TW202141786A - 包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法 - Google Patents

包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法 Download PDF

Info

Publication number
TW202141786A
TW202141786A TW110101405A TW110101405A TW202141786A TW 202141786 A TW202141786 A TW 202141786A TW 110101405 A TW110101405 A TW 110101405A TW 110101405 A TW110101405 A TW 110101405A TW 202141786 A TW202141786 A TW 202141786A
Authority
TW
Taiwan
Prior art keywords
base
superlattice
semiconductor
bipolar junction
junction transistor
Prior art date
Application number
TW110101405A
Other languages
English (en)
Other versions
TWI811612B (zh
Inventor
理查 柏頓
Original Assignee
美商安托梅拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安托梅拉公司 filed Critical 美商安托梅拉公司
Publication of TW202141786A publication Critical patent/TW202141786A/zh
Application granted granted Critical
Publication of TWI811612B publication Critical patent/TWI811612B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

一雙極接面電晶體(BJT),其可包含當中界定出一集極區之底材。該底材上之第一超晶格可包含複數個堆疊之第一層群組,各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰第一基底半導體部份之一晶格內之至少一第一非半導體單層。此外,該第一超晶格上可具有一基極,該基極上可具有第二超晶格,該第二超晶格包括複數個堆疊之第二層群組,各第二層群組包含第二複數個堆疊之基底半導體單層,其界定出一第二基底半導體部份,以及被拘束在相鄰的第二基底半導體部份之一晶格內之至少一第二非半導體單層。該第二超晶格上可具有一射極。本發明亦提供與前述雙極接面電晶體相關之方法。

Description

包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法
本發明一般而言與半導體元件有關,詳細而言,本發明涉及雙極接面電晶體(bipolar junction transistor, BJT)及其相關方法。
利用諸如增強電荷載子之遷移率(mobility)增進半導體元件效能之相關結構及技術,已多有人提出。例如,Currie等人之美國專利申請案第2003/0057416號揭示了矽、矽-鍺及鬆弛矽之應變材料層,其亦包含原本會在其他方面導致效能劣退的無雜質區(impurity-free zones)。此等應變材料層在上部矽層中所造成的雙軸向應變(biaxial strain)會改變載子的遷移率,從而得以製作較高速與/或較低功率的元件。Fitzgerald等人的美國專利申請公告案第2003/0034529號則揭示了同樣以類似的應變矽技術為基礎的CMOS反向器。
授予Takagi的美國專利第6,472,685 B2號揭示了一半導體元件,其包含夾在矽層間的一層矽與碳層,以使其第二矽層的導帶及價帶承受伸張應變(tensile strain)。這樣,具有較小有效質量(effective mass)且已由施加於閘極上的電場所誘發的電子,便會被侷限在其第二矽層內,因此,即可認定其N型通道MOSFET具有較高的遷移率。
授予Ishibashi等人的美國專利第4,937,204號揭示了一超晶格,其中包含一複數層,該複數層少於八個單層(monolayer)且含有一部份(fractional)或雙元(binary)半導體層或一雙元化合物半導體層,該複數層係交替地以磊晶成長方式生長而成。其中的主電流方向係垂直於該超晶格之各層。
授予Wang等人的美國專利第5,357,119號揭示了一矽-鍺短週期超晶格,其經由減少超晶格中的合金散射(alloy scattering)而達成較高遷移率。依據類似的原理,授予Candelaria的美國專利第5,683,934號揭示了具較佳遷移率之MOSFET,其包含一通道層,該通道層包括矽與一第二材料之一合金,該第二材料以使該通道層處於伸張應力下的百分比替代性地存在於矽晶格中。
授予Tsu的美國專利第5,216,262號揭示了一量子井結構,其包括兩個阻障區(barrier region)及夾於其間的一磊晶生長半導體薄層。每一阻障區各係由厚度範圍大致在二至六個交替之SiO2/Si單層所構成。阻障區間則另夾有厚得多之一矽區段。
在2000年9月6日線上出版的應用物理及材料科學及製程(Applied Physics and Materials Science & Processing) pp. 391 – 402中,Tsu於一篇題為「矽質奈米結構元件中之現象」(Phenomena in silicon nanostructure devices)的文章中揭示了矽及氧之半導體-原子超晶格(semiconductor-atomic superlattice, SAS)。此矽/氧超晶格結構被揭露為對矽量子及發光元件有用。其中特別揭示如何製作並測試一綠色電輝光二極體(electroluminescence diode)結構。該二極體結構中的電流流動方向是垂直的,亦即,垂直於SAS之層。該文所揭示的SAS可包含由諸如氧原子等被吸附物種(adsorbed species) 及CO分子所分開的半導體層。在被吸附之氧單層以外所生長的矽,被描述為具有相當低缺陷密度之磊晶層。其中的一種SAS結構包含1.1 nm厚之一矽質部份,其約為八個原子層的矽,而另一結構的矽質部份厚度則有此厚度的兩倍。在物理評論通訊(Physics Review Letters),Vol. 89, No. 7 (2002年8月12日)中,Luo等人所發表的一篇題為「直接間隙發光矽之化學設計」(Chemical Design of Direct-Gap Light-Emitting Silicon)的文章,更進一步地討論了Tsu的發光SAS結構。
授予Wang等人之美國專利第7,105,895號揭示了薄的矽與氧、碳、氮、磷、銻、砷或氫的一阻障建構區塊,其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/阻障層容許低缺陷磊晶矽挨著絕緣層而沉積。
已公開之Mears等人的英國專利申請案第2,347,520號揭示,非週期性光子能帶間隙 (aperiodic photonic band-gap, APBG)結構可應用於電子能帶間隙工程(electronic bandgap engineering)中。詳細而言,該申請案揭示,材料參數(material parameters),例如能帶最小值的位置、有效質量等等,皆可加以調節,以獲致具有所要能帶結構特性之新非週期性材料。其他參數,諸如導電性、熱傳導性及介電係數(dielectric permittivity)或導磁係數(magnetic permeability),則被揭露亦有可能被設計於材料之中。
除此之外,授予Wang等人的美國專利第6,376,337號揭示一種用於製作半導體元件絕緣或阻障層之方法,其包括在矽底材上沉積一層矽及至少一另外元素,使該沉積層實質上沒有缺陷,如此實質上無缺陷的磊晶矽便能沉積於該沉積層上。作為替代方案,一或多個元素構成之一單層,較佳者為包括氧元素,在矽底材上被吸收。夾在磊晶矽之間的複數絕緣層,形成阻障複合體。
儘管已有上述方法存在,但為了實現半導體元件效能的改進,進一步強化先進半導體材料及處理技術的使用,是吾人所期望的。
一種雙極接面電晶體(bipolar junction transistor,BJT),其可包含一底材,當中界定出一集極區(collector);該底材上可具有一第一超晶格,該第一超晶格包括複數個堆疊之第一層群組,各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰的第一基底半導體部份之一晶格內之至少一第一非半導體單層。此外,該第一超晶格上可具有一基極(base),該基極上可具有一第二超晶格,該第二超晶格包括複數個堆疊之第二層群組,各第二層群組包含第二複數個堆疊之基底半導體單層,其界定出一第二基底半導體部份,以及被拘束在相鄰的第二基底半導體部份之一晶格內之至少一第二非半導體單層。該第二超晶格上可具有一射極(emitter)。
在一示例性組構中,該底材可進一步界定出一子集極(sub-collector)區在該集極區下方;且該雙極接面電晶體在該底材中可更包括一第三超晶格在該子集極區與該集極區之間。詳細而言,該第三超晶格可包括複數個堆疊之第三層群組,各第三層群組包含第三複數個堆疊之基底半導體單層,其界定出一第三基底半導體部份,以及被拘束在相鄰的第三基底半導體部份之一晶格內之至少一第三非半導體單層。
該雙極接面電晶體可更包括在該射極上表面上之一射極接點,以及在該基極的至少一部分上之一基極接點。該雙極接面電晶體可更包括該底材中隔開的隔離區。該射極及該集極可具有第一導電類型,該基極可具有不同於所述第一導電類型之第二導電類型。
在一示例性實施例中,該第一超晶格及該第二超晶格各自的基底半導體單層可包含矽單層。根據另一示例,該第一超晶格及該第二超晶格各自的基底半導體單層可包含鍺。同樣作為示例,該第一超晶格及該第二超晶格各自的至少一非半導體單層可包含氧、氮、氟、碳和碳氧當中至少一者。
一種用於製作雙極接面電晶體之方法,其可包含在一底材上形成一第一超晶格,該底材當中界定出一集極區。該第一超晶格可包含複數個堆疊之第一層群組,其中各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰第一基底半導體部份之一晶格內之至少一第一非半導體單層。本發明的方法可更包括在該第一超晶格上形成一基極,並在該基極上形成一第二超晶格,該第二超晶格包括第二複數個堆疊之第二層群組,各第二層群組包含複數個堆疊之基底半導體單層,其界定出一第二基底半導體部份,以及被拘束在相鄰的第二基底半導體部份之一晶格內之至少一第二非半導體單層。本發明的方法亦可包括在該第二超晶格上形成一射極。
在一示例性實施例中,該底材可進一步界定出一子集極區在該集極區下方;且本發明的方法可更包括在該底材中形成一第三超晶格在該子集極區與該集極區之間。詳細而言,該第三超晶格可包括複數個堆疊之第三層群組,各第三層群組包含第三複數個堆疊之基底半導體單層,其界定出一第三基底半導體部份,以及被拘束在相鄰的第三基底半導體部份之一晶格內之至少一第三非半導體單層。
本發明的方法可更包括在該射極的上表面上形成一射極接點,以及在該基極的至少一部分上形成一基極接點。本發明的方法亦可包括在該底材中形成隔開的隔離區。此外,該射極及該集極可具有第一導電類型,該基極可具有不同於所述第一導電類型之第二導電類型。
在一示例性實施例中,該第一超晶格及該第二超晶格各自的基底半導體單層可包含矽單層。根據另一示例,該第一超晶格及該第二超晶格各自的基底半導體單層可包含鍺。同樣作為示例,該第一超晶格及該第二超晶格各自的至少一非半導體單層可包含氧、氮、氟、碳和碳氧當中至少一者。
茲參考說明書所附圖式詳細說明示例性實施例,圖式中所示者為示例性實施例。不過,實施例可以許多不同形式實施,且不應解釋為僅限於本說明書所提供之特定示例。相反的,這些實施例之提供,僅是為了使本發明所揭示之發明內容更為完整詳盡。在本說明書及圖式各處,相同圖式符號係指相同元件,而撇號(‘)及雙撇號(‘‘)則用以標示不同實施方式中之類似元件。
一般而言,本發明係關於內部具有強化半導體超晶格之雙極接面電晶體,以提供摻雜物阻擋及效能增進的特性。在本說明書中,強化半導體超晶格亦可稱為「MST」層或「MST技術」。
詳言之,MST技術涉及進階的半導體材料,例如下文將進一步說明之超晶格25。申請人之理論認為(但申請人並不欲受此理論所束縛),本說明書所述之超晶格結構可減少電荷載子之有效質量,並由此而帶來較高之電荷載子遷移率。有效質量之各種定義在本發明所屬技術領域之文獻中已有說明。為衡量有效質量之改善程度,申請人分別為電子及電洞使用了「導電性反有效質量張量」(conductivity reciprocal effective mass tensor)
Figure 02_image001
Figure 02_image003
Figure 02_image005
為電子之定義,且:
Figure 02_image007
為電洞之定義,其中f為費米-狄拉克分佈(Fermi-Dirac distribution),EF為費米能量(Fermi energy),T為溫度,E(k,n)為電子在對應於波向量k及第n個能帶狀態中的能量,下標i及j係指直交座標x,y及z,積分係在布里羅因區(Brillouin zone,B.Z.)內進行,而加總則是在電子及電洞的能帶分別高於及低於費米能量之能帶中進行。
申請人對導電性反有效質量張量之定義為,一材料之導電性反有效質量張量之對應分量之值較大者,其導電性之張量分量 (tensorial component)亦較大。申請人再度提出理論(但並不欲受此理論所束縛)認為,本說明書所述之超晶格可設定導電性反有效質量張量之值,以增進材料之導電性,例如電荷載子傳輸之典型較佳方向。適當張量項數之倒數,在此稱為導電性有效質量(conductivity effective mass)。換句話說,若要描述半導體材料結構的特性,如上文所述,在載子預定傳輸方向上計算出電子/電洞之導電性有效質量,便可用於分辨出較佳之材料。
申請人已辨識出可用於半導體元件之改進材料或結構。更具體而言,申請人所辨識出之材料或結構所具有之能帶結構,其電子及/或電洞之適當導電性有效質量之值,實質上小於對應於矽之值。這些結構除了有較佳遷移率之特點外,其形成或使用之方式,亦使其得以提供有利於各種不同元件類型應用之壓電、焦電及/或鐵電特性,下文將進一步討論之。
參考圖1及圖2,所述材料或結構是超晶格25的形式,其結構在原子或分子等級上受到控制,且可應用原子或分子層沉積之已知技術加以形成。超晶格25包含複數個堆疊排列之層群組45a~45n,如圖1之概要剖視圖所示。
如圖所示,超晶格25之每一層群組45a~45n包含複數個堆疊之基底半導體單層46,其界定出各別之基底半導體部份46a~46n與其上之一能帶修改層50。為清楚呈現起見,該能帶修改層50於圖1中以雜點表示。
如圖所示,該能帶修改層50包含一非半導體單層,其係被拘束在相鄰之基底半導體部份之一晶格內。「被拘束在相鄰之基底半導體部份之一晶格內」一語,係指來自相對之基底半導體部份46a~46n之至少一些半導體原子,透過該些相對基底半導體部份間之非半導體單層50,以化學方式鍵結在一起,如圖2所示。一般而言,此一組構可經由控制以原子層沉積技術沉積在半導體部份46a~46n上面之非半導體材料之量而成為可能,這樣,可用之半導體鍵結位置便不會全部(亦即非完全或低於100%之涵蓋範圍)被連結至非半導體原子之鍵結佔滿,下文將進一步討論之。因此,當更多半導體材料單層46被沉積在一非半導體單層50上面或上方時,新沉積之半導體原子便可填入該非半導體單層下方其餘未被佔用之半導體原子鍵結位置。
在其他實施方式中,使用超過一個此種非半導體單層是可能的。應注意的是,本說明書提及非半導體單層或半導體單層時,係指該單層所用材料若形成於主體,會是非半導體或半導體。亦即,一種材料(例如矽)之單一單層所顯現之特性,並不必然與形成於主體或相對較厚層時所顯現之特性相同,熟習本發明所屬技術領域者當可理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),能帶修改層50與相鄰之基底半導體部份46a~46n,可使超晶格25在平行層之方向上,具有較原本為低之電荷載子適當導電性有效質量。換一種方向思考,此平行方向即正交於堆疊方向。該能帶修改層50亦可使超晶格25具有一般之能帶結構,同時有利地發揮作為該超晶格垂直上下方之多個層或區域間之絕緣體之作用。
再者,此超晶格結構亦可有利地作為超晶格25垂直上下方多個層之間之摻雜物及/或材料擴散之阻擋。因此,這些特性可有利地允許超晶格25為高K值介電質提供一界面,其不僅可減少高K值材料擴散進入通道區,還可有利地減少不需要之散射效應,並改進裝置行動性,熟習本發明所屬技術領域者當可理解。
本發明之理論亦認為,包含超晶格25之半導體元件可因為較原本為低之導電性有效質量,而享有較高之電荷載子遷移率。在某些實施方式中,因為本發明而實現之能帶工程,超晶格25可進一步具有對諸如光電元件等尤其有利之實質上之直接能帶間隙。
超晶格25亦可在一上部層群組45n上方包含一頂蓋層52。該頂蓋層52可包含複數個基底半導體單層46。該頂蓋層52可包含基底半導體的2個至100個單層之間,且較佳者為10至50個單層之間。
每一基底半導體部份46a~46n可包含由 IV 族半導體、 III-V 族半導體及 II-VI 族半導體所組成之群組中選定之一基底半導體。當然, IV 族半導體亦包含 IV-IV 族半導體,熟習本發明所屬技術領域者當可理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
每一能帶修改層50可包含由,舉例而言,氧、氮、氟、碳及碳-氧所組成之群組中選定之一非半導體。該非半導體亦最好具有在沈積下一層期間保持熱穩定之特性,以從而有利於製作。在其他實施方式中,該非半導體可為相容於給定半導體製程之另一種無機或有機元素或化合物,熟習本發明所屬技術領域者當能理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
應注意的是,「單層(monolayer)」一詞在此係指包含一單一原子層,亦指包含一單一分子層。亦應注意的是,經由單一單層所提供之能帶修改層50,亦應包含層中所有可能位置未完全被佔據之單層(亦即非完全或低於100%之涵蓋範圍)。舉例來說,參照圖2之原子圖,其呈現以矽作為基底半導體材料並以氧作為能帶修改材料之一4/1重複結構。氧原子之可能位置僅有一半被佔據。
在其他實施方式及/或使用不同材料的情況中,則不必然是二分之一的佔據情形,熟習本發明所屬技術領域者當能理解。事實上,熟習原子沈積技術領域者當能理解,即便在此示意圖中亦可看出,在一給定單層中,個別的氧原子並非精確地沿著一平坦平面排列。舉例來說,較佳之佔據範圍是氧的可能位置有八分之一至二分之一被填滿,但在特定實施方式中其他佔據範圍亦可使用。
由於矽及氧目前廣泛應用於一般半導體製程中,故製造商將能夠立即應用本說明書所述之材質。原子沉積或單層沉積亦是目前廣泛使用之技術。因此,依照本發明之結合超晶格25之半導體元件,可立即加以採用並實施,熟習本發明所屬技術領域者當能理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),對一超晶格而言,例如所述矽/氧超晶格,矽單層之數目理想應為七層或更少,以使該超晶格之能帶在各處皆為共同或相對均勻,以實現所欲之優點。圖1及圖2所示之矽/氧 4/1重複結構,已經過模型化以表示電子及電洞在X方向上之較佳遷移率。舉例而言,電子(就主體矽而言具等向性)之計算後導電性有效質量為0.26,而X方向上的4/1 矽/氧超晶格之計算後導電性有效質量則為0.12,兩者之比為0.46。同樣的,在電洞之計算結果方面,主體矽之值為0.36,該4/1 矽/氧超晶格之值則為0.16,兩者之比為0.44。
雖然此種方向上優先(directionally preferential)之特點可有利於某些半導體元件,其他半導體元件亦可得益於遷移率在平行於層群組之任何方向上更均勻之增加。電子及電洞兩者之遷移率同時增加,或僅其中一種電荷載子遷移率之增加,亦皆可有其好處,熟習本發明所屬技術領域者當可理解。
超晶格25之4/1 矽/氧實施方式之較低導電性有效質量,可不到非超晶格25者之導電性有效質量之三分之二,且此情形就電子及電洞而言皆然。當然,超晶格25可更包括至少一種類型之導電性摻雜物在其中,熟習本發明所屬技術領域者當能理解。
茲另參考圖3說明依照本發明之具有不同特性之超晶格25’之另一實施方式。在此實施方式中,其重複模式為3/1/5/1。更詳細而言,最底下的基底半導體部份46a’有三個單層,第二底下的基底半導體部份46b’則有五個單層。此模式在整個超晶格25’重複。每一能帶修改層50’可包含一單一單層。就包含矽/氧之此種超晶格25’ 而言,其電荷載子遷移率之增進,係獨立於該些層之平面之定向。圖3中其他元件在此未提及者,係與前文參考圖1所討論者類似,故不再重複討論。
在某些元件實施方式中,其超晶格之每一基底半導體部份可為相同數目之單層之厚度。在其他實施方式中,其超晶格之至少某些基底半導體部份可為相異數目之單層之厚度。在另外的實施方式中,其超晶格之每一基底半導體部份可為相異數目之單層之厚度。
圖4A-4C呈現使用密度功能理論(Density Functional Theory, DFT)計算出之能帶結構。在本發明所屬技術領域中廣為習知的是,DFT通常會低估能帶間隙之絕對值。因此,間隙以上的所有能帶可利用適當之「剪刀形更正」(scissors correction)加以偏移。不過,能帶的形狀則是公認遠較為可靠。縱軸之能量應從此一角度解釋之。
圖4A呈現主體矽 (以實線表示)及圖1之4/1 矽/氧超晶格25 (以虛線表示)兩者由迦碼點(G)計算出之能帶結構。圖中該些方向係指該4/1 矽/氧結構之單位晶格(unit cell)而非指矽之一般單位晶格,雖然圖中之方向(001)確實對應於一般矽單位晶格之方向(001),並因此而顯示出矽導帶最小值之預期位置。圖中方向(100)及方向(010)係對應於一般矽單位晶格之方向(110)及方向(-110)。熟習本發明所屬技術領域者當可理解,圖中之矽能帶係被摺疊收攏,以便在該4/1 矽/氧結構之適當反晶格方向(reciprocal lattice directions)上表示。
由圖中可見,與主體矽相較,該4/1 矽/氧結構之導帶最小值係位於G點,而其價帶最小值則出現在方向(001)上布里羅因區之邊緣,吾人稱為Z點之處。吾人亦可注意到,與矽之導帶最小值曲率比較下,該4/1 矽/氧結構之導帶最小值之曲率較大,此係因額外氧層引入之微擾(perturbation)造成能帶分裂(band splitting)之故。
圖4B呈現主體矽(實線)及該4/1 矽/氧超晶格25 (虛線)兩者由Z點計算出之能帶結構。此圖描繪出價帶在方向(100)上之增加曲率。
圖4C呈現主體矽(實線)及圖3之5/1/3/1 矽/氧超晶格25’ (虛線)兩者由迦碼點及Z點計算出之能帶結構之曲線圖。由於該5/1/3/1 矽/氧結構之對稱性,在 方向(100)及方向(010)上計算出之能帶結構是相當的。因此,在平行於各層之平面中,亦即垂直於堆疊方向(001)上,導電性有效質量及遷移率可預期為等向性。請注意,在該5/1/3/1 矽/氧之實施例中,導帶最小值及價帶最大值兩者皆位於或接近Z點。
雖然曲率增加是有效質量減少的一個指標,但適當的比較及判別可經由導電性反有效質量張量之計算而進行。此使得本案申請人進一步推論,該5/1/3/1超晶格25’實質上應為直接能帶間隙。熟習本發明所屬技術領域者當可理解,光躍遷(optical transition)之適當矩陣元素(matrix element)是區別直接及間接能帶間隙行為之另一指標。
茲參考圖5,前述超晶格結構可有利地用於提供雙極接面電晶體(BJT)中的摻雜物擴散阻障,例如具有多晶矽/結晶矽射極與矽/矽鍺基極之NPN與PNP雙極元件的矽BJT。作為背景說明,習知BJT係利用射極中的高度摻雜,其通常會導致摻雜物擴散至基極中而使效能降低。然而,本發明的前述超晶格/MST材料可有利地用於阻擋摻雜物從高度摻雜之射極區擴散至基極及/或射極中,從而避免效能降低。此外,該MST材料亦可有利地阻擋元件製作期間的氧化物生長過程中的格隙注入(interstitial injection)。
在此示例中,雙極接面電晶體120包括一底材121(例如矽底材),該底材當中包含隔開的淺溝槽隔離(STI)區122(例如SiO2)。在NPN組構的情況下,底材121可被n型摻雜物(例如磷、砷等)摻雜,以為雙極接面電晶體120界定出一集極區123。應注意的是,在某些實施例中,集極摻雜物可進一步分佈在整個底材121中,而不是如圖5所示集中在給定位置。具有前述結構之第一超晶格125a設置在底材121及覆蓋該第一超晶格的基極130之間。舉例而言,基極130可包含例如矽、鍺或矽鍺之半導體,且在NPN組構中,基極130可被諸如硼等摻雜物爲P型重摻雜。基極130上可設置同樣具有前述結構之第二超晶格125b。
一射極131被設置在第二超晶格125b上,該第二超晶格將射極與基極130隔開。該射極130可包含一半導體(例如矽、鍺或矽鍺),且其由相鄰之間隔物132、133(例如氮化物)及絕緣區134(例如氧化物)所界定。射極131具有與基極130相對的導電類型,例如在此示例性NPN組構中的N+導電類型。該射極130被一射極接點135(例如矽化物)覆蓋。此外,下部與上部外質基極區(extrinsic base region)136、137位於射極130的橫向外側,且下部外質基極區被設置在第二超晶格125b之外端(outer end)。下部與上部外質基極區136、137亦可包含一半導體(矽、鍺或矽鍺)並具有與基極130相似之摻雜分佈(在本示例中爲P+)。如圖所示,基極接點138(例如矽化物)覆蓋所述外質基極區136、137,並與第二超晶格125b及基極130之外端接觸。
在習知BJT元件中,基極中的高濃度摻雜會導致基極摻雜物擴散至集極中,使效能隨著基極寬度變寬而降低。然而,本發明的雙極接面電晶體120中,第二超晶格125b被有利地設置成可阻擋摻雜物從高度摻雜之基極130擴散至射極131中,進而避免因基極變寬而使效能降低。此外,第一超晶格125a被有利地設置成可在元件製作期間進行的氧化物生長過程中阻擋格隙注入,進而亦可減少摻雜物從基極130擴散到集極123。
參考圖6及圖7之圖表160及圖表170,可進一步理解前述之摻雜物保留(dopant retention)特性。圖表160繪示一雙極接面電晶體120之一示例性實施方式之模擬摻雜分佈(simulated doping profile),其中射極131為N+型砷摻雜之多晶矽、基極130為P+型硼摻雜之矽鍺,而集極123為N型磷摻雜之矽,但在不同實施方式中,可使用不同的半導體材料及摻雜物類型/濃度。圖表170繪示同一雙極接面電晶體元件的射極層/基極層/集極層的相應模擬摻雜物濃度(單位cm-3)與鍺百分比。
作爲對比,習知的BJT使用碳摻雜來阻擋摻雜物會導致相對較高的應變,相較之下,用於第一超晶格125a及第二超晶格125b的MST材料可有利地透過在其中結合氧單層而改進摻雜物阻擋力。但如前所述,即使包含了用於阻擋摻雜物的氧,MST材料仍可提供基極的磊晶生長。
依照圖8與圖9分別繪示之雙極接面電晶體120’、120’’之其他示例性實施例,基極130’、130’’在STI區122’、122’’的上表面下方凹入。此外,在雙極接面電晶體120’’中,底材121’’進一步界定出一子集極區140’’在集極區123’’下方,且第三超晶格125c’’被設置在子集極區與集極區之間。詳細而言,第三超晶格125c’’亦可如前所述為MST超晶格。雙極接面電晶體120’、120’’的其他部分/區域與前文所討論者相似,故不再贅述。
茲參考圖10之流程圖200,說明一種用於製作雙極接面電晶體120之方法。如圖所示,從方框201開始,該方法概要地包括在底材121上形成第一超晶格125a,該底材121當中界定有一集極區123(方框202)。詳細而言,在示例之雙極接面電晶體120中, STI區122之形成及摻雜物添加至集極123,係在超晶格125a形成前進行,所述超晶格125a可地毯式形成在整個底材121上,或在底材上的所需位置選擇性地形成。此外,在示例之雙極接面電晶體120’’中,子集極區140’’與超晶格125c’’的形成,係在STI區122’’、集極123’’的摻雜,以及第一超晶格125a’’之前。
如圖所示,該方法更包括在第一超晶格125a上形成基極130(方框203),並在該基極上形成第二超晶格125b(方框204),此亦如前所述。在雙極接面電晶體120’和120’’中,基極130’與130’’如前所述,在STI區122’與122’’的上表面下方凹入,且可形成於超晶格125a’或125a’’之頂蓋層中。如圖所示,該方法更包括在該第二超晶格上形成一射極131(方框205)。亦可進行額外處理步驟,以形成前述的其他部分/區域,熟習本發明所屬技術領域者當可理解。圖10之方法概要地結束於方框206。
關於示例之BJT結構的進一步細節,可在授予Preisler的美國專利第10,068,997號中找到,其全部內容茲此併入成為本說明書之一部。
應注意的是,在某些實施方式中,超晶格125a/125a’/125a’’與125b/125b’/125b’’不需同時存在。亦即,此類實施方式可包括超晶格125a/125a’/125a’’與125b/125b’/125b’’兩者其中之一。在圖11所示之第一示例中,雙極接面電晶體220之集極223與基極230之間具有一MST超晶格225,但基極230與射極231之間沒有。在如圖12所示之另一示例中,雙極接面電晶體320之基極330與射極331之間具有一MST超晶格325,但集極323與基極330之間沒有。圖11與圖12所示之其餘元件221、222、231~238與321、322、331~338分別相似於前述之元件121、122、131~138。如有需要,單一MST的實施方式可類似地與圖8及圖9所示組構一起使用。
熟習本發明所屬技術領域者將受益於本說明書揭示之內容及所附圖式而構思出各種修改及其他實施方式。因此,應了解的是,本發明不限於本說明書所述之特定實施方式,且相關修改及實施方式均落入以下申請專利範圍所界定之範疇。
21, 21’:底材 25, 25’:超晶格 45a~45n, 45a’~45n’:層群組 46, 46’:基底半導體單層 46a~46n, 46a’~46n’:基底半導體部份 50, 50’:能帶修改層 52, 52’:頂蓋層 120, 120’, 120’’, 220, 320:雙極接面電晶體 121, 221, 321:底材 122, 122’, 122’’, 222, 322:STI區 123, 123’’, 223, 323:集極區 125a:第一超晶格 125b:第二超晶格 125c’’:第三超晶格 130, 130’, 130’’, 230, 330:基極 131, 231, 331:射極 132, 133, 232, 233, 333:間隔物 134, 234, 334:絕緣區 135, 235, 335:射極接點 136, 236, 336:下部外質基極區 137, 237, 337:上部外質基極區 138, 238, 338:基極接點 140’’:子集極區 160, 170:圖表 225, 325:超晶格
圖1為依照一示例實施例之半導體元件用超晶格之放大概要剖視圖。
圖2為圖1所示超晶格之一部份之透視示意原子圖。
圖3為依照另一示例實施例之超晶格放大概要剖視圖。
圖4A為習知技術之主體矽及圖1-2所示之4/1 矽/氧超晶格兩者從迦碼點(G)計算所得能帶結構之圖。
圖4B為習知技術之主體矽及圖1-2所示之4/1 矽/氧超晶格兩者從Z點計算所得能帶結構之圖。
圖4C為習知技術之主體矽及圖3所示之5/1/3/1 矽/氧超晶格兩者從G點與Z點計算所得能帶結構之圖。
圖5繪示依照一示例性實施例之雙極接面電晶體之概要剖視圖,該雙極接面電晶體包含參考圖1至圖4C所述之分隔基極/集極與射極/基極之超晶格。
圖6繪示圖5之雙極接面電晶體之模擬摻雜分佈圖。
圖7繪示圖5之雙極接面電晶體之模擬摻雜物濃度與深度之圖表。
圖8繪示圖5之雙極接面電晶體之替代實施例之概要示意圖。
圖9繪示圖5之雙極接面電晶體之另一替代實施例之概要示意圖。
圖10繪示一種用於製作如圖7至圖9所示半導體元件之方法之流程圖。
圖11及圖12繪示依照示例性實施例之雙極接面電晶體之其他替代實施例之概要示意圖。
120:雙極接面電晶體
121:底材
122:STI區
123:集極區
125a:第一超晶格
125b:第二超晶格
130:基極
131:射極
132:間隔物
134:絕緣區
135:射極接點
136:下部外質基極區
137:上部外質基極區
138:基極接點

Claims (28)

  1. 一種雙極接面電晶體(BJT),其包括: 一底材,當中界定出一集極區; 該底材上之第一超晶格,該第一超晶格包括複數個堆疊之第一層群組,各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰的第一基底半導體部份之一晶格內之至少一第一非半導體單層; 該第一超晶格上之一基極; 該基極上之第二超晶格,該第二超晶格包括複數個堆疊之第二層群組,各第二層群組包含第二複數個堆疊之基底半導體單層,其界定出一第二基底半導體部份,以及被拘束在相鄰的第二基底半導體部份之一晶格內之至少一第二非半導體單層;及 該第二超晶格上之一射極。
  2. 如請求項1之雙極接面電晶體,其中該底材進一步界定出一子集極區在該集極區下方;且該底材中更包括第三超晶格在該子集極區與該集極區之間。
  3. 如請求項2之雙極接面電晶體,其中該第三超晶格包括複數個堆疊之第三層群組,各第三層群組包含第三複數個堆疊之基底半導體單層,其界定出一第三基底半導體部份,以及被拘束在相鄰的第三基底半導體部份之一晶格內之至少一第三非半導體單層。
  4. 如請求項1之雙極接面電晶體,其更包括該射極上表面上之一射極接點。
  5. 如請求項1之雙極接面電晶體,其更包括該基極的至少一部分上之一基極接點。
  6. 如請求項1之雙極接面電晶體,其更包括該底材中隔開的隔離區。
  7. 如請求項1之雙極接面電晶體,其中該射極及該集極具有第一導電類型,該基極具有不同於所述第一導電類型之第二導電類型。
  8. 如請求項1之雙極接面電晶體,其中該第一超晶格及該第二超晶格各自的基底半導體單層包含矽單層。
  9. 如請求項1之雙極接面電晶體,其中該第一超晶格及該第二超晶格各自的至少一非半導體單層包含氧。
  10. 如請求項1之雙極接面電晶體,其中該第一超晶格及該第二超晶格各自的基底半導體單層包含鍺。
  11. 如請求項1之雙極接面電晶體,其中該第一超晶格及該第二超晶格各自的至少一非半導體單層包含氧、氮、氟、碳和碳氧當中至少一者。
  12. 一種雙極接面電晶體,其包括: 一底材,當中界定出一集極區; 該底材上之一超晶格,該超晶格包括複數個堆疊之第一層群組,各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰的第一基底半導體部份之一晶格內之至少一第一非半導體單層; 該第一超晶格上之一基極;及 該基極上之一射極。
  13. 如請求項12之雙極接面電晶體,其中該底材進一步界定出一子集極區在該集極區下方;且該底材中更包括另一超晶格在該子集極區與該集極區之間。
  14. 如請求項12之雙極接面電晶體,其更包括該射極上表面上之一射極接點,以及該基極的至少一部分上之一基極接點。
  15. 如請求項12之雙極接面電晶體,其中所述基底半導體單層包含矽單層。
  16. 如請求項12之雙極接面電晶體,其中所述至少一非半導體單層包含氧。
  17. 一種雙極接面電晶體,其包括: 一底材,當中界定出一集極區; 在該集極區上方的該底材上之一基極; 該基極上之一超晶格,該超晶格包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層;及 該超晶格上之一射極。
  18. 如請求項17之雙極接面電晶體,其中該底材進一步界定出一子集極區在該集極區下方;且該底材中更包括另一超晶格在該子集極區與該集極區之間。
  19. 如請求項17之雙極接面電晶體,其更包括該射極上表面上之一射極接點,以及該基極的至少一部分上之一基極接點。
  20. 如請求項17之雙極接面電晶體,其中所述基底半導體單層包含矽單層。
  21. 如請求項17之雙極接面電晶體,其中所述至少一非半導體單層包含氧。
  22. 一種用於製作雙極接面電晶體之方法,該方法包括: 在當中界定有一集極區之一底材上形成一第一超晶格,該第一超晶格包括複數個堆疊之第一層群組,各第一層群組包含第一複數個堆疊之基底半導體單層,其界定出一第一基底半導體部份,以及被拘束在相鄰的第一基底半導體部份之一晶格內之至少一第一非半導體單層; 在該第一超晶格上形成一基極; 在該基極上形成一第二超晶格,該第二超晶格包括複數個堆疊之第二層群組,各第二層群組包含第二複數個堆疊之基底半導體單層,其界定出一第二基底半導體部份,以及被拘束在相鄰的第二基底半導體部份之一晶格內之至少一第二非半導體單層;及 在該第二超晶格上形成一射極。
  23. 如請求項22之方法,其中該底材進一步界定出一子集極區在該集極區下方;且更包括在該子集極區與該集極區之間的該底材中形成一第三超晶格。
  24. 如請求項23之方法,其中該第三超晶格包括複數個堆疊之第三層群組,各第三層群組包含第三複數個堆疊之基底半導體單層,其界定出一第三基底半導體部份,以及被拘束在相鄰的第三基底半導體部份之一晶格內之至少一第三非半導體單層。
  25. 如請求項22之方法,其更包括在該射極上表面上形成一射極接點。
  26. 如請求項22之方法,其更包括在該基極的至少一部分上形成一基極接點。
  27. 如請求項22之方法,其更包括在該底材中形成隔開的隔離區。
  28. 如請求項22之方法,其中該射極及該集極具有第一導電類型,該基極具有不同於所述第一導電類型之第二導電類型。
TW110101405A 2020-01-14 2021-01-14 包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法 TWI811612B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202062960851P 2020-01-14 2020-01-14
US62/960,851 2020-01-14
US16/913,546 2020-06-26
US16/913,546 US11437487B2 (en) 2020-01-14 2020-06-26 Bipolar junction transistors including emitter-base and base-collector superlattices
US16/913,487 2020-06-26
US16/913,487 US11437486B2 (en) 2020-01-14 2020-06-26 Methods for making bipolar junction transistors including emitter-base and base-collector superlattices

Publications (2)

Publication Number Publication Date
TW202141786A true TW202141786A (zh) 2021-11-01
TWI811612B TWI811612B (zh) 2023-08-11

Family

ID=76763619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101405A TWI811612B (zh) 2020-01-14 2021-01-14 包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法

Country Status (5)

Country Link
US (6) US11437487B2 (zh)
EP (1) EP4091200A1 (zh)
CN (1) CN114946034A (zh)
TW (1) TWI811612B (zh)
WO (1) WO2021146236A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837634B2 (en) 2020-07-02 2023-12-05 Atomera Incorporated Semiconductor device including superlattice with oxygen and carbon monolayers
US11742202B2 (en) 2021-03-03 2023-08-29 Atomera Incorporated Methods for making radio frequency (RF) semiconductor devices including a ground plane layer having a superlattice
US11837460B2 (en) * 2021-09-03 2023-12-05 Globalfoundries U.S. Inc. Lateral bipolar transistor
US11721546B2 (en) 2021-10-28 2023-08-08 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to accumulate non-semiconductor atoms
US11631584B1 (en) 2021-10-28 2023-04-18 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to define etch stop layer

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210679A (ja) 1985-03-15 1986-09-18 Sony Corp 半導体装置
US5101256A (en) 1989-02-13 1992-03-31 International Business Machines Corporation Bipolar transistor with ultra-thin epitaxial base and method of fabricating same
US5216262A (en) 1992-03-02 1993-06-01 Raphael Tsu Quantum well structures useful for semiconductor devices
US5357119A (en) 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
US5796119A (en) 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
GB9419757D0 (en) 1994-09-30 1994-11-16 Lynxvale Ltd Wavelength selective filter and laser including it
US6376337B1 (en) 1997-11-10 2002-04-23 Nanodynamics, Inc. Epitaxial SiOx barrier/insulation layer
JP3443343B2 (ja) 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
GB2385713B (en) 1999-03-05 2003-10-15 Nanovis Llc Aperiodic electronic bandgap structure
US6993222B2 (en) 1999-03-05 2006-01-31 Rj Mears, Llc Optical filter device with aperiodically arranged grating elements
GB9905196D0 (en) 1999-03-05 1999-04-28 Fujitsu Telecommunications Eur Aperiodic gratings
US6320212B1 (en) * 1999-09-02 2001-11-20 Hrl Laboratories, Llc. Superlattice fabrication for InAs/GaSb/AISb semiconductor structures
US20020100942A1 (en) 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6576535B2 (en) 2001-04-11 2003-06-10 Texas Instruments Incorporated Carbon doped epitaxial layer for high speed CB-CMOS
US6534371B2 (en) 2001-06-11 2003-03-18 International Business Machines Corporation C implants for improved SiGe bipolar yield
US6831292B2 (en) 2001-09-21 2004-12-14 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
DE10316531A1 (de) 2003-04-10 2004-07-08 Infineon Technologies Ag Bipolar-Transistor
US6833294B1 (en) 2003-06-26 2004-12-21 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US7514328B2 (en) 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US20060267130A1 (en) 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
US7229902B2 (en) 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
WO2005018005A1 (en) 2003-06-26 2005-02-24 Rj Mears, Llc Semiconductor device including mosfet having band-engineered superlattice
US20050282330A1 (en) 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US7531829B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7531828B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US7045377B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7227174B2 (en) 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US20070012910A1 (en) 2003-06-26 2007-01-18 Rj Mears, Llc Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US20060220118A1 (en) 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US6958486B2 (en) 2003-06-26 2005-10-25 Rj Mears, Llc Semiconductor device including band-engineered superlattice
US7612366B2 (en) 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US7586165B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US7202494B2 (en) 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US7598515B2 (en) 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US7586116B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US20070020833A1 (en) 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7446002B2 (en) 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US7045813B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US7531850B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US7491587B2 (en) 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US7148712B1 (en) 2005-06-24 2006-12-12 Oxford Instruments Measurement Systems Llc Probe for use in determining an attribute of a coating on a substrate
US7517702B2 (en) 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US7718996B2 (en) 2006-02-21 2010-05-18 Mears Technologies, Inc. Semiconductor device comprising a lattice matching layer
US7625767B2 (en) 2006-03-17 2009-12-01 Mears Technologies, Inc. Methods of making spintronic devices with constrained spintronic dopant
US20080012004A1 (en) 2006-03-17 2008-01-17 Mears Technologies, Inc. Spintronic devices with constrained spintronic dopant
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7863066B2 (en) 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
TWI343124B (en) 2007-07-09 2011-06-01 Univ Nat Kaohsiung Normal Superlattice-base heterostructure bipolar transistors
WO2011112574A1 (en) 2010-03-08 2011-09-15 Mears Technologies, Inc Semiconductor device including a superlattice and dopant diffusion retarding implants and related methods
US8921195B2 (en) * 2012-10-26 2014-12-30 International Business Machines Corporation Isolation scheme for bipolar transistors in BiCMOS technology
US9064886B2 (en) 2013-03-12 2015-06-23 Newport Fab, Llc Heterojunction bipolar transistor having a germanium extrinsic base utilizing a sacrificial emitter post
WO2015077595A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Vertical semiconductor devices including superlattice punch through stop layer and related methods
CN105900241B (zh) 2013-11-22 2020-07-24 阿托梅拉公司 包括超晶格耗尽层堆叠的半导体装置和相关方法
US9716147B2 (en) 2014-06-09 2017-07-25 Atomera Incorporated Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
EP3281231B1 (en) 2015-05-15 2021-11-03 Atomera Incorporated Method of fabricating semiconductor devices with superlattice and punch-through stop (pts) layers at different depths
WO2016196600A1 (en) 2015-06-02 2016-12-08 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
WO2017059146A1 (en) 2015-09-29 2017-04-06 Quantum Semiconductor Llc Electrical devices making use of counterdoped junctions
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
WO2017197108A1 (en) 2016-05-11 2017-11-16 Atomera Incorporated Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods
US10170604B2 (en) 2016-08-08 2019-01-01 Atomera Incorporated Method for making a semiconductor device including a resonant tunneling diode with electron mean free path control layers
US10107854B2 (en) 2016-08-17 2018-10-23 Atomera Incorporated Semiconductor device including threshold voltage measurement circuitry
US10410880B2 (en) 2017-05-16 2019-09-10 Atomera Incorporated Semiconductor device including a superlattice as a gettering layer
US10056477B1 (en) * 2017-05-24 2018-08-21 Palo Alto Research Center Incorporated Nitride heterojunction bipolar transistor with polarization-assisted alloy hole-doped short-period superlattice emitter or collector layers
WO2018231929A1 (en) 2017-06-13 2018-12-20 Atomera Incorporated Semiconductor device with recessed channel array transistor (rcat) including a superlattice and associated methods
US10068997B1 (en) 2017-06-19 2018-09-04 Newport Fab, Llc SiGe heterojunction bipolar transistor with crystalline raised base on germanium etch stop layer
US10109479B1 (en) 2017-07-31 2018-10-23 Atomera Incorporated Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
EP3669401B1 (en) 2017-08-18 2023-08-02 Atomera Incorporated Manufacturing method for a semiconductor device including the removal of non-monocrystalline stringer adjacent a superlattice-sti interface
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
US10361243B2 (en) 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10615209B2 (en) 2017-12-15 2020-04-07 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10608043B2 (en) 2017-12-15 2020-03-31 Atomera Incorporation Method for making CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10529768B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated Method for making CMOS image sensor including pixels with read circuitry having a superlattice
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10529757B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated CMOS image sensor including pixels with read circuitry having a superlattice
US10367028B2 (en) 2017-12-15 2019-07-30 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10608027B2 (en) 2017-12-15 2020-03-31 Atomera Incorporated Method for making CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
CN111937119B (zh) 2018-03-08 2024-07-23 阿托梅拉公司 包括具有超晶格的增强接触结构的半导体器件和相关方法
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
WO2019199926A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice
WO2019199923A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Semiconductor device and method including vertically integrated optical and electronic devices and comprising a superlattice
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance

Also Published As

Publication number Publication date
US20220367675A1 (en) 2022-11-17
US20220367676A1 (en) 2022-11-17
US11437487B2 (en) 2022-09-06
US11923431B2 (en) 2024-03-05
US20210217875A1 (en) 2021-07-15
US11935940B2 (en) 2024-03-19
US20240250146A1 (en) 2024-07-25
US20210217880A1 (en) 2021-07-15
EP4091200A1 (en) 2022-11-23
TWI811612B (zh) 2023-08-11
WO2021146236A1 (en) 2021-07-22
CN114946034A (zh) 2022-08-26
US11437486B2 (en) 2022-09-06
US20240097003A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
TWI722381B (zh) 包含具超晶格之共振穿隧二極體結構之半導體元件及其相關方法
TWI722398B (zh) 包含具有超晶格之改良接觸結構之半導體元件及相關方法
US10396223B2 (en) Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
US10304881B1 (en) CMOS image sensor with buried superlattice layer to reduce crosstalk
US10355151B2 (en) CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
CN106104805B (zh) 包括超晶格穿通停止层堆叠的垂直半导体装置和相关方法
TWI811612B (zh) 包含射極-基極與基極-集極超晶格之雙極接面電晶體及其相關方法
US20190189676A1 (en) Method for making cmos image sensor including photodiodes with overlying superlattices to reduce crosstalk
EP4115451A1 (en) Method for making a semiconductor device including a superlattice within a recessed etch
TWI823111B (zh) 使用具不同非半導體熱穩定性之超晶格製作半導體元件之方法
US11177351B2 (en) Semiconductor device including a superlattice with different non-semiconductor material monolayers
US11302823B2 (en) Method for making semiconductor device including a superlattice with different non-semiconductor material monolayers
TWI747377B (zh) 設有含超晶格之突陡接面區之半導體元件及相關方法
TWI747378B (zh) 設有含分隔超晶格之突陡接面區之半導體元件及相關方法
TWI806553B (zh) 包含超晶格及富集矽28磊晶層之半導體元件及相關方法
TWI734257B (zh) 包含用於降低接觸電阻之源極/汲極摻雜物擴散阻擋超晶格的半導體元件及相關方法
TW202105725A (zh) 設有含分隔超晶格之突陡接面區之可變電容器及相關方法
TW202105726A (zh) 設有含超晶格之突陡接面區之可變電容器及相關方法
TW202133438A (zh) 包含具有不同非半導體材料單層的超晶格之半導體元件及其相關方法