TW202141071A - 光學積層體之製造方法 - Google Patents
光學積層體之製造方法 Download PDFInfo
- Publication number
- TW202141071A TW202141071A TW110107659A TW110107659A TW202141071A TW 202141071 A TW202141071 A TW 202141071A TW 110107659 A TW110107659 A TW 110107659A TW 110107659 A TW110107659 A TW 110107659A TW 202141071 A TW202141071 A TW 202141071A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- optical
- optical function
- manufacturing
- antifouling
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/144—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/18—Handling of layers or the laminate
- B32B38/1858—Handling of layers or the laminate using vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5826—Treatment with charged particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5873—Removal of material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
- B32B2037/246—Vapour deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/418—Refractive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/584—Scratch resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/206—Organic displays, e.g. OLED
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Optical Elements Other Than Lenses (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本發明提供一種具備即便反覆摩擦仍可維持較高之耐磨損性及耐鹼性之防污層的光學積層體、及具備其之物品、光學積層體之製造方法。
本發明之光學積層體之製造方法係透明基材、密接層、光學功能層、及防污層依序積層而成之光學積層體之製造方法,且包含:密接層形成步驟,其形成密接層;光學功能層形成步驟,其形成光學功能層;表面處理步驟,其以下述(式1)表示之表面粗糙度之變化率為1~25%之方式對上述光學功能層之表面進行處理;及防污層形成步驟,其於表面經處理之上述光學功能層上形成防污層:表面粗糙度之變化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1) (式(1)中,Ra1表示對表面進行處理前之光學功能層之表面粗糙度(Ra),Ra2表示對表面進行處理後之光學功能層之表面粗糙度(Ra))。
Description
本發明係關於表面具有防污層之光學積層體、及具備其之物品、光學積層體之製造方法。
例如,於平板顯示器(FPD)、觸摸面板、太陽電池等中,使用用於抗表面反射之各種抗反射膜作為光學積層體。
先前,作為抗反射膜,提出過具備多層膜之抗反射膜,該多層膜係於透明基板上依序積層高折射率層與低折射率層而成。通常於該抗反射膜之最外表面形成有防污層(表面保護層)以用於表面之保護、防污。
近年,抗反射膜(光學積層體)多用於智慧型手機、各種操作機器之觸摸面板。因此,人們要求提高光學積層體之耐磨損性。
例如,專利文獻1中揭示一種透明基板積層體,其藉由使防污層之構成材料中所含之氟量為特定範圍而提高耐磨損性。
專利文獻2中記載一種防污層之形成方法,該方法係於形成防污層之前對被處理基材上之至少單面進行預處理,其後於該經預處理之表面成膜防污層。又,專利文獻2中記載之預處理為高頻放電電漿法、電子束法、離子束法、蒸鍍法、濺鍍法、鹼處理法、酸處理法、電暈處理法、大氣壓輝光放電電漿法之任一者。
專利文獻3中記載一種防污性光學物品之製造方法,該方法係於藉由蒸鍍而在基板表面形成抗反射膜之後,導入氧或氬進行電漿處理,其後真空蒸鍍含氟有機矽化合物而形成防污層。
[先前技術文獻]
[專利文獻]
[專利文獻1]國際公開第2019/078313號
[專利文獻2]日本專利特開2006-175438號公報
[專利文獻3]日本專利特開2005-301208號公報
[專利文獻4]日本專利第6542970號公報
[發明所欲解決之問題]
然而,專利文獻1記載之透明基板積層體存在如下問題:若反覆摩擦,則有助於耐磨損性之未反應物被擦掉而無法維持較高之耐磨損性。人們需要一種具備即便反覆摩擦仍可維持較高之耐磨損性之防污層的光學積層體。
本發明係鑒於上述問題而完成者,其目的在於提供一種具備即便反覆摩擦仍可維持較高之耐磨損性之防污層的光學積層體、及具備其之物品、光學積層體之製造方法。
[解決問題之技術手段]
本發明為了解決上述問題而提出以下方法。
[1]本發明之第1樣態之光學積層體之製造方法係透明基材、密接層、光學功能層及防污層依序積層而成之光學積層體之製造方法,包含:
密接層形成步驟,其形成密接層;
光學功能層形成步驟,其形成光學功能層;
表面處理步驟,其以下述(式1)表示之表面粗糙度之變化率為1~25%之方式對上述光學功能層之表面進行處理;及
防污層形成步驟,其於表面經處理之上述光學功能層上形成防污層:且
表面粗糙度之變化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)
(式(1)中,Ra1表示對表面進行處理前之光學功能層之表面粗糙度(Ra),Ra2表示對表面進行處理後之光學功能層之表面粗糙度(Ra))。
[2]本發明之第2樣態之光學積層體之製造方法係透明基材、密接層、光學功能層及防污層依序積層而成之光學積層體之製造方法,包含:
密接層形成步驟,其形成密接層;
光學功能層形成步驟,其形成光學功能層;
表面處理步驟,其對上述光學功能層之表面進行輝光放電處理;及
防污層形成步驟,其於表面經處理之上述光學功能層上形成防污層。
[3]上述樣態之光學積層體之製造方法,亦可藉由濺鍍而形成上述密接層及上述光學功能層。
[4]上述樣態之光學積層體之製造方法,亦可於上述防污層形成步驟中藉由真空蒸鍍而形成上述防污層。
[5]上述樣態之光學積層體之製造方法,亦可於減壓下連續進行上述密接層形成步驟、上述光學功能層形成步驟、上述表面處理步驟及上述防污層形成步驟。
[6]上述樣態之光學積層體之製造方法,亦可於上述密接層形成步驟之前,具有形成硬塗層之硬塗層形成步驟。
[7]上述樣態之光學積層體之製造方法中,上述光學功能層亦可為選自抗反射層、選擇反射層及防眩層之任一種。
[8]上述樣態之光學積層體之製造方法中,上述光學功能層亦可具備低折射率層。
[9]上述樣態之光學積層體之製造方法中,上述光學功能層形成步驟亦可為將低折射率層與高折射率層交替積層而形成積層體之步驟。
[10]上述樣態之光學積層體之製造方法,亦可於上述表面處理步驟中對上述低折射率層之表面進行處理。
[11]上述樣態之光學積層體之製造方法中,上述低折射率層亦可包含Si氧化物。
[12]本發明之第3樣態之光學積層體係透明基材、密接層、光學功能層及防污層依序積層而成之光學積層體,且上述防污層包含使防污性材料蒸鍍而成之蒸鍍膜。
[13]上述樣態之光學積層體中,上述光學功能層亦可為選自抗反射層、選擇反射層及防眩層之任一種。
[14]上述樣態之光學積層體中,上述光學功能層亦可具備低折射率層。
[15]上述樣態之光學積層體中,上述光學功能層亦可包含低折射率層與高折射率層交替積層而成之積層體。
[16]上述樣態之光學積層體中,上述防污層亦可與上述低折射率層相接設置。
[17]上述樣態之光學積層體中,上述密接層亦可包含Si氧化物。
[18]上述樣態之光學積層體中,上述防污性材料亦可包含氟系有機化合物。
[19]上述樣態之光學積層體中,亦可於上述透明基材與上述密接層之間進而具備硬塗層。
[20]本發明之第4樣態之物品具備上述樣態之光學積層體。
[21]本發明之第5樣態之光學積層體之製造方法係上述樣態之光學積層體之製造方法,且具有防污層形成步驟:於上述光學功能層之一表面側形成上述防污層,該防污層包含藉由真空蒸鍍來蒸鍍防污性材料而成之蒸鍍膜。
[22]上述樣態之光學積層體之製造方法亦可具有藉由濺鍍而形成上述光學功能層之光學功能層形成步驟,且於減壓下連續進行上述光學功能層形成步驟與上述防污層形成步驟。
[發明之效果]
據本發明,能夠提供一種具備即便反覆摩擦仍可維持較高之耐磨損性之防污層之光學積層體、及具備其之物品、光學積層體之製造方法。
以下,適當參照附圖對本實施方式進行詳細說明。以下說明中所使用之附圖,存在為了便於理解本發明之特徵而將作為特徵之部分放大表示之情形,各構成要素之尺寸比率等有時與實際情況不同。以下說明中所例示之材質、尺寸等為一例,本發明並不限定於其等,可於發揮其效果之範圍適當變更而實施。
[光學積層體]
圖1係用以說明本實施方式之光學積層體之一例之剖視圖。
如圖1所示,本實施方式之光學積層體101係透明基材11、密接層13、光學功能層14、及防污層15依序積層而成者。
密接層13為表現密接之層。
光學功能層14為表現光學功能之層。光學功能係控制反射與透過、折射等光性質之功能,可列舉例如抗反射功能、選擇反射功能、防眩功能、透鏡功能等。
光學功能層14較佳為選自抗反射層、選擇反射層及防眩層中之任一種。作為抗反射層、選擇反射層、防眩層,可使用周知者。抗反射層、選擇反射層、防眩層均既可為單層,又可為複數層之積層體。
圖2係表示本實施方式之光學積層體之另一例之剖視圖。
圖2所示之光學積層體102係透明基材11、硬塗層12、密接層13、光學功能層14、及防污層15依序積層而成者。
密接層13係表現密接之層。
光學功能層14係表現光學功能之層。光學功能係指控制反射與透過、折射等光性質之功能,可列舉例如抗反射功能、選擇反射功能、防眩功能、透鏡功能等。
光學功能層14較佳為選自抗反射層、選擇反射層及防眩層之任一種。作為抗反射層、選擇反射層、防眩層,可使用周知者。抗反射層、選擇反射層、防眩層可均為單層,亦可為複數層之積層體。
圖3係表示本實施方式之光學積層體之另一例之剖視圖。
圖3所示之光學積層體101中,設置有抗反射層作為圖2所示之光學積層體102之光學功能層14。光學功能層14即(抗反射層)如圖2所示包含低折射率層14b與高折射率層14a交替積層而成之積層體。圖2所示之光學功能層14係自透明基材11側依序積層硬塗層12、密接層13、高折射率層14a、低折射率層14b、高折射率層14a、低折射率層14b、及防污層15而成。因此,防污層15與光學功能層14所具有之低折射率層14b相接。
透明基材11只要由能夠透過可見光域之光之透明材料形成即可,較佳為使用例如塑膠膜。作為塑膠膜之構成材料之具體例,可列舉聚酯系樹脂、乙酸酯系樹脂、聚醚碸系樹脂、聚碳酸酯系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、聚烯烴系樹脂、(甲基)丙烯酸系樹脂、聚氯乙烯系樹脂、聚偏二氯乙烯系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、聚芳酯系樹脂、聚苯硫醚系樹脂。
再者,本發明中所說之「透明材料」係指於不損害本發明之效果之範圍,使用波長域之光的透過率為80%以上之材料。
又,本實施方式中,「(甲基)丙烯酸」係指甲基丙烯酸及丙烯酸。
只要不損害光學特性,則透明基材11中亦可包含補強材料,可列舉例如纖維素奈米纖維、奈米二氧化矽等。尤佳為使用聚酯系樹脂、乙酸酯系樹脂、聚碳酸酯系樹脂、聚烯烴系樹脂。具體而言,較佳為使用三乙醯纖維素(TAC)基材。
又,作為無機基材,亦可使用玻璃膜。
若塑膠膜為TAC基材,則當已於其一表面側形成硬塗層12時,會形成構成硬塗層12之成分之一部分滲透而成之滲透層。其結果,透明基材11與硬塗層12之密接性變得良好,並且可抑制由層彼此間之折射率差引起干涉條紋。
透明基材11亦可為賦予有光學功能及/或物理功能之膜。作為具有光學及/或物理功能之膜之例,可列舉偏光板、相位差補償膜、熱線截止膜、透明導電膜、亮度提高膜、阻隔性提高膜等。
透明基材11之厚度並未特別限定,較佳為例如25 μm以上。透明基材11之膜厚較佳為40 μm以上。
若透明基材11之厚度為25 μm以上,則可確保基材自身之剛性,即便對光學積層體10施加應力,亦不易產生褶皺。又,若透明基材11之厚度為25 μm以上,則即便於透明基材11上連續形成硬塗層12,亦不易產生褶皺,製造上之顧慮較少,因而較佳。若透明基材11之厚度為40 μm以上,則更難以產生褶皺,因而較佳。
於利用輥實施製造之情形時,透明基材11之厚度較佳為1,000 μm以下,更佳為600 μm以下。若透明基材11之厚度為1000 μm以下,則易於將製造中途之光學積層體10及製造後之光學積層體10捲成捲筒狀,從而可高效地製造光學積層體10。又,若透明基材11之厚度為1000 μm以下,則可使光學積層體10薄膜化、輕量化。若透明基材11之厚度為600 μm以下,則可更高效地製造光學積層體10,並且可使光學積層體10更薄膜化、輕量化。
透明基材11亦可預先對表面實施濺鍍、電暈放電、紫外線照射、電子束照射、化學處理、氧化等蝕刻處理及/或底塗處理。藉由預先實施該等處理,可使透明基材11與形成於其上之硬塗層12之密接性提高。又,亦較佳為於在透明基材11上形成硬塗層12之前,根據需要而對透明基材11之表面進行溶劑清洗、超音波清洗等,藉此預先將透明基材11之表面除塵、淨化。
可使用周知者作為硬塗層12。硬塗層12可為僅包含黏合劑樹脂者,亦可為包含黏合劑樹脂與不損害透明性之範圍內之填料者。作為填料,可使用包含有機物者,亦可使用包含無機物者,還可使用包含有機物及無機物者。
作為用於硬塗層12之黏合劑樹脂,較佳為透明性樹脂,可使用例如藉由紫外線、電子束而硬化之樹脂即電離輻射硬化型樹脂、熱可塑性樹脂、熱硬化性樹脂等。
作為用於硬塗層12之黏合劑樹脂之電離輻射硬化型樹脂,可列舉(甲基)丙烯酸乙酯、(甲基)丙烯酸乙基己酯、苯乙烯、甲基苯乙烯、N-乙烯基吡咯啶酮等。
又,作為具有2個以上之不飽和鍵之電離輻射硬化型樹脂化合物,可列舉例如三羥甲基丙烷三(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、新戊四醇三(甲基)丙烯酸酯、新戊四醇四(甲基)丙烯酸酯、二新戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、二新戊四醇五(甲基)丙烯酸酯、三新戊四醇八(甲基)丙烯酸酯、四新戊四醇十(甲基)丙烯酸酯、異三聚氰酸三(甲基)丙烯酸酯、異三聚氰酸二(甲基)丙烯酸酯、聚酯三(甲基)丙烯酸酯、聚酯二(甲基)丙烯酸酯、雙酚二(甲基)丙烯酸酯、雙甘油四(甲基)丙烯酸酯、金剛烷基二(甲基)丙烯酸酯、異冰片基二(甲基)丙烯酸酯、二環戊烷二(甲基)丙烯酸酯、三環癸烷二(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯等多官能化合物等。其中,較佳為使用新戊四醇三丙烯酸酯(PETA)、二新戊四醇六丙烯酸酯(DPHA)及新戊四醇四丙烯酸酯(PETTA)。再者,「(甲基)丙烯酸酯」係指甲基丙烯酸酯及丙烯酸酯。又,作為電離輻射硬化型樹脂,亦可使用以PO(氧化丙烯)、EO(環氧乙烷)、CL(己內酯)等對上述化合物進行改性而成者。
作為用於硬塗層12之黏合劑樹脂之熱可塑性樹脂,可列舉例如苯乙烯系樹脂、(甲基)丙烯酸系樹脂、乙酸乙烯系樹脂、乙烯醚系樹脂、含鹵素樹脂、脂環式烯烴系樹脂、聚碳酸酯系樹脂、聚酯系樹脂、聚醯胺系樹脂、纖維素衍生物、矽酮系樹脂及橡膠或彈性體等。上述熱可塑性樹脂,較佳為非晶性且可溶於有機溶媒(尤其是能夠溶解複數種聚合物、硬化性化合物之通用溶媒)。尤其,自透明性及耐候性之觀點考慮,較佳為苯乙烯系樹脂、(甲基)丙烯酸系樹脂、脂環式烯烴系樹脂、聚酯系樹脂、纖維素衍生物(纖維素酯類等)等。
作為用於硬塗層12之黏合劑樹脂之熱硬化性樹脂,可列舉例如酚樹脂、尿素樹脂、鄰苯二甲酸二烯丙酯樹脂、三聚氰胺樹脂、三聚氰二胺樹脂、不飽和聚酯樹脂、聚胺酯樹脂、環氧樹脂、胺基醇酸樹脂、三聚氰胺-尿素共縮合樹脂、矽樹脂、聚矽氧烷樹脂(包含籠狀、梯形狀等所謂之倍半矽氧烷等)等。
硬塗層12亦可包含有機樹脂與無機材料,亦可為有機無機混合材料。作為一例,可列舉以溶膠凝膠法形成者。作為無機材料,可列舉例如氧化矽、氧化鋁、氧化鋯、氧化鈦。作為有機材料,可列舉例如丙烯酸系樹脂。
自防眩性、與後述光學功能層14之密接性、抗結塊性之觀點考慮,硬塗層12中所含之填料可根據光學積層體10之用途而選擇各種填料。具體而言,該填料可使用例如氧化矽(Si氧化物)粒子、氧化鋁(alumina)粒子、有機微粒子等周知粒子。
硬塗層12例如亦可為包含黏合劑樹脂、與作為填料之氧化矽粒子及/或氧化鋁粒子者。藉由於硬塗層12中分散作為填料之氧化矽粒子及/或氧化鋁粒子,而可於硬塗層12之表面形成微細凹凸。該等氧化矽粒子及/或氧化鋁粒子亦可露出於硬塗層12之光學功能層14側之表面。該情形時,硬塗層12之黏合劑樹脂與光學功能層14強力接合。因此,硬塗層12與光學功能層14之密接性提高,硬塗層12之硬度變高,並且光學積層體10之耐擦傷性變得良好。
作為硬塗層12之填料之氧化矽粒子及/或氧化鋁粒子之平均粒徑例如為800 nm以下,較佳為780 nm以下,更佳為100 nm以下。
自提高光學積層體10之防眩性之觀點考慮,可使用有機微粒子作為硬塗層12中所含之填料。作為有機微粒子,可列舉例如丙烯酸系樹脂等。有機微粒子之粒徑較佳為10 μm以下,更佳為5 μm以下,尤佳為3 μm以下。
作為硬塗層12中所含之填料,為了對硬塗層12賦予強韌性,可於不損害光學特性之範圍使用各種補強材。作為補強材,可列舉例如纖維素奈米纖維。
硬塗層12之厚度並未特別限定,較佳為例如0.5 μm以上,更佳為1 μm以上。硬塗層12之厚度較佳為100 μm以下。若硬塗層12之厚度為0.5 μm以上,則可獲得充分之硬度,因此不易產生製造上之抓傷。又,若硬塗層12之厚度為100 μm以下,則可使光學積層體10薄膜化、輕量化。又,若硬塗層12之厚度為100 μm以下,則硬塗層12於製造中途之光學積層體10彎曲時不易產生微裂痕,因而生產性良好。
硬塗層12可為單一層,亦可為複數層積層而成者。又,亦可進而對硬塗層12賦予例如紫外線吸收性能、帶電防止性能、折射率調整功能、硬度調整功能等周知功能。
又,對硬塗層12賦予之功能可賦予給單一硬塗層中,亦可分割賦予給複數層。
密接層13係用以使作為有機膜之透明基材11或硬塗層12與作為無機膜之光學功能層14良好密接而形成之層。圖3所示之光學積層體10中,硬塗層12與光學功能層14之間具備密接層13。密接層13具有使硬塗層12與光學功能層14密接之功能。密接層13較佳為包含氧空位狀態之金屬氧化物或金屬者。氧空位狀態之金屬氧化物係指氧數量低於化學計量組成之狀態之金屬氧化物。作為氧空位狀態之金屬氧化物,可列舉例如SiOx、ALOx、TiOx、ZrOx、CeOx、MgOx、ZnOx、TaOx、SbOx、SnOx、MnOx等。又,作為金屬,可列舉Si、Al、Ti、Zr、Ce、Mg、Zn、Ta、Sb、Sn、Mn、In等。密接層13例如為SiOx
中之x超過0且未達2.0。又,密接層亦可由複數種金屬或金屬氧化物之混合物形成。
自維持透明性及與光學功能層之密接性,且獲得良好之光學特性之觀點考慮,密接層之厚度較佳為超過0 nm且20 nm以下,尤佳為1 nm以上10 nm以下。
光學功能層14係表現抗反射功能之積層體。圖3所示之光學功能層14係高折射率層14a與低折射率層14b自密接層13側合計交替積層4層而成之積層體。高折射率層14a與低折射率層14b之層數並未特別限定,高折射率層14a及低折射率層14b之層數可設為任意層數。
圖3所示之光學積層體10中,光學功能層14包含低折射率層14b與高折射率層14a交替積層而成之積層體,因此自防污層15側入射之光藉由光學功能層14而擴散。因此,可獲得抗反射功能,即,防止自防污層15側入射之光朝一方向反射。
低折射率層14b自易獲得及成本之點考慮,較佳為包含Si氧化物,且較佳為以SiO2
(Si氧化物)等為主成分之層。SiO2
單層膜無色透明。本實施方式中,低折射率層14b之主成分係指於低折射率層14b中含有50質量%以上之成分。
於低折射率層14b為以Si氧化物為主成分之層之情形時,亦可包含未達50質量%之其他元素。與Si氧化物不同之元素之含量較佳為10%以下。作為其他元素,例如可出於提高耐久性之目的而含有Na,可出於提高硬度之目的而含有Zr、Al、或N,可出於提高耐鹼性之目的而含有Zr、Al。
低折射率層14b之折射率較佳為1.20~1.60,更佳為1.30~1.50。作為用於低折射率層14b之介電體,可列舉氟化鎂(MgF2
,折射率1.38)等。
高折射率層14a之折射率較佳為2.00~2.60,更佳為2.10~2.45。作為用於高折射率層14a之介電體,可列舉五氧化鈮(Nb2
O5
,折射率2.33)、氧化鈦(TiO2
,折射率2.33~2.55)、氧化鎢(WO3
,折射率2.2)、氧化鈰(CeO2
,折射率2.2)、五氧化鉭(Ta2
O5
,折射率2.16)、氧化鋅(ZnO,折射率2.1)、氧化銦錫(ITO,折射率2.06)、氧化鋯(ZrO2
,折射率2.2)等。
於欲對高折射率層14a賦予導電特性之情形時,可選擇例如ITO、氧化銦-氧化鋅(IZO)。
光學功能層14,較佳為例如使用包含五氧化鈮(Nb2
O5
,折射率2.33)者作為高折射率層14a,使用包含SiO2
者作為低折射率層14b。
低折射率層14b之膜厚只要為1 nm以上200 nm以下之範圍即可,可根據需要抗反射功能之波長域而適當選擇。
高折射率層14a之膜厚例如只要為1 nm以上200 nm以下即可,可根據需要抗反射功能之波長域而適當選擇。
高折射率層14a及低折射率層14b之膜厚,分別可根據光學功能層14之設計而適當選擇。
例如,可自密接層13側依序設為5~50 nm之高折射率層14a、10~80 nm之低折射率層14b、20~200 nm之高折射率層14a、50~200 nm之低折射率層14b。
形成光學功能層14之層中之防污層15側配置有低折射率層14b。於光學功能層14之低折射率層14b與防污層15相接之情形時,光學功能層14之抗反射性能良好,因而較佳。
防污層15形成於光學功能層14之最外表面而防止光學功能層14之污損。又,防污層15於應用於觸摸面板等時,藉由耐磨損性而抑制光學功能層14之損耗。
本實施方式之防污層15包含蒸鍍防污性材料而成之蒸鍍膜。本實施方式中,防污層15係藉由真空蒸鍍作為防污性材料之氟系有機化合物而形成於構成光學功能層14之低折射率層14b之一表面。本實施方式中,防污性材料包含氟系有機化合物,因此成為耐摩擦性及耐鹼性更良好之光學積層體10。
作為構成防污層15之氟系有機化合物,較佳為使用包含氟改性有機基與反應性矽烷基(例如烷氧基矽烷)之化合物。作為市售品,可列舉OPTOOL DSX(大金股份公司製造)、KY-100系列(信越化學工業股份公司製造)等。
於使用包含氟改性有機基與反應性矽烷基(例如烷氧基矽烷)之化合物作為構成防污層15之氟系有機化合物,作為氟系有機化合物,且使用包含SiO2
者作為與防污層15相接之光學功能層14之低折射率層14b之情形時,於作為氟系有機化合物之骨架之矽烷醇基與SiO2
之間形成有矽氧烷鍵。因此,光學功能層14與防污層15之密接性良好,因而較佳。
防污層15之光學厚度只要為1 nm以上20 nm以下之範圍即可,較佳為3 nm以上10 nm以下之範圍。若防污層15之厚度為1 nm以上,則於將光學積層體10應用於觸摸面板用途等時,可充分確保耐磨損性。又,若防污層15之厚度為20 nm以下,則蒸鍍所需之時間為較短時間即可,從而可高效地製造。
防污層15之表面粗糙度Ra根據光學積層體之用途、構成而不同,例如於為不具有防眩功能之透明的抗反射層之情形時,較佳為例如3 nm以上。上限並未特別限制,例如自耐擦傷性之點考慮,較佳為9 nm以下。
防污層15亦可根據需要而包含光穩定劑、紫外線吸收劑、著色劑、帶電防止劑、潤滑劑、調平劑、消泡劑、抗氧化劑、阻燃劑、紅外線吸收劑、界面活性劑等添加劑。
藉由蒸鍍而形成之防污層15與光學功能層14牢固地結合,空隙較少而較為緻密。藉此,本實施方式之防污層15顯示與藉由塗佈防污性材料等先前方法而形成之防污層不同之特性。
例如,本實施方式之光學積層體10之防污層15具有以下特性。
(1)藉由使鋼絲絨水平往返運動500次而進行擦傷性試驗後對水之接觸角差為10°以下。
(2)藉由使鋼絲絨水平往返運動500次而進行擦傷性試驗後對水之接觸角為110°以上。
(3)藉由使廢布(不織布抹布)往返4000次而進行擦傷性試驗後對水之接觸角為100°以上。
(4)藉由使鋼絲絨水平往返運動500次而進行擦傷性試驗前後之利用SCI(Specular Component Include,考慮有正反射光之反射色之測定方法)所測得之下述式(2)所示的L*
a*
b*
值之變化量(ΔE值)為3.0以下。
(5)藉由使鋼絲絨水平往返運動500次而進行擦傷性試驗前後之利用SCE(Specular Component Exclude,不考慮正反射光之反射色之測定法)所測得之下述式(3)所示的L*
a*
b*
值之變化量(ΔE值)為1.5以下。
(6)於濃度0.1 mol/L之NaOH溶液(液溫55℃)中浸漬4小時後藉由螢光X射線分析法(XRF)而測定出之氟殘存率為70%以上。
具備藉由蒸鍍而形成之本實施方式之防污層15之光學積層體10,與藉由塗佈而形成之防污層相比空隙較少而形成得較為緻密。又,本實施方式之光學積層體10中,防污層15與相接於防污層15之低折射率層14b牢固地接合。因此,本實施方式之光學積層體10之可見光透過性優異,相反覆摩擦可維持較高之耐磨損性,並且亦可於耐鹼性方面維持較高之耐受性。
[光學積層體之製造方法]
圖3所示之本實施方式之光學積層體10例如可藉由以下所示之方法製造。
本實施方式中,作為光學積層體10之製造方法之一例,舉例使用捲繞為捲筒狀之透明基材11製造光學積層體10之情形進行說明。
首先,將捲繞為捲筒狀之透明基材11捲出。然後,藉由周知方法而於透明基材11上塗佈包含形成硬塗層12之材料之漿料,並藉由與形成硬塗層12之材料對應之周知方法而使該材料硬化。藉此,形成硬塗層12(硬塗層形成步驟)。其後,利用周知方法而以捲筒狀捲取表面形成有硬塗層12之透明基材11。
接下來,進行於硬塗層12上形成密接層13之密接層形成步驟、及形成光學功能層14之光學功能層形成步驟。其後,進行於光學功能層14上形成防污層15之防污層形成步驟。本實施方式中,較佳為於光學功能層形成步驟之前進行處理硬塗層12之表面的第1表面處理步驟,然後進行密接層形成步驟及光學功能層形成步驟。又,本實施方式中,較佳為於光學功能層形成步驟之後進行處理抗反射膜之表面之第2表面處理步驟,然後進行防污層形成步驟。
本實施方式之光學積層體10之製造方法中,較佳為將製造中途之光學積層體維持於減壓狀態下而連續進行第1表面處理步驟、密接層形成步驟、光學功能層形成步驟、第2表面處理步驟及防污層形成步驟。於將製造中途之光學積層體維持於減壓狀態下而連續進行第1表面處理步驟、密接層形成步驟、光學功能層形成步驟、第2表面處理步驟及防污層形成步驟之情形時,例如可使用具備專利文獻4所記載之薄膜形成裝置之裝置等作為濺鍍裝置。
作為用於本實施方式之光學積層體之製造方法之製造裝置,具體而言可列舉圖4所示之製造裝置20。
圖4所示之製造裝置20具備捲筒捲出裝置4、預處理裝置2A、濺鍍裝置1、預處理裝置2B、蒸鍍裝置3、及捲筒捲取裝置5。如圖4所示,該等裝置4、2A、1、2B、3、5依序連結。圖4所示之製造裝置20係卷對卷式之製造裝置,該製造裝置20自捲筒捲出基材,使該基材連續通過所連結之裝置(圖4中為預處理裝置2A、濺鍍裝置1、預處理裝置2B、蒸鍍裝置3)後加以捲取,藉此於基材上連續形成複數層。
於使用卷對卷式之製造裝置製造光學積層體10之情形時,製造中途之光學積層體10之搬送速度(線速度)可適當設定。搬送速度例如較佳為0.5~20 m/min,更佳為0.5~10 m/min。
<捲筒捲出裝置>
圖4所示之捲筒捲出裝置4具有:腔室34,其內部形成特定減壓氛圍;1個或複數個真空泵21,其等排出腔室34內之氣體而將腔室34內形成減壓氛圍(圖4中為1個);以及捲出輥23及導輥22,其等設置於腔室34內。如圖4所示,腔室34與濺鍍裝置1之腔室31連結。
捲出輥23上捲繞有於表面形成有硬塗層12之透明基材11。捲出輥23以特定搬送速度將表面形成有硬塗層12之透明基材11供給至預處理裝置2A。
<預處理裝置2A>
圖4所示之預處理裝置2A具有:腔室32,其內部形成特定減壓氛圍;罐輥26;複數個(圖4中為2個)導輥22;及電漿放電裝置42。如圖4所示,罐輥26、導輥22、電漿放電裝置42設置於腔室32內。如圖4所示,腔室32與濺鍍裝置1之腔室31連結。
罐輥26及導輥22以特定搬送速度搬送自捲筒捲出裝置4送出之形成有硬塗層12之透明基材11,並將硬塗層12之表面經處理之透明基材11送出至濺鍍裝置1。
如圖4所示,電漿放電裝置42與罐輥26之外周面相隔特定間隔而對向配置。電漿放電裝置42藉由輝光放電而使氣體電離。作為氣體,較佳為廉價且惰性、不影響光學特性之氣體,可使用例如氬氣、氧氣、氮氣、氦氣等。因為氬氣之質量較大,化學性穩定,且易獲得,由此較佳為使用氬氣作為氣體。
本實施方式中,作為電漿放電裝置42,較佳為使用藉由高頻電漿使氬氣離子化之輝光放電裝置。
<濺鍍裝置>
圖4所示之濺鍍裝置1具有:腔室31,其內部形成特定減壓氛圍;1個或複數個(圖4中為2個)真空泵21,其等排出腔室31內之氣體而使腔室31內形成減壓氛圍;成膜輥25;複數個(圖4中為2個)導輥22;及複數個(圖4所示之例中為4個)成膜部41。如圖4所示,成膜輥25、導輥22、及成膜部41設置於腔室31內。如圖4所示,腔室31與預處理裝置2B之腔室32連結。
成膜輥25及導輥22以特定搬送速度,搬送自預處理裝置2A送出之形成有表面經處理之硬塗層12之透明基材11,且將於硬塗層12上形成有密接層13及光學功能層14之透明基材11供給至預處理裝置2B。
圖4所示之濺鍍裝置1中,於在成膜輥25上移行之透明基材11之硬塗層12上藉由濺鍍而積層密接層13,並於該密接層13上交替積層高折射率層14a與低折射率層14b而形成光學功能層14。
如圖4所示,成膜部41係與成膜輥25之外周面相隔特定間隔而對向配置,且以包圍成膜輥25之方式設置有複數個。成膜部41之數量取決於密接層13與形成光學功能層14之高折射率層14a及低折射率層14b之合計積層數。由於密接層13與形成光學功能層14之高折射率層14a及低折射率層14b之合計積層數較多,因此於難以確保鄰接之成膜部41間之距離之情形時,亦可於腔室31內設置複數個成膜輥25,且於各成膜輥25之周圍配置成膜部41。於設置複數個成膜輥25之情形時,亦可根據需要而設置導輥22。亦可將複數台設置有成膜輥25與成膜部41之腔室31加以連結。又,為了易於確保鄰接之成膜部41間之距離,亦可適當變更成膜輥25之直徑。
於各成膜部41分別設置有特定靶材(未圖示)。藉由周知構造對靶材施加電壓。本實施方式中,於靶材附近設置有:氣體供給部(未圖示),其對靶材以特定流量供給特定反應性氣體及載氣;及周知之磁場產生源(未圖示),其於靶材表面形成磁場。
靶材之材料、及反應性氣體之種類及流量係根據藉由通過成膜部41與成膜輥25之間而形成於透明基材11上之密接層13、高折射率層14a、低折射率層14b之組成來適當決定。例如,於形成包含SiO2
之層之情形時,使用Si作為靶材,且使用O2
作為反應性氣體。又,例如,於形成包含Nb2
O5
之層之情形時,使用Nb作為靶材,且使用O2
作為反應性氣體。
本實施方式中,自成膜速度高速化之觀點考慮,較佳為使用磁控管濺鍍法作為濺鍍法。
再者,濺鍍法並不限定於磁控管濺鍍法,亦可使用2極濺鍍方式、3極濺鍍方式等,該2極濺鍍方式係利用藉由直流輝光放電或高頻而產生之電漿,該3極濺鍍方式係附加有熱陰極。
濺鍍裝置1具備作為測定部之光學監視器(未圖示),該光學監視器於成膜作為密接層13及光學功能層14之各層之後,測定各層之光學特性。藉此,可確認所形成之密接層13及光學功能層14之品質。濺鍍裝置1例如於具有2個以上之腔室之情形時,較佳為於各腔室內設置光學監視器。
作為光學監視器(未圖示),可列舉例如藉由能夠於寬度方向掃描之光學頭而測定形成於硬塗層12上之密接層13及光學功能層14的寬度方向之光學特性之機器。於具備該光學監視器之情形時,例如測定反射率之峰值波長作為光學特性,並換算成光學厚度,藉此可測定密接層13及光學功能層14之寬度方向之光學厚度分佈。藉由使用光學監視器測定光學特性,可一面實時調整濺鍍條件,一面形成具備具有最佳光學特性之密接層13及光學功能層14之光學積層體10。
<預處理裝置2B>
圖4所示之預處理裝置2B具有:腔室32,其內部形成特定減壓氛圍;罐輥26;複數個(圖4中為2個)導輥22;及電漿放電裝置42。如圖4所示,罐輥26、導輥22、及電漿放電裝置42設置於腔室32內。如圖4所示,腔室32與蒸鍍裝置3之腔室33連結。
罐輥26及導輥22以特定搬送速度搬送自濺鍍裝置1送出之形成有至光學功能層14為止之各層之透明基材11,並將光學功能層14之表面經處理之透明基材11送出至蒸鍍裝置3。
作為電漿放電裝置42,可使用例如與預處理裝置2A相同者。
<蒸鍍裝置>
圖4所示之蒸鍍裝置3具有:腔室33,其內部形成特定減壓氛圍;1個或複數個真空泵21,其等排出腔室33內之氣體而將腔室33內形成減壓氛圍(圖4中為1個);複數個(圖4中為4個)導輥22;蒸鍍源43;及加熱裝置53。如圖4所示,導輥22、及蒸鍍源43設置於腔室33內。腔室33與捲筒捲取裝置5之腔室35連結。
蒸鍍源43與光學功能層14之表面經處理之透明基材11對向配置,該透明基材11被於鄰接之2個導輥22間大致水平地搬送。蒸鍍源43將包含形成防污層15之材料之蒸發氣體供給至光學功能層14上。蒸鍍源43之方向可任意設定。
加熱裝置53將形成防污層15之材料加熱至蒸氣壓溫度。作為加熱裝置53,可使用以電阻加熱方式、加熱器加熱方式、感應加熱方式、電子束方式加熱之裝置等。電阻加熱方式中,將收容形成防污層15之防污性材料之容器作為電阻體進行通電加熱。加熱器加熱方式中,利用配置於容器外周之加熱器加熱容器。感應加熱方式中,自設置於外部之感應線圈藉由電磁感應作用而加熱容器或防污性材料。
圖4所示之蒸鍍裝置3具備:導引板(未圖示),其將利用蒸鍍源43蒸發之蒸鍍材料導引至特定位置;膜厚計(未圖示),其觀察藉由蒸鍍而形成之防污層15之厚度;及真空壓力計(未圖示),其測定腔室33內之壓力;及電源裝置(未圖示)。
導引板只要可將蒸發之蒸鍍材料導引至所需位置,則亦可為任意形狀。若非必需,則亦可不具備導引板。
作為真空壓力計,可使用例如離子計等。
作為電源裝置,可列舉例如高頻電源等。
<捲筒捲取裝置>
圖4所示之捲筒捲取裝置5具有:腔室35,其內部形成特定減壓氛圍;1個或複數個真空泵21(圖4中為1個),其等排出腔室35內之氣體而將腔室35內形成減壓氛圍;及捲取輥24及導輥22,其等設置於腔室35內。
於捲取輥24捲繞有表面形成有至防污層15為止之各層之透明基材11(光學積層體10)。捲取輥24及導輥22以特定捲取速度捲取光學積層體10。
亦可根據需要而使用載體膜。
作為圖4所示之製造裝置20所具備之真空泵21,可使用例如乾泵、油旋轉泵、渦輪分子泵、油擴散泵、低溫泵、濺射離子泵、吸氣泵等。可於各腔室31、32、33、34、35中適當選擇或者組合使用真空泵21以形成所需之減壓狀態。
真空泵21只要可將濺鍍裝置1之腔室31與蒸鍍裝置3之腔室33雙方維持於所需減壓狀態即可,製造裝置20中之真空泵21之設置位置及數量並未特別限定。又,圖4所示之製造裝置20中,捲筒捲出裝置4、預處理裝置2A、濺鍍裝置1、預處理裝置2B、蒸鍍裝置3及捲筒捲取裝置5相連結。因此,真空泵21亦可分別設置於腔室31、32、33、34、35,只要可將濺鍍裝置1之腔室31與蒸鍍裝置3之腔室33雙方維持於所需減壓狀態,亦可僅設置於腔室31、32、33、34、35中之一部分腔室。
接下來,使用圖4所示之製造裝置20,說明將製造中途之光學積層體10維持於減壓狀態下而連續進行第1表面處理步驟、密接層形成步驟及光學功能層形成步驟、第2表面處理步驟、防污層形成步驟之方法。
首先,於捲筒捲出裝置4之腔室34內設置捲出輥23,該捲出輥23上捲繞有表面形成有硬塗層12之透明基材11。然後,使捲出輥23及導輥22旋轉,以特定搬送速度將表面形成有硬塗層12之透明基材11送出至預處理裝置2A。
接下來,於預處理裝置2A之腔室32內,進行第1表面處理步驟作為對供形成密接層13及光學功能層14之表面之預處理。本實施方式中,對形成有硬塗層12之透明基材11進行第1表面處理步驟。
第1表面處理步驟中,一面使罐輥26及導輥22旋轉而以特定搬送速度搬送形成有硬塗層12之透明基材11,一面處理於罐輥26上移行之硬塗層12之表面。
作為硬塗層12之表面處理方法,可使用例如輝光放電處理、電漿處理、離子蝕刻、鹼處理等。該等中,由於輝光放電處理可進行大面積處理,因此較佳為使用輝光放電處理。輝光放電處理可以例如0.1~10 kwh之處理強度進行。
藉由對硬塗層12之表面進行輝光放電處理,可將硬塗層12之表面以奈米水準粗糙面化,並且除去硬塗層12表面上所存在之結合力較弱之物質。其結果,硬塗層12與形成於硬塗層12上之光學功能層14之密接性變得良好。
接下來,於濺鍍裝置1之腔室31內進行密接層形成步驟及光學功能層形成步驟。具體而言,一面使成膜輥25及導輥22旋轉而以特定搬送速度搬送形成有硬塗層12之透明基材11,一面於在成膜輥25上移行之硬塗層12上形成密接層13及光學功能層14。
本實施方式中,藉由使設置於各成膜部41之靶材之材料、或自氣體供給部供給之反應性氣體之種類及流量發生變化來進行濺鍍而形成密接層13,並於該密接層13上交替積層高折射率層14a與低折射率層14b。即,於濺鍍裝置1內連續進行密接層形成步驟與光學功能層形成步驟。藉此,形成密接層13與作為抗反射層之光學功能層14。
於形成SiOx
膜作為密接層13之情形時,較佳為使用矽靶材,於氧氣與氬氣之混合氣體氛圍下藉由反應性濺鍍而形成SiOx
膜。
於藉由濺鍍而連續積層密接層13、高折射率層14a及低折射率層14b之情形時,亦可於密接層13之成膜時、高折射率層14a之成膜時、及低折射率層14b之成膜時改變靶材之材料而進行成膜。又,例如亦可使用1種材料作為靶材,藉由改變濺鍍時之氧(反應性氣體)流量而交替形成包含靶材材料之層與包含靶材材料之氧化物之層來作為密接層13、高折射率層14a及低折射率層14b。
用以形成密接層13及光學功能層14之濺鍍時之壓力雖根據所要濺鍍之金屬而不同,但可為2 Pa以下,較佳為1 Pa以下,更佳為0.6 Pa以下,尤佳為0.2 Pa以下。於濺鍍時之壓力為1 Pa以下之減壓狀態下,成膜分子之平均自由行程變長,成膜分子維持著較高能量積層,因此為緻密且更加良好之膜質。
其後,將硬塗層12上形成有密接層13及光學功能層14之透明基材11藉由成膜輥25及導輥22之旋轉而送出至預處理裝置2B。
接下來,於預處理裝置2B之腔室32內,進行第2表面處理步驟作為對形成有防污層15之表面之預處理。本實施方式中,對形成有藉由光學功能層形成步驟而獲得之光學功能層14之透明基材11,不與大氣接觸地維持於減壓狀態下連續進行第2表面處理步驟。
第2表面處理步驟中,一面使罐輥26及導輥22旋轉而以特定搬送速度搬送形成有至光學功能層14為止之各層之透明基材11,一面對在罐輥26上移行之光學功能層14之表面進行放電處理。
作為光學功能層14之表面處理方法,可使用例如輝光放電處理、電漿處理、離子蝕刻、鹼處理等。該等中,由於輝光放電處理能夠進行大面積處理,因此較佳為使用輝光放電處理。
當對光學功能層14之表面進行放電處理時,光學功能層14之表面受到蝕刻,從而光學功能層14之表面粗糙度發生變化。光學功能層14之表面粗糙度Ra可藉由使放電處理時之累計輸出為適當範圍而得以控制。本實施方式中,累計輸出係指將放電處理時照射至光學功能層14之輝光放電輸出與照射時間之積除以每單位面積而得的值。
放電處理之條件可適當設定。藉由適當設定放電處理之條件,而使得光學功能層14與形成於其上之防污層15之密接性良好,從而可獲得耐摩擦性及耐鹼性更加良好之光學積層體10。
放電處理後之光學功能層14之表面粗糙度Ra會根據設置於光學功能層14之下之硬塗層12之表面粗糙度而不同。
又,放電處理後之光學功能層14之表面粗糙度Ra,會影響形成於光學功能層14之上之防污層15之表面粗糙度Ra。
第2表面處理步驟中,可例如以由下述(式1)表示之表面粗糙度之變化率為1~25%之方式處理光學功能層之表面。
表面粗糙度之變化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)
(式(1)中,Ra1表示對表面進行處理前之光學功能層之表面粗糙度(Ra),Ra2表示對表面進行處理後之光學功能層之表面粗糙度(Ra)。)
第2表面處理步驟較佳為以由(式1)表示之表面粗糙度之變化率為5%~25%之方式進行,更佳為以表面粗糙度之變化率為8%~25%之方式進行,進而佳為以表面粗糙度之變化率為8%~20%之方式進行,進而更佳為以表面粗糙度之變化率為8%~15%之方式進行,更進而佳為以表面粗糙度之變化率為10%~14%之方式進行。若由(式1)表示之表面粗糙度之變化率為1%以上,則藉由進行第2表面處理步驟而提高光學功能層14與防污層15之密接性之效果較為顯著。又,若由(式1)表示之表面粗糙度之變化率為25%以下,則光學功能層14之厚度適當,因此於光學功能層14上形成厚度均勻之防污層15。
本實施方式中,光學功能層14之表面粗糙度Ra可藉由以下所示之方法測定。使用原子力顯微鏡(AFM:Atomic Force Microscope),測定光學功能層14表面上之1 μm2
面積範圍之表面粗糙度Ra。
其後,將光學功能層14之表面經處理之透明基材11藉由罐輥26及導輥22之旋轉而送出至蒸鍍裝置3。
接下來,於蒸鍍裝置3之腔室33內進行防污層形成步驟。本實施方式中,將藉由第2表面處理步驟而獲得之光學功能層14之表面經處理之透明基材11,不與大氣接觸地維持於減壓狀態下連續進行防污層形成步驟。防污層形成步驟中,一面使導輥22旋轉而以特定搬送速度搬送光學功能層14之表面經處理之透明基材11,一面於光學功能層14之表面蒸鍍蒸鍍源43。
本實施方式中,例如將包含形成防污層15之氟系有機化合物之防污性材料藉由加熱裝置53而加熱至蒸氣壓溫度,於減壓環境下自蒸鍍源43供給所獲得之蒸發氣體並使之附著於表面經處理之光學功能層14,從而藉由真空蒸鍍形成防污層15。
進行防污層15之真空蒸鍍時之壓力,例如較佳為0.05 Pa以下,更佳為0.01 Pa以下,尤佳為0.001 Pa以下。於進行真空蒸鍍時之壓力為0.05 Pa以下之減壓狀態下,成膜分子之平均自由行程較長,蒸鍍能量提高,因此獲得緻密且更加良好之防污層15。
藉由以上方法獲得光學積層體10,該光學積層體10於藉由濺鍍而形成之密接層13及光學功能層14上,藉由真空蒸鍍而形成有防污層15。
其後,將形成有至防污層15為止之各層之透明基材11(光學積層體10)藉由導輥22之旋轉而送出至捲筒捲取裝置5。
接下來,於捲筒捲取裝置5之腔室35內,藉由捲取輥24及導輥22之旋轉而將光學積層體10捲繞於捲取輥24。
本實施方式中,較佳為於減壓下連續進行光學功能層形成步驟與防污層形成步驟。尤其,於如使用圖4所示之製造裝置20之本實施方式之製造方法以卷對卷之方式連續製造作為捲繞體之光學積層體10之情形時,更佳為於維持著減壓狀態之線內連續進行光學功能層形成步驟與防污層形成步驟。線內係指不使光學功能層形成步驟中形成之光學功能層14與大氣接觸地進行防污層形成步驟。藉由於減壓下連續進行光學功能層形成步驟與防污層形成步驟,而抑制於形成防污層15之前,於光學功能層形成步驟中所形成之光學功能層14上產生自然氧化膜。又,可防止捲取捲筒時之異物等污染物附著於光學功能層14上而妨礙光學功能層14與防污層15之密接性。因此,與在光學功能層形成步驟後將形成有至光學功能層14為止之各層之透明基材11自減壓狀態之腔室取出,其後再次設置於腔室內而於減壓下進行防污層形成步驟之情形相比,獲得光學功能層14與防污層15之密接性良好且透明性優異之光學積層體。
又,本實施方式之光學積層體10所具有之防污層15為蒸鍍膜,因此與例如藉由塗佈法而形成之防污膜相比獲得較高之耐磨損性。推測其原因在於以下。即,於藉由塗佈法形成之防污膜中,存在由塗料中所含之溶劑引起之空隙。相對於此,蒸鍍膜中不存在由溶劑所引起之空隙。因此,推測蒸鍍膜與藉由塗佈法形成之防污膜相比為高密度,且可獲得較高之耐磨損性、耐鹼性。
本實施方式之光學積層體10之製造方法包含:密接層形成步驟,其形成密接層13;光學功能層形成步驟,其藉由交替積層高折射率層14a與低折射率層14b而形成光學功能層14;第2表面處理步驟,其對光學功能層14之表面進行處理;及防污層形成步驟,其於表面經處理之光學功能層14上形成防污層15。因此,光學功能層14與形成光學功能層14上之防污層15之密接性良好,且摩擦性及耐鹼性更加良好。
尤其,於在第2表面處理步驟中以由(式1)表示之表面粗糙度之變化率為1~25%之方式處理光學功能層表面之情形時,光學功能層14之表面變化為適當粗糙度,且藉由蝕刻而表面活化,因此光學功能層14與形成於其上之防污層15之反應性提高,因而較佳。
又,本實施方式之光學積層體10之製造方法中,可以卷對卷之方式連續形成光學積層體10,且可高精度控制膜厚,因此較佳為於光學功能層形成步驟中,藉由濺鍍而形成光學功能層14。
本實施方式中,於將製造中途之光學積層體維持於減壓狀態下連續進行第1表面處理步驟、光學功能層形成步驟、第2表面處理步驟及防污層形成步驟之情形時,只要為不妨礙各製造步驟之範圍,則例如於濺鍍裝置與蒸鍍裝置中腔室內之減壓條件亦可不同。
本實施方式中,較佳為於密接層形成步驟、光學功能層形成步驟、防污層形成步驟之任一以上步驟中,經時性地藉由測定器測定成膜結果,並將其結果反饋給相當於後步驟之製造步驟之條件。藉此,易於使光學積層體整體之特性最佳化,從而可使光學積層體之面內特性均勻。又,亦可藉由測定器而進行同一步驟中之製造條件之反饋。該情形時,該步驟中成膜之層具有均勻且穩定之特性。
本實施方式中,列舉於光學功能層形成步驟與防污層形成步驟之間進行第2表面處理步驟之情形進行說明,但第2表面處理步驟只要根據需要進行即可,亦可不進行該第2表面處理步驟。即便於不進行第2表面處理步驟之情形時,亦較佳為於減壓下連續進行光學功能層形成步驟與防污層形成步驟。
本實施方式中,列舉使用圖4所示之製造裝置20以卷對卷之方式連續製造光學積層體10之情形進行說明,該製造裝置20具備預處理裝置2A、濺鍍裝置1、預處理裝置2B、蒸鍍裝置3、捲筒捲出裝置4、及捲筒捲取裝置5,但製造光學積層體10之製造裝置並不限定於圖4所示之製造裝置20。
例如,亦可使用如下製造裝置,該製造裝置不包含預處理裝置2A及預處理裝置2B,且捲筒捲出裝置4、濺鍍裝置1、蒸鍍裝置3、及捲筒捲取裝置5依序連結。
圖4所示之製造裝置20亦可於蒸鍍裝置3之腔室33與預處理裝置2B之腔室32之間設置預處理室(未圖示),該預處理室用以對供形成防污層15之光學功能層14之表面進行清洗。
圖4所示之製造裝置20亦可於蒸鍍裝置3之腔室33與捲筒捲取裝置5之腔室35之間設置後處理室(未圖示),該後處理室用以進行形成有至防污層15為止之各層之透明基材11之冷卻及/或檢查。
圖4所示之製造裝置20亦可於捲筒捲出裝置4與濺鍍裝置1之間設置有硬塗層形成裝置,該硬塗層形成裝置用以於透明基材11之表面形成硬塗層12。該情形時,較佳為不僅光學功能層14與防污層15,而且硬塗層12亦以卷對卷之方式連續製造。
本實施方式中,列舉使用濺鍍裝置進行光學功能層形成步驟,且使用蒸鍍裝置進行防污層形成步驟之情形進行說明,但於不進行第2表面處理步驟之情形時,亦可於相同裝置(1個腔室內)進行光學功能層形成步驟與防污層形成步驟。
本實施方式之光學積層體10中,亦可根據需要而於透明基材之與形成有光學功能層等之面對向之面設置各種層。例如,亦可設置用於與其他構件之接著之黏著劑層。又,亦可隔著該黏著劑層而設置其他光學膜。作為其他光學膜,可列舉例如偏光膜、相位差補償膜、作為1/2波長板、1/4波長板發揮功能之膜等。
又,亦可於透明基材之對向之面直接形成具有抗反射、選擇反射、防眩、偏光、相位差補償、視角補償或放大、導光、擴散、亮度提高、色相調整、導電等功能之層。
又,光學積層體之形狀可為平滑形狀,亦可為蛾眼、具有表現防眩功能之奈米級之凹凸構造之形狀。又,亦可為透鏡、稜鏡等自微級至毫級之幾何學形狀。形狀可藉由例如光微影與蝕刻之組合、形狀轉印、熱壓等形成。本實施方式中,藉由蒸鍍等成膜,因此即便於基材具有例如凹凸形狀之情形時,亦可維持其凹凸形狀。
本實施方式之物品係例如液晶顯示面板、有機EL(Electroluminescence,電致發光)顯示面板等於圖像顯示部之顯示面設置有上述光學積層體10者。藉此,可對例如智慧型手機、操作機器之觸摸面板顯示部賦予較高之耐磨損性及耐鹼性,從而可實現耐久性優異、適合實際使用之圖像顯示裝置。
又,作為物品,並未限定於圖像顯示裝置,只要為例如表面設置有本實施方式之光學積層體之窗玻璃、護目鏡、太陽電池之受光面、智慧型手機之畫面、個人電腦之顯示器、資訊輸入終端、平板終端、AR(augmented reality,擴增實境)器件、VR(virtual reality,虛擬實境)器件、光電顯示板、玻璃桌表面、遊戲機、飛機、火車等之運行支援裝置、導航系統、儀錶板、光學感測器之表面等能夠應用光學積層體10者,則可為任意者。
以上,對本發明之實施方式進行了說明,但該實施方式係作為例子提出者,並非意欲限定發明之範圍。該實施方式能夠以其他各種方式實施,且可於不脫離發明要旨之範圍進行各種省略、替換、變更。該等實施方式及其變化包含於發明之範圍及要旨中,且同樣包含於申請專利範圍所記載之發明及與其相同之範圍內。
例如,可形成防眩層來代替硬塗層12或根據需要而附加具有柔軟性之軟塗層等任意功能層。亦可積層該等層。
[實施例]
驗證本發明之效果。
再者,以下實施例及比較例中製作之光學積層體係作為抗反射膜發揮功能之一例,本發明之主旨並未限定於該等。
(實施例1~5、比較例2)
首先,準備平均粒徑50 nm之氧化矽粒子(填料)之含量相對於樹脂組成物(黏合劑樹脂)之總固體成分而為28質量%之光硬化性樹脂組成物。樹脂組成物如表1所示係使氧化矽粒子、丙烯酸酯、調平劑、及光聚合起始劑溶解於溶劑中製備而成。
[表1]
品名 | 製造商 | 構造 | 調配比 | |
丙烯酸酯 | CN968 | 沙多瑪 | 丙烯酸胺基甲酸酯寡聚物 | 8% |
SR444 | 沙多瑪 | 新戊四醇三丙烯酸酯 | 7% | |
SR610 | 沙多瑪 | 聚乙二醇(600)二丙烯酸酯 | 11% | |
氧化矽粒子 | IPA-ST-L | 日產化學 | 粒徑40~50 nm氧化矽溶膠(固體成分30%,IPA溶媒) | 37% |
起始劑 | Irgacure184 | BASF | 起始劑 | 2% |
溶劑 | PGMA | 丙二醇單甲醚乙酸酯 | 30% | |
乙酸丁酯 | 5% | |||
合計 | 100% | |||
調平劑 | BYK377 | BYK | 聚醚改性聚二甲基矽氧烷 | 於每上述合計100重量份為0.01重量份 |
SR610:聚乙二醇二丙烯酸酯、聚乙二醇鏈之平均分子量600
CN968:具有聚酯骨架之6官能脂肪族丙烯酸胺基甲酸酯
Irgacure184:1-羥基環己基苯基酮
<硬塗層形成步驟>
準備厚度80 μm、長度3900 m之捲筒狀TAC膜作為透明基材11,於TAC膜上藉由凹版塗佈機而塗佈表1所示之光硬化性樹脂組成物,照射光而使該樹脂組成物硬化,形成厚度5 μm之硬塗層12。
接下來,以卷對卷之方式藉由以下所示之方法而於形成有硬塗層12之透明基材11上,依序連續製造密接層13、光學功能層14、及防污層15而製作出實施例1~5、比較例2之光學積層體(抗反射膜)。
使用圖4所示之製造裝置20作為製造裝置。又,線速度設為2 m/min。於將製造中途之光學積層體維持於減壓狀態下連續進行第1表面處理步驟、密接層形成步驟、光學功能層形成步驟、第2表面處理步驟及防污層形成步驟。
<第1表面處理步驟>
接下來,將輝光放電處理之處理強度設為4000 W・min/m2
而對硬塗層12進行輝光放電處理。
<密接層形成步驟及光學功能層形成步驟>
於壓力1.0 Pa以下之腔室內,在輝光放電處理後之硬塗層12上藉由濺鍍而成膜厚度5 nm之包含SiOx
之密接層13,且於密接層上成膜光學功能層14(積層體),該光學功能層14包含厚度15 nm之Nb2
O5
膜(高折射率層)、厚度38 nm之SiO2
膜(低折射率層)、厚度30 nm之Nb2
O5
膜(高折射率層)、及厚度102 nm之SiO2
膜(低折射率層)。
<第2表面處理步驟>
對光學功能層14之表面進行輝光放電處理。表2中示出輝光放電處理之累計輸出。表2中示出將實施例1之輝光放電處理之累計輸出設為100之相對值(輸出相對值)。實施例1中,將輝光放電處理之累計輸出設為326 W・min/m2
而進行處理。
又,表2中示出下述(式1)表示之表面粗糙度之變化率。
表面粗糙度之變化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)
(式(1)中,Ra1表示對表面進行處理前之光學功能層之表面粗糙度(Ra),Ra2表示對表面進行處理後之光學功能層之表面粗糙度(Ra)。)
<防污層形成步驟>
接下來,以蒸鍍腔室內壓力0.01 Pa以下、蒸鍍溫度230℃、線速度2.0 m/min,於光學功能層14上藉由蒸鍍而形成包含具有氟之有機化合物即具有全氟聚醚基之烷氧基矽烷化合物(KY-1901,信越化學工業股份公司製造)之防污層15。將所獲得之防污層15之光學膜厚示於表2。
其後,捲取為捲筒狀而獲得實施例1~5、比較例2之光學積層體(抗反射膜)。
[表2]
實施例1 | 實施例2 | 實施例3 | 實施例4 | 實施例5 | 比較例1 | 比較例2 | 比較例3 | |||
透明基材 | TAC 膜 | TAC 膜 | TAC 膜 | TAC 膜 | TAC 膜 | TAC 膜 | TAC 膜 | TAC 膜 | ||
放電處理輸出相對值 | 100 | 100 | 100 | 233 | 333 | 0 | 1000 | 無放電處理(塗佈) | ||
光學膜厚(nm) | 5.0 | 4.0 | 3.0 | 5.0 | 5.0 | 5.0 | 5.0 | 7 | ||
防污層Ra(nm) | 7.9 | 6.3 | 7.0 | 7.8 | 7.2 | 5.1 | 8.6 | 2.3 | ||
表面處理前後之表面粗糙度Ra變化率(%) | 10 | 10 | 10 | 12 | 14 | - | 30 | - | ||
初始 狀態 | 接觸角(°) | 純水 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 114 |
油酸 | 84 | - | - | - | - | - | - | - | ||
正十六烷 | 73 | - | - | - | - | - | - | - | ||
二碘甲烷 | 93 | - | - | - | - | - | - | - | ||
ESCA | 氟量 | 210517 | 212170 | 193200 | - | - | - | - | 200218 | |
XRF | 氟量 | 0.0474 | 0.0400 | 0.0396 | 0.0513 | 0.0507 | 0.0570 | 0.0528 | 0.0579 |
(比較例1)
與實施例1同樣地進行至光學功能層形成步驟之後,不進行表面處理步驟而進行防污層形成步驟,於光學功能層14上形成防污層15,除此以外與實施例1同樣地製作比較例1之光學積層體(抗反射膜)。
(比較例3)
與實施例1同樣地進行至光學功能層形成步驟之後,捲取形成有硬塗層12、密接層13、及光學功能層14之TAC膜,自製造裝置取出該TAC膜而設置於卷對卷式之塗佈裝置(塗佈機)。其後,於大氣壓下,捲出形成有硬塗層12、密接層13及光學功能層14之TAC膜,使用凹版塗佈機以線速度20 m/min於光學功能層14之SiO2
膜(低折射率層)上塗佈防污劑。
使用將具有全氟聚醚基之烷氧基矽烷化合物(KY-1901,信越化學工業股份公司製造)用氟溶劑(Fluorinert FC-3283:3M日本股份公司製造)稀釋至濃度0.1質量%而得者作為防污劑。以乾燥後之厚度為表2所示之膜厚之方式塗佈防污劑。
針對所獲得之實施例1~5、比較例1~3之光學積層體(抗反射膜),分別藉由以下所示之方法而調查防污層之表面粗糙度Ra。將其結果示於表2。
(防污層之表面粗糙度Ra之測定)
自捲取光學積層體而成之各捲筒之長度方向中央位置且捲筒寬度方向中央位置,切出50 mm×50 mm之測定樣品。使用原子力顯微鏡(AFM:Atomic Force Microscope)(商品名SPA400,NanoNaviII;日立股份公司製造)觀察樣品表面,測定1 μm2
面積範圍之表面粗糙度Ra。
防污層之表面粗糙度Ra受其下之光學功能層之表面粗糙度Ra影響。尤其,藉由蒸鍍形成之防污層並未如藉由塗佈法形成之防污層存在由塗料中所含之溶劑所引起之空隙,而是高密度地形成,因此與藉由塗佈法形成之防污層相比,其下之光學功能層之表面粗糙度Ra之影響較大。光學功能層之表面因進行輝光放電處理而表面粗糙度變大,因此防污層之表面粗糙度受其影響而變大。又,於光學功能層與大氣接觸之情形時,於光學功能層之上形成有自然氧化膜,藉由輝光放電處理而使表面粗糙面化之效果較小,與此相對,於不與大氣接觸而形成光學功能層及防污層之情形時,不受上述影響。又,實施例1與比較例1之表面粗糙度之差係由有無進行輝光放電處理所致。
又,分別調查實施例1~5、比較例1~3之光學積層體(抗反射膜)之特性。將其結果示於表2~表4。實施例1~5、比較例1~2之特性測定中所使用的試驗片係自捲取光學積層體而成之捲筒之長度方向大致中央附近切出者。
[表3]
實施例1 | 實施例2 | 實施例3 | 實施例4 | 實施例5 | 比較例1 | 比較例2 | 比較例3 | ||||||||||||
廢布擦傷性試驗 | 純水接觸角(°) | 往返0次 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 114 | |||||||||
往返500次 | 120 | 120 | 117 | 120 | 119 | 110 | 112 | 114 | |||||||||||
往返1000次 | 120 | 117 | 114 | 120 | 118 | 108 | 111 | 112 | |||||||||||
往返2000次 | 120 | 114 | 111 | 120 | 113 | 103 | 108 | 101 | |||||||||||
往返4000次 | 119 | 111 | 108 | 120 | 109 | 103 | 105 | 94 | |||||||||||
接觸角差 | 1 | 9 | 12 | 0 | 11 | 17 | 15 | 20 | |||||||||||
ESCA氟量 | 試驗前 | 210517 | 212170 | 193200 | 240275 | 240138 | 221656 | 240258 | - | ||||||||||
試驗後 | 209800 | - | - | 187210 | 174074 | 154836 | 157374 | - | |||||||||||
殘存率 | 99.7% | - | - | 77.9% | 72.5% | 69.9% | 65.5% | - | |||||||||||
耐鹼試驗 | 色相變化 | △E值(SCI) | 0.8 | 2.3 | 3.6 | 2.9 | 3.5 | 13.3 | 6.3 | 36.7 | |||||||||
ESCA氟量 | 試驗前 | 201884 | - | - | - | - | - | - | - | ||||||||||
試驗後 | 198891 | - | - | - | - | - | - | - | |||||||||||
殘存率 | 98.5% | - | - | - | - | - | - | - | |||||||||||
XRF氟量 | 試驗前 | 0.0474 | 0.0400 | 0.0396 | 0.0513 | 0.0507 | 0.0570 | 0.0528 | 0.0579 | ||||||||||
試驗後 | 0.0433 | 0.0387 | 0.0377 | 0.043 | 0.0464 | 0.0108 | 0.0025 | 0.0100 | |||||||||||
殘存率 | 91.4% | 96.8% | 95.2% | 83.8% | 91.5% | 18.9% | 4.7% | 17.3% | |||||||||||
[表4]
實施例1 | 實施例2 | 實施例3 | 比較例1 | |||
鋼絲絨擦傷性試驗 | 純水接觸角(°) | 往返0次 | 120 | 118 | 121 | 117 |
往返250次 | 114 | - | - | 105 | ||
往返500次 | 112 | 109 | 109 | 99 | ||
接觸角差 | 7 | 9 | 12 | 18 | ||
色相變化 | △E值(SCI) | 2.4 | - | - | - | |
△E值(SCE) | 0.5 | - | - | - |
(1)接觸角(防污性)
(1-1)相對於純水之接觸角測定試驗
使用全自動接觸角計DM-700(協和界面化學股份公司製造),於以下條件藉由橢圓擬合法進行測定。將蒸餾水放入玻璃注射器中,於該玻璃注射器之前端安裝不鏽鋼製之針,向實施例1~5、比較例1~2之光學積層體(試驗片)滴下純水。
純水之滴下量:2.0 μL
測定溫度:25℃
於試驗片表面之任意6處測定滴下純水經過4秒後之接觸角,將其平均值設為純水接觸角。
(1-2)相對於油酸、正十六烷、二碘甲烷(試劑)之接觸角測定試驗
使用全自動接觸角計DM-700(協和界面化學股份公司製造),於以下條件藉由橢圓擬合法進行測定。將上述各試劑放入玻璃注射器中,於該玻璃注射器之前端安裝不鏽鋼製之針,分別向實施例1之光學積層體(試驗片)滴下各試劑。
各試劑之滴下量:2.0 μL
測定溫度:25℃
於試驗片表面之任意10處測定滴下各試劑經過4秒後之接觸角,將其平均值設為相對於油酸、正十六烷、二碘甲烷各者之接觸角。
(2)氟量測定試驗
測定實施例1~5、比較例1~3之光學積層體(試驗片)之氟量(cps:每單位時間之計數)(清洗前氟量(初始狀態之氟量))。
氟量之測定中使用X射線光電子分光測定器(Electron Spectroscopy for Chemical Analysis,ESCA)(PHI5000 VersaProb*eIII,ULVAC-PHI股份公司製造)、及螢光X射線分析法(X-ray fluorescence analysis,XRF)(EDX-8000,股份公司島津製作所製造)。藉由X射線光電子分光測定器及螢光X射線分析法求出之氟值(cps),係自測定所得之初始狀態為n=3、耐鹼試驗後為n=15之結果算出之平均值。
(3)耐鹼性試驗
測定實施例1~5、比較例1~3之光學積層體(試驗片)之光學特性(處理前樣品)。
接下來,調整濃度0.1 mol/L之氫氧化鈉水溶液(試劑)。
然後,使內徑38 mm之圓筒狀構件密接於實施例1~5、比較例1~2之光學積層體(試驗片),向其中滴下試劑,並用玻璃板蓋住上表面開口。然後,保持於液溫55℃而靜置4小時後,用蒸餾水清洗各試驗片而獲得處理後樣品。
(3-1)光學特性測定(色相變化)
用透明帶將上述處理前樣品及處理後樣品之背面貼附於黑色壓克力板而不使背面反射。然後,測定光學特性。
光學測定中使用積分球分光測色計(SP-64:X-rite股份公司製造)。設定為D65光源、10°,算出處理前樣品及處理後樣品之利用SCI(Specular Component Include,考慮有正反射光之反射色之測定方法)所測得的上述式(2)所示之L*a*b*(依據CIE1976)值之變化量即ΔE值。
(3-2)利用鹼溶液之氟殘留量測定試驗
與上述(2)之試驗同樣地,使用ESCA或XRF,利用鹼溶液測定處理後樣品之氟量(cps),並算出處理後樣品之氟殘存率(%)。
(4)使用鋼絲絨之擦傷性試驗
使用依據JIS L0849之摩擦試驗機I形,使摩擦體沿實施例1之光學積層體(試驗片)之表面水平往返運動而獲得試驗片。
使用鋼絲絨(邦士達股份公司製造#0000號)作為摩擦體。試驗設定為負重1000 g/cm2
、行程75 mm、速度7 mm/s。表4中示有摩擦體之水平往返次數。
(4-1)接觸角
與上述(1-1)之試驗同樣地測定摩擦後之試驗片之接觸角,求出試驗片之摩擦前與水平往返運動500次之摩擦後之接觸角差。於摩擦後30分鐘以內實施試驗。
(4-2)光學特性測定(色相變化)
與上述(3-1)之試驗同樣地,算出試驗片之摩擦前與水平往返運動500次之摩擦後之利用SCI測得的ΔL*a*b*值之變化量即ΔE值。
又,與上述(3-1)之試驗同樣地,算出試驗片之摩擦前與水平往返運動500次之摩擦後之利用SCE(Specular Component Exclude,不考慮正反射光之反射色之測定法)所測得的上述式(3)所示之L*
a*
b*
值之變化量即ΔE值。
(5)使用廢布(不織布抹布)之擦傷性試驗
除使用廢布(不織布抹布)(benkot lint-free CT-8,旭化學處理工業股份公司製造)作為摩擦體以外,與使用鋼絲絨之擦傷性試驗同樣地實施擦傷性試驗。試驗設定為負重250 g/cm2
、行程25 mm、速度50 mm/s。表3中示有摩擦體之水平往返運動次數。
(5-1)接觸角
與上述(1-1)之試驗同樣地,測定摩擦後之試驗片之接觸角,求出試驗片之摩擦前與水平往返運動4000次之摩擦後之接觸角差。於摩擦後30分鐘以內實施試驗。
(5-2)氟殘留量測定試驗
與上述(2)之試驗同樣地,使用ESCA測定使用廢布水平往返運動4000次後之處理後樣品之氟量(cps),算出處理後樣品之氟殘存率(%)。
如表2~表4所示,進行對光學功能層14之表面進行處理之表面處理步驟、及於表面經處理之光學功能層14上形成防污層15之防污層形成步驟的實施例1~5之光學積層體,相比於不進行表面處理步驟之比較例1,耐鹼試驗中之氟殘留率較高,色相變化ΔE亦較小,為5以下,可確認出耐鹼性良好。
又,實施例1~5之光學積層體相比於比較例1及2,於使用廢布(不織布抹布)之擦傷性試驗中之接觸角差較小,為14以下,氟殘留率較高。
實施例1~5之光學積層體相比於比較例1及2,耐鹼性試驗中之色相變化較小,氟殘留率較高。
實施例1~5之光學積層體相比於比較例3,於使用廢布(不織布抹布)之擦傷性試驗中之接觸角差較小,為14以下,且於耐鹼性試驗中之色相變化較小,氟殘存率較高。
1:濺鍍裝置
2A,2B:預處理裝置
3:蒸鍍裝置
4:捲筒捲出裝置
5:捲筒捲取裝置
10,101,102:光學積層體
11:透明基材
12:硬塗層
13:密接層
14:光學功能層
14a:高折射率層
14b:低折射率層
15:防污層
20:製造裝置
20:製造裝置
21:真空泵
22:導輥
23:捲出輥
24:捲取輥
25:成膜輥
26:罐輥
31,32,33,34,35:腔室
41:成膜部
42:電漿放電裝置
43:蒸鍍源
53:加熱裝置
圖1係表示本實施方式之光學積層體之一例之剖視圖。
圖2係表示本實施方式之光學積層體之另一例之剖視圖。
圖3係表示本實施方式之光學積層體之另一例之剖視圖。
圖4係用以說明可用於本實施方式之光學積層體之製造方法之製造裝置之一例之概略圖。
11:透明基材
13:密接層
14:光學功能層
15:防污層
101:光學積層體
Claims (13)
- 一種光學積層體之製造方法,該光學積層體係透明基材、密接層、光學功能層及防污層依序積層而成,該製造方法包含: 密接層形成步驟,其形成密接層; 光學功能層形成步驟,其形成光學功能層; 表面處理步驟,其以下述(式1)表示之表面粗糙度之變化率為1~25%之方式對上述光學功能層之表面進行處理;及 防污層形成步驟,其於表面經處理之上述光學功能層上形成防污層; 表面粗糙度之變化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1) (式(1)中,Ra1表示對表面進行處理前之光學功能層之表面粗糙度(Ra),Ra2表示對表面進行處理後之光學功能層之表面粗糙度(Ra))。
- 一種光學積層體之製造方法,該光學積層體係透明基材、密接層、光學功能層及防污層依序積層而成,該製造方法包含: 密接層形成步驟,其形成密接層; 光學功能層形成步驟,其形成光學功能層; 表面處理步驟,其對上述光學功能層之表面進行輝光放電處理;及 防污層形成步驟,其於表面經處理之上述光學功能層上形成防污層。
- 如請求項1或2之光學積層體之製造方法,其中於上述密接層形成步驟及上述光學功能層形成步驟中,藉由濺鍍而形成上述密接層及上述光學功能層。
- 如請求項1或2之光學積層體之製造方法,其中於上述防污層形成步驟中,藉由真空蒸鍍而形成上述防污層。
- 如請求項1或2之光學積層體之製造方法,其中於減壓下連續進行上述密接層形成步驟、上述光學功能層形成步驟、上述表面處理步驟及上述防污層形成步驟。
- 如請求項1或2之光學積層體之製造方法,其中於上述密接層形成步驟之前,具有形成硬塗層之硬塗層形成步驟。
- 如請求項1或2之光學積層體之製造方法,其中上述光學功能層為選自抗反射層、選擇反射層及防眩層之任一種。
- 如請求項1或2之光學積層體之製造方法,其中上述光學功能層具備低折射率層。
- 如請求項1或2之光學積層體之製造方法,其中上述光學功能層形成步驟為將低折射率層與高折射率層交替積層而形成積層體之步驟。
- 如請求項8之光學積層體之製造方法,其中於上述表面處理步驟中對上述低折射率層之表面進行處理。
- 如請求項9之光學積層體之製造方法,其中於上述表面處理步驟中對上述低折射率層之表面進行處理。
- 如請求項8之光學積層體之製造方法,其中上述低折射率層包含Si氧化物。
- 如請求項9之光學積層體之製造方法,其中上述低折射率層包含Si氧化物。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-037146 | 2020-03-04 | ||
JP2020037146 | 2020-03-04 | ||
JP2020123317 | 2020-07-17 | ||
JP2020-123317 | 2020-07-17 | ||
JP2021-032929 | 2021-03-02 | ||
JP2021032929A JP7089610B2 (ja) | 2020-03-04 | 2021-03-02 | 光学積層体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202141071A true TW202141071A (zh) | 2021-11-01 |
Family
ID=77612650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110107659A TW202141071A (zh) | 2020-03-04 | 2021-03-04 | 光學積層體之製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230311448A1 (zh) |
EP (1) | EP4116086A4 (zh) |
JP (2) | JP7147095B2 (zh) |
KR (1) | KR20220109458A (zh) |
CN (1) | CN115175806A (zh) |
TW (1) | TW202141071A (zh) |
WO (1) | WO2021177348A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7303954B2 (ja) * | 2020-07-17 | 2023-07-05 | デクセリアルズ株式会社 | 光学積層体の製造方法 |
WO2022054827A1 (ja) * | 2020-09-10 | 2022-03-17 | デクセリアルズ株式会社 | 光学積層体、物品、光学積層体の製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61229024A (ja) | 1985-04-02 | 1986-10-13 | Kensetsu Kiso Eng Kk | 斜面安定化工法 |
JPH0242970Y2 (zh) | 1985-04-26 | 1990-11-15 | ||
JP4672095B2 (ja) * | 1999-04-26 | 2011-04-20 | 凸版印刷株式会社 | 反射防止膜の製造方法 |
JP4765185B2 (ja) * | 2001-03-28 | 2011-09-07 | Tdk株式会社 | 物体表面の防汚処理方法及び防汚処理された物体 |
JP2005301208A (ja) | 2004-03-17 | 2005-10-27 | Seiko Epson Corp | 防汚性光学物品の製造方法 |
US8945684B2 (en) * | 2005-11-04 | 2015-02-03 | Essilor International (Compagnie Generale D'optique) | Process for coating an article with an anti-fouling surface coating by vacuum evaporation |
JP2006175438A (ja) | 2005-12-22 | 2006-07-06 | Toppan Printing Co Ltd | 防汚層の形成方法 |
JP2007194109A (ja) * | 2006-01-20 | 2007-08-02 | Toppan Printing Co Ltd | 導電性積層体、光学機能性フィルタおよび光学表示装置 |
JP2011013654A (ja) * | 2008-10-23 | 2011-01-20 | Seiko Epson Corp | 多層反射防止層およびその製造方法、プラスチックレンズ |
JP2010191144A (ja) * | 2009-02-18 | 2010-09-02 | Toppan Printing Co Ltd | 反射防止フィルム |
JP5523066B2 (ja) * | 2009-11-17 | 2014-06-18 | ホーヤ レンズ マニュファクチャリング フィリピン インク | 光学物品の製造方法 |
CN105008967A (zh) * | 2013-02-22 | 2015-10-28 | 旭硝子株式会社 | 光学部件 |
CN105835465A (zh) * | 2015-01-13 | 2016-08-10 | 南昌欧菲光学技术有限公司 | 增透防指纹叠层及其制作方法 |
JP2017161893A (ja) * | 2016-03-03 | 2017-09-14 | 日東電工株式会社 | 光学積層体 |
JP6934308B2 (ja) * | 2016-04-01 | 2021-09-15 | 日東電工株式会社 | 光透過性フィルム |
JP2020148787A (ja) * | 2018-06-06 | 2020-09-17 | Agc株式会社 | 透明部材 |
CN109683223B (zh) | 2017-10-19 | 2023-01-03 | Agc株式会社 | 透明构件 |
CN208110086U (zh) * | 2018-01-25 | 2018-11-16 | 江苏新光镭射包装材料股份有限公司 | 耐指纹高遮蔽率的光学反射膜 |
JP2021177200A (ja) * | 2018-07-31 | 2021-11-11 | 日本電産株式会社 | コーティング方法、光学部品、及びレンズアッセンブリ |
JP2020037146A (ja) | 2018-09-03 | 2020-03-12 | 株式会社東芝 | 保持装置および搬送装置 |
CN109782766B (zh) | 2019-01-25 | 2023-01-03 | 北京百度网讯科技有限公司 | 用于控制车辆行驶的方法和装置 |
JP7218914B2 (ja) | 2019-08-16 | 2023-02-07 | 株式会社電子技販 | 発光表示装置 |
-
2021
- 2021-03-03 US US17/905,392 patent/US20230311448A1/en active Pending
- 2021-03-03 EP EP21765327.8A patent/EP4116086A4/en active Pending
- 2021-03-03 CN CN202180017403.5A patent/CN115175806A/zh active Pending
- 2021-03-03 WO PCT/JP2021/008165 patent/WO2021177348A1/ja active Application Filing
- 2021-03-03 KR KR1020227022924A patent/KR20220109458A/ko not_active Application Discontinuation
- 2021-03-04 TW TW110107659A patent/TW202141071A/zh unknown
-
2022
- 2022-06-09 JP JP2022093928A patent/JP7147095B2/ja active Active
- 2022-09-20 JP JP2022148971A patent/JP2022188094A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021177348A1 (ja) | 2021-09-10 |
JP7147095B2 (ja) | 2022-10-04 |
JP2022188094A (ja) | 2022-12-20 |
JP2022130457A (ja) | 2022-09-06 |
EP4116086A4 (en) | 2024-06-19 |
EP4116086A1 (en) | 2023-01-11 |
CN115175806A (zh) | 2022-10-11 |
US20230311448A1 (en) | 2023-10-05 |
KR20220109458A (ko) | 2022-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7228067B2 (ja) | 光学積層体、物品、光学積層体の製造方法 | |
JP2022136102A (ja) | 光学積層体、物品、光学積層体の製造方法 | |
JP7147095B2 (ja) | 光学積層体の製造方法 | |
US20230191732A1 (en) | Method for producing optical multilayer body | |
JP7089609B2 (ja) | 光学積層体、物品、光学積層体の製造方法 | |
JP7273238B2 (ja) | 光学積層体の製造方法 | |
TW202216458A (zh) | 光學積層體之製造方法 | |
JP7303954B2 (ja) | 光学積層体の製造方法 | |
JP7248830B2 (ja) | 光学積層体の製造方法 | |
JP7089610B2 (ja) | 光学積層体の製造方法 | |
WO2022014696A1 (ja) | 光学積層体、物品、光学積層体の製造方法 |