TW202210433A - 無鹼玻璃板 - Google Patents

無鹼玻璃板 Download PDF

Info

Publication number
TW202210433A
TW202210433A TW110122501A TW110122501A TW202210433A TW 202210433 A TW202210433 A TW 202210433A TW 110122501 A TW110122501 A TW 110122501A TW 110122501 A TW110122501 A TW 110122501A TW 202210433 A TW202210433 A TW 202210433A
Authority
TW
Taiwan
Prior art keywords
cao
mgo
sro
mol
bao
Prior art date
Application number
TW110122501A
Other languages
English (en)
Inventor
西宮未侑
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202210433A publication Critical patent/TW202210433A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本發明的無鹼玻璃板的特徵在於:作為玻璃組成,以mol%計而含有64%~71%的SiO2 、12.5%~17%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、6%~11%的MgO、3%~11%的CaO、0%~6%的SrO、0%~1%的BaO、14%~19%的MgO+CaO+SrO+BaO,以mol%計而(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.5,以mol%計而MgO/(CaO+SrO)為0.5~1.5,以mol%計而(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為1~10,以mol%計而SiO2 ×CaO/MgO為30~90。

Description

無鹼玻璃板
本發明是有關於一種無鹼玻璃板,尤其是有關於一種適合於有機電致發光(electroluminescence,EL)顯示器的無鹼玻璃板。
有機EL顯示器等電子元件由於為薄型且動態圖像顯示優異,並且消耗電力亦低,因此用於可撓性元件或行動電話的顯示器等的用途。
作為有機EL顯示器的基板,廣泛使用玻璃板。對於該用途的玻璃板,主要要求以下特性。 (1)為了防止於在熱處理步驟中成膜的半導體物質中鹼離子發生擴散的事態,基本不含鹼金屬氧化物,即無鹼玻璃(玻璃組成中的鹼氧化物的含量為0.5 mol%以下); (2)為了使玻璃板低廉化,利用容易提高表面品質的溢流下拉法來成形,且生產性優異、尤其是熔融性或耐失透性優異; (3)於低溫多晶矽(low temperature poly silicon,LTPS)製程、氧化物薄膜電晶體(Thin Film Transistor,TFT)製程中,為了減低玻璃板的熱收縮,應變點高。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2012-106919號公報
[發明所欲解決之課題] 且說,有機EL元件亦廣泛擴展至有機EL電視。對於有機EL電視,強烈要求大型化、薄型化,且8K等高解析度的顯示器的需求提高。因此,對於該些用途的玻璃板,要求雖為大型化、薄型化但可耐受高解析度的要求的熱尺寸穩定性。進而,關於有機EL電視,為了減低與液晶顯示器的價格差,要求低成本,玻璃板亦同樣地要求低成本。但是,若玻璃板大型化、薄型化,則玻璃板容易撓曲,製造成本會高漲。
由玻璃製造商成形的玻璃板雖經過切斷、緩冷、檢查、清洗等步驟,但於該些步驟中,將玻璃板投入形成有多段架的盒中並加以搬出。該盒通常可於形成於左右的內側面的架上載置玻璃板的相對的兩邊並在水平方向上加以保持,但大型且薄的玻璃板的撓曲量大,因此在將玻璃板投入盒時,玻璃板的一部分與盒接觸而破損,在搬出時,容易大幅擺動而變得不穩定。此種形態的盒亦被電子元件製造商使用,因此產生相同的不良情況。為了解決該問題,有效的是提高玻璃板的楊氏模量(Young’s modulus)來減低撓曲量的方法。
另外,如上所述,於用於獲得高解析度的顯示器的LTPS或氧化物TFT製程中,為了減低大型玻璃板的熱收縮,需要提高玻璃板的應變點。
但是,若欲提高玻璃板的楊氏模量與應變點,則玻璃組成的平衡崩潰,生產性下降,尤其是耐失透性容易顯著下降,且液相黏度增加,因此無法利用溢流下拉法來成形。另外,熔融性下降,或玻璃的成形溫度變高而成形體的壽命容易變短。結果,玻璃板的原板成本會高漲。
因此,本發明是鑑於所述情況而發明出,其技術性課題為提供一種生產性優異且應變點與楊氏模量充分高的無鹼玻璃板。
[解決課題之手段] 本發明者反覆進行了多種實驗,結果發現,藉由對無鹼玻璃板的玻璃組成進行嚴格限制而可解決所述技術性課題,從而作為本發明來提出。即,本發明的無鹼玻璃板的特徵在於:作為玻璃組成,以mol%計而含有64%~71%的SiO2 、12.5%~17%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、6%~11%的MgO、3%~11%的CaO、0%~6%的SrO、0%~1%的BaO、14%~19%的MgO+CaO+SrO+BaO,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.5,mol%比MgO/(CaO+SrO)為0.5~1.5,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為1~10,mol%比SiO2 ×CaO/MgO為30~90。此處,「Li2 O+Na2 O+K2 O」是指Li2 O、Na2 O及K2 O的合計量。「MgO+CaO+SrO+BaO」是指MgO、CaO、SrO及BaO的合計量。「mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}」是指Al2 O3 的含量除以CaO的含量而得的值與B2 O3 的含量除以MgO、CaO、SrO及BaO的合計量而得的值相乘所得的值。「MgO/(CaO+SrO)」是指MgO的含量除以CaO與SrO的合計量而得的值。「(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 」是MgO、CaO、SrO及BaO的mol%合計量減Al2 O3 的mol%含量而得的值與B2 O3 的mol%含量相乘所得的值。「SiO2 ×CaO/MgO」是SiO2 的mol%含量與CaO的mol%含量相乘而得的值除以MgO的mol%含量所得的值。
另外,本發明的無鹼玻璃板較佳為楊氏模量為80 GPa以上,應變點為700℃以上,液相溫度為1350℃以下。此處,「楊氏模量」是指藉由彎曲共振法進行測定而得的值。再者,1 GPa相當於約101.9 Kgf/mm2 。「應變點」是指基於美國材料與試驗協會(American Society for Testing and Materials,ASTM)C336的方法進行測定而得的值。「液相溫度」是指將通過標準篩30目(500 μm)而殘留於50目(300 μm)中的玻璃粉末放入鉑舟(platinum boat)中,於溫度梯度爐中保持24小時後,結晶析出的溫度。
另外,本發明的無鹼玻璃板較佳為進而實質不含As2 O3 、Sb2 O3 。此處,所謂「實質不含As2 O3 」,是指As2 O3 的含量為0.05 mol%以下的情況。所謂「實質不含Sb2 O3 」,是指Sb2 O3 的含量為0.05 mol%以下的情況。
另外,本發明的無鹼玻璃板較佳為進而包含0.001 mol%~1 mol%的SnO2
另外,本發明的無鹼玻璃板較佳為應變點為710℃以上。
另外,本發明的無鹼玻璃板較佳為楊氏模量高於81 GPa。
另外,本發明的無鹼玻璃板較佳為30℃~380℃的溫度範圍內的平均熱膨脹係數為30×10-7 /℃~50×10-7 /℃。此處,「30℃~380℃的溫度範圍內的平均熱膨脹係數」可利用膨脹計進行測定。
另外,本發明的無鹼玻璃板較佳為液相黏度為104.0 dPa·s以上。此處,「液相黏度」是指液相溫度下的玻璃的黏度,可利用鉑球提拉法進行測定。
另外,本發明的無鹼玻璃板較佳為用於有機EL元件。
另外,本發明的無鹼玻璃板的特徵在於:玻璃組成中的Li2 O+Na2 O+K2 O的含量為0 mol%~0.5 mol%,楊氏模量為80 GPa以上,應變點為700℃以上,液相溫度為1350℃以下。
本發明的無鹼玻璃板的特徵在於:作為玻璃組成,以mol%計而含有64%~71%的SiO2 、12.5%~17%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、6%~11%的MgO、3%~11%的CaO、0%~6%的SrO、0%~1%的BaO、14%~19%的MgO+CaO+SrO+BaO,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.5,mol%比MgO/(CaO+SrO)為0.5~1.5,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為1~10,mol%比SiO2 ×CaO/MgO為30~90。以下示出如所述般限定各成分的含量的理由。再者,於各成分的含量的說明中,除有特別說明的情況以外,%表達表示mol%。
SiO2 為形成玻璃骨架的成分。若SiO2 的含量過少,則熱膨脹係數變高,密度增加。因此,SiO2 的下限量較佳為64%,進而佳為64.2%,進而佳為64.5%,進而佳為64.8%,進而佳為65%,進而佳為65.5%,進而佳為65.8%,進而佳為66%,進而佳為66.3%,進而佳為66.5%,最佳為66.7%。另一方面,若SiO2 的含量過多,則楊氏模量下降,進而,高溫黏度變高,熔融時所需的熱量變多,熔融成本高漲,並且有產生SiO2 的導入原料的熔融殘留而成為良率下降的原因之虞。另外,白矽石(cristobalite)等的失透結晶容易析出,液相黏度容易下降。因此,SiO2 的上限量較佳為71%,進而佳為70.8%,進而佳為70.6%,進而佳為71.4%,進而佳為70.2%,進而佳為70%,進而佳為69.8%,進而佳為69%,最佳為68%。
Al2 O3 為形成玻璃骨架的成分,且是提高楊氏模量的成分,進而是使應變點上昇的成分。若Al2 O3 的含量過少,則楊氏模量容易下降,且應變點容易下降。因此,Al2 O3 的下限量較佳為12.5%,更佳為13%,更佳為超過13%,更佳為13.1%,進而佳為13.2%,進而佳為13.3%,最佳為13.4%。另一方面,若Al2 O3 的含量過多,則富鋁紅柱石(mullite)等的失透結晶容易析出,液相黏度容易下降。因此,Al2 O3 的上限量較佳為17%,更佳為16.8%,更佳為16.6%,進而佳為16.4%,進而佳為16.2%,進而佳為16%,進而佳為15.5%,進而佳為15%,進而佳為14.5%,最佳為14%。
B2 O3 為提高熔融性或耐失透性的成分。若B2 O3 的含量過少,則熔融性或耐失透性容易下降。因此,B2 O3 的下限量較佳為0%,更佳為超過0%,更佳為0.1%,進而佳為0.2%,進而佳為0.3%,進而佳為0.4%,進而佳為0.7%,進而佳為1%,尤佳為超過1%。另一方面,若B2 O3 的含量過多,則楊氏模量或應變點容易下降。因此,B2 O3 的上限量較佳為4%,更佳為3.9%,更佳為3.8%,進而佳為3.7%,進而佳為3.6%,進而佳為3.5%,進而佳為3%,進而佳為2.5%,進而佳為2%,進而佳為1.5%,最佳為未滿1%。
Li2 O、Na2 O及K2 O為自玻璃原料不可避免地混入的成分,且其合計量為0%~0.5%,較佳為0%~0.3%,更佳為0%~0.2%,進而佳為0%~0.1%,最佳為0%~0.05%。若Li2 O、Na2 O及K2 O的合計量過多,則有導致於在熱處理步驟中成膜的半導體物質中鹼離子發生擴散的事態之虞。
MgO於鹼土類金屬氧化物中為顯著提高楊氏模量的成分。若MgO的含量過少,則熔融性或楊氏模量容易下降。因此,MgO的下限量較佳為6%,更佳為6.1%,更佳為6.3%,進而佳為6.5%,進而佳為6.6%,進而佳為6.7%,進而佳為6.8%,最佳為7%。另一方面,若MgO的含量過多,則富鋁紅柱石等的失透結晶容易析出,液相黏度容易下降。因此,MgO的上限量較佳為11%,更佳為10.5%,更佳為10%,更佳為9.5%,更佳為9%,更佳為8.9%,更佳為8.8%,進而佳為8.7%,進而佳為8.6%,進而佳為8.5%,進而佳為未滿8.5%,進而佳為8.4%,進而佳為未滿8.4%,進而佳為8.2%,最佳為未滿8.0%。
CaO為不使應變點下降而降低高溫黏性並顯著提高熔融性的成分。另外,為提高楊氏模量的成分。若CaO的含量過少,則熔融性容易下降。因此,CaO的下限量較佳為3%,更佳為超過3%,更佳為3.1%,進而佳為3.2%,進而佳為3.3%,進而佳為3.4%,進而佳為3.5%,進而佳為3.6%,進而佳為4%,最佳為4.5%。另一方面,若CaO的含量過多,則液相溫度變高。因此,CaO的上限量較佳為11%,更佳為10.5%,更佳為10%,更佳為9.9%,更佳為9.8%,進而佳為9.7%,進而佳為9.6%,進而佳為9.5%,進而佳為9.4%,進而佳為9.3%,最佳為9.2%。
SrO為提高耐失透性的成分,進而是不使應變點下降而降低高溫黏性並提高熔融性的成分。另外,為抑制液相黏度的下降的成分。若SrO的含量過少,則難以享有所述效果。因此,SrO的下限量較佳為0%,更佳為超過0%,更佳為0.1%,進而佳為超過0.1%,進而佳為0.2%,進而佳為0.3%,進而佳為超過0.3%,進而佳為0.4%,進而佳為超過0.4%,進而佳為0.6%,最佳為超過1%。另一方面,若SrO的含量過多,則熱膨脹係數與密度容易增加。因此,SrO的上限量較佳為6%,更佳為未滿6%,更佳為5.9%,進而佳為未滿5.9%,進而佳為5.8%,進而佳為未滿5.8%,進而佳為5.7%,進而佳為5%,進而佳為未滿4%,最佳為3.5%。
BaO為提高耐失透性的成分。若BaO的含量過少,則難以享有所述效果。因此,BaO的下限量較佳為0%,更佳為超過0%,更佳為0.1%,進而佳為超過0.1%,進而佳為0.2%,進而佳為0.3%,進而佳為0.4%,進而佳為超過0.4%,最佳為0.5%。另一方面,若BaO的含量過多,則楊氏模量容易下降,且密度容易增加。結果,比楊氏模量上昇而玻璃板容易撓曲。因此,BaO的上限量較佳為1%,更佳為未滿1%,更佳為0.9%,進而佳為未滿0.9%,進而佳為0.8%,進而佳為未滿0.8%,最佳為0.7%。
若MgO、CaO、SrO及BaO的合計量過少,則熔融性容易下降。因此,MgO、CaO、SrO及BaO的合計量的下限較佳為14%,更佳為15%,更佳為15.1%,更佳為15.2%,進而佳為15.3%,進而佳為15.4%,進而佳為15.7%,進而佳為16%,最佳為16.5%。另一方面,若MgO、CaO、SrO及BaO的合計量過多,則熱膨脹係數與密度容易增加。因此,MgO、CaO、SrO及BaO的合計量的上限較佳為19%,更佳為18.8%,更佳為18.6%,進而佳為18.5%,進而佳為未滿18.5%,進而佳為18.4%,最佳為未滿18.4%。
mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}是兼顧高楊氏模量與熱尺寸穩定性、生產性、尤其是利用溢流下拉法進行的成形所需的高熔融性與液相黏度的重要的成分比率。若mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}過小,則熔融性容易下降,玻璃的成本容易變高。因此,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}的下限較佳為0,更佳為超過0,更佳為0.02,進而佳為0.05,進而佳為0.08,最佳為0.1。另一方面,若mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}過大,則應變點容易下降,無法獲得高熱尺寸穩定性。另外,楊氏模量容易下降。進而,液相黏度容易下降,生產性容易下降。因此,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}的上限較佳為0.5,更佳為0.45,更佳為未滿0.45,進而佳為0.4,進而佳為0.37,進而佳為0.36,進而佳為0.35,進而佳為0.33,進而佳為0.30,進而佳為0.29,進而佳為0.25,進而佳為0.22,最佳為0.19。
若mol%比MgO/(CaO+SrO)過小,則熔融性容易下降,玻璃的成本容易變高。因此,mol%比MgO/(CaO+SrO)的下限較佳為0.5,更佳為0.52,更佳為0.55,進而佳為0.56,進而佳為0.58,最佳為0.6。若mol%比MgO/(CaO+SrO)過大,則液相黏度容易下降。因此,mol%比MgO/(CaO+SrO)的上限較佳為1.5,更佳為1.4,更佳為1.3,進而佳為1.2,進而佳為1.1,最佳為1。
mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 是為了兼顧高熱尺寸穩定性與高熔融性而重要的成分比率。若mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 過小,則熔融性容易下降,玻璃的成本容易變高。因此,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 的下限較佳為1,更佳為1.2,更佳為1.4,進而佳為1.6,進而佳為1.8,進而佳為2,進而佳為2.8,進而佳為3.2,進而佳為3.6,最佳為4。另一方面,若mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 過大,則應變點容易下降,無法獲得高熱尺寸穩定性。因此,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 的上限較佳為10,更佳為9.8,更佳為9.6,進而佳為9.4,進而佳為9.2,進而佳為9,進而佳為8.5,進而佳為8,進而佳為7.5,進而佳為7,進而佳為6.5,最佳為6。
mol%比SiO2 ×CaO/MgO是為了兼顧高楊氏模量、高熱尺寸穩定性、高生產性而重要的成分比率。進而,mol%比SiO2 ×CaO/MgO過大或過小時,液相溫度容易提高。為了提高耐失透性,而需要嚴格控制mol%比SiO2 ×CaO/MgO。若mol%比SiO2 ×CaO/MgO過小,則應變點容易下降,熱尺寸穩定性容易下降。另外,楊氏模量容易下降。因此,mol%比SiO2 ×CaO/MgO的下限較佳為30,更佳為33,更佳為35,進而佳為38,進而佳為40,進而佳為43,進而佳為45,進而佳為47,進而佳為48,進而佳為50,進而佳為52,進而佳為53,進而佳為55,最佳為57。另一方面,若mol%比SiO2 ×CaO/MgO過大,則熔融性容易變低,玻璃的成本容易變高。因此,mol%比SiO2 ×CaO/MgO的上限較佳為90,更佳為87,更佳為85,進而佳為83,進而佳為81,進而佳為80,進而佳為79,進而佳為77,進而佳為75,進而佳為73,最佳為71。
根據以上所述,為了使各成分及成分比率所具有的效果最佳化,更佳為:作為玻璃組成,以mol%計而例如含有66.7%~70%的SiO2 、超過13%~16%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、7%~11%的MgO、3%~11%的CaO、超過0%~6%的SrO、0%~1%的BaO、15%~未滿18.4%的MgO+CaO+SrO+BaO,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.3,mol%比MgO/(CaO+SrO)為0.6~1,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為2~9,mol%比SiO2 ×CaO/MgO為57~83,或者含有66.7%~70%的SiO2 、13%~16%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、6.8%~11%的MgO、3%~11%的CaO、0%~6%的SrO、0%~1%的BaO、15%~18.4%的MgO+CaO+SrO+BaO,mol%比(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.3,mol%比MgO/(CaO+SrO)為0.6~1,mol%比(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為2~9,mol%比SiO2 ×CaO/MgO為57~83。
除所述成分以外,例如亦可添加以下成分作為任意成分。再者,就確實享有本發明的效果的觀點而言,所述成分以外的其他成分的含量以合計量計較佳為10%以下、尤其是5%以下。
P2 O5 為提高應變點的成分,並且是可顯著抑制鈣長石(anorthite)等鹼土類鋁矽酸鹽系的失透結晶的析出的成分。但是,若大量含有P2 O5 ,則玻璃容易分相。P2 O5 的含量較佳為0%~2.5%,更佳為0.0005%~1.5%,進而佳為0.001%~0.5%,特佳為0.005%~0.3%。
TiO2 為降低高溫黏性並提高熔融性的成分,並且是抑制曝曬(solarization)的成分,但若大量含有TiO2 ,則玻璃著色,透過率容易下降。TiO2 的含量較佳為0%~2.5%,更佳為0.0005%~1%,進而佳為0.001%~0.5%,特佳為0.005%~0.1%。
ZnO為提高熔融性的成分。但是,若大量含有ZnO,則玻璃容易失透,且應變點容易下降。ZnO的含量較佳為0%~6%、0%~5%、0%~4%、尤其是0%~未滿3%。
Y2 O3 、Nb2 O5 、La2 O3 具有提高應變點、楊氏模量等的作用。該些成分的合計量及個別含量較佳為0%~5%,更佳為0%~1%,進而佳為0%~0.5%,尤佳為0%~未滿0.5%。若Y2 O3 、Nb2 O5 、La2 O3 的合計量及個別含量過多,則密度或原料成本容易增加。
SnO2 為於高溫區域具有良好的澄清作用的成分,並且是提高應變點的成分,且是使高溫黏性下降的成分。SnO2 的含量較佳為0%~1%、0.001%~1%、0.01%~0.5%、尤其是0.05%~0.3%。若SnO2 的含量過多,則SnO2 的失透結晶容易析出。再者,若SnO2 的含量少於0.001%,則難以享有所述效果。
如上所述,SnO2 適合作為澄清劑,但只要不損及玻璃特性,則可代替SnO2 或與SnO2 一起添加F、SO3 、C或Al、Si等金屬粉末分別至5%為止(較佳為至1%為止、尤其是至0.5%為止)作為澄清劑。另外,亦可添加CeO2 等至5%為止(較佳為至1%為止、尤其是至0.5%為止)作為澄清劑。
As2 O3 、Sb2 O3 作為澄清劑亦有效。但是,As2 O3 、Sb2 O3 為增大環境負荷的成分。另外,As2 O3 為使耐曝曬性下降的成分。因此,本發明的無鹼玻璃板較佳為實質不含該些成分。
Cl為促進玻璃配合料的初期熔融的成分。另外,若添加Cl,則可促進澄清劑的作用。作為該些的結果,可使熔融成本低廉化並且實現玻璃製造窯的長壽命化。但是,若Cl的含量過多,則應變點容易下降。因此,Cl的含量較佳為0%~3%,更佳為0.0005%~1%,特佳為0.001%~0.5%。再者,作為Cl的導入原料,可使用氯化鍶等鹼土類金屬氧化物的氯化物或氯化鋁等原料。
Fe2 O3 為自玻璃原料不可避免地混入的成分,且是使電阻率下降的成分。Fe2 O3 的含量較佳為0質量ppm~300質量ppm、80質量ppm~250質量ppm、尤其是100質量ppm~200質量ppm。若Fe2 O3 的含量過少,則原料成本容易高漲。另一方面,若Fe2 O3 的含量過多,則熔融玻璃的電阻率上昇而難以進行電熔融。
本發明的無鹼玻璃板較佳為具有以下特性。
30℃~380℃的溫度範圍內的平均熱膨脹係數較佳為30×10-7 /℃~50×10-7 /℃、32×10-7 /℃~48×10-7 /℃、33×10-7 /℃~45×10-7 /℃、34×10-7 /℃~44×10-7 /℃、尤其是35×10-7 /℃~43×10-7 /℃。若如此,則容易與TFT中所使用的Si的熱膨脹係數匹配。
楊氏模量較佳為80 GPa以上、超過80 GPa、81 GPa以上、81.5 GPa以上、82 GPa以上、82.5 GPa以上、83 GPa以上、83.5 GPa以上、84 GPa以上、84.5 GPa以上、尤其是超過85 GPa~120 GPa。若楊氏模量過低,則容易產生因玻璃板的撓曲所引起的不良情況。
應變點較佳為700℃以上、705℃以上、710℃以上、715℃以上、720℃以上、725℃以上、730℃以上、732℃以上、735℃以上、737℃以上、尤其是740℃~800℃。若如此,則於LTPS製程中,可抑制玻璃板的熱收縮。
液相溫度較佳為1350℃以下、未滿1350℃、1300℃以下、1290℃以下、1285℃以下、1280℃以下、1275℃以下、1270℃以下、尤其是1260℃~1200℃。若如此,則容易防止在玻璃製造時產生失透結晶而生產性下降的事態。進而,由於容易利用溢流下拉法來成形,因此容易提高玻璃板的表面品質,並且可使玻璃板的製造成本低廉化。再者,液相溫度為耐失透性的指標,液相溫度越低,耐失透性越優異。
液相黏度較佳為104.0 dPa·s以上、104.1 dPa·s以上、104.2 dPa·s以上、尤其是104.3 dPa·s~107.0 dPa·s。若如此,則在成形時,不易產生失透,因此容易利用溢流下拉法來成形,結果,可提高玻璃板的表面品質,且可使玻璃板的製造成本低廉化。再者,液相黏度為耐失透性與成形性的指標,液相黏度越高,耐失透性與成形性越提高。
高溫黏度102.5 dPa·s下的溫度較佳為1650℃以下、1630℃以下、1610℃以下、尤其是1400℃~1600℃。若高溫黏度102.5 dPa·s下的溫度過高,則難以使玻璃配合料熔解,玻璃板的製造成本高漲。再者,高溫黏度102.5 dPa·s下的溫度相當於熔融溫度,該溫度越低,熔融性越提高。
β-OH值為表示玻璃中的水分量的指標,若使β-OH值下降,則可提高應變點。另外,即便於玻璃組成相同的情況下,β-OH值小者的應變點以下的溫度下的熱收縮率亦變小。β-OH值較佳為0.35/mm以下、0.30/mm以下、0.28/mm以下、0.25/mm以下、尤其是0.20/mm以下。再者,若β-OH值過小,則熔融性容易下降。因此,β-OH值較佳為0.01/mm以上、尤其是0.03/mm以上。
作為使β-OH值下降的方法,可列舉以下方法。(1)選擇含水量低的原料。(2)向玻璃中添加使β-OH值下降的成分(Cl、SO3 等)。(3)使爐內環境中的水分量下降。(4)於熔融玻璃中進行N2 起泡。(5)採用小型熔融爐。(6)增多熔融玻璃的流量。(7)採用電熔融法。
此處,「β-OH值」是指使用傅立葉轉換紅外光譜法(Fourier transform infrared spectroscopy,FT-IR)測定玻璃的透過率,並使用下述數式1而求出的值。
[數式1] β-OH值=(1/X)log(T1 /T2 ) X:板厚(mm) T1 :參照波長3846 cm-1 下的透過率(%) T2 :羥基吸收波長3600 cm-1 附近的最小透過率(%)
本發明的無鹼玻璃板較佳為利用溢流下拉法成形而成。溢流下拉法是使熔融玻璃自耐熱性的槽狀結構物的兩側溢出,且使溢出的熔融玻璃於槽狀結構物的下端匯流,並且向下方延伸成形而製造玻璃板的方法。溢流下拉法中,應成為玻璃板的表面的面不接觸槽狀耐火材料,而以自由表面的狀態來成形。因此,可廉價地製造未研磨且表面品質良好的玻璃板,薄型化亦容易。
除溢流下拉法以外,例如亦可利用下拉(down draw)法(流孔下引(slot down)法等)、浮動(float)法等來成形玻璃板。
於本發明的無鹼玻璃板中,板厚並無特別限定,較佳為未滿0.7 mm、0.6 mm以下、未滿0.6 mm、尤其是0.05 mm~0.5 mm。板厚越薄,越可實現有機EL元件的輕量化。板厚可利用玻璃製造時的流量或拉板速度等來調整。
本發明的無鹼玻璃板較佳為用於有機EL元件、尤其是有機EL電視用顯示器面板的基板、有機EL顯示器面板的製造用載體。尤其是有機EL電視的用途中,於玻璃板上製作多個的元件後,按照每個元件進行分割切斷,從而實現降低成本(cost down)(所謂的多倒角)。本發明的無鹼玻璃板的液相溫度低且液相黏度高,因此容易成形大型玻璃板,可確實地滿足此種要求。 [實施例]
以下,基於實施例對本發明進行說明。再者,以下實施例僅為例示。本發明並不受以下實施例任何限定。
表1~表3示出本發明的實施例(試樣No.1~試樣No.32)。
[表1]
No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11
玻璃組成 (mol%) SiO2 65.9 65.9 65.9 65.9 65.9 65.9 66.9 66.9 68.9 68.9 68.9
Al2 O3 15.0 15.0 15.0 15.0 14.0 14.0 14.0 14.0 13.5 13.5 13.5
B2 O3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0
Li2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na2 O 0.02 0.01 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.01 0.01
K2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 7.0 7.0 8.0 8.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0
CaO 6.0 4.0 6.0 4.0 7.0 6.0 6.0 7.0 9.0 7.0 5.0
SrO 3.0 5.0 3.0 5.0 3.0 3.0 3.0 3.0 0.5 2.5 4.5
BaO 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Li2 O+Na2 O+K2 O 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
MgO+CaO+SrO+BaO 17.0 17.0 17.0 17.0 18.0 18.0 17.0 18.0 16.5 16.5 16.5
(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)} 0.29 0.44 0.29 0.44 0.22 0.26 0.27 0.11 0.09 0.12 0.16
MgO/(CaO+SrO) 0.78 0.78 0.89 0.89 0.70 0.89 0.78 0.70 0.74 0.74 0.74
(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 4.00 4.00 4.00 4.00 8.00 8.00 6.00 4.00 3.00 3.00 3.00
SiO2 ×CaO/MgO 56.5 37.7 49.4 33.0 65.9 49.4 57.4 66.9 88.6 68.9 49.2
CTE[×10-7 /℃] 37.4 38.6 37.1 37.7 39.6 38.9 38.1 39.6 36 36.6 37.3
密度[g/cm3 ] 2.59 2.62 2.56 2.59 2.59 2.59 2.58 2.60 2.51 2.54 2.57
楊氏模量[GPa] 86 85 87 87 86 86 85 86 87 86 86
Ps[℃] 741 741 741 742 733 733 737 744 753 750 750
Ta[℃] 796 798 796 798 788 788 793 800 808 806 807
Ts[℃] 1014 1017 1011 1014 1007 1006 1015 1019 1029 1030 1032
104 dPa·s[℃] 1302 1306 1296 1305 1294 1295 1306 1309 1325 1331 1338
103 dPa·s[℃] 1448 1453 1442 1452 1442 1444 1456 1458 1479 1488 1495
102.5 dPa·s[℃] 1543 1548 1536 1549 1538 1540 1554 1556 1577 1586 1597
TL[℃] 1265 1269 1295 1294 1243 1245 1222 1266 1282 1263 1259
Log10 ηTL 4.3 4.3 4.0 4.1 4.5 4.5 4.8 4.4 4.4 4.6 4.7
[表2]
No.12 No.13 No.14 No.15 No.16 No.17 No.18 No.19 No.20 No.21 No.22
玻璃組成 (mol%) SiO2 67.9 67.9 67.9 67.3 67.6 67.6 67.6 67.6 67.6 67.3 67.6
Al2 O3 13.5 13.5 13.5 13.8 13.8 13.5 13.8 13.5 13.5 13.5 13.5
B2 O3 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Li2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na2 O 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02
K2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 8.0 8.0 8.0 7.6 7.6 7.6 7.6 7.6 7.9 7.9 7.6
CaO 9.0 7.0 5.0 6.5 6.5 6.5 6.5 7.0 7.0 7.0 6.8
SrO 0.5 2.5 4.5 2.8 2.8 3.0 3.0 2.8 2.5 2.5 2.8
BaO 0.0 0.0 0.0 0.5 0.3 0.3 0.0 0.0 0.0 0.3 0.3
SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Li2 O+Na2 O+K2 O 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.04 0.02 0.02 0.02
MgO+CaO+SrO+BaO 17.5 17.5 17.5 17.4 17.1 17.4 17.1 17.4 17.4 17.6 17.4
(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)} 0.09 0.11 0.15 0.18 0.19 0.18 0.19 0.17 0.17 0.16 0.17
MgO/(CaO+SrO) 0.84 0.84 0.84 0.82 0.82 0.80 0.80 0.78 0.83 0.83 0.80
(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 4.00 4.00 4.00 5.40 5.03 5.78 5.03 5.78 5.78 6.15 5.78
SiO2 ×CaO/MgO 76.4 59.4 42.4 57.6 57.8 57.8 57.8 62.2 60.2 60.0 60.0
CTE[×10-7 /℃] 37.2 37.6 38.2 37.6 37 37.7 37.1 37.4 37.2 37.6 37.5
密度[g/cm3 ] 2.52 2.55 2.58 2.56 2.55 2.56 2.55 2.55 2.54 2.55 2.55
楊氏模量[GPa] 88 87 87 86 86 86 87 87 87 87 86
Ps[℃] 747 747 747 739 741 738 741 738 739 738 738
Ta[℃] 801 802 802 794 796 794 796 793 794 793 794
Ts[℃] 1018 1021 1023 1015 1017 1015 1017 1014 1015 1013 1016
104 dPa·s[℃] 1310 1313 1316 1311 1314 1313 1312 1312 1310 1308 1312
103 dPa·s[℃] 1461 1464 1469 1462 1465 1464 1462 1462 1458 1455 1460
102.5 dPa·s[℃] 1559 1562 1568 1557 1561 1560 1558 1557 1553 1549 1555
TL[℃] 1255 1243 1273 1240 1255 1240 1246 1239 1247 1246 1228
Log10 ηTL 4.5 4.6 4.4 4.6 4.5 4.7 4.6 4.7 4.6 4.6 4.8
[表3]
No.23 No.24 No.25 No.26 No.27 No.28 No.29 No.30 No.31 No.32
玻璃組成 (mol%) SiO2 68.0 67.9 68.5 68.5 67.9 67.9 68.0 68.2 69.9 68.9
Al2 O3 13.5 13.5 13.5 13.5 13.5 13.4 13.5 13.3 13.0 13.0
B2 O3 1.0 1.0 1.0 1.5 1.0 1.1 1.5 1.5 2.0 3.0
Li2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na2 O 0.02 0.01 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.01
K2 O 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
MgO 8.0 8.1 7.5 7.5 8.0 8.0 7.5 7.5 7.0 7.0
CaO 9.0 9.0 9.0 8.5 9.1 9.1 9.0 9.0 8.0 8.0
SrO 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.0
BaO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Li2 O+Na2 O+K2 O 0.02 0.01 0.02 0.01 0.04 0.02 0.02 0.02 0.03 0.01
MgO+CaO+SrO+BaO 17.4 17.5 16.9 16.4 17.5 17.5 16.9 16.9 15.1 15.1
(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)} 0.09 0.09 0.09 0.15 0.08 0.09 0.13 0.13 0.22 0.32
MgO/(CaO+SrO) 0.85 0.86 0.80 0.84 0.84 0.84 0.80 0.80 0.88 0.88
(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 3.90 4.00 3.40 4.35 4.00 4.51 5.10 5.40 4.18 6.27
SiO2 ×CaO/MgO 76.5 75.5 82.2 77.6 77.2 77.2 81.6 81.9 79.9 78.8
CTE[×10-7 /℃] 36.5 36.6 36.0 34.6 36.8 36.8 36.4 36.3 33.6 33.8
密度[g/cm3 ] 2.51 2.52 2.51 2.50 2.52 2.51 2.51 2.50 2.47 2.47
楊氏模量[GPa] 88 88 87 87 88 88 87 87 86 85
Ps[℃] 747 747 749 746 747 745 743 743 744 734
Ta[℃] 802 802 805 801 802 800 798 798 800 790
Ts[℃] 1019 1018 1024 1021 1018 1017 1017 1017 1027 1017
104 dPa·s[℃] 1311 1311 1320 1320 1311 1310 1313 1316 1338 1322
103 dPa·s[℃] 1463 1463 1472 1474 1463 1461 1465 1469 1494 1476
102.5 dPa·s[℃] 1560 1560 1569 1571 1559 1557 1561 1566 1595 1574
TL[℃] 1261 1265 1263 1257 1253 1255 1247 1241 1260 1245
Log10 ηTL 4.4 4.4 4.5 4.6 4.5 4.5 4.6 4.7 4.7 4.7
首先,將以成為表中的玻璃組成的方式調合玻璃原料而成的玻璃配合料放入鉑坩堝中,於1600℃~1650℃下熔融24小時。在玻璃配合料熔解時,使用鉑攪拌棒加以攪拌,進行均質化。繼而,使熔融玻璃流出至碳板上而成形為板狀後,於緩冷點附近的溫度下緩冷30分鐘。針對所獲得的各試樣,對30℃~380℃的溫度範圍內的平均熱膨脹係數CTE、密度、楊氏模量、應變點Ps、緩冷點Ta、軟化點Ts、高溫黏度104 dPa·s下的溫度、高溫黏度103 dPa·s下的溫度、高溫黏度102.5 dPa·s下的溫度、液相溫度TL及液相溫度TL下的黏度Log10 ηTL進行評價。
30℃~380℃的溫度範圍內的平均熱膨脹係數CTE是利用膨脹計進行測定而得的值。
密度是藉由周知的阿基米德(Archimedes)法進行測定而得的值。
楊氏模量是指利用周知的共振法進行測定而得的值。
應變點Ps、緩冷點Ta、軟化點Ts是基於ASTM C336及C338的方法進行測定而得的值。
高溫黏度104 dPa·s、高溫黏度103 dPa·s、高溫黏度102.5 dPa·s下的溫度是利用鉑球提拉法進行測定而得的值。
液相溫度TL是將通過標準篩30目(500 μm)而殘留於50目(300 μm)中的玻璃粉末放入鉑舟中,於溫度梯度爐中保持24小時後,結晶析出的溫度。
液相黏度log10 ηTL是利用鉑球提拉法來測定液相溫度TL下的玻璃的黏度而得的值。
根據表1而明確,試樣No.1~試樣No.32的玻璃組成被限制為規定範圍內,因此楊氏模量為85 GPa以上,應變點為733℃以上,液相溫度為1295℃以下,液相黏度為104.0 dPa·s以上。因此,試樣No.1~試樣No.32的生產性優異,並且應變點與楊氏模量充分高,因此適合於有機EL元件的基板。 [產業上的可利用性]
本發明的無鹼玻璃板適合作為有機EL元件、尤其是有機EL電視用顯示器面板的基板、有機EL顯示器面板的製造用載體,除此以外,亦適合於液晶顯示器等平板顯示器基板;磁性記錄媒體用玻璃基板;電荷耦合元件(Charge Coupled Device,CCD)、等倍接近式固體攝像元件(Contact Image Sensor,CIS)等的影像感測器用的蓋玻璃;太陽電池用的基板及蓋玻璃;有機EL照明用基板等。

Claims (10)

  1. 一種無鹼玻璃板,其特徵在於:作為玻璃組成,以mol%計而含有64%~71%的SiO2 、12.5%~17%的Al2 O3 、0%~4%的B2 O3 、0%~0.5%的Li2 O+Na2 O+K2 O、6%~11%的MgO、3%~11%的CaO、0%~6%的SrO、0%~1%的BaO、14%~19%的MgO+CaO+SrO+BaO,以mol%計而(Al2 O3 /CaO)×{B2 O3 /(MgO+CaO+SrO+BaO)}為0~0.5,以mol%計而MgO/(CaO+SrO)為0.5~1.5,以mol%計而(MgO+CaO+SrO+BaO-Al2 O3 )×B2 O3 為1~10,以mol%計而SiO2 ×CaO/MgO為30~90。
  2. 如請求項1所述的無鹼玻璃板,其中,楊氏模量為80 GPa以上,應變點為700℃以上,液相溫度為1350℃以下。
  3. 如請求項1或請求項2所述的無鹼玻璃板,其進而實質不含As2 O3 、Sb2 O3
  4. 如請求項1至請求項3中任一項所述的無鹼玻璃板,其進而包含0.001 mol%~1 mol%的SnO2
  5. 如請求項1至請求項4中任一項所述的無鹼玻璃板,其中,應變點為710℃以上。
  6. 如請求項1至請求項5中任一項所述的無鹼玻璃板,其中,楊氏模量高於81 GPa。
  7. 如請求項1至請求項6中任一項所述的無鹼玻璃板,其中,30℃~380℃的溫度範圍內的平均熱膨脹係數為30×10-7 /℃~50×10-7 /℃。
  8. 如請求項1至請求項7中任一項所述的無鹼玻璃板,其中,液相黏度為104.0 dPa·s以上。
  9. 如請求項1至請求項8中任一項所述的無鹼玻璃板,其用於有機電致發光元件。
  10. 一種無鹼玻璃板,其特徵在於:玻璃組成中的Li2 O+Na2 O+K2 O的含量為0 mol%~0.5 mol%,楊氏模量為80 GPa以上,應變點為700℃以上,液相溫度為1350℃以下。
TW110122501A 2020-06-23 2021-06-21 無鹼玻璃板 TW202210433A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020107591 2020-06-23
JP2020-107591 2020-06-23
JP2020166643 2020-10-01
JP2020-166643 2020-10-01
JP2020206786 2020-12-14
JP2020-206786 2020-12-14
JP2021-019753 2021-02-10
JP2021019753 2021-02-10

Publications (1)

Publication Number Publication Date
TW202210433A true TW202210433A (zh) 2022-03-16

Family

ID=79281144

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122501A TW202210433A (zh) 2020-06-23 2021-06-21 無鹼玻璃板

Country Status (6)

Country Link
US (1) US20230212060A1 (zh)
JP (1) JPWO2021261445A1 (zh)
KR (1) KR20230028715A (zh)
CN (1) CN115397784A (zh)
TW (1) TW202210433A (zh)
WO (1) WO2021261445A1 (zh)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471134B (zh) * 2009-07-02 2015-04-15 旭硝子株式会社 无碱玻璃及其制造方法
JP5874316B2 (ja) 2010-10-27 2016-03-02 日本電気硝子株式会社 無アルカリガラス
JP5849965B2 (ja) * 2010-12-07 2016-02-03 旭硝子株式会社 無アルカリガラスおよび無アルカリガラスの製造方法
WO2012090783A1 (ja) * 2010-12-27 2012-07-05 旭硝子株式会社 無アルカリガラスおよび無アルカリガラスの製造方法
JP5831838B2 (ja) * 2011-03-08 2015-12-09 日本電気硝子株式会社 無アルカリガラス
KR101833805B1 (ko) * 2011-12-29 2018-03-02 니폰 덴키 가라스 가부시키가이샤 무알칼리 유리
JP5702888B2 (ja) * 2012-04-27 2015-04-15 旭硝子株式会社 無アルカリガラスおよびその製造方法
WO2013183626A1 (ja) * 2012-06-05 2013-12-12 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP6256744B2 (ja) * 2013-10-17 2018-01-10 日本電気硝子株式会社 無アルカリガラス板
JP2017030975A (ja) * 2013-12-04 2017-02-09 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP6578774B2 (ja) * 2014-07-18 2019-09-25 Agc株式会社 無アルカリガラス
JP6812796B2 (ja) * 2014-10-23 2021-01-13 Agc株式会社 無アルカリガラス
JP6983377B2 (ja) * 2016-12-19 2021-12-17 日本電気硝子株式会社 ガラス
CN113800764A (zh) * 2016-12-20 2021-12-17 日本电气硝子株式会社 玻璃
CN115259661A (zh) * 2016-12-28 2022-11-01 日本电气硝子株式会社 玻璃
WO2020080163A1 (ja) * 2018-10-15 2020-04-23 日本電気硝子株式会社 無アルカリガラス板

Also Published As

Publication number Publication date
US20230212060A1 (en) 2023-07-06
JPWO2021261445A1 (zh) 2021-12-30
KR20230028715A (ko) 2023-03-02
WO2021261445A1 (ja) 2021-12-30
CN115397784A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
JP6202353B2 (ja) 無アルカリガラス
US8785336B2 (en) Alkali-free glass
US9061938B2 (en) Alkali-free glass
JP5831838B2 (ja) 無アルカリガラス
JP5757451B2 (ja) 無アルカリガラス
JP2012106919A (ja) 無アルカリガラス
TW202235393A (zh) 玻璃
JPWO2019177070A1 (ja) ガラス
TW202330419A (zh) 無鹼玻璃板
JP7389400B2 (ja) 無アルカリガラス板
JP7226508B2 (ja) ガラス基板
TW202210433A (zh) 無鹼玻璃板
TW202210432A (zh) 無鹼玻璃板
CN117263517A (zh) 无碱玻璃板
TW201841842A (zh) 玻璃基板
CN110494402B (zh) 玻璃基板
TW202311189A (zh) 無鹼玻璃板
TW202311188A (zh) 無鹼玻璃板
WO2020121966A1 (ja) 無アルカリガラス