TW202137696A - 功率放大元件 - Google Patents

功率放大元件 Download PDF

Info

Publication number
TW202137696A
TW202137696A TW110108694A TW110108694A TW202137696A TW 202137696 A TW202137696 A TW 202137696A TW 110108694 A TW110108694 A TW 110108694A TW 110108694 A TW110108694 A TW 110108694A TW 202137696 A TW202137696 A TW 202137696A
Authority
TW
Taiwan
Prior art keywords
bipolar transistors
base electrode
layer
base
emitter
Prior art date
Application number
TW110108694A
Other languages
English (en)
Other versions
TWI763363B (zh
Inventor
馬少駿
梅本康成
佐佐木健次
Original Assignee
日商村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田製作所股份有限公司 filed Critical 日商村田製作所股份有限公司
Publication of TW202137696A publication Critical patent/TW202137696A/zh
Application granted granted Critical
Publication of TWI763363B publication Critical patent/TWI763363B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0658Vertical bipolar transistor in combination with resistors or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

課題:提供能夠抑制電流向電晶體的一部分區域集中並擴大SOA的功率放大元件。 解決手段:在基板上,沿第一方向排列配置複數個雙極電晶體。與複數個雙極電晶體的各基極電極對應地設置複數個第一電容元件。通過第一電容元件向雙極電晶體供給高頻訊號。與複數個雙極電晶體的各基極電極對應地設置電阻元件。經由電阻元件,向雙極電晶體供給基極偏壓。於與第一方向正交的第二方向上,從複數個雙極電晶體觀察時,複數個第一電容元件配置在同一側。從複數個雙極電晶體觀察第二方向時,複數個第一電容元件中的至少一個第一電容元件配置於與其它的一個第一電容元件部分重疊的位置。

Description

功率放大元件
本發明涉及功率放大元件。
行動終端、移動體終端等的高頻訊號用的功率放大電路使用異質接面雙極電晶體(HBT)(專利文獻1)。專利文獻1所公開的功率放大電路包含相互並聯連接的複數個電晶體對。複數個電晶體對分別由相互並聯連接的兩個電晶體構成。分別與複數個電晶體對對應地設置電容器和鎮流電阻。高頻訊號經由電容器輸入到電晶體對的兩個電晶體的基極。經由鎮流電阻,對電晶體對的兩個電晶體的基極供給偏壓電流。由於按每個電晶體對配置電容器和鎮流電阻,所以與按每個電晶體進行配置的情況相比,能夠縮減功率放大電路的佔有面積。
另外,HBT各自的射極端子在俯視時為長方形,基極端子具有配置為在寬度方向上包住射極端子的兩個基極電極主部。
專利文獻1:日本特開2005-167605號公報
為了滿足第五代行動通訊系統(5G)的要求規格,需要HBT等雙極電晶體的高電壓動作。在超過一定的破壞界限的高工作電壓下,有HBT在功率放大電路的負載變動試驗中損傷的情況。例如,在專利文獻1所記載的功率放大電路中,由於構成電晶體對的兩個電晶體的製造偏差,而在電晶體間電流產生偏差。電流越來越集中於流過相對較大電流的電晶體,造成動作變得不穩定。
另外,在一個HBT內,也有由於射極端子與其兩側的兩個基極電極的基極電極主部的相對位置關係的非對稱性,而在一方的基極電極主部側流過相對較大電流的情況。由於電流越來越集中於HBT內流過相對較大電流的區域,造成動作變得不穩定。由於此種動作的不穩定性,導致安全動作區域(SOA: safe operating area)變窄。由此,產生負載變動耐壓降低的弊端。
此外,期望用於實現功率放大電路的元件的小型化。
本發明的目的在於提供能夠抑制電流向電晶體的一部分區域集中,並擴大SOA的功率放大元件。
根據本發明的一個觀點,提供一種功率放大元件,具有: 複數個雙極電晶體,沿第一方向排列配置在基板上,各自包含集極層、基極層、射極層、以及與上述基極層電性連接的至少一個基極電極; 複數個第一電容元件,與上述複數個雙極電晶體的各基極電極對應地設置,一方的電極與對應的基極電極連接,另一方的電極被供給高頻訊號;以及 複數個電阻元件,與上述複數個雙極電晶體的各基極電極對應地設置,一端與對應的基極電極連接,從另一端被供給基極偏壓, 於與上述第一方向正交的第二方向上,從上述複數個雙極電晶體觀察時,上述複數個第一電容元件配置在同一側, 從上述複數個雙極電晶體觀察上述第二方向時,上述複數個第一電容元件中的至少一個第一電容元件配置於與其它的一個第一電容元件部分重疊的位置。
由於第一電容元件以及電阻元件與各基極電極對應地配置,所以能夠抑制偏壓電流和高頻電流向特定的基極電極集中。由此,動作穩定化,能夠擴大SOA。並且,從複數個雙極電晶體觀察第二方向時,第一電容元件中的至少一個第一電容元件配置於與其它的一個第一電容元件部分重疊的位置,所以與沿第一方向排列成一列地配置的構成相比能夠實現小型化。
[第一實施例] 參照圖1~圖6B,對第一實施例的功率放大元件進行說明。 圖1是表示構成第一實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、與該兩個雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。圖2是圖1的一點鏈線2-2上的剖面圖,圖3是圖1的一點鏈線3-3上的剖面圖。
在圖1中,對集極電極40C、射極電極40E、以及基極電極40B標注相對較濃的向右上傾斜的影線,對第一層的集極配線41C、射極配線41E、基極配線41B、基極偏壓輸入配線42標注相對較淡的向右下傾斜的影線,對電阻元件55標注相對較淡的向右上傾斜的影線。
在基板20(圖2、圖3)的面內的一部分配置具有n型導電性的複數個子集極層21(圖1、圖2)。子集極層21的俯視時的形狀例如是長方形。子集極層21例如由在基板20上磊晶生長的半導體層形成。磊晶生長層中的子集極層21以外的區域藉由被絕緣化而成為元件分離區域22(圖2、圖3)。
在俯視時在子集極層21各自的內部配置雙極電晶體30。雙極電晶體30例如是異質接面雙極電晶體(HBT)。雙極電晶體30(圖2)包含依次層疊在子集極層21上的集極層31、基極層32、射極層33、以及射極台面(mesa)層34。在俯視時,基極層32以及射極層33的外周線與集極層31的外周線一致。將由集極層31、基極層32、以及射極層33構成的三層結構稱為基極台面層36。基極台面層36在俯視時具有在一個方向(在圖1中是左右方向)較長的形狀。
射極台面層34在俯視時配置在射極層33的內側。射極台面層34具有在與基極台面層36的長度方向相同的方向較長的形狀。射極層33中與射極台面層34重疊的區域實際上作為雙極電晶體30的射極區域33e(圖2)進行動作。即,射極電流在厚度方向上流過射極區域33e。射極區域33e有被稱為本質射極層的情況。此外,射極層33中射極區域33e以外的區域實際上成為空乏,有被稱為突出(ledge)層的情況。
複數個雙極電晶體30沿與射極台面層34的長度方向正交的方向排列配置。在本說明書中,將複數個雙極電晶體30排列的方向稱為第一方向D1,並將射極台面層34的長度方向稱為第二方向D2。
集極電極40C與集極層31在第一方向D1隔開間隔地配置在子集極層21上。集極電極40C透過子集極層21與集極層31電性連接。
在射極台面層34上將射極電極40E配置為在俯視時包含射極台面層34。射極電極40E與射極台面層34的邊緣相比稍微凸出至外側。在射極台面層34的圖案化步驟中,應用將射極電極40E作為蝕刻遮罩使用的自匹配程序。射極電極40E透過射極台面層34與射極層33電性連接。
基極電極40B配置在射極層33上。基極電極40B透過貫通射極層33並到達基極層32的合金化區域35與基極層32電性連接。基極電極40B包含一個基極電極主部40BF和一個基極電極銲墊部40BP。基極電極主部40BF在俯視時具有在第二方向D2較長的形狀,且配置為在第一方向D1上與射極台面層34隔開間隔。另外,在第一方向D1依次排列配置集極電極40C、基極電極主部40BF、以及射極電極40E。基極電極銲墊部40BP在基極電極主部40BF的一方的端部,與基極電極主部40BF連續。
在基板的整個區域形成絕緣膜80(圖2)以覆蓋雙極電晶體30、射極電極40E、基極電極40B、以及集極電極40C。在該絕緣膜80上配置第一層的射極配線41E、集極配線41C、基極配線41B、以及基極偏壓輸入配線42。
第一層的射極配線41E配置為在俯視時與射極電極40E部分重疊。射極配線41E通過設置於絕緣膜80(圖2)的接觸孔與射極電極40E連接。
第一層的集極配線41C配置為在俯視時與集極電極40C部分重疊。集極配線41C通過設置於絕緣膜80(圖2)的接觸孔與集極電極40C連接。另外,集極配線41C從在俯視時與集極電極40C重疊的區域朝向第二方向D2的單側(在圖1中為右側)延伸至子集極層21的外側。
第一層的基極配線41B配置為在俯視時與基極電極40B的基極電極銲墊部40BP部分重疊。基極配線41B通過設置於絕緣膜80(圖2)的接觸孔與基極電極40B連接。在俯視時,基極配線41B從與基極電極銲墊部40BP重疊的區域朝向第二方向D2的單側(在圖1中為左側)延伸至子集極層21的外側。集極配線41C與基極配線41B在從雙極電晶體30觀察時相互朝向相反側延伸。
在第一方向D1延伸的高頻訊號輸入配線61與複數個基極配線41B交叉。高頻訊號輸入配線61配置在第一層的基極配線41B之上的第二層的配線層,在兩者之間配置雙層的絕緣膜81、82(圖3)。絕緣膜81和絕緣膜82由相互不同的絕緣材料形成。
基極配線41B的一部分與其它部分相比第一方向D1的尺寸較大。將第一方向D1的尺寸相對較大的部分稱為加寬部41Ba。在俯視時加寬部41Ba與高頻訊號輸入配線61重疊的區域配置有設置於絕緣膜82的開口82A。在俯視時,開口82A包含於加寬部41Ba。在開口82A的內側,在高頻訊號輸入配線61與基極配線41B之間僅存在絕緣膜81。在俯視時在開口82A的內部形成將基極配線41B和高頻訊號輸入配線61分別作為下部電極以及上部電極的第一電容元件51。
第一電容元件51透過基極配線41B與基極電極40B連接。從前段的放大電路或者輸入端子向高頻訊號輸入配線61供給高頻訊號。供給至高頻訊號輸入配線61的高頻訊號經由第一電容元件51以及基極配線41B輸入到基極電極40B。圖1所示的一方的第一電容元件51是在觀察第一方向D1時配置於與另一方的第一電容元件51不同的位置,在從複數個雙極電晶體觀察第二方向D2時,配置於與另一方的第一電容元件51部分重疊的位置。此處,「在觀察X方向時兩個對象物配置於不同位置」是指「將兩個對象物垂直投影到與X方向正交的假想的直線上的兩個線像不重疊」。另外,「在觀察X方向時兩個對象物配置於重疊的位置」是指「將兩個對象物垂直投影到與X方向正交的假想的直線上的兩個線像重疊」。
基極配線41B的各個前端在從雙極電晶體30觀察時到達比高頻訊號輸入配線61遠的位置。複數個基極配線41B分別透過電阻元件55與基極偏壓輸入配線42連接。從基極偏壓輸入配線42經由基極配線41B向基極電極40B供給基極偏壓電流。
接下來,對雙極電晶體30的各構成要素的材料的一例進行說明。例如使用半絕緣性的GaAs(砷化鎵)基板作為基板20。子集極層21例如由在基板20上磊晶生長的厚度400nm以上且1000nm以下的n型GaAs層形成。在n型GaAs層摻雜作為n型摻雜劑的矽(Si),其濃度為2×1018 cm 3 以上且4×1018 cm 3 以下。此外,也可以代替Si而使用碲(Te)作為n型摻雜劑。元件分離區域22例如藉由注入硼(B)、氧(O)、或者氦(He)等而被絕緣化。
集極層31例如由摻雜了Si的n型GaAs形成,其厚度為500nm以上且2000nm以下。Si的摻雜濃度在厚度方向上變化。
基極層32例如由摻雜了碳(C)的p型的GaAs、InGaAs(砷化銦鎵)、或者GaAsSb(銻化砷鎵)等形成,其厚度為50nm以上且150nm以下。C的摻雜濃度為1×1019 cm 3 以上且在5×1019 cm 3 以下。基極層32的薄片電阻為130Ω/□以上且300Ω/□以下。
射極層33例如由摻雜了Si的n型InGaP(磷化銦鎵)形成,其厚度為20nm以上且50nm以下。Si的摻雜濃度為2×1017 cm 3 以上且5×1017 cm 3 以下。
射極台面層34包含覆蓋層和其上的接觸層這兩層。覆蓋層由摻雜了Si的n型GaAs形成,其厚度為50nm以上且200nm以下。Si的摻雜濃度為2×1018 cm 3 以上且4×1018 cm 3 以下。接觸層由摻雜了Si的n型InGaAs形成,其厚度為100nm以上且200nm以下。Si的摻雜濃度為1×1019 cm 3 以上且3×1019 cm 3 以下。
圖4是表示第一實施例的功率放大元件的各構成要素的俯視時的位置關係的圖。複數個雙極電晶體30沿第一方向D1排列配置。於第二方向D2上,在複數個雙極電晶體30的單側(在圖4中為右側)配置集極共通配線43,在相反側配置複數個第一電容元件51。在與複數個第一電容元件51重疊的位置配置高頻訊號輸入配線61。分別從複數個雙極電晶體30向第二方向D2的單側引出的複數個集極配線41C與集極共通配線43連續。
從複數個雙極電晶體30觀察時,在比複數個第一電容元件51遠的位置配置複數個電阻元件55。並且,從複數個雙極電晶體30觀察時,在比複數個電阻元件55遠的位置配置對複數個雙極電晶體30共通的基極偏壓輸入配線42。高頻訊號輸入配線61以及基極偏壓輸入配線42於第一方向D1延伸。
輸出配線63配置為在俯視時與集極共通配線43重疊。接地配線62配置為在俯視時包含複數個第一層的射極配線41E。輸出配線63以及接地配線62配置在與高頻訊號輸入配線61相同的第二層的配線層。在輸出配線63以及接地配線62之下配置有絕緣膜81、82(圖3)雙層。
接地配線62通過設置於絕緣膜81、82的複數個開口與複數個射極配線41E連接。即,複數個射極配線41E與共通的接地配線62連接。輸出配線63通過設置於絕緣膜81、82的開口與集極共通配線43連接。
接地凸塊68配置為在俯視時包含於接地配線62。並且,輸出凸塊69配置為包含於輸出配線63。作為接地凸塊68以及輸出凸塊69,例如使用Cu柱凸塊。接地凸塊68以及輸出凸塊69分別與模組基板等的端子連接。由此,雙極電晶體30的射極接地。在雙極電晶體30進行了放大的高頻訊號經由輸出凸塊69輸出到模組基板等。
在注視於複數個雙極電晶體30中的一個雙極電晶體30時,與注視的雙極電晶體30連接的第一電容元件51和與旁邊的雙極電晶體30連接的第一電容元件51在觀察第一方向D1時配置於不同位置。從複數個雙極電晶體觀察第二方向D2時,兩個第一電容元件51配置為部分重疊。
圖5是第一實施例的功率放大元件的一部分的等效電路圖。複數個雙極電晶體30的射極與接地配線62連接(接地),集極與輸出配線63連接。複數個雙極電晶體30的基極透過第一電容元件51與高頻訊號輸入配線61連接,並且透過電阻元件55與基極偏壓輸入配線42連接。
接下來,對第一實施例的優異效果進行說明。 對產生了一個雙極電晶體30(圖4)的基極電流(基極偏壓電流和高頻電流兩者)與其它的雙極電晶體30的基極電流相比稍大的狀況(電流的均勻性喪失)時的動作進行說明。在雙極電晶體30之間,射極台面層34(圖1)與基極電極40B的基極電極主部40BF(圖1)的間隔產生了偏差的情況等時,可能產生電流的均勻性的喪失。
若產生基極電流的均勻性的喪失,而特定的一個雙極電晶體30的基極電流相對增大,則基於與該雙極電晶體30的基極電極40B連接的電阻元件55(圖1)的電壓下降相對增大。其結果,基極電極40B的電位相對降低。由於基極電極40B的電位降低,而基極電流減少。由此,抑制了基極電流的均勻性的喪失的擴大。其結果,不容易產生射極電流的均勻性的喪失。
另外,在一個射極台面層34的兩側分別配置基極電極40B的基極電極主部40BF的情況下,在一個雙極電晶體30中,有分別從兩個基極電極主部40BF供給的基極電流的均勻性喪失的情況。此種狀況例如可能在由於製造程序中的允許範圍內的位置偏移,而兩個基極電極主部40BF各自與射極台面層34的間隔不相同的情況下產生。若喪失在一個雙極電晶體30內基極電流的均勻性,則也喪失射極電流的均勻性,由於熱效應,基極電流越來越集中於一方的基極電極主部40BF。其結果,動作變得不穩定。
與此相對,在第一實施例中,對一個射極台面層34(圖1)僅配置一個基極電極主部40BF。因此,不會產生基極電極主部之間的基極電流的均勻性的喪失。
如此,在第一實施例中,包含複數個雙極電晶體30的功率放大元件的動作穩定,而能夠得到SOA擴大的優異效果。由於SOA擴大,能夠進行雙極電晶體30的高電壓動作。
此外,參照圖6A以及圖6B對第一實施例的優異效果進行說明。 圖6A以及圖6B分別是第一實施例以及比較例的功率放大元件的兩個第一電容元件51的俯視圖。在圖6A以及圖6B中,對第一電容元件51標注影線。在第一實施例中,基極配線41B的一部分被加寬,在加寬部41Ba內配置第一電容元件51。兩個第一電容元件51在觀察第一方向D1時配置於不同位置。與此相對,在圖6B所示的比較例中,兩個第一電容元件51在觀察第一方向D1時配置於相同的位置,沿第一方向D1排列。第一電容元件51的邊緣與設置於絕緣膜82的開口82A(圖3)的邊緣一致。
根據程序規則決定基極配線41B的配線的間隔G1的下限值、基極配線41B的寬度W1的下限值、開口82A(即第一電容元件51)的第一方向D1的尺寸W2的下限值、開口82A(即第一電容元件51)的邊緣與基極配線41B的邊緣的對位裕度G2的下限值。例如,對間隔G1的下限值為2μm,寬度W1的下限值為2μm,尺寸W2的下限值為2μm,對位裕度G2的下限值為3μm的情況進行探討。
在第一實施例(圖6A)的情況下,兩個第一電容元件51佔有的區域的第一方向D1的尺寸Wt1的下限值為12μm。與此相對,在比較例(圖6B)的情況下,兩個第一電容元件51佔有的區域的第一方向D1的尺寸Wt1的下限值為18μm。因此,在比較例中,不能使複數個雙極電晶體30的第一方向D1方向的間距為18μm以下。在第一實施例的情況下,能夠使複數個雙極電晶體30的第一方向D1方向的間距縮窄至12μm。由此,能夠縮減功率放大元件的第一方向D1的尺寸。
在第一實施例中,藉由將第一電容元件51的第一方向D1的尺寸W2設定為下限值的2μm,並調整第二方向D2的尺寸,能夠將第一電容元件51的電容量設定為期望的值。
在第一實施例(圖6A)中,若將尺寸Wt1設定為比較例(圖6B)中的尺寸Wt1的下限值亦即18μm,則能夠將第一電容元件51的第一方向D1的尺寸W2增大至8μm。作為一例,對使第一電容元件51的面積為8×8=64μm2 的情況進行探討。在第一實施例的情況下,第一電容元件51的第二方向D2的尺寸為8μm。因此,兩個第一電容元件51佔有的區域的第二方向D2的尺寸Wt2為30μm。
與此相對,在比較例中,由於第一電容元件51的第一方向D1的尺寸W2為2μm,所以必須使第二方向D2的尺寸為64/2=32μm。如此,在比較例中,為了在使尺寸Wt1儘量小的條件下確保期望的電容量,必須使第一電容元件51變得細長。此時,兩個第一電容元件51佔有的區域的第二方向D2的尺寸Wt2為38μm。
如此,若採用第一實施例的構成,則藉由使第一電容元件51的形狀接近正方形,與比較例相比,能夠縮減兩個第一電容元件51佔有的區域的面積。由此,能夠縮減功率放大元件佔有的區域的面積。
接下來,參照圖7對第一實施例的變形例進行說明。 圖7是第一實施例的本變形例的功率放大元件的第一電容元件51的剖面圖。在第一實施例中,利用配置於第一層的配線層的基極配線41B(圖3)作為第一電容元件51的下部電極,並利用配置於第二層的配線層的高頻訊號輸入配線61作為第一電容元件51的上部電極。在本變形例中,第一電容元件51具有上中下三層的電極。
利用高頻訊號輸入配線61作為上部電極,並利用基極配線41B作為中央部的電極。在與集極電極40C(圖2)相同的層配置下部電極40R。下部電極40R配置在元件分離區域22(圖3)與絕緣膜80(圖3)之間。下部電極40R通過設置於絕緣膜80、81、82的接觸孔與高頻訊號輸入配線61連接。
在本變形例中,與第一實施例相比,能夠增大第一電容元件51的每單位面積的電容量。因此,能夠進一步縮減第一電容元件51佔有的區域的面積。
接下來,對第一實施例的其它的變形例進行說明。 為了區分在第一方向D1排列的複數個雙極電晶體30,從1開始依次標注編號。在第一實施例中,將與奇數號的雙極電晶體30對應的第一電容元件51配置於接近雙極電晶體30的位置,並將與偶數號的雙極電晶體30對應的第一電容元件51配置於離雙極電晶體30較遠的位置。即,若注視於一個雙極電晶體30,則與注視的一個雙極電晶體30連接的第一電容元件51配置在相對於與其兩鄰的兩個雙極電晶體30分別連接的兩個第一電容元件51向第二方向D2偏移的位置。
在本變形例中,與注視的一個雙極電晶體30連接的第一電容元件51配置在相對於在單側相鄰的雙極電晶體30所連接的第一電容元件51而向第二方向D2偏移的位置。另外,與注視的一個雙極電晶體30連接的第一電容元件51與在相反側相鄰的雙極電晶體30所連接的第一電容元件51在觀察第一方向D1時配置於相同的位置。例如,從複數個雙極電晶體觀察第二方向D2時,部分重疊地配置的兩個第一電容元件51的配置、和位於其旁邊的兩個第一電容元件51的配置是以與第二方向D2平行的對稱軸呈鏡面對稱。
更一般而言,複數個第一電容元件51中的至少一個第一電容元件51與其它的一個第一電容元件51在從複數個雙極電晶體觀察第二方向D2時配置於部分重疊的位置即可。藉由採用該配置,能夠縮減由在觀察第二方向D2時重疊的配置的兩個第一電容元件51所佔有的區域的面積。
[第二實施例] 接下來,參照圖8對第二實施例的功率放大元件進行說明。以下,對與第一實施例的功率放大元件共通的構成省略說明。
圖8是表示構成第二實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、該兩個雙極電晶體所連接的電容元件以及電阻元件的俯視時的位置關係的圖。在第一實施例中,在俯視時,在一個子集極層21的內部配置一個雙極電晶體30(圖1、圖2)。與此相對,在第二實施例中,在一個子集極層21的內部配置兩個雙極電晶體30。
雙極電晶體30各自的構成與第一實施例(圖1、圖2)的雙極電晶體30的構成相同。即,雙極電晶體30分別包含基極台面層36和射極台面層34。在兩個基極台面層36之間配置一個集極電極40C。第一層的集極配線41C與集極電極40C連接。若注視於一個雙極電晶體30,則射極台面層34配置在與基極電極主部40BF相比更接近集極電極40C的位置。例如,在一個子集極層21的內部配置的兩個雙極電晶體30的構成具有鏡面對稱的關係。
在第一實施例中,分別對各個雙極電晶體30配置集極電極40C,但在第二實施例中,一個集極電極40C由兩個雙極電晶體30共用。另外,在第二實施例中也與第一實施例相同,分別在兩個基極電極40B連接第一電容元件51和電阻元件55。
接下來,對第二實施例的優異效果進行說明。 在第二實施例中,一個集極電極40C由兩個雙極電晶體30共用,所以與第一實施例相比,能夠在第一方向更高密度地排列配置複數個雙極電晶體30。因此,由兩個第一電容元件51所佔有的區域的第一方向D1的尺寸Wt1(圖6A)比第一實施例的情況小。
若在尺寸Wt1(圖6A、圖6B)較小的條件下採用圖6B的比較例的構成,則為了確保需要的電容量,而必須進一步使第一電容元件51在第二方向D2變長。因此,用於確保對位裕度G2的區域的面積增大,對電容量沒有貢獻的無用區域的面積增大。在第二實施例中,第一電容元件51的形狀接近正方形,所以縮減尺寸Wt1時的無用區域的增加與比較例相比較少。如此,在第二實施例中,將兩個第一電容元件51在第二方向D2錯開配置的效果更加顯著。
[第三實施例] 接下來,參照圖9對第三實施例的功率放大元件進行說明。以下,對與第一實施例的功率放大元件(圖1~圖5)共通的構成省略說明。
圖9是表示構成第三實施例的功率放大元件的複數個雙極電晶體中的一個雙極電晶體、與該雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。在第一實施例中,對一個雙極電晶體30(圖1)的一個射極台面層34配置一個基極電極40B。與此相對,在第三實施例中,對一個射極台面層34配置兩個基極電極40B。即,在俯視時在一個基極台面層36的內部配置相互分離的兩個基極電極40B。
兩個基極電極40B的基極電極主部40BF配置為在第一方向D1包住射極台面層34。兩個集極電極40C配置為在第一方向D1包住基極台面層36。在兩個集極電極40C分別連接集極配線41C。俯視時的射極台面層34的面積是第一實施例的功率放大元件的射極台面層34(圖1)的面積的大約兩倍。更具體而言,射極台面層34的第一方向D1的尺寸(寬度)大約為兩倍。
分別在兩個基極電極40B連接基極配線41B。也對每個基極電極40B各配置一個第一電容元件51以及電阻元件55。
接下來,對第三實施例的優異效果進行說明。 若將第三實施例的與一個雙極電晶體30對應的兩個基極電極主部40BF相互連接,並配置一個第一電容元件51以及一個電阻元件55,則不能夠抑制兩個基極電極主部40BF之間的基極電流的均勻性的喪失。與此相對,在第三實施例中,在兩個基極電極主部40BF分別連接第一電容元件51以及電阻元件55。因此,在一個雙極電晶體30內,能夠抑制兩個基極電極主部40BF之間的基極電流的均勻性的喪失。由此,不容易產生射極電流的均勻性的喪失,其結果,能夠得到可擴大SOA的優異效果。
並且,在第三實施例中,也與第一實施例相同,能夠縮減由複數個第一電容元件51佔有的區域的面積。
[第四實施例] 接下來,參照圖10對第四實施例的功率放大元件進行說明。以下,對與第三實施例的功率放大元件(圖9)共通的構成省略說明。
圖10是表示構成第四實施例的功率放大元件的複數個雙極電晶體中的一個雙極電晶體、與該雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。在第三實施例中,一個雙極電晶體30(圖9)包含一個射極台面層34。與此相對,在第四實施例中,一個雙極電晶體30包含兩個射極台面層34。即,在俯視時在一個基極台面層36的內部配置兩個射極台面層34。
兩個射極台面層34在第一方向D1隔開間隔配置。分別與兩個射極台面層34對應地配置射極電極40E。一個射極配線41E配置為在俯視時與兩個射極電極40E部分重疊。一個射極配線41E與兩個射極電極40E連接。
與一個雙極電晶體30對應地配置三個基極電極40B。一個基極電極40B的基極電極主部40BF配置在兩個射極台面層34之間。其它的兩個基極電極40B的基極電極主部40BF配置在兩個射極台面層34的外側。因此,兩個射極台面層34中無論何者,都分別在其兩側配置基極電極主部40BF。
兩個射極台面層34以及三個基極電極40B在俯視時配置在一個基極台面層36的內部。分別在基極台面層36的兩側配置集極電極40C。分別在兩個集極電極40C連接集極配線41C。
分別在三個基極電極40B連接基極配線41B。相同地,對三個基極電極40B的每一個連接一個第一電容元件51以及一個電阻元件55。對於分別與兩端的兩個基極電極40B連接的兩個第一電容元件51來說,第一方向D1的位置不同,第二方向D2的位置相同。與中央的基極電極40B連接的第一電容元件51配置在相對於分別與兩端的兩個基極電極40B連接的兩個第一電容元件51而向第二方向D2偏移的位置。從複數個雙極電晶體觀察第二方向時,與中央的基極電極40B連接的第一電容元件51配置為與其它的兩個第一電容元件51部分重疊。與中央的基極電極40B連接的第一電容元件51的俯視時的面積是其它的兩個第一電容元件51各自的俯視時的面積的大約兩倍。與中央的基極電極40B連接的電阻元件55的俯視時的寬度是其它的兩個電阻元件55各自的俯視時的寬度的大約兩倍。
接下來,對第四實施例的優異效果進行說明。 在第四實施例中也與第三實施例相同,分別與複數個基極電極40B對應地連接一個第一電容元件51以及一個電阻元件55。因此,能夠抑制複數個基極電極主部40BF之間的基極電流的均勻性的喪失。另外,在第四實施例中也與第三實施例相同,分別與在第一方向相鄰的兩個基極電極40B連接的兩個第一電容元件51配置在於第二方向D2偏移的位置,從複數個雙極電晶體觀察第二方向D2時配置為部分重疊。因此,能夠縮減由複數個第一電容元件51佔有的區域的面積。
在第四實施例中,從中央的基極電極40B向與兩個射極台面層34對應的射極區域33e(圖2)供給輸入訊號,從兩端的基極電極40B向與一個射極台面層34對應的射極區域33e(圖2)供給輸入訊號。因此,在中央的基極電極40B流過與兩端的基極電極40B相比大約兩倍的偏壓電流和高頻電流。
與中央的基極電極40B連接的第一電容元件51的俯視時的面積是其它的兩個第一電容元件51的俯視時的面積的大約兩倍,所以與中央的基極電極40B連接的第一電容元件51的電容量也是其它的兩個第一電容元件51的電容量的大約兩倍。與中央的基極電極40B連接的電阻元件55的俯視時的寬度是其它的兩個電阻元件55的俯視時的寬度的大約兩倍,所以與中央的基極電極40B連接的電阻元件55的電阻值是其它的兩個電阻元件55的電阻值的大約1/2。因此,與中央的基極電極40B連接的阻抗是與其它的兩個基極電極40B連接的阻抗的大約1/2。由於與中央的基極電極40B連接的阻抗大約為1/2,所以在中央的基極電極40B產生的電壓與在兩端的基極電極40B產生的電壓相等。如此,即使三個基極電極40B相互分離,也作為相互連接的一個基極電極進行動作。
接下來,對第四實施例的變形例進行說明。 雖然在第四實施例中,使一個雙極電晶體30所包含的射極台面層34為兩個,但也可以使其為三個以上。該情況下,基極電極40B比射極台面層34的個數多一個即可。由此,能夠在複數個射極台面層34各自的兩側配置基極電極40B的基極電極主部40BF。
[第五實施例] 接下來,參照圖11以及圖12對第五實施例的功率放大元件進行說明。以下,對與第一實施例的功率放大元件(圖1~圖5)共通的構成省略說明。
圖11是表示構成第五實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、與該兩個雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。在第一實施例中,分別在複數個基極電極40B連接一個第一電容元件51以及一個電阻元件55。與此相對,在第五實施例中,進一步分別在複數個基極電極40B連接第二電容元件52。
在各個基極配線41B,除了成為第一電容元件51的下部電極的加寬部41Ba之外,還設置成為第二電容元件52的下部電極的加寬部41Bb。接地配線64配置為在俯視時與複數個加寬部41Bb重疊。接地配線64於第一方向D1延伸。接地配線64與雙極電晶體30的射極所連接的接地配線62(圖4)連接。依次在第二方向D2排列雙極電晶體30、接地配線64、高頻訊號輸入配線61、以及基極偏壓輸入配線42。
在基極配線41B的加寬部41Bb與接地配線64相互重疊的位置形成第二電容元件52。分別與在第一方向D1相鄰的兩個基極電極40B連接的兩個第二電容元件52在觀察第一方向D1時配置於不同位置,且於第二方向D2上配置為部分重疊。
圖12是第五實施例的功率放大元件的一部分的等效電路圖。在第五實施例中,相對於第一實施例(圖5)的功率放大元件,追加連接在雙極電晶體30的基極與射極之間的第二電容元件52。第二電容元件52具有改善雙極電晶體30的效率的功能。
接下來,對第五實施例的優異效果進行說明。 在第五實施例中,與複數個第一電容元件51相同,將複數個第二電容元件52配置為在第二方向D2錯開,所以能夠縮減複數個第二電容元件52佔有的區域的面積。
各實施例為例示,當然能夠進行不同的實施例所示的構成的部分置換或者組合。並不對每個實施例逐一提及複數個實施例的相同的構成所帶來的相同的作用效果。並且,本發明並不限定於上述的實施例。例如,對於本發明所屬技術領域中具有通常知識者而言,能夠進行各種變更、改進、組合等是顯而易知的。
2,3:一點鏈線 20:基板 21:子集極層 22:元件分離區域 30:雙極電晶體 31:集極層 32:基極層 33:射極層 33e:射極區域 34:射極台面層 35:合金化區域 36:基極台面層 40B:基極電極 40BF:基極電極主部 40BP:基極電極銲墊部 40C:集極電極 40E:射極電極 40R:下部電極 41B:第一層的基極配線 41Ba、41Bb:加寬部 41C:第一層的集極配線 41E:第一層的射極配線 42:基極偏壓輸入配線 43:集極共通配線 51:第一電容元件 52:第二電容元件 55:電阻元件 61:高頻訊號輸入配線 62:接地配線 63:輸出配線 64:接地配線 68:接地凸塊 69:輸出凸塊 80、81、82:絕緣膜 82A:開口 D1:第一方向 D2:第二方向 G1:間隔 G2:對位裕度 W1:寬度 W2:尺寸 Wt1,Wt2:尺寸
[圖1]圖1是表示構成第一實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、與該兩個雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。 [圖2]圖2是圖1的一點鏈線2-2上的剖面圖。 [圖3]圖3是圖1的一點鏈線3-3上的剖面圖。 [圖4]圖4是表示第一實施例的功率放大元件的各構成要素的俯視時的位置關係的圖。 [圖5]圖5是第一實施例的功率放大元件的一部分的等效電路圖。 [圖6]圖6A以及圖6B分別是第一實施例以及比較例的功率放大元件的兩個第一電容元件的俯視圖。 [圖7]圖7是第一實施例的本變形例的功率放大元件的第一電容元件的剖面圖。 [圖8]圖8是表示構成第二實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、與該兩個雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。 [圖9]圖9是表示構成第三實施例的功率放大元件的複數個雙極電晶體中的一個雙極電晶體、與該雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。 [圖10]圖10是表示構成第四實施例的功率放大元件的複數個雙極電晶體中的一個雙極電晶體、與該雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。 [圖11]圖11是表示構成第五實施例的功率放大元件的複數個雙極電晶體中的兩個雙極電晶體、與該兩個雙極電晶體連接的電容元件以及電阻元件的俯視時的位置關係的圖。 [圖12]圖12是第五實施例的功率放大元件的一部分的等效電路圖。
2,3:一點鏈線
21:子集極層
30:雙極電晶體
31:集極層
32:基極層
33:射極層
34:射極台面層
36:基極台面層
40B:基極電極
40BF:基極電極主部
40BP:基極電極銲墊部
40C:集極電極
40E:射極電極
41B:第一層的基極配線
41Ba:加寬部
41C:第一層的集極配線
41E:第一層的射極配線
42:基極偏壓輸入配線
51:第一電容元件
55:第二電容元件
61:高頻訊號輸入配線
82A:開口

Claims (13)

  1. 一種功率放大元件,其具有: 複數個雙極電晶體,沿第一方向排列配置在基板上,各自包含集極層、基極層、射極層、以及與上述基極層電性連接的至少一個基極電極; 複數個第一電容元件,與上述複數個雙極電晶體的各基極電極對應地設置,一方的電極與對應的基極電極連接,另一方的電極被供給高頻訊號;以及 複數個電阻元件,與上述複數個雙極電晶體的各基極電極對應地設置,一端與對應的基極電極連接,從另一端被供給偏壓, 於與上述第一方向正交的第二方向上,從上述複數個雙極電晶體觀察時,上述複數個第一電容元件配置在同一側, 從上述複數個雙極電晶體觀察上述第二方向時,上述複數個第一電容元件中的至少一個第一電容元件配置於與其它的一個第一電容元件部分重疊的位置。
  2. 如請求項1的功率放大元件,其中, 上述複數個雙極電晶體分別包含一個基極電極,且與一個雙極電晶體對應地配置一個第一電容元件, 在觀察上述第一方向時,上述複數個雙極電晶體中的一個雙極電晶體所連接的第一電容元件與旁邊的一個雙極電晶體所連接的第一電容元件是配置於不同位置,在從上述複數個雙極電晶體觀察上述第二方向時,配置為部分重疊。
  3. 如請求項1的功率放大元件,其中, 上述複數個雙極電晶體分別包含在上述第二方向較長的射極台面層,該射極台面層配置於上述射極層的上表面的一部分區域, 上述至少一個基極電極包含在上述第二方向較長的基極電極主部,該基極電極主部在俯視時在上述第一方向上與上述射極台面層隔開間隔配置。
  4. 如請求項2的功率放大元件,其中, 上述複數個雙極電晶體分別包含在上述第二方向較長的射極台面層,該射極台面層配置於上述射極層的上表面的一部分區域, 上述至少一個基極電極包含在上述第二方向較長的基極電極主部,該基極電極主部在俯視時在上述第一方向上與上述射極台面層隔開間隔配置。
  5. 如請求項3的功率放大元件,其中, 上述複數個第一電容元件分別按上述複數個雙極電晶體的每個基極電極的基極電極主部而配置。
  6. 如請求項4的功率放大元件,其中, 上述複數個第一電容元件分別按上述複數個雙極電晶體的每個基極電極的基極電極主部而配置。
  7. 如請求項5的功率放大元件,其中, 上述複數個雙極電晶體分別包含一個上述射極台面層、和在俯視時配置於上述射極台面層的兩側的兩個基極電極主部。
  8. 如請求項6的功率放大元件,其中, 上述複數個雙極電晶體分別包含一個上述射極台面層、和在俯視時配置於上述射極台面層的兩側的兩個基極電極主部。
  9. 如請求項5的功率放大元件,其中, 上述複數個雙極電晶體各自的基極電極包含相互分離且沿上述第一方向排列的三個基極電極主部, 在上述複數個雙極電晶體的各者中,上述射極台面層配置在中央的基極電極主部與兩端的兩個基極電極主部各者之間, 與中央的基極電極主部連接的第一電容元件配置在相對於分別與兩端的基極電極主部連接的兩個第一電容元件而於上述第二方向偏移的位置,且配置於上述第一方向上與上述兩個第一電容元件部分重疊的位置。
  10. 如請求項6的功率放大元件,其中, 上述複數個雙極電晶體各自的基極電極包含相互分離且沿上述第一方向排列的三個基極電極主部, 在上述複數個雙極電晶體的各者中,上述射極台面層配置在中央的基極電極主部與兩端的兩個基極電極主部的各者之間, 與中央的基極電極主部連接的第一電容元件配置在相對於分別與兩端的基極電極主部連接的兩個第一電容元件而於上述第二方向偏移的位置,且配置於上述第一方向上與上述兩個第一電容元件部分重疊的位置。
  11. 如請求項1~10中任一項的功率放大元件,其中, 上述複數個第一電容元件分別包含三層的導體層,中央的導體層與對應的基極電極連接,上側的導體層與下側的導體層相互連接。
  12. 如請求項1~10中任一項的功率放大元件,其進一步具有分別與上述複數個雙極電晶體的基極電極連接的複數個第二電容元件, 於上述第二方向上,從上述複數個雙極電晶體觀察時,上述複數個第二電容元件配置在同一側, 從上述複數個雙極電晶體觀察上述第二方向時,上述複數個第二電容元件中的至少一個第二電容元件配置於與其它的一個第二電容元件部分重疊的位置。
  13. 如請求項11的功率放大元件,其進一步具有分別與上述複數個雙極電晶體的基極電極連接的複數個第二電容元件, 於上述第二方向上,從上述複數個雙極電晶體觀察時,上述複數個第二電容元件配置在同一側, 從上述複數個雙極電晶體觀察上述第二方向時,上述複數個第二電容元件中的至少一個第二電容元件配置於與其它的一個第二電容元件部分重疊的位置。
TW110108694A 2020-03-30 2021-03-11 功率放大元件 TWI763363B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060222A JP2021158641A (ja) 2020-03-30 2020-03-30 電力増幅素子
JPJP2020-060222 2020-03-30

Publications (2)

Publication Number Publication Date
TW202137696A true TW202137696A (zh) 2021-10-01
TWI763363B TWI763363B (zh) 2022-05-01

Family

ID=77856527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110108694A TWI763363B (zh) 2020-03-30 2021-03-11 功率放大元件

Country Status (4)

Country Link
US (1) US11894365B2 (zh)
JP (1) JP2021158641A (zh)
CN (1) CN113472303A (zh)
TW (1) TWI763363B (zh)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127071A (ja) * 1999-08-19 2001-05-11 Hitachi Ltd 半導体装置及びその製造方法
JP2001326284A (ja) * 2000-05-17 2001-11-22 Nec Corp 化合物半導体集積回路およびその製造方法
JP2005167605A (ja) 2003-12-02 2005-06-23 Sharp Corp トランジスタ回路
JP5011549B2 (ja) * 2004-12-28 2012-08-29 株式会社村田製作所 半導体装置
JP2013026540A (ja) * 2011-07-25 2013-02-04 Renesas Electronics Corp 半導体集積回路装置
US10868155B2 (en) * 2014-11-27 2020-12-15 Murata Manufacturing Co., Ltd. Compound semiconductor device
US10177716B2 (en) * 2015-10-22 2019-01-08 Skyworks Solutions, Inc. Solder bump placement for emitter-ballasting in flip chip amplifiers
JP2019033199A (ja) * 2017-08-09 2019-02-28 株式会社村田製作所 半導体装置
JP2019054120A (ja) * 2017-09-15 2019-04-04 株式会社村田製作所 バイポーラトランジスタ及び高周波パワーアンプモジュール
JP2019114763A (ja) * 2017-12-22 2019-07-11 株式会社村田製作所 半導体装置
JP2019121735A (ja) * 2018-01-10 2019-07-22 株式会社村田製作所 半導体装置
CN109167579A (zh) * 2018-09-20 2019-01-08 天津大学 一种高输出功率高效率的功率放大器
JP2021052150A (ja) * 2019-09-26 2021-04-01 株式会社村田製作所 パワーアンプ単位セル及びパワーアンプモジュール
JP2022036468A (ja) * 2020-08-24 2022-03-08 株式会社村田製作所 半導体装置

Also Published As

Publication number Publication date
CN113472303A (zh) 2021-10-01
US11894365B2 (en) 2024-02-06
US20210305949A1 (en) 2021-09-30
TWI763363B (zh) 2022-05-01
JP2021158641A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI752598B (zh) 放大電路之單位單元及功率放大器模組
EP0723704B1 (en) Layout for radio frequency power transistors
US20070205432A1 (en) Heterojunction bipolar transistor and power amplifier using same
TWI731250B (zh) 半導體裝置
JP2001127071A (ja) 半導体装置及びその製造方法
US5986324A (en) Heterojunction bipolar transistor
TWI754492B (zh) 高頻功率放大元件
TWI747145B (zh) 半導體裝置及放大器模組
TWI763363B (zh) 功率放大元件
TWI774413B (zh) 半導體裝置
TWI744839B (zh) 半導體裝置
TW202008594A (zh) 半導體裝置
JP2004289640A (ja) 半導体回路
JP2020150250A (ja) 半導体装置
KR920003703B1 (ko) 반도체 장치
TW202010134A (zh) 異質接合雙極性電晶體及半導體裝置
JP2005167605A (ja) トランジスタ回路
WO2022202004A1 (ja) 半導体装置及び半導体モジュール
US11631758B2 (en) Semiconductor device
TWI757801B (zh) 半導體裝置
JP2007035809A (ja) 半導体装置及びその製造方法
TW202303921A (zh) 半導體裝置及半導體模組
TW202303977A (zh) 半導體裝置
JPH07130950A (ja) 半導体装置