使用包括光刻、蝕刻、膜沉積、表面清潔、金屬化等等的半導體製造技術來構建多種類型的半導體裝置,例如二極體、電晶體、及積體電路。
本揭露內容的實施態樣也提供一種成像系統。舉例來說,該成像系統可包含一第一光源、一第二光源、一對準模組、一同軸模組、及一圖像擷取模組。該第一光源可建構以產生第一波長的第一光束。該第二光源可建構以產生第二波長的第二光束。該對準模組可建構以將該第二光束與該第一光束加以同軸對準。該同軸模組可建構以將經同軸對準的第一與第二光束分別聚焦在位於晶圓的正面上的一第一圖案上、及位於該第一圖案下方的一第二圖案上。該圖像擷取模組可建構以擷取該第一圖案的第一圖像、及該第二圖案的第二圖像。該第二光束可具有功率足以穿過該晶圓的厚度的至少一部分並到達該第二圖案。
在一實施例中,該第二波長可長於該第一波長。舉例來說,該第一光源可為UV光源,且該第二光源可為IR光源,例如包含IR可調諧量子級聯雷射。作為另一示例,該第一波長可為50-400奈米,例如266奈米,且該第二波長可為1-10微米,例如3.6或3.7微米。
在一實施例中,該圖像擷取模組可藉由量子穿隧成像或IR透射成像來擷取該第二圖案的第二圖像。
在一實施例中,可將該第二圖案包括在位於該晶圓下方的一參考板之中。在另一實施例中,該成像系統可更包含一基板固持器,建構以固持該晶圓,其中將該參考板包括在該基板固持器之中。
如可以理解的,隨著在給定晶圓上的製造進展,取決於正在建立的給定裝置,可以有許多不同的材料和層。 因此,每個製程階段的每個晶圓可以具有不同的輪廓。這意味著可能需要不同的波長來穿過該晶圓。
當然,為了清楚起見,已經呈現如此處所述的不同步驟的討論順序。一般而言,這些步驟可以以任何合適的順序進行。此外,雖然此處的不同特徵、技術、配置等等其中每一者可能在本揭露內容的不同地方討論,但是意欲的是,可以彼此獨立地或彼此組合地執行各個概念。 因此,可以以許多不同的方式來體現和查看本揭露內容。
注意,此發明內容章節並未指定本揭露內容的每個實施例和/或增加的新穎實施態樣或所請揭露內容。實際上,此發明內容章節僅提供對不同實施例和相對於習知技術的相應新穎點的初步討論。對於本揭露內容和實施例的額外的細節和/或可能的觀點,讀者可以參考本揭露內容的實施方式章節和對應圖示,如以下進一步討論的。
根據本揭露內容,提供了一種成像系統和成像方法,其使用絕對的、獨立的參考圖案作為特徵圖案與之對準的對準標記。特徵圖案可以形成在晶圓的正面,並且參考圖案獨立於晶圓的正面。舉例來說,參考圖案可以形成在晶圓之內或之下。第一波長的第一光束(例如,紫外線(UV)光束)可用於對形成在晶圓的第一面上的特徵圖案進行成像,並且第二波長的第二光束(例如,紅外線(IR)光束)可用於對形成在晶圓之內或晶圓下方的參考圖案成像。在一個實施例中,第二光束可以與第一光束呈同軸對準。當參考圖案形成在晶圓之內或之下時,第二光束必須「穿透(see through)」晶圓厚度的一部分或整個厚度,以對參考圖案成像。舉例來說,取決於參考圖案是形成在晶圓之內還是在晶圓之下,第二光束可以具有足以量子穿隧通過晶圓的厚度的一部分或整個厚度的功率或強度,以使用量子穿隧成像、IR透射成像等等來擷取晶圓的圖像。因此,特徵圖案的UV影像和參考圖案的IR影像可以在同一光軸上擷取並相互重疊。接著,圖像分析可加以執行以供曝光、檢查、對準、或其他處理。雖然UV和IR圖像是同軸擷取的,但對圖像偵測器的傳輸可能是同軸的,也可能不是同軸的。例如,同軸擷取的圖像可加以光學分離並傳輸到分離的影像偵測器,如下所述。
以下揭露內容提供了許多不同的實施例或示例,用於實現所提供申請標的之不同特徵。下面描述組件和配置的特定示例以簡化本揭露內容。當然,這些僅僅是示例而不是限制性的。例如,在隨後的描述中在第二特徵之上或上方形成第一特徵可以包括其中第一和第二特徵直接接觸的實施例,並且還可以包括其中額外特徵可以形成在第一與第二特徵之間使得第一和第二特徵可以不直接接觸的實施例。此外,本揭露內容可以在各種示例中重複參考數字和/或字母。這種重複是為了簡單和清楚的目的,而本身並不指示所討論的各種實施例和/或構造之間的關係。此外,為了便於描述,此處可以使用空間相對術語,例如「頂部」、「底部」、「下方」、「之下」、「低於」、「上方」、「高於」等,以描述一個元件或特徵與另一個元件或特徵的關係,如圖所示。除了圖中所描繪的定向之外,空間相對術語旨在涵蓋裝置在使用或操作中的不同定向。設備可以以其他方式定向(旋轉90度或以其他定向)並且這裡使用的空間相對描述詞同樣可以相應地解釋。
此處所述的不同步驟的討論順序係為了清楚起見而呈現。通常,這些步驟可以以任何合適的順序進行。此外,雖然此處的不同特徵、技術、構造等等其中各者可能在本揭露內容的不同地方討論,但是目的是可以彼此獨立地或彼此組合地執行每個概念。因此,可以以許多不同的方式來體現和查看本揭露內容。
微製造涉及在晶圓上形成和處理多個膜和層。這可以包括堆疊在晶圓上的數十個以上之膜。針對各種膜和層而應用於晶圓的的圖案需要與先前形成的圖案對準。習知上,此種對準是藉由使用晶圓的部分而形成對準標記和切割道來實現的。然而,本發明人認識到,各種膜沉積、蝕刻、及處理技術有時會覆蓋對準標記,甚至完全去除對準標記。由於有時會覆蓋或丟失對準標記,因此在晶圓上塗佈後續圖案可能會出現誤差。術語疊覆或疊覆誤差關於給定圖案的放置與先前放置的圖案之間的差異。由於對準標記經常受破壞,疊覆誤差可能隨著額外的層而累積,這會導致不良的性能和裝置錯誤。
圖1A繪示疊覆的工業問題。此處的每個箭頭具有:一個起點(例如,111A、111B、121A 和 131A),其對應於先前圖案的位置;及終點或箭頭頭部(例如,111A'、111N'、121N'),其對應於後續圖案的位置。結果,當後續的圖案形成在相應的先前圖案之上或與之並排時,每個箭頭表示一疊覆數值或一疊覆誤差。例如,在製程110A中,當放置初始圖案時沒有網格或參考板。因此,第一箭頭的起點111A可能未對準,即初始圖案可能具有放置誤差,例如相對於晶圓邊緣。接著,後續圖案嘗試基於相應的最後一個圖案對準。如圖1A所示,後續箭頭的起點(例如,111B)與對應的最後一個或前面的箭頭的箭頭頭部(例如,111A')交疊。要注意的是,即使在理論上完美的系統中,偏離(walkout)仍然可能發生。例如,如果系統圖案放置公差為+/-4 nm,並且各個層級參考前一個層級。取一參考層級為0誤差。接著,第一層可能偏離+4 nm。對第一層的第二層對準可能偏離 +4 nm,這意味著第二層現在偏離參考層級+8 nm。還有一些製程因素會在整個製造過程中引起或釋放應力,其會引起偏離/對準偏移,即使原始對準標記可見,這也會增加累積誤差。
進一步地,在生產製程中,對準標記可能會在步驟S120中受到破壞,且再次放置係在無參考標記的情況下進行。對準標記的劣化會導致對準誤差隨後續處理而累積。與起點111A類似,新箭頭的起點121A可能未對準。在圖1A的例子中,起點121A偏離箭頭頭部111N'。該製程繼續進行,基於對應的最後圖案而對準後續圖案,直到在步驟S130對準標記再次受到破壞。類似地,放置在沒有參考標記的情況下發生,並且起點131A偏離箭頭頭部121N'。如圖1A所示,隨著層增加,疊覆誤差會累積,導致不良的生產良率、裝置錯誤等等。注意,製程110A是非限制性示例。其他製程(例如,110B和110C)可以具有不同的疊覆數值(不同的箭頭)和/或不同的步驟。
使用此處的技術,沒有必要創建和重新創建對準標記。替代的是,一絕對參考圖案,即獨立於晶圓或堆疊在晶圓上的圖案的一參考圖案。應用於晶圓的每個圖案都可以與這個獨立的參考圖案對準,而不是基於先前的圖案。
圖1B顯示根據本揭露內容的一些實施例的使用示例性參考圖案的疊覆減輕。使用此處的技術,放置在晶圓190的正面191上的所有圖案(例如,具有起點141A的圖案)係基於相同的參考圖案102。在一個實施例中,參考圖案102可以位於晶圓190的正面191下方。例如,參考圖案102可以形成在晶圓190的背面192上或納入在晶圓190中。作為另一個例子,參考圖案102可以納入在一參考板之中(未顯示於圖1B),並且參考板可以定位在晶圓190下方,放置在或黏附到晶圓190的背面192上,或結合在光刻掃描儀或步進機(未顯示於圖1B)的用於固持晶圓190的基板固持器之中。換言之,參考圖案102不受光刻製程所影響,例如蝕刻、沉積、化學機械拋光等,這些製程是在晶圓190的正面191上執行以形成圖案。因此,參考圖案102係獨立於晶圓190的正面191,並且在晶圓190的光刻處理期間將是完整的。因此,參考圖案102可加以使用並且認為是絕對的,或者更確切地說,獨立於在晶圓190的正面191上所形成的任何圖案,並且不會從在晶圓190上執行的各種沉積和蝕刻步驟而改變。在一個實施例中,當放置新圖案時可以將參考圖案102類比於晶圓190。對於初始圖案,這意味著可以將圖案適配於參考圖案102。對於後續圖案,這意味著仍然可以將一個或多個圖案與參考圖案102進行對比以計算疊覆校正以返回到相同的對準狀態。
例如,在製程140中,參考圖案102可用於對準晶圓190的正面191上的初始圖案。在一個實施例中,參考圖案102可設置在相對於晶圓表面的固定位置,例如如藉由將參考圖案102嵌入晶圓190內或提供固定到晶圓190的背面192的參考圖案102。因此,第一箭頭的起點141A與參考圖案102對準,其位置係表示為參考線150。後續圖案也使用固定的絕對、獨立的參考圖案102加以對準。可以針對每個後續圖案形成新的光阻層,但是沒有對準標記需要由於參考圖案102而在晶圓190上加以形成和/或破壞。結果,箭頭以參考線150為中心,意味著後續圖案係與參考圖案102對準。對齊可以藉由例如以下方式而發生:移動圖案圖像的遮罩或相對於遮罩移動晶圓190。因此,疊覆誤差不太可能隨著越來越多層形成而累積。
圖2是根據本揭露內容的一些實施例的示例性成像系統200的功能方框圖。例如,示例性成像系統200可以在光刻系統的掃描器或步進機中實施。作為另一個例子,示例性成像系統200可以在光阻塗佈機台中實現,例如由Tokyo Electron Ltd製造的CLEAN TRACK TMACT TM12,該光阻塗佈機台包含多個遮罩特定模組,例如先進軟性烘烤爐單元、邊緣珠去除模組、及清潔系統。示例性成像系統200可以將不同波長的兩個光束加以同軸對準,將兩個同軸對準的光束分別聚焦到位於基板(例如,晶圓)的正面上的第一圖案及位於第一圖案下方的第二圖案上,及擷取第一和第二圖案的圖像。例如,示例性成像系統200可包括第一光源210、第二光源220、對準模組230、同軸模組240、第一圖像擷取裝置250、及第二圖像擷取裝置260。第一圖像擷取裝置250及第二圖像擷取裝置260可統稱為圖像擷取模組。
在一實施例中,第一光源210可配置以產生第一波長的第一入射光束。 例如,第一光源210可以是UV光源,其產生50-400奈米(例如266奈米)的第一入射光束(在圖2中顯示為UV 入射)。 作為另一示例,第一光源210可以是Optowaves(Optowares Inc.,Massachusetts,USA)固態雷射,例如用於表面成像的泵浦奈秒級雷射。
在一實施例中,第二光源220可配置以產生第二波長的第二入射光束。 根據本揭露內容的一些態樣,由於絕對的、獨立的參考圖案應位於要形成在晶圓正面上的一圖案下方並且第二入射光束係用於將參考圖案成像,第二入射光束必須穿透晶圓(例如晶圓290)的至少一部分厚度或甚至整個厚度。
例如,第二入射光束具有足以穿過晶圓290的整個厚度(例如,750微米)的功率或強度以使用量子穿隧成像、IR透射成像等等來擷取參考圖案的圖像。作為另一個例子,第二光源220可以是IR光源,其產生1-10微米的第二入射光束,例如3.6或3.7微米(在圖2中顯示為IR 入射)。在一個實施例中,第二光源220可以是IR可調諧量子級聯雷射,其可以從Pranalytica,Inc.(California, USA)獲得。根據漸逝波理論,撞擊在兩種不同介質(例如,晶圓290及同軸模組240位在其中之浸沒式光刻中的空氣或液體)之間的一表面(例如,晶圓290的正面391,如圖3所示)之光束的強度將垂直於該表面呈指數衰減。強度下降到 1/e(約37%)的穿透深度取決於光束的波長等等因素。典型的穿透深度可以是光束波長的一分率,例如波長的1/5,取決於光束對表面的入射角。由於第二入射光束IR 入射的第二波長遠大於第一入射光束UV 入射的第一波長,因此在功率控制良好的情況下,第二入射光束IR 入射能夠穿過晶圓290的整個厚度。
在一個實施例中,第一(UV)光源210和第二(IR)光源220的相對位置可加以周期性地校準,這也稱為紅色和藍色校準的相對位置。 例如,第一光源210和第二光源220的相對位置可以保持在感測器動態範圍內,其係幾十年的且因此非常寬容。然而,標準化可以利用根據需要成像的已知相對透射的層級偽影(stage artifact)來完成。 例如,每天一次,以便可以輕鬆進行任何相對強度標準化。 相對位置或TIS工具引起的偏移校準對計量站係常見的。隨著測量的進行,相對位置係針對網格板即時地加以重新校準。因此,示例性成像系統200可以總是具有一即時絕對參考。可以使用數位圖像擷取和回歸。
在一個實施例中,對準模組230可以配置為將第二入射光束IR 入射與第一入射光束UV 入射同軸對準。例如,對準模組230可以包括第一光束分裂器,其將第一入射光束UV 入射分裂成兩個部分,其中一者可加以透射,而另一者可加以反射。在一個實施例中,第一光束分裂器可以是一稜鏡。在另一個實施例中,第一光束分裂器可以是一透明板,例如玻璃或塑膠片,在其一側塗佈有部分透明的金屬薄膜,例如鋁,這允許第一入射光束UV 入射的一部分透射,而另一部分受到反射。在示例性成像系統200中,第一光源210和第一光束分裂器可加以佈置成使得第一入射光束UV 入射以45度角入射到第一光束分裂器。
例如,對準模組230還可以包括第二光束分裂器,其將第二入射光束IR 入射分裂成兩部分,其中一者可受到反射,而另一者可以透射。例如,第二光束分裂器可以是一稜鏡。作為另一個例子,第二光束分裂器可以是在其一側塗有鋁薄膜的玻璃或塑膠片,這允許第二入射光束IR 入射的一部分受到反射而另一部分透射。在示例性成像系統200中,第二光源220和第二光束分裂器可以佈置成使得第二入射光束IR 入射以45度角入射到第二光束分裂器。
例如,對準模組230還可包括第三光束分裂器,其允許不同波長的光束受到反射或透射。例如,第三光束分裂器可以是在其一側塗覆有二向色材料的透明板,其允許從第一光束分裂器透射的第一波長的第一入射光束UV 入射受反射,且從第二光束分裂器透射的第二波長的第二入射光束IR 入射係透射。在一個實施例中,第三光束分裂器係設計和定位成使得透射的第二入射光束IR 入射與反射的第一入射光束UV 入射同軸對準,並且透射的第二入射光束IR 入射和反射的第一入射光束UV 入射可以沿著相同的光路徑行進至晶圓290。
在一個實施例中,同軸模組240可以配置為將從第三光束分裂器反射的第一入射光束UV 入射聚焦到位於晶圓290的正面391上的第一圖案301(如圖3所示)上,並且將從第三光束分裂器透射的第二入射光束IR 入射聚焦到位於第一圖案301下方的第二圖案302(或參考圖案)上。例如,同軸模組240可以設計和配置為調整第一圖案301與第二圖案302之放置公差(即焦深(DOF))。例如,位準感測器可用以追蹤第一圖案301的頂部並且將第一圖案301的高度減去晶圓290的高度以同時地自動調整同軸對準的第一入射光束UV 入射與第二入射光束IR 入射的DOF。使用深UV(DUV)光,光阻損壞可以忽略不計。在4K解析度的情況下,這裡的250微米視場(FOV)對應於每像素約60奈米。對於0.1奈米對位(registration)誤差測量的解析度來說已經足夠了。擁有足夠功率或強度的光源可以減輕金屬層的任何陰影作用。雖然圖3顯示形成在晶圓290中的物理圖案的成像,例如,要形成的圖案的圖像(即,在暴露於激活光之前)可以藉由具有不激活晶圓中的光阻的波長的光來實現。
在一個實施例中,同軸模組240可以包括2-12個個別的光學元件,例如6個光學元件。光學元件各者可以包括藍寶石、AlN、MgF、CaF、BaF、LiF、Ge、Si 等。
第一入射光束UV 入射可由第一圖案301加以反射以形成第一反射光束UV 反射。第一反射光束UV 反射可以依次受到第三光束分裂器和第一光束分裂器加以反射,並由第一圖像擷取裝置250加以擷取,並且第一圖像擷取裝置250可以形成第一圖案301的對應第一圖像。舉例來說,第一圖像擷取裝置250可為DataRay相機。第二入射光束IR 入射可由第二圖案302加以反射以形成第二反射光束IR 反射。第二反射光束IR 反射可以依次由第三光束分裂器和第二光束分裂器透射並由第二圖像擷取裝置260加以擷取,並且第二圖像擷取裝置260可以形成第二圖案302的對應第二圖像。舉例來說,第二圖像擷取裝置260可以是高速、高清晰度中波長IR(MWIR)相機,例如FLIR X8500 MWIR。在一個實施例中,可以對第一圖像和第二圖像進行圖像分析,以計算疊覆數值以確定第一圖案301的佈置。例如,可以藉由將第一圖案301的第一圖像和第二圖案302的第二圖像相互重疊,並識別第一圖案301相對於第二圖案302的坐標位置,來完成圖像分析。在一些實施例中,可以即時進行圖像分析,使得第一圖案301的佈置可以即時調整。
在一實施例中,對準模組230還可包括第一鏡頭組和第二鏡頭組。 舉例來說,第一鏡頭組可以包括反射和/或折射光學器件,其將由第一光源210產生的第一入射光束UV 入射加以準直並且將經準直的第一入射光束UV 入射引導到第一光束分裂器。作為另一示例,第二鏡頭組還可包括反射和/或折射光學器件,其將由第二光源220產生的第二入射光束IR 入射加以準直並將經準直的第二入射光束IR 入射引導至第二光束分裂器。
在一個實施例中,示例性成像系統200還可以包括第三鏡頭組270和第四鏡頭組280。例如,第三鏡頭組270可以包括反射和/或折射光學器件,其將第一反射光束UV 反射聚焦到第一圖像擷取裝置250。作為另一示例,第四鏡頭組280還可包括反射和/或折射光學器件,其將第二反射光束IR 反射聚焦到第二圖像擷取裝置260上。
在一個實施例中,示例性成像系統200還可以包括可以擷取同軸模組240外部的衍射光束並將它們引導到第一圖像擷取設備250和第二圖像擷取設備260的光學器件。
在圖3所示的示例性實施例中,第一圖案301可以包括在位於晶圓290的正面391上的光罩(未顯示)之中。在一個實施例中,光罩可以放置成直接接觸在接觸印刷系統中的晶圓290。在另一個實施例中,可以將光罩放置為遠離在鄰近印刷系統或在投影印刷系統中的晶圓290。
在圖3所示的示例性實施例中,第二圖案302位於晶圓290的背面392上,並且第二入射光束IR 入射具有足以穿過晶圓290的整個厚度的功率以使用量子穿隧成像、IR透射成像等等來擷取第二圖案302的第二圖像。在一個實施例中,第二圖案302可以形成在參考板310上。例如,參考板310可以是一網格板,具有20微米乘20微米的多個正方形,幾乎完美對齊,並且,第二圖案302可以是該等正方形至少一者的一角隅點。作為另一個例子,參考板310可以包括點、線、角隅、框、數字、標記、或適合對準目的的任何其他圖案其中至少一者,並且第二圖案302可以是這些其中之一。在一個實施例中,參考板310可以黏附到晶圓290的背面392。因此,參考板310和晶圓290可以運作為一個模組。在另一個實施例中,參考板310可以納入在光刻掃描器或步進機的基板固持器320之中。儘管每次給定的晶圓係與之前的佈置相比可能以不同的位置或定向加以放置在基板固持器320上,但這無所謂。對於要放置或曝光的給定新圖案,晶圓可以利用參考板310(例如網格板)加以成像。參考板310接著可以提供一相對參考點,用於識別到兩個或更多點的向量,向量分析可以用於自其計算下一次曝光中的疊覆校正調整。例如,當晶圓290(如果還沒有圖案)係放置在參考板310之上時,晶圓290將粗略地預對準於參考板310。作為另一個例子,當晶圓290(如果已具有一現有圖案)係放置在參考板310上,現有圖案和參考板310可加以同軸對準。在習知的光刻製程中,由晶圓背面刮痕、背面灰塵及/或基板因熱量引起的變形所引起的測量誤差可能會影響疊覆,但習知的疊覆系統通常對這些問題視而不見。這裡的技術包括獨立的參考板和高空間解析度以克服這些問題。
在一實施例中,第二圖案302可形成於晶圓290的背面392上,且第二入射光束IR 入射亦具有足以穿過晶圓290的整個厚度的功率以使用量子穿隧成像、IR透射成像等等來擷取第二圖案302的第二圖像。其他技術可以包括將第二圖案302(例如,網格線)嵌入晶圓290中,例如使用放射性或螢光材料。
在一個實施例中,第二圖案302可以在晶圓290的正面391上形成,然後一層矽和/或矽氧化物在其上加以沉積。例如,該層矽和/或矽氧化物可以具有1-5微米的厚度,使得第二圖案302有效地「嵌入」在晶圓290之中並且圖案可以形成在該層矽和/或矽氧化物之上。因此,第二入射光束IR 入射必須具有足以穿過該層矽和/或矽氧化物的功率,以使用量子穿隧成像、IR透射成像等等擷取第二圖案302的第二圖像。作為另一個例子,可在一保護層(例如矽和/或矽氧化物)形成於晶圓290的背面392上之前,將第二圖案302在晶圓290的背面392上加以形成。因此,第二圖案302也可以嵌入晶圓290之中。因此,第二入射光束IR 入射必須具有足以穿過晶圓290的整個厚度的功率,以使用量子穿隧成像、IR透射成像等等擷取第二圖案302的第二圖像。在一個實施例中,可以在將載體晶圓的正面接合到目標晶圓的背面(例如,晶圓290的背面392)之前,將第二圖案302形成在載體晶圓的正面上。如此一來,第二圖案302可夾設在載體晶圓與目標晶圓之間,其共同運作為一個晶圓。因此,第二入射光束IR 入射必須具有足以穿過目標晶圓的整個厚度的功率,以使用量子穿隧成像、IR透射成像等等擷取第二圖案302的第二圖像。在一些實施例中,還可以使用光投影。例如,第二圖案302可以是一投影網格,其物理上不存在於晶圓290中、於基板固持器或作為基板固持器下方的一網格板之上。在一些實施例中,第二圖案302可以是物理標記和光投影的組合。例如,物理參考標記可以在沒有受到放置在基板固持器上的一晶圓所覆蓋的該基板固持器的外圍區域上加以提供,並且光投影可以在該晶圓的區域中完成參考圖案,使得穿隧作用可能不是必要的。
圖4A顯示根據本揭露內容的一些實施例的由第一圖像擷取裝置250和第二圖像擷取裝置260所擷取的晶圓290的一部分的重疊圖像的放大俯視圖,該部分包括第一圖案301和第二圖案302。圖4B展示了根據本揭露內容的一些實施例的使用在對準過程中充當參考圖案的第一圖案301的用於疊覆計算的示例性圖像分析。圖4A和4B顯示可如何使用絕對、獨立的第一圖案301來計算兩個圖案的疊覆數值。這可以藉由了解坐標系統的每個公共參考圖案並使用該參考圖案來了解每個圖案在該坐標系統中的「位置」來完成。一旦知道例如每層之間的距離,提取疊覆數值所需的向量計算係以簡單的向量代數來完成。可以將其視為混合匹配疊覆(MMO, mix-match overlay),其具有在此層級下方針對其本身總是在該處的一個標準工具(golden tool)。
各個晶圓都可能有刮痕影響、熱影響、及夾持問題等,這些問題的深度足以影響疊覆。晶圓還可能具有圖案化缺陷,如果在以下情況下其可能發生:線路未按設計連接、關鍵尺寸太小/太大、或存在會導致短路的間隙。 由於第二光束可以穿過晶圓290,因此第二光束也可以看到缺陷,並且所擷取的第二圖像還可以包括缺陷的資訊。 在一個實施例中,可以對第一圖案301的第一圖像和第二圖案302的第二圖像進行圖像分析以檢查晶圓290的任何缺陷。
在一個實施例中,第一圖案301(由點M表示),例如具有多個20微米乘20微米正方形的網格板的其中一個正方形的角隅,可以認為是絕對的或與晶圓無關的,並且用於計算在第二圖案302(由點N表示)與在第二圖案302形成之後形成的第三圖案401(由點P表示)之間的疊覆數值。藉由將第二圖案302重疊在第一圖案301上,可以決定從第一圖案301的點M到第二圖案302的點N的坐標差或向量
Figure 02_image001
。同樣地,藉由將第三圖案401重疊在第一圖案301上,也可以確定從第一圖案301的點M到第三圖案401的點P的另一個坐標差或向量
Figure 02_image003
。然後,在點N與點P之間的疊覆數值
Figure 02_image005
可加以計算:
Figure 02_image007
此外,利用來自第二圖案302的點的坐標位置(例如,N(Wx, Wy))和來自第三圖案401的點的坐標位置(例如,P(Bx, By)),可以確定疊覆數值或從第二圖案302至第三圖案401的位移。該疊覆數值接著可用於放置第三或後續圖案以校正相對於獨立參考圖案(例如第一圖案301)的疊覆。在一些實施例中,具有對於每個圖像比較呈均一的參考圖像允許校正相鄰圖案以及基於初始線或絕對參考而保持疊覆校正。關於對光阻層的關鍵尺寸(CD)變化效應的問題,針對光阻層和底層在沒有圖案CD變化效應的情況下(例如,金屬光阻圖案覆蓋大部分介層窗圖案)提取圖案的坐標。光阻層的CD變化效應可能是對準的一個問題,並且被疊覆測量團隊忽略為可以忽略不計。此處的技術有了很大改進,因為參考圖案本身比遭受CD像散和Zernike引起的自圖案偏移的對準標記係好得多的圖案置放指示。
注意,在一些實施例中,重疊圖像不是必要的。 可以從參考板和晶圓的工作表面收集坐標位置資料,然後可以使用向量分析來確定總偏移或疊覆數值。
圖5是繪示根據本揭露內容的一些實施例的用於處理晶圓(例如,晶圓290)的示例性成像方法500的流程圖。示例性成像方法500可以應用於示例性成像系統200。在各種實施例中,所示的示例性成像方法500的一些步驟可以同時執行或以與所示不同的順序執行,可以由其他方法步驟代替, 或者可以省略。 還可以根據需要執行額外的方法步驟。
在步驟S510,可以產生第一波長的第一光束和第二波長的第二光束。 在一實施例中,第一光源210可用於產生第一光束,而第二光源220可用於產生第二光束。 例如,第二波長可以長於第一波長。 作為另一個例子,第一光源210可以是UV光源,而第二光源220可以是IR光源。 在一個實施例中,第一波長為50-400奈米,例如266奈米,而第二波長為1-10微米,例如3.6或3.7微米。
在步驟S520,第一光束可以與第二光束加以同軸對準。 在一實施例中,對準模組230可用於將第一光束與第二光束同軸對準。 例如,第一光束分裂器可用於透射第一光束,第二光束分裂器可用於反射第二光束,且第三光束分裂器可用於反射從第一光束分裂器所透射的第一光束,透射從第二光束分裂器所反射的第二光束,並將反射的第一光束與透射的第二光束同軸對準。
在步驟S530,同軸對準的第一光束和第二光束可以分別聚焦到位於晶圓正面的第一圖案和位於第一圖案下方的第二圖案上。在一個實施例中,同軸模組240可用於將第一光束聚焦到第一圖案上並且將第二光束聚焦到第二圖案上。第二光束可具有足以穿過晶圓厚度的至少一部分的功率。在一個實施例中,第二圖案可以併入位於晶圓下方的一參考板中,例如,具有次奈米位置精確度的20微米乘20微米多個正方形的網格板。例如,參考板可以放置到晶圓的背面上或黏附到晶圓的背面。因此,第二光束可以具有足以穿過晶圓的整個厚度並到達第二圖案的功率。在另一個實施例中,參考板可以結合在光刻掃描儀或步進機的基板固持器或卡盤之中,並且示例性成像方法500可以進一步包括一步驟:在聚焦同軸對準的第一和第二光束之前,將參考板與晶圓對準。在又一個實施例中,第二圖案可以形成在晶圓的背面上。因此,第二光束可以具有足以穿過晶圓的整個厚度並到達第二圖案的功率。在又另一實施例中,第二圖案可嵌入晶圓之內並可透過一個或多個層而接取。因此,第二光束可具有足以穿過晶圓厚度的一部分的功率。例如,第二圖案可以包括放射性或螢光材料。作為另一示例,第二圖案可以包括點、線、角隅、框、三角形、數字或標記其中至少一者。
在步驟S540,可擷取第一圖案的第一圖像及第二圖案的第二圖像。 例如,第一圖像擷取裝置250與第二圖像擷取裝置260可分別用於擷取第一圖像與第二圖像。 在一個實施例中,第二圖案的第二圖像可以藉由量子穿隧成像或IR透射成像加以擷取。
在步驟S550,可以對第一圖像和第二圖像進行圖像分析以計算疊覆數值。
示例性成像系統200和示例性成像方法500可以實施為獨立的同軸計量系統和方法,其可以與光刻工具、具有前饋通往鏈接的光刻單元的整合軌道同軸計量系統和方法、或主動同軸計量系統和方法,其可以嵌入光刻工具中以進行即時校正。
本揭露內容的實施態樣提供一種成像系統和一種成像方法,其可提供不依賴於形成在晶圓的正面表面上的習知對準標記而準確且精確的對準機制。替代地,參照在晶圓之內/下方的圖案或網格,可以重複接取可靠的參考圖案,以供後續圖案的精確和準確的對位和對準。這裡的技術將消除對傳統疊覆標記的需要。這些用於疊覆的新穎範例無需清除、無佔地面積(real-estate)損失、且沒有複雜的切割道設計,從而使矽面積利用率改善並且無需針對對準標記之複雜整合。在此揭露的示例性參考圖案不會受到製作裝置之不利製程所影響和消除,不同於對準標記所往常發生的。現在也可以從第二個圖案所在的第一層開始測量疊覆放置準確度,因為現在參考圖案不僅每次都近乎完美,而且總是隱藏在該處此層級正下方。
在前面的描述中,已經闡述了特定細節,例如處理系統的特定幾何形狀以及其中使用的各種組件和製程的描述。 然而,應當理解,本文中的技術可以在偏離這些特定細節的其他實施例中實踐,並且這些細節是出於解釋而非限制的目的。 已經參考隨附圖式描述了在此揭露的實施例。 類似地,出於解釋的目的,已經闡述了特定的數字、材料和配置以提供透徹的理解。 然而,可以在沒有這些特定細節的情況下實踐實施例。 具有基本相同功能結構的組件用相同的參考標記表示,因此可以省略任何多餘的描述。
各種技術已描述為多個離散操作以幫助理解各種實施例。 描述的順序不應解釋為暗示這些操作必然順序相依。 事實上,這些操作不需要按照呈現的順序來執行。 所描述的操作可以以與所描述的實施例不同的順序來執行。 在額外實施例中可以執行各種額外操作和/或可以省略所描述的操作。
如本文所用,「基板」或「目標基板」一般是指根據本揭露內容處理的物體。基板可以包括一裝置的任何材料部分或結構,特別是半導體或其他電子裝置,並且,舉例來說,可以是基底基板結構,例如半導體晶圓、倍縮光罩,或者在基底基板結構之上或覆蓋它的一層,如薄膜。 因此,基板不限於任何特定的基底結構、下方層或覆蓋層、圖案化或未圖案化,而是意欲包括任何此類層或基底結構,以及層和/或基底結構的任何組合。 該描述可能提及特定類型的基板,但這僅用於說明目的。
熟習此技藝者還將理解,可以對以上解釋的技術的操作進行許多變化,同時仍然實現本揭露內容的相同目標。 這種變化旨在由本揭露內容的範圍涵蓋。 因此,本揭露內容的實施例的前述描述不旨在限制。實際上,對本揭露內容的實施例的任何限制在以下申請專利範圍中提出。
102:參考圖案 110A:製程 111A,111B,121A,131A:起點 111A',111N',121N':終點或箭頭頭部 140:製程 141A:起點 150:參考線 190:晶圓 191:正面 192:背面 200:成像系統 210:第一光源 220:第二光源 230:對準模組 240:同軸模組 250:第一圖像擷取裝置 260:第二圖像擷取裝置 270:第三鏡頭組 280:第四鏡頭組 290:晶圓 301:第一圖案 302:第二圖案 310:參考板 320:基板固持器 391:正面 392:背面 401:第三圖案
將參考以下圖式詳細描述作為示例提出的本揭露內容的各種實施例,其中相同的參考符號表示相同的元件,並且其中:
圖1A顯示疊覆的工業問題;
圖1B顯示根據本揭露內容的一些實施例的使用示例性參考圖案的疊覆減輕;
圖2是根據本揭露內容的一些實施例的示例性成像系統的功能方框圖;
圖3係由圖2的例示成像系統所產生的同軸對準光束的一部分的放大圖;
圖4A顯示根據本揭露內容的一些實施例的由圖2的例示成像系統的第一和第二圖像擷取裝置所擷取的晶圓的一部分的重疊圖像的放大俯視圖;
圖4B展示了根據本揭露內容的一些實施例的使用絕對、獨立參考圖案的用於疊覆計算的示例性圖像分析;及
圖5是繪示根據本揭露內容的一些實施例的示例性成像方法的流程圖。
200:成像系統
210:第一光源
220:第二光源
230:對準模組
240:同軸模組
250:第一圖像擷取裝置
260:第二圖像擷取裝置
270:第三鏡頭組
280:第四鏡頭組
290:晶圓

Claims (9)

  1. 一種成像系統,包含: 一第一光源,建構以產生第一波長的第一光束; 一第二光源,建構以產生第二波長的第二光束; 一對準模組,建構以將該第二光束與該第一光束加以同軸對準; 一同軸模組,建構以將經同軸對準的第一與第二光束分別聚焦在位於一晶圓的正面上的一第一圖案上、及位於該第一圖案下方的一第二圖案上;及 一圖像擷取模組,建構以擷取該第一圖案的第一圖像、及該第二圖案的第二圖像, 其中,該第二光束具有功率足以穿過該晶圓的厚度的至少一部分並到達該第二圖案。
  2. 如請求項1之成像系統,其中該第二波長係長於該第一波長。
  3. 如請求項2之成像系統,其中該第一光源係紫外線(UV)光源,且該第二光源係紅外線(IR)光源。
  4. 如請求項3之成像系統,其中該第一波長係50-400奈米,且該第二波長係1-10微米。
  5. 如請求項4之成像系統,其中該第一波長係266奈米,且該第二波長係3.6或3.7微米。
  6. 如請求項3之成像系統,其中該IR光源包含IR可調諧量子級聯雷射。
  7. 如請求項1之成像系統,其中圖像擷取模組藉由量子穿隧成像或IR透射成像來擷取該第二圖案的第二圖像。
  8. 如請求項1之成像系統,其中將該第二圖案包括在位於該晶圓下方的一參考板之中。
  9. 如請求項8之成像系統,更包含一基板固持器,建構以固持該晶圓,其中將該參考板包括在該基板固持器之中。
TW110130324A 2020-08-17 2021-08-17 同軸穿透式對準成像系統 TW202225851A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063066779P 2020-08-17 2020-08-17
US63/066,779 2020-08-17

Publications (1)

Publication Number Publication Date
TW202225851A true TW202225851A (zh) 2022-07-01

Family

ID=80222832

Family Applications (6)

Application Number Title Priority Date Filing Date
TW110130327A TW202221819A (zh) 2020-08-17 2021-08-17 同軸穿透式檢測系統
TW110130340A TW202225865A (zh) 2020-08-17 2021-08-17 用於場域拼接的圖案對準方法
TW110130324A TW202225851A (zh) 2020-08-17 2021-08-17 同軸穿透式對準成像系統
TW110130332A TW202223555A (zh) 2020-08-17 2021-08-17 針對半導體製造利用絕對參考產生疊對結果的方法
TW110130336A TW202223533A (zh) 2020-08-17 2021-08-17 針對半導體製造利用絕對參考產生疊對結果的方法
TW110130328A TW202225864A (zh) 2020-08-17 2021-08-17 可調諧波長透視層堆疊

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW110130327A TW202221819A (zh) 2020-08-17 2021-08-17 同軸穿透式檢測系統
TW110130340A TW202225865A (zh) 2020-08-17 2021-08-17 用於場域拼接的圖案對準方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW110130332A TW202223555A (zh) 2020-08-17 2021-08-17 針對半導體製造利用絕對參考產生疊對結果的方法
TW110130336A TW202223533A (zh) 2020-08-17 2021-08-17 針對半導體製造利用絕對參考產生疊對結果的方法
TW110130328A TW202225864A (zh) 2020-08-17 2021-08-17 可調諧波長透視層堆疊

Country Status (6)

Country Link
US (6) US11526088B2 (zh)
JP (2) JP2023540684A (zh)
KR (6) KR20230052882A (zh)
CN (2) CN116057473A (zh)
TW (6) TW202221819A (zh)
WO (6) WO2022040226A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202221819A (zh) * 2020-08-17 2022-06-01 日商東京威力科創股份有限公司 同軸穿透式檢測系統
US20230215809A1 (en) * 2022-01-04 2023-07-06 Nanya Technology Corporation Marks for overlay measurement and overlay error correction
US20230281779A1 (en) * 2022-03-03 2023-09-07 Kla Corporation Measurement of stitching error using split targets
CN116579907B (zh) * 2023-07-06 2023-09-22 武汉中导光电设备有限公司 晶圆图像获取方法、装置、设备及可读存储介质

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233555A (ja) * 1994-12-28 1996-09-13 Matsushita Electric Ind Co Ltd レジストパターンの測定方法及びレジストパターンの測定装置
KR100579603B1 (ko) * 2001-01-15 2006-05-12 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치
US8994947B2 (en) 2001-03-19 2015-03-31 Pranalytica, Inc. Diagnostic method for high sensitivity detection of component concentrations in human gas emissions
US7004909B1 (en) 2001-03-19 2006-02-28 Pranalytica, Inc. Diagnostic method for high sensitivity detection of component concentrations in human gas emissions
US7064329B2 (en) 2001-08-21 2006-06-20 Franalytica, Inc. Amplifier-enhanced optical analysis system and method
US6582376B2 (en) 2001-09-13 2003-06-24 Pranalytica, Inc. Alveolar breath collection device and method
US6658032B2 (en) 2001-10-05 2003-12-02 Pranalytica, Inc. Automated laser wavelength selection system and method
US7473229B2 (en) 2001-12-10 2009-01-06 Pranalytica, Inc. Method of analyzing components of alveolar breath
US6664012B2 (en) * 2002-05-10 2003-12-16 Anvik Corporation Through-the-lens alignment for photolithography
JP2005175034A (ja) * 2003-12-09 2005-06-30 Canon Inc 露光装置
US7420676B2 (en) * 2004-07-28 2008-09-02 Asml Netherlands B.V. Alignment method, method of measuring front to backside alignment error, method of detecting non-orthogonality, method of calibration, and lithographic apparatus
US20070229834A1 (en) 2004-10-22 2007-10-04 Patel C Kumar N System and method for high sensitivity optical detection of gases
US7684039B2 (en) * 2005-11-18 2010-03-23 Kla-Tencor Technologies Corporation Overlay metrology using the near infra-red spectral range
US7903704B2 (en) 2006-06-23 2011-03-08 Pranalytica, Inc. Tunable quantum cascade lasers and photoacoustic detection of trace gases, TNT, TATP and precursors acetone and hydrogen peroxide
EP2068112A4 (en) * 2006-09-29 2017-11-15 Nikon Corporation Mobile unit system, pattern forming device, exposing device, exposing method, and device manufacturing method
JP2009130184A (ja) * 2007-11-26 2009-06-11 Canon Inc アライメント方法、露光方法、パターン形成方法および露光装置
US8247775B2 (en) 2008-02-12 2012-08-21 C Kumar N Patel Remote optothermal sensor (ROSE) standoff detection of CWAs, explosives vapors and TICs
US8014430B2 (en) 2008-02-27 2011-09-06 President And Fellows Of Harvard College Quantum cascade laser
NL2004400A (en) * 2009-04-09 2010-10-12 Asml Holding Nv Tunable wavelength illumination system.
JP5406624B2 (ja) * 2009-08-10 2014-02-05 キヤノン株式会社 検出装置、露光装置及びデバイスの製造方法
US8121164B1 (en) 2009-12-22 2012-02-21 Pranalytica, Inc. Quantum cascade laser: bias-neutral design
US8068524B1 (en) 2009-12-28 2011-11-29 Pranalytica, Inc. Submounts for Semiconductor Lasers
EP2378548A1 (en) * 2010-04-19 2011-10-19 Nanda Technologies GmbH Methods of processing and inspecting semiconductor substrates
JP2012195380A (ja) * 2011-03-15 2012-10-11 Nikon Corp マーク検出方法及び装置、並びに露光方法及び装置
WO2013021985A1 (ja) * 2011-08-10 2013-02-14 株式会社ブイ・テクノロジー 露光装置用のアライメント装置及びアライメントマーク
US9001305B2 (en) * 2011-10-11 2015-04-07 Wenhui Mei Ultra-large size flat panel display maskless photolithography system and method
US9077153B2 (en) 2011-12-27 2015-07-07 Pranalytica, Inc. Tapered waveguide high-power quantum cascade lasers
US9608408B2 (en) 2012-09-26 2017-03-28 Pranalytica, Inc. Long wavelength quantum cascade lasers based on high strain composition
JP6150490B2 (ja) * 2012-10-19 2017-06-21 キヤノン株式会社 検出装置、露光装置、それを用いたデバイスの製造方法
US9304403B2 (en) * 2013-01-02 2016-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for lithography alignment
US10495982B2 (en) * 2013-10-28 2019-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for real-time overlay error reduction
US10230210B2 (en) 2014-03-03 2019-03-12 Pranalytica, Inc. Acousto-optic tuning of lasers
US10615562B2 (en) 2014-03-03 2020-04-07 Pranalytica, Inc. Acousto-optic tuning of lasers
NL2013293A (en) 2014-06-02 2016-03-31 Asml Netherlands Bv Method of designing metrology targets, substrates having metrology targets, method of measuring overlay, and device manufacturing method.
WO2016078862A1 (en) 2014-11-21 2016-05-26 Asml Netherlands B.V. Metrology method and apparatus
JP2016180783A (ja) * 2015-03-23 2016-10-13 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法、パターンの重ね合わせ検査方法
CN107403791B (zh) * 2016-05-18 2020-04-10 光宝光电(常州)有限公司 发光显示器以及形成发光显示器的方法
US20180019139A1 (en) * 2016-07-12 2018-01-18 Ayar Labs, Inc. Wafer-Level Etching Methods for Planar Photonics Circuits and Devices
US10048132B2 (en) 2016-07-28 2018-08-14 Kla-Tencor Corporation Simultaneous capturing of overlay signals from multiple targets
CN109643072B (zh) * 2016-08-30 2021-10-26 Asml荷兰有限公司 位置传感器、光刻设备和用于制造器件的方法
CN108010855B (zh) 2016-10-31 2020-04-14 中芯国际集成电路制造(上海)有限公司 用于检测基板上的标记的装置、设备和方法
US10012544B2 (en) * 2016-11-29 2018-07-03 Cymer, Llc Homogenization of light beam for spectral feature metrology
US10474042B2 (en) * 2017-03-22 2019-11-12 Kla-Tencor Corporation Stochastically-aware metrology and fabrication
US10755404B2 (en) * 2017-12-07 2020-08-25 International Business Machines Corporation Integrated circuit defect detection using pattern images
US10473460B2 (en) * 2017-12-11 2019-11-12 Kla-Tencor Corporation Overlay measurements of overlapping target structures based on symmetry of scanning electron beam signals
KR101906098B1 (ko) * 2018-01-12 2018-10-10 (주)오로스 테크놀로지 오버레이 마크 및 이를 이용한 오버레이 계측방법 및 반도체 디바이스 제조방법
US10622787B2 (en) 2018-01-26 2020-04-14 Pranalytica, Inc. Dual quantum cascade laser micropackage
US10775149B1 (en) * 2018-03-14 2020-09-15 Onto Innovation Inc. Light source failure identification in an optical metrology device
US10678148B2 (en) * 2018-07-31 2020-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography system and lithography method
CN110941153A (zh) * 2018-09-21 2020-03-31 长鑫存储技术有限公司 波长可调谐曝光机对准系统及其对准方法
US10705436B2 (en) * 2018-09-27 2020-07-07 Taiwan Semiconductor Manufacturing Co., Ltd. Overlay mark and method of fabricating the same
US10642161B1 (en) * 2018-10-10 2020-05-05 International Business Machines Corporation Baseline overlay control with residual noise reduction
KR20200045590A (ko) * 2018-10-22 2020-05-06 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
WO2020103025A1 (en) * 2018-11-21 2020-05-28 Yangtze Memory Technologies Co., Ltd. Bonding alignment marks at bonding interface
TW202221819A (zh) * 2020-08-17 2022-06-01 日商東京威力科創股份有限公司 同軸穿透式檢測系統

Also Published As

Publication number Publication date
TW202221819A (zh) 2022-06-01
KR20230052883A (ko) 2023-04-20
WO2022040201A1 (en) 2022-02-24
US11966171B2 (en) 2024-04-23
CN116057473A (zh) 2023-05-02
JP2023540684A (ja) 2023-09-26
US11630397B2 (en) 2023-04-18
US11526088B2 (en) 2022-12-13
US11640118B2 (en) 2023-05-02
KR20230052888A (ko) 2023-04-20
WO2022040228A1 (en) 2022-02-24
WO2022040207A1 (en) 2022-02-24
KR20230052882A (ko) 2023-04-20
KR20230050337A (ko) 2023-04-14
JP2023540683A (ja) 2023-09-26
TW202223533A (zh) 2022-06-16
WO2022040211A1 (en) 2022-02-24
US20220050384A1 (en) 2022-02-17
WO2022040226A1 (en) 2022-02-24
TW202223555A (zh) 2022-06-16
KR20230052877A (ko) 2023-04-20
US20220050393A1 (en) 2022-02-17
US20220051951A1 (en) 2022-02-17
US11513445B2 (en) 2022-11-29
TW202225865A (zh) 2022-07-01
US20220050386A1 (en) 2022-02-17
CN116113886A (zh) 2023-05-12
KR20230052878A (ko) 2023-04-20
WO2022040221A1 (en) 2022-02-24
US20220050385A1 (en) 2022-02-17
TW202225864A (zh) 2022-07-01
US20220050388A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
TW202225851A (zh) 同軸穿透式對準成像系統
TW201107904A (en) Detection apparatus, exposure apparatus, and device fabrication method
TWI722389B (zh) 圖案形成裝置、對齊標記檢測方法和圖案形成方法
US9915519B2 (en) Measuring system and measuring method
US20230266682A1 (en) Lithography system and method
JPH11284052A (ja) 基板搬送方法、基板搬送装置、及び露光装置、並びにデバイス製造方法
US10847369B2 (en) Wafer bonding method, method for manufacturing semiconductor device, and apparatus therefor
JP2009119491A (ja) 光ビーム分岐装置、照射装置、光ビームの分岐方法、電子デバイスの製造方法、および精密部品の製造方法
JPH08306621A (ja) 露光方法、露光装置および半導体集積回路装置の製造方法
JP2000260700A (ja) 露光方法及びそれを用いた露光装置
JP2008060315A (ja) Euv露光用ステンシルマスク、euv露光装置、およびeuv露光方法
JP2000122264A (ja) 露光用マスク、位置合わせ基準ウェハおよび露光位置合わせ方法
JPH04251912A (ja) 半導体装置の製造方法
JP2006165042A (ja) 転写装置、転写方法、及び、検査装置