TW202220373A - 輸出級電路 - Google Patents

輸出級電路 Download PDF

Info

Publication number
TW202220373A
TW202220373A TW110138073A TW110138073A TW202220373A TW 202220373 A TW202220373 A TW 202220373A TW 110138073 A TW110138073 A TW 110138073A TW 110138073 A TW110138073 A TW 110138073A TW 202220373 A TW202220373 A TW 202220373A
Authority
TW
Taiwan
Prior art keywords
transistor
coupled
terminal
circuit
output
Prior art date
Application number
TW110138073A
Other languages
English (en)
Other versions
TWI810676B (zh
Inventor
印秉宏
王佳祥
Original Assignee
大陸商廣州印芯半導體技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廣州印芯半導體技術有限公司 filed Critical 大陸商廣州印芯半導體技術有限公司
Publication of TW202220373A publication Critical patent/TW202220373A/zh
Application granted granted Critical
Publication of TWI810676B publication Critical patent/TWI810676B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Amplifiers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)
  • Facsimile Heads (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本發明提出的輸出級電路包括電流源電路、偏壓電路、輸出電路。偏壓電路耦接在電流源電路以及接地端電壓之間。輸出電路包括第一電晶體、第二電晶體、第三電晶體及負載電路。第一電晶體的控制端耦接偏壓電路。負載電路耦接第一電晶體的第二端及輸出端。第二電晶體的第一端耦接工作電壓,且第二電晶體的第二端耦接第一電晶體的第一端。第三電晶體的第一端耦接第一電晶體的第二端及輸出端,且第三電晶體的第二端耦接接地端電壓。

Description

輸出級電路
本發明是有關於一種電路,且特別是有關於一種輸出級電路。
一般來說,傳統的輸出級電路只能提供相同於輸入輸出工作電壓(I/O Supply Voltage,IOVDD)的電壓輸出結果。因此,若電路需要不同電壓準位的輸出電壓,則傳統的輸出級電路必須透過調壓器(Regulator)來改變輸出電壓的電壓準位。對此,傳統的輸出級電路如進一步搭配有調壓器電路,則整體電路設計的複雜度將大幅提升,並且需要花費更多電路空間。有鑑於此,以下提出幾個實施例的解決方案。
本發明提供一種輸出級電路為一種無調壓器(Regulator-free)設計。
本發明的輸出級電路包括電流源電路、偏壓電路以及輸出電路。偏壓電路耦接在電流源電路以及接地端電壓之間。輸出電路包括第一電晶體、第二電晶體、第三電晶體以及負載電路。第一電晶體的控制端耦接偏壓電路。負載電路耦接第一電晶體的第二端以及輸出端。第二電晶體的第一端耦接工作電壓。第二電晶體的第二端耦接第一電晶體的第一端。第三電晶體的第一端耦接第一電晶體的第二端以及輸出端。第三電晶體的第二端耦接接地端電壓。
基於上述,本發明的輸出級電路可有效地提供穩定的輸出電壓信號。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本揭示確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1是本發明的一實施例的輸出級電路的電路示意圖。參考圖1,輸出級電路100可為輸出接墊(output pad)電路。輸出級電路100包括電流源(Current source)電路110、偏壓電路120以及輸出電路130。偏壓電路120以及輸出電路130可形成複製偏壓電路(Replica bias circuit)。偏壓電路120包括電晶體121以及參考電阻122。輸出電路130包括電晶體131、負載電路132、電晶體133以及電晶體134。在本實施例中,電晶體121的第一端耦接電流源電路110以及電晶體121的控制端。參考電阻122的第一端耦接電晶體121的第二端。參考電阻122的第二端耦接接地端電壓VSS。在本發明的另一些實施例中,偏壓電路120也可只有電晶體121,並且電晶體121的第二端耦接接地端電壓VSS。或者,在本發明的又一些實施例中,偏壓電路120也可只有參考電阻122,並且參考電阻122的第一端耦接電流源電路110。
在本實施例中,電晶體131的控制端耦接電晶體121的控制端。負載電路132耦接電晶體131的第二端以及輸出端VOUT。電晶體133的第一端耦接工作電壓VDD。電晶體133的第二端耦接電晶體131的第一端。電晶體134的第一端耦接電晶體131的第二端以及(電壓)輸出端VOUT。電晶體134的第二端耦接接地端電壓VSS。
在本實施例中,電晶體121、131、134可為N型電晶體,並且電晶體133可為P型電晶體。負載電路132可包括電阻及/或電容,而本發明並不加以限制。甚至,在本發明的另一些實施例中,輸出級電路100可不包括負載電路132。電晶體133以及電晶體134的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體133的開啟期間與電晶體134的開啟期間為未重疊,但本發明也不限於此。
在本實施例中,偏壓電路120以及輸出電路130可分別經設計以使流經偏壓電路120的電流I_M與流經輸出電路130的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路120可包括並聯的M個電晶體121,並且輸出電路130可包括並聯的N個電晶體131,其中M與N為正整數。另外,偏壓電路120的的參考電阻122的並聯電阻數量與輸出電路130的負載電路132中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖1所示的電路節點Va1(電晶體121的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb1(電晶體121的控制端)以及電路節點Vc1(電晶體131的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va1的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路100可提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路120以及輸出電路130具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va1的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體121、131、133、134的基極可耦接各自對應的源極,以降低基板效應(body effect)。另外,本實施例的輸出級電路100耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路100耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。在本發明的另一些實施例中,輸出級電路100也可被設計或改良具有輸入級電路的功能或應用於輸入級電路。
圖2是本發明的第一範例實施例的輸出級電路的電路示意圖。參考圖2,本實施例可為圖1所示的輸出級電路100的一種具體實施範例。在本實施例中,輸出級電路200包括電流源電路210、偏壓電路220、輸出電路230以及電晶體電容250。偏壓電路220以及輸出電路230可形成複製偏壓電路(Replica bias circuit)。電流源電路210包括電晶體211~214。偏壓電路220包括電晶體221以及參考電阻222。輸出電路230包括電晶體231、負載電路232、電晶體233以及電晶體234。
在本實施例中,電晶體211的第一端耦接工作電壓VDD。電晶體211的第二端耦接電晶體211的控制端。電晶體212的第一端耦接工作電壓VDD。電晶體212的控制端耦接電晶體211的控制端。電晶體212的第二端耦接電晶體221的第一端。電晶體213的第一端耦接電晶體211的第二端。電晶體213的第二端耦接接地端電壓VSS。電晶體214的第一端耦接電晶體213的控制端、電晶體214的控制端以及電流輸入端IS。電晶體214的第二端耦接接地端電壓VSS。電晶體221的第一端耦接電晶體212的第二端以及電晶體221的控制端。電晶體221的第二端經由參考電阻222耦接接地端電壓VSS。電晶體231的控制端耦接電晶體221的控制端。負載電路232耦接電晶體231的第二端以及輸出端VOUT。電晶體233的第一端耦接工作電壓VDD。電晶體233的第二端耦接電晶體231的第一端。電晶體234的第一端耦接電晶體231的第二端以及輸出端VOUT。電晶體234的第二端耦接接地端電壓VSS。電晶體電容250的第一端以及第二端為短路,並且都耦接接地端電壓VSS。電晶體電容250的第二端還耦接電晶體234的第二端。電晶體電容250的控制端耦接電晶體221的控制端以及電晶體231的控制端。
值得注意的是,本實施例的電流源電路210的電晶體211以及電晶體212可組合為一種電流鏡(Current mirror)電路。本實施例的電流鏡電路可有效地複製電流輸入端IS所輸入的輸入電流。如此一來,電流I_M可等於或近似於電流輸入端IS所輸入的輸入電流。
在本實施例中,電晶體213、214、221、231、234以及電晶體電容250可為N型電晶體,並且電晶體211、212、233可為P型電晶體。負載電路232可包括電阻2321,而本發明並不加以限制。電晶體233以及電晶體234的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體233的開啟期間與電晶體234的開啟期間為未重疊,但本發明也不限於此。
在本實施例中,偏壓電路220以及輸出電路230可分別經設計以使流經偏壓電路220的電流I_M與流經輸出電路230的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路220可包括並聯的M個電晶體221,並且輸出電路230可包括並聯的N個電晶體231,其中M與N為正整數。另外,偏壓電路220的參考電阻222的並聯電阻數量與輸出電路230的負載電路232中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖2所示的電路節點Va2(電晶體221的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb2(電晶體221的控制端)以及電路節點Vc2(電晶體231的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va2的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路200可根據電流輸入端IS所輸入的輸入電流來提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路220以及輸出電路230具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va2的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體211~214、221、231、233、234的基極可耦接各自對應的源極,以降低基板效應。另外,本實施例的輸出級電路200耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路200耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。
圖3是本發明的第二範例實施例的輸出級電路的電路示意圖。參考圖3,本實施例可為圖1所示的輸出級電路100的一種具體實施範例。在本實施例中,輸出級電路300包括電流源電路310、偏壓電路320、輸出電路330以及電晶體電容350。偏壓電路320以及輸出電路330可形成複製偏壓電路(Replica bias circuit)。電流源電路310包括電晶體311~314以及運算放大器(Operational Amplifier,OPA)315。偏壓電路320包括電晶體321以及參考電阻322。輸出電路330包括電晶體331、負載電路332、電晶體333以及電晶體334。
在本實施例中,電晶體311的第一端耦接工作電壓VDD。電晶體312的第一端耦接工作電壓VDD。電晶體312的控制端耦接電晶體311的控制端。電晶體312的第二端耦接電晶體321的第一端。電晶體313的第一端耦接電晶體311的第二端。電晶體313的第二端耦接接地端電壓VSS。電晶體314的第一端耦接電晶體313的控制端、電晶體314的控制端以及電流輸入端IS。電晶體314的第二端耦接接地端電壓VSS。運算放大器315的第一輸入端耦接電晶體211的第二端。運算放大器315的第二輸入端耦接電晶體312的第二端。運算放大器315的輸出端耦接電晶體311的控制端以及電晶體312的控制端。電晶體321的第一端耦接電晶體312的第二端以及電晶體321的控制端。電晶體321的第二端經由參考電阻322耦接接地端電壓VSS。電晶體331的控制端耦接電晶體321的控制端。負載電路332耦接電晶體331的第二端以及輸出端VOUT。電晶體333的第一端耦接工作電壓VDD。電晶體333的第二端耦接電晶體331的第一端。電晶體334的第一端耦接電晶體331的第二端以及輸出端VOUT。電晶體334的第二端耦接接地端電壓VSS。電晶體電容350的第一端以及第二端為短路,並且都耦接接地端電壓VSS。電晶體電容350的第二端還耦接電晶體334的第二端。電晶體電容350的控制端耦接電晶體321的控制端以及電晶體331的控制端。
值得注意的是,本實施例的電流源電路310的電晶體311、電晶體312以及運算放大器315可組合為一種運算放大器型態的電流鏡電路(OPA type current mirror)。運算放大器315的兩個輸入端耦接在電晶體311以及電晶體312的兩個第二輸出端之間,並且運算放大器315的輸出端耦接在電晶體311以及電晶體312的兩個控制端之間。因此,本實施例的運算放大器315可有效鎖住分別流經電晶體311以及電晶體312的電流,以使本實施例的電流鏡電路可有效地複製電流輸入端IS所輸入的輸入電流。如此一來,電流I_M可等於或近似於電流輸入端IS所輸入的輸入電流。
在本實施例中,電晶體313、314、321、331、334以及電晶體電容350可為N型電晶體,並且電晶體311、312、333可為P型電晶體。負載電路332可包括電阻3321,而本發明並不加以限制。電晶體333以及電晶體334的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體333的開啟期間與電晶體334的開啟期間為未重疊,但本發明也不限於此。
在本實施例中,偏壓電路320以及輸出電路330可分別經設計以使流經偏壓電路320的電流I_M與流經輸出電路330的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路320可包括並聯的M個電晶體321,並且輸出電路330可包括並聯的N個電晶體331,其中M與N為正整數。或者,偏壓電路320的參考電阻322的並聯電阻數量與輸出電路330的負載電路332中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖3所示的電路節點Va3(電晶體321的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb3(電晶體321的控制端)以及電路節點Vc3(電晶體331的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va3的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路300可根據電流輸入端IS所輸入的輸入電流來提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路320以及輸出電路330具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va3的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體311~314、321、331、333、334的基極可耦接各自對應的源極,以降低基板效應。另外,本實施例的輸出級電路300耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路300耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。
圖4是本發明的第三範例實施例的輸出級電路的電路示意圖。參考圖4,本實施例可為圖1所示的輸出級電路100的一種具體實施範例。在本實施例中,輸出級電路400包括電流源電路410、偏壓電路420、輸出電路430以及電晶體電容450。偏壓電路420以及輸出電路430可形成複製偏壓電路(Replica bias circuit)。電流源電路410包括電晶體411~415、運算放大器416以及參考電阻417。偏壓電路420包括電晶體421以及參考電阻422。輸出電路430包括電晶體431、負載電路432、電晶體433以及電晶體434。
在本實施例中,電晶體411的第一端耦接工作電壓VDD。電晶體411的第二端耦接電晶體411的控制端。電晶體412的第一端耦接工作電壓VDD。電晶體412的控制端耦接電晶體411的控制端。電晶體412的第二端耦接電晶體421的第一端。電晶體413的第一端耦接電晶體411的第二端。電晶體413的第二端耦接接地端電壓VSS。電晶體414的第一端耦接電晶體413的控制端、電晶體414的控制端以及電流輸入端IS。電晶體414的第二端耦接接地端電壓VSS。電晶體411的控制端耦接電晶體411的第二端。電晶體415的第一端耦接工作電壓VDD。電晶體415的控制端耦接電晶體411的控制端以及電晶體412的控制端。電晶體415的第二端經由參考電阻417耦接接地端電壓VSS。運算放大器416的第一輸入端耦接電晶體415的第二端。運算放大器416的第二輸入端耦接電晶體421的第二端。運算放大器416的輸出端耦接電晶體421的控制端。
在本實施例中,電晶體421的第一端耦接電晶體412的第二端。電晶體421的第二端經由參考電阻422耦接接地端電壓VSS。電晶體431的控制端耦接電晶體421的控制端。負載電路432耦接電晶體431的第二端以及輸出端VOUT。電晶體433的第一端耦接工作電壓VDD。電晶體433的第二端耦接電晶體431的第一端。電晶體434的第一端耦接電晶體431的第二端以及輸出端VOUT。電晶體434的第二端耦接接地端電壓VSS。電晶體電容450的第一端以及第二端為短路,並且都耦接接地端電壓VSS。電晶體電容450的第二端還耦接電晶體434的第二端。電晶體電容450的控制端耦接電晶體421的控制端以及電晶體431的控制端。
值得注意的是,本實施例的電流源電路410的電晶體411、電晶體412以及電晶體415可組合為一種電流鏡電路,並且本實施例的電晶體421的控制端不耦接電晶體421的第一端。本實施例的運算放大器416的輸出端耦接電晶體421的控制端,以固定電晶體421的控制端的電壓。因此,本實施例的運算放大器416可有效鎖住流經電晶體421的電流I_M。更重要的是,電晶體421的第一端至工作電壓VDD之間可以有更多的電壓頭部空間(Voltage Headroom)。如此一來,電流I_M可等於或近似於電流輸入端IS所輸入的輸入電流。
在本實施例中,電晶體413、414、421、431、434以及電晶體電容450可為N型電晶體,並且電晶體411、412、415、433可為P型電晶體。負載電路432可包括電阻4321,而本發明並不加以限制。電晶體433以及電晶體434的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體433的開啟期間與電晶體434的開啟期間為未重疊,但本發明並不限於此。
在本實施例中,偏壓電路420以及輸出電路430可分別經設計以使流經偏壓電路420的電流I_M與流經輸出電路430的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路420可包括並聯的M個電晶體421,並且輸出電路430可包括並聯的N個電晶體431,其中M與N為正整數。或者,偏壓電路420的參考電阻422的並聯電阻數量與輸出電路430的負載電路432中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖4所示的電路節點Va4(電晶體421的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb4(電晶體421的控制端)以及電路節點Vc4(電晶體431的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va4的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路400可根據電流輸入端IS所輸入的輸入電流來提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路420以及輸出電路430具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va4的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體411~415、421、431、433、434的基極可耦接各自對應的源極,以降低基板效應。另外,本實施例的輸出級電路400耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路400耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。
圖5是本發明的第四範例實施例的輸出級電路的電路示意圖。參考圖5,本實施例可為圖1所示的輸出級電路100的一種具體實施範例。在本實施例中,輸出級電路500包括電流源電路510、偏壓電路520、輸出電路530以及電晶體電容550。偏壓電路520以及輸出電路530可形成複製偏壓電路(Replica bias circuit)。電流源電路510包括電晶體511~515、517以及運算放大器516。偏壓電路520包括電晶體521以及參考電阻522。輸出電路530包括電晶體531、負載電路532、電晶體533以及電晶體534。
在本實施例中,電晶體511的第一端耦接工作電壓VDD。電晶體511的第二端耦接電晶體511的控制端。電晶體512的第一端耦接工作電壓VDD。電晶體512的控制端耦接電晶體511的控制端。電晶體512的第二端耦接電晶體521的第一端。電晶體513的第一端耦接電晶體511的第二端。電晶體513的第二端耦接接地端電壓VSS。電晶體514的第一端耦接電晶體513的控制端、電晶體514的控制端以及電流輸入端IS。電晶體514的第二端耦接接地端電壓VSS。電晶體511的控制端耦接電晶體511的第二端。電晶體515的第一端耦接工作電壓VDD。電晶體515的控制端耦接電晶體511的控制端以及電晶體512的控制端。電晶體515的第二端耦接電晶體517的第一端。電晶體517的第二端耦接接地端電壓VSS。電晶體517的控制端耦接電晶體513的控制端。運算放大器516的第一輸入端耦接電晶體512的第二端。運算放大器516的第二輸入端耦接電晶體515的第二端。運算放大器516的輸出端耦接電晶體521的控制端。
在本實施例中,電晶體521的第一端耦接電晶體512的第二端。電晶體521的第二端經由參考電阻522耦接接地端電壓VSS。電晶體531的控制端耦接電晶體521的控制端。負載電路532耦接電晶體531的第二端以及輸出端VOUT。電晶體533的第一端耦接工作電壓VDD。電晶體533的第二端耦接電晶體531的第一端。電晶體534的第一端耦接電晶體531的第二端以及輸出端VOUT。電晶體534的第二端耦接接地端電壓VSS。電晶體電容550的第一端以及第二端為短路,並且都耦接接地端電壓VSS。電晶體電容550的第二端還耦接電晶體534的第二端。電晶體電容550的控制端耦接電晶體521的控制端以及電晶體531的控制端。
值得注意的是,本實施例的電流源電路510的電晶體511、電晶體512以及電晶體515以及運算放大器516可組合為一種運算放大器型態的電流鏡電路,並且本實施例的電晶體521的控制端不耦接電晶體521的第一端。本實施例的運算放大器516的兩個輸入端耦接電晶體512以及電晶體515的兩個第二端,以鎖住流經電晶體512以及電晶體515的電流。並且,本實施例的運算放大器516的輸出端耦接電晶體521的控制端,以固定電晶體521的控制端的電壓。因此,本實施例的運算放大器516可有效鎖住流經電晶體521的電流I_M。更重要的是,電晶體521的第一端至工作電壓VDD之間可以有更多的電壓頭部空間(Voltage Headroom)。如此一來,電流I_M可等於或近似於電流輸入端IS所輸入的輸入電流。
在本實施例中,電晶體513、514、517、521、531、533以及電晶體電容550可為N型電晶體,並且電晶體511、512、515、534可為P型電晶體。負載電路532可包括電阻5321,而本發明並不加以限制。電晶體533以及電晶體534的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體533的開啟期間與電晶體534的開啟期間為未重疊,但本發明並不限於此。
在本實施例中,偏壓電路520以及輸出電路530可分別經設計以使流經偏壓電路520的電流I_M與流經輸出電路530的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路520可包括並聯的M個電晶體521,並且輸出電路530可包括並聯的N個電晶體531,其中M與N為正整數。或者,偏壓電路520的參考電阻222的並聯電阻數量與輸出電路530的負載電路532中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖5所示的電路節點Va5(電晶體521的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb5(電晶體521的控制端)以及電路節點Vc5(電晶體531的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va5的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路500可根據電流輸入端IS所輸入的輸入電流來提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路520以及輸出電路530具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va5的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體511~515、517、521、531、533、534、550的基極可耦接各自對應的源極,以降低基板效應。另外,本實施例的輸出級電路500耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路500耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。
圖6是本發明的第五範例實施例的輸出級電路的電路示意圖。參考圖6,本實施例可為圖1所示的輸出級電路100的一種具體實施範例。在本實施例中,輸出級電路600包括電流源電路610、偏壓電路620、輸出電路630以及電晶體電容650。偏壓電路620以及輸出電路630可形成複製偏壓電路(Replica bias circuit)。電流源電路610包括電晶體611~614、運算放大器615以及參考電阻616。偏壓電路620包括電晶體621以及參考電阻622。輸出電路630包括電晶體631、負載電路632、電晶體633以及電晶體634。
在本實施例中,電晶體611的第一端耦接工作電壓VDD。電晶體611的第二端耦接電晶體611的控制端。電晶體612的第一端耦接工作電壓VDD。電晶體612的控制端耦接電晶體611的控制端。電晶體612的第二端經由參考電阻616耦接接地端電壓VSS。電晶體613的第一端耦接電晶體611的第二端。電晶體613的第二端耦接接地端電壓VSS。電晶體614的第一端耦接電晶體613的控制端、電晶體614的控制端以及電流輸入端IS。電晶體614的第二端耦接接地端電壓VSS。電晶體611的控制端耦接電晶體611的第二端。運算放大器616的第一輸入端耦接電晶體612的第二端。運算放大器616的第二輸入端耦接電晶體621的第二端。運算放大器616的輸出端耦接電晶體621的控制端。
在本實施例中,電晶體621的第一端耦接電晶體612的第二端。電晶體621的第二端經由參考電阻622耦接接地端電壓VSS。電晶體631的控制端耦接電晶體621的控制端。負載電路632耦接電晶體631的第二端以及輸出端VOUT。電晶體633的第一端耦接工作電壓VDD。電晶體633的第二端耦接電晶體631的第一端。電晶體634的第一端耦接電晶體631的第二端以及輸出端VOUT。電晶體634的第二端耦接接地端電壓VSS。電晶體電容650的第一端以及第二端為短路,並且都耦接接地端電壓VSS。電晶體電容650的第二端還耦接電晶體634的第二端電晶體電容650的控制端耦接電晶體621的控制端以及電晶體631的控制端。
值得注意的是,本實施例的電流源電路610的電晶體611以及電晶體612以及運算放大器616可組合為一種運算放大器型態的電流鏡電路,並且本實施例的電晶體621的控制端不耦接電晶體621的第一端。本實施例的運算放大器616的兩個輸入端耦接電晶體612以及電晶體621的兩個第二端,以鎖住流經電晶體612以及電晶體621的電流。並且,本實施例的運算放大器616的輸出端耦接電晶體621的控制端,以固定電晶體621的控制端的電壓。因此,本實施例的運算放大器616可有效鎖住流經電晶體621的電流I_M。更重要的是,電晶體621的第一端至工作電壓VDD之間可以有更多的電壓頭部空間(Voltage Headroom)。如此一來,電流I_M可等於或近似於電流輸入端IS所輸入的輸入電流。
在本實施例中,電晶體613、614、621、631、633以及電晶體電容650可為N型電晶體,並且電晶體611、612、634可為P型電晶體。負載電路632可包括電阻6321,而本發明並不加以限制。電晶體633以及電晶體634的控制端可分別接收切換信號SWN及切換信號SWP。在本發明的一些實施例中,切換信號SWN及切換信號SWP可為相同的切換信號,但本發明並不限於此。在本實施例中,電晶體633的開啟期間與電晶體634的開啟期間為未重疊,但本發明並不限於此。
在本實施例中,偏壓電路620以及輸出電路630可分別經設計以使流經偏壓電路620的電流I_M與流經輸出電路630的電流I_N之間的電流比為M:N,其中M與N為正整數。舉例而言,偏壓電路620可包括並聯的M個電晶體621,並且輸出電路630可包括並聯的N個電晶體631,其中M與N為正整數。或者,偏壓電路620的參考電阻622的並聯電阻數量與輸出電路630的負載電路632中的並聯電阻數量可設計為M:N。因此,在本實施例中,如圖6所示的電路節點Va6(電晶體621的第二端)的電壓被設定後(亦即設定電流I_M),電路節點Vb6(電晶體621的控制端)以及電路節點Vc6(電晶體631的第二端)的電壓將固定。換言之,當電流I_M改變時,輸出端VOUT的電壓可追隨電路節點Va6的電壓,以達成可調整輸出電壓的電壓準位的輸出級功能。並且,本實施例的輸出級電路600可根據電流輸入端IS所輸入的輸入電流來提供穩定的輸出電壓信號。值得一提的是,因為偏壓電路620以及輸出電路630具有相同的元件,且僅差異在於數量不同,因此輸出電壓的電壓準位可以精準的追蹤(tracking)節點Va6的設定電壓,而不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。
此外,本實施例的電晶體611~614、621、631、633、634、650的基極可耦接各自對應的源極,以降低基板效應。另外,本實施例的輸出級電路600耦接至工作電壓VDD的路徑上(例如耦接在工作電壓VDD以及輸出端VOUT之間)可設置有靜電防護電路,並且本實施例的輸出級電路600耦接至接地端電壓VSS的路徑上(例如耦接在接地端電壓VSS以及輸出端VOUT之間)可也設置有另一靜電防護電路。
綜上所述,本發明的輸出級電路可根據輸入電流來提供相應且穩定的輸出電壓信號,並且本發明的輸出級電路架構為一種無調壓器(Regulator-free)設計。本發明的輸出級電路架構可透過偏壓電路以及輸出電路的電路設計,而具有彈性的電流轉換比例,進而可彈性地調整輸出電壓的電壓準位。值得一提的是,利用複製偏壓電路架構,因此輸出電壓的電壓準位可以精準的追蹤(tracking)設定電壓,不會受到製程(Process)、電壓(Voltage)及/或溫度(Temperature)的影響。此外,本發明的輸出級電路還可額外設置有靜電防護電路,以使提供良好的輸出級電路功能。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100、200、300、400、500、600:輸出級電路 110、210、310、410、510、610:電流源電路 120、220、320、420、520、620:偏壓電路 121、131、133、134、211~214、221、231、233、234、311~314、321、331、333、334、411~415、421、431、433、434、511~515、517、521、531、533、534、611~615、621、631、633、634:電晶體 130、230、330、430、530、630:輸出電路 132、232、332、432、532、632:負載電路 122、222、322、417、422、522、616、622:參考電阻 2321、3321、4321、5321、6321:電阻 250、350、450、550、650:電晶體電容 315、416、516、615:運算放大器 I_M、I_N:電流 IS:電流輸入端 SWN、SWP:切換信號 Va1~Va6、Vb1~Vb6、Vc1~Vc6:電路節點 VSS:接地端電壓 VDD:工作電壓 VOUT:電壓輸出端
圖1是本發明的一實施例的輸出級電路的電路示意圖。 圖2是本發明的第一範例實施例的輸出級電路的電路示意圖。 圖3是本發明的第二範例實施例的輸出級電路的電路示意圖。 圖4是本發明的第三範例實施例的輸出級電路的電路示意圖。 圖5是本發明的第四範例實施例的輸出級電路的電路示意圖。 圖6是本發明的第五範例實施例的輸出級電路的電路示意圖。
100:輸出級電路
110:電流源電路
120:偏壓電路
121、131、133、134:電晶體
122:參考電阻
130:輸出電路
132:負載電路
I_M、I_N:電流
SWN、SWP:切換信號
Va1、Vb1、Vc1:電路節點
VSS:接地端電壓
VDD:工作電壓
VOUT:輸出端

Claims (20)

  1. 一種輸出級電路,包括: 一電流源電路; 一偏壓電路,耦接在該電流源電路以及一接地端電壓之間;以及 一輸出電路,包括: 一第一電晶體,其中該第一電晶體的一控制端耦接該偏壓電路;以及 一負載電路,耦接該第一電晶體的一第二端以及一輸出端; 一第二電晶體,其中該第二電晶體的一第一端耦接一工作電壓,並且該第二電晶體的一第二端耦接該第一電晶體的一第一端;以及 一第三電晶體,其中該第三電晶體的一第一端耦接該第一電晶體的該第二端以及該輸出端,並且該第三電晶體的一第二端耦接該接地端電壓。
  2. 如請求項1所述的輸出級電路,其中該第二電晶體為一P型電晶體,並且該第一電晶體以及該第三電晶體為一N型電晶體。
  3. 如請求項1所述的輸出級電路,其中該負載電路包括一電阻及/或一電容。
  4. 如請求項1所述的輸出級電路,其中該偏壓電路包括: 一參考電阻,其中該參考電阻的一第一端耦接該電流源電路以及該第一電晶體的該控制端,並且該參考電阻的一第二端耦接該接地端電壓。
  5. 如請求項1所述的輸出級電路,其中該偏壓電路包括: 一第四電晶體,其中該第四電晶體的一第一端耦接該電流源電路,該第四電晶體的一第二端耦接該接地端電壓,並且該第四電晶體的一控制端耦接該第一電晶體的該控制端與該第四電晶體的第一端。
  6. 如請求項5所述的輸出級電路,其中該偏壓電路包括: 一參考電阻,其中該參考電阻的一第一端耦接該第四電晶體的該第二端以及該第一電晶體的該控制端,並且該參考電阻的一第二端耦接該接地端電壓。
  7. 如請求項5所述的輸出級電路,其中該電流源電路包括: 一第五電晶體,其中該第五電晶體的一第一端耦接該工作電壓; 一第六電晶體,其中該第六電晶體的一第一端耦接該工作電壓,該第六電晶體的一控制端耦接該第五電晶體的一控制端,並且該第六電晶體的一第二端耦接該偏壓電路; 一第七電晶體,其中該第七電晶體的一第一端耦接該第五電晶體的一第二端與該第五電晶體的一控制端,並且該第七電晶體的一第二端耦接該接地端電壓;以及 一第八電晶體,其中該第八電晶體的一第一端耦接該第七電晶體的一控制端、該第八電晶體的一控制端以及一電流輸入端,並且該第八電晶體的一第二端耦接該接地端電壓。
  8. 如請求項7所述的輸出級電路,其中該第五電晶體以及該第六電晶體為一P型電晶體,並且該第七電晶體以及該第八電晶體為一N型電晶體。
  9. 如請求項7所述的輸出級電路,其中該電流源電路還包括: 一第一運算放大器,其中該第一運算放大器的一第一輸入端耦接該第五電晶體的該第二端,該第一運算放大器的一第二輸入端耦接該第六電晶體的該第二端,並且該第一運算放大器的一輸出端耦接該第五電晶體的該控制端以及該第六電晶體的該控制端。
  10. 如請求項7所述的輸出級電路,其中該第五電晶體的該控制端耦接該第五電晶體的該第二端,並且該輸出級電路還包括: 一第九電晶體,其中該第九電晶體的一第一端耦接該工作電壓,該第九電晶體的一控制端耦接該第五電晶體的該控制端以及該第六電晶體的該控制端,並且該第九電晶體的一第二端耦接一參考電阻;以及 一第二運算放大器,其中該第二運算放大器的一第一輸入端耦接該第九電晶體的該第二端,該第二運算放大器的一第二輸入端耦接該第四電晶體的該第二端,並且該第二運算放大器的一輸出端耦接該第四電晶體的該控制端與第一電晶體的該控制端。
  11. 如請求項10所述的輸出級電路,其中該第九電晶體為一P型電晶體。
  12. 如請求項7所述的輸出級電路,其中該第五電晶體的該控制端耦接該第五電晶體的該第二端,並且該輸出級電路還包括: 一第十電晶體,其中該第十電晶體的一第一端耦接該工作電壓,該第十電晶體的一控制端耦接該第五電晶體的該控制端以及該第六電晶體的該控制端; 一第十一電晶體,其中該第十一電晶體的一第一端耦接該第十電晶體的一第二端,該第十一電晶體的一控制端耦接該第七電晶體的該控制端,並且該十一電晶體的一第二端耦接該接地端電壓;以及 一第三運算放大器,其中該第三運算放大器的一第一輸入端耦接該第十電晶體的該第二端,該第三運算放大器的一第二輸入端耦接該第六電晶體的該第二端,並且該第二運算放大器的一輸出端耦接該第四電晶體的該控制端與該第一電晶體的該控制端。
  13. 如請求項12所述的輸出級電路,其中該第十電晶體為一P型電晶體,該第十一電晶體為一N型電晶體。
  14. 如請求項5所述的輸出級電路,其中該電流源電路包括: 一第十二電晶體,其中該第十二電晶體的一第一端耦接該工作電壓,並且該第十二電晶體的一控制端耦接該第十二電晶體的一第二端; 一第十三電晶體,其中該第十三電晶體的一第一端耦接該工作電壓,該第十三電晶體的一控制端耦接該第十二電晶體的該控制端,並且該第十二電晶體的一第二端耦接一參考電阻; 一第四運算放大器,其中該第四運算放大器的一第一輸入端耦接該第十三電晶體的該第二端,該第四運算放大器的一第二輸入端耦接該第四電晶體的該第二端,並且第四運算放大器的一輸出端耦接該第四電晶體的該控制端; 一第十四電晶體,其中該第十四電晶體的一第一端耦接該第十二電晶體的該第二端,並且該第十四電晶體的一第二端耦接該接地端電壓;以及 一第十五電晶體,其中該第十五電晶體的一第一端耦接該第十四電晶體的一控制端、該第十五電晶體的一控制端以及一電流輸入端,並且該第十五電晶體的一第二端耦接該接地端電壓。
  15. 如請求項14所述的輸出級電路,其中該第十二電晶體以及該第十三電晶體為一P型電晶體,並且該第十四電晶體以及該第十五電晶體為一N型電晶體。
  16. 如請求項1所述的輸出級電路,其中該第二電晶體的該控制端接收一第一切換信號,並且該第三電晶體的該控制端接收一第二切換信號。
  17. 如請求項1所述的輸出級電路,其中該第二電晶體的一開啟期間與該第三電晶體的一開啟期間為未重疊。
  18. 如請求項1所述的輸出級電路,還包括: 一電晶體電容,其中該電晶體電容的一第一端以及一第二端為短路並且耦接該接地端電壓,該電晶體電容的該第二端還耦接該第三電晶體的該第二端,並且該電晶體電容的一控制端耦接該第一電晶體的該控制端以及該偏壓電路。
  19. 如請求項1所述的輸出級電路,其中流經該偏壓電路的一第一電流與流經該輸出電路的一第二電流之間的一電流比為M:N,其中M與N為正整數。
  20. 如請求項1所述的輸出級電路,其中該偏壓電路包括並聯的M個第四電晶體,並且該輸出電路包括並聯的N個第一電晶體,其中M與N為正整數。
TW110138073A 2020-11-06 2021-10-14 輸出級電路 TWI810676B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063110370P 2020-11-06 2020-11-06
US63/110,370 2020-11-06

Publications (2)

Publication Number Publication Date
TW202220373A true TW202220373A (zh) 2022-05-16
TWI810676B TWI810676B (zh) 2023-08-01

Family

ID=81362778

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110129713A TWI795870B (zh) 2020-11-06 2021-08-12 影像感測器以及影像感測方法
TW110138073A TWI810676B (zh) 2020-11-06 2021-10-14 輸出級電路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110129713A TWI795870B (zh) 2020-11-06 2021-08-12 影像感測器以及影像感測方法

Country Status (3)

Country Link
US (2) US11412170B2 (zh)
CN (2) CN114449187B (zh)
TW (2) TWI795870B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11625057B2 (en) * 2021-03-04 2023-04-11 United Semiconductor Japan Co., Ltd. Voltage regulator providing quick response to load change
CN116543804B (zh) * 2023-07-07 2023-11-24 长鑫存储技术有限公司 驱动控制电路和存储器

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438388A (en) * 1981-12-11 1984-03-20 Motorola, Inc. Single stage operational amplifier voltage reference
US6566938B2 (en) * 2001-07-27 2003-05-20 Fujitsu Limited System for a constant current source
TW200717215A (en) * 2005-10-25 2007-05-01 Realtek Semiconductor Corp Voltage buffer circuit
TW200828806A (en) * 2006-12-29 2008-07-01 Univ Nat Chiao Tung Mixed voltage input/output buffer
US8022729B2 (en) * 2008-04-11 2011-09-20 Micron Technology, Inc. Signal driver circuit having adjustable output voltage for a high logic level output signal
US7839174B2 (en) * 2008-12-09 2010-11-23 Himax Technologies Limited Mixed-voltage tolerant I/O buffer and output buffer circuit thereof
US8063674B2 (en) * 2009-02-04 2011-11-22 Qualcomm Incorporated Multiple supply-voltage power-up/down detectors
US8022730B2 (en) * 2009-10-13 2011-09-20 Himax Technologies Limited Driving circuit with slew-rate enhancement circuit
US7834653B1 (en) * 2009-10-31 2010-11-16 Lsi Corporation Failsafe and tolerant driver architecture and method
US8120428B2 (en) * 2010-05-18 2012-02-21 Analog Devices, Inc. Apparatus and method for low noise amplification
US8648580B2 (en) * 2010-12-08 2014-02-11 Mediatek Singapore Pte. Ltd. Regulator with high PSRR
WO2013042285A1 (ja) * 2011-09-22 2013-03-28 パナソニック株式会社 電圧検出回路及びそれを備えた電圧レギュレータ装置
KR101887988B1 (ko) * 2012-07-03 2018-08-14 삼성전자 주식회사 이미지 센서 칩, 이의 동작 방법, 및 이를 포함하는 시스템
US9146569B2 (en) * 2013-03-13 2015-09-29 Macronix International Co., Ltd. Low drop out regulator and current trimming device
US20160093273A1 (en) * 2014-09-30 2016-03-31 Samsung Electronics Co., Ltd. Dynamic vision sensor with shared pixels and time division multiplexing for higher spatial resolution and better linear separable data
US9715245B2 (en) * 2015-01-20 2017-07-25 Taiwan Semiconductor Manufacturing Company Limited Circuit for generating an output voltage and method for setting an output voltage of a low dropout regulator
US9380208B1 (en) * 2015-04-13 2016-06-28 Omnivision Technologies, Inc. Image sensor power supply rejection ratio noise reduction through ramp generator
US9911773B2 (en) * 2015-06-18 2018-03-06 Omnivision Technologies, Inc. Virtual high dynamic range large-small pixel image sensor
US10044948B2 (en) * 2015-11-12 2018-08-07 Omnivision Technologies, Inc. Image sensor global shutter supply circuit with variable bandwidth
US9848152B1 (en) * 2016-09-27 2017-12-19 Omnivision Technologies, Inc. Analog dithering to reduce vertical fixed pattern noise in image sensors
US9888185B1 (en) * 2016-12-20 2018-02-06 Omnivision Technologies, Inc. Row decoder for high dynamic range image sensor using in-frame multi-bit exposure control
KR20230087615A (ko) * 2016-12-30 2023-06-16 소니 어드밴스드 비주얼 센싱 아게 동적 비전 센서 아키텍쳐
EP3352042B1 (en) * 2017-01-18 2021-04-07 ams AG Output circuit and method for providing an output current
US10348994B2 (en) * 2017-04-06 2019-07-09 Samsung Electronics Co., Ltd. Intensity image acquisition from dynamic vision sensors
US10498300B2 (en) * 2017-07-17 2019-12-03 Power Integrations, Inc. Voltage-to-current transconductance operational amplifier with adaptive biasing
TWI633408B (zh) * 2017-08-17 2018-08-21 力晶科技股份有限公司 穩壓輸出裝置
TWI678108B (zh) * 2017-08-23 2019-11-21 恆景科技股份有限公司 影像感測器的影像處理系統及方法
US10579084B2 (en) * 2018-01-30 2020-03-03 Mediatek Inc. Voltage regulator apparatus offering low dropout and high power supply rejection
US10356351B1 (en) * 2018-02-07 2019-07-16 Omnivision Technologies, Inc. Image sensor with dual conversion gain readout
US10827143B2 (en) * 2018-02-23 2020-11-03 Omnivision Technologies, Inc. CMOS image sensor clamping method with divided bit lines
US10986290B2 (en) * 2018-05-18 2021-04-20 Omnivision Technologies, Inc. Wide dynamic range image sensor with global shutter
KR20190133465A (ko) * 2018-05-23 2019-12-03 삼성전자주식회사 다이나믹 비전 센서의 데이터 처리 방법, 이를 수행하는 다이나믹 비전 센서 및 이를 포함하는 전자 장치
US10347325B1 (en) * 2018-06-29 2019-07-09 Realtek Semiconductor Corporation DDR4 memory I/O driver
US10909824B2 (en) * 2018-08-14 2021-02-02 Samsung Electronics Co., Ltd. System and method for pulsed light pattern capturing using a dynamic vision sensor
TWI680303B (zh) * 2018-09-05 2019-12-21 威鋒電子股份有限公司 電流感測器
US11140349B2 (en) * 2018-09-07 2021-10-05 Samsung Electronics Co., Ltd. Image sensor incuding CMOS image sensor pixel and dynamic vision sensor pixel
TWI747052B (zh) * 2018-10-24 2021-11-21 大陸商廣州印芯半導體技術有限公司 具有加密功能的光學感測器及影像資料加密方法
US10666257B1 (en) * 2018-11-02 2020-05-26 Texas Instruments Incorporated Failsafe, ultra-wide voltage input output interface using low-voltage gate oxide transistors
US10725491B2 (en) * 2018-12-05 2020-07-28 Texas Instruments Incorporated Methods and apparatus to correct gate bias for a diode-connected transistor
CN109842768B (zh) * 2019-01-29 2020-05-15 上海芯仑光电科技有限公司 一种像素采集电路及图像传感器
JP2020174240A (ja) * 2019-04-08 2020-10-22 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US11971735B2 (en) * 2019-11-01 2024-04-30 Texas Instruments Incorporated Low area frequency compensation circuit and method
US11095254B1 (en) * 2020-01-23 2021-08-17 Analog Devices International Unlimited Company Circuits and methods to reduce distortion in an amplifier
CN111405209B (zh) * 2020-03-23 2022-07-19 Oppo广东移动通信有限公司 一种像素单元、信号处理方法及存储介质
CN111327278B (zh) * 2020-04-10 2023-10-13 上海兆芯集成电路股份有限公司 输出级电路
US11392158B2 (en) * 2020-11-02 2022-07-19 Texas Instruments Incorporated Low threshold voltage transistor bias circuit
US11625057B2 (en) * 2021-03-04 2023-04-11 United Semiconductor Japan Co., Ltd. Voltage regulator providing quick response to load change
FR3134487A1 (fr) * 2022-04-06 2023-10-13 Stmicroelectronics (Grenoble 2) Sas Dispositif de copie d'un courant

Also Published As

Publication number Publication date
US11937005B2 (en) 2024-03-19
TW202220202A (zh) 2022-05-16
CN114448422A (zh) 2022-05-06
CN114449187A (zh) 2022-05-06
US20220147081A1 (en) 2022-05-12
CN114449187B (zh) 2023-10-17
US11412170B2 (en) 2022-08-09
US20220150432A1 (en) 2022-05-12
TWI810676B (zh) 2023-08-01
TWI795870B (zh) 2023-03-11

Similar Documents

Publication Publication Date Title
Peluso et al. 900 mV differential class AB OTA for switched opamp applications
KR100377064B1 (ko) 적응바이어서회로및공통모드궤환회로를갖는완전차동폴디드캐스코드씨모오스(cmos)오피앰프(opamp)회로
US6052025A (en) CMOS operational amplifiers having reduced power consumption requirements and improved phase margin characteristics
US20050068063A1 (en) Differential to single-ended logic converter
TW202220373A (zh) 輸出級電路
US5986910A (en) Voltage-current converter
US7834791B2 (en) Current steering DAC and voltage booster of same
US20230208369A1 (en) Slew boost circuit for an operational amplifier
JP4001421B2 (ja) Da変換器
US7956784B2 (en) DA converter including conversion amplifier having output voltage with improved linearity
US9231540B2 (en) High performance class AB operational amplifier
US5136293A (en) Differential current source type d/a converter
JP4371618B2 (ja) 差動増幅回路
US11658625B2 (en) Amplifier circuit, corresponding comparator device and method
US6975168B2 (en) Drive circuit
JP2002164788A (ja) 差動出力型da変換器
US6700362B2 (en) Switchable current source
JP4695621B2 (ja) 半導体回路
JPH04219025A (ja) 電流発生装置およびd/a変換装置
KR100572312B1 (ko) 저전압에서 출력범위를 향상시킨 디지털 아날로그 변환기
JP3077664B2 (ja) 入力回路
KR960003444B1 (ko) 바이어스회로를 가지는 비교기 및 그 바이어스공급방법
KR20000027915A (ko) 저전압 고이득 오피 앰프 회로
CN115514328A (zh) 运算放大器
JPH0740651B2 (ja) 増幅回路