TWI744839B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI744839B
TWI744839B TW109110041A TW109110041A TWI744839B TW I744839 B TWI744839 B TW I744839B TW 109110041 A TW109110041 A TW 109110041A TW 109110041 A TW109110041 A TW 109110041A TW I744839 B TWI744839 B TW I744839B
Authority
TW
Taiwan
Prior art keywords
emitter
base
layer
wiring
electrode
Prior art date
Application number
TW109110041A
Other languages
English (en)
Other versions
TW202042307A (zh
Inventor
梅本康成
小屋茂樹
大部功
井手野馨
Original Assignee
日商村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田製作所股份有限公司 filed Critical 日商村田製作所股份有限公司
Publication of TW202042307A publication Critical patent/TW202042307A/zh
Application granted granted Critical
Publication of TWI744839B publication Critical patent/TWI744839B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0813Non-interconnected multi-emitter structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

本發明提供一種能夠增大遷移電壓並擴大SOA的半導體裝置。在基板上依次配置有集極層、基極層、射極層、以及射極檯面層。進而配置有基極電極以及射極電極。在俯視時,射極檯面層具有在第一方向上較長的形狀,基極電極包含與射極檯面層在第一方向上隔著間隔配置的基極電極墊部。在射極電極以及基極電極上,分別配置有射極佈線以及基極佈線。射極佈線通過射極接觸孔與射極電極連接。在第一方向上,射極檯面層的基極佈線側的邊緣與射極接觸孔的基極佈線側的邊緣的間隔比射極檯面層與基極佈線的間隔窄。

Description

半導體裝置
本發明涉及半導體裝置。
作為構成移動體終端的高頻信號放大用的功率放大器模組的有源元件,主要使用異質結雙極電晶體(HBT)(專利文獻1)。作為該HBT所需的理想特性,有高效率、高增益、高輸出、以及高耐壓等各項目。在最近受到關注的信封跟蹤系統中,需要以較高的集極電壓動作的HBT。為了實現HBT的高電壓動作,需要擴大安全動作區域(SOA:Safe Opearting Area)。
專利文獻1:日本特開2005-11951號公報
在表示集極電流-集極電壓特性(Ic-Vce特性)的曲線圖中,若提高HBT的集極電壓,則SOA的範圍內與範圍外的分界線(SOA線)緩緩地降低。根據本申請的發明人的評價實驗,發現了在某個集極電壓下出現SOA線不連續地降低的現象。將SOA線不連續地降低時的集極電壓稱為遷移電壓。
若使動作電壓等於或高於遷移電壓,則在HBT動作中負載發生變動的情況下,實際的動作範圍偏離SOA的範圍的危險性變高。若動作範圍偏離SOA的範圍,則存在HBT損傷的情況。為了即使負載發生變動HBT也不損傷,並以較高的集極電壓使HBT動作,希望增大遷移電壓並擴大SOA。
本發明的目的在於提供一種能夠增大遷移電壓並擴大SOA的半導體裝置。
根據本發明的一個觀點,提供一種半導體裝置,具備: 配置於基板上的集極層、基極層、射極層、以及配置於上述射極層的部分區域上的射極檯面層; 基極電極,配置於在俯視時不與上述射極檯面層重疊的區域,向上述基極層流動基極電流;以及 射極電極,配置在上述射極檯面層上,向上述射極檯面層流動射極電流; 在俯視時,上述射極檯面層具有在第一方向上較長的形狀, 上述基極電極包含基極電極主部、以及與上述基極電極主部連續的基極電極墊部,在俯視時上述基極電極主部具有在上述第一方向上較長的形狀,與上述射極檯面層在與上述第一方向正交的第二方向上隔著間隔配置,上述基極電極墊部與上述射極檯面層在上述第一方向上隔著間隔配置, 上述半導體裝置進而具備: 絕緣膜,配置在上述射極電極以及上述基極電極上,並設置有在俯視時分別包含於上述射極電極以及上述基極電極墊部的射極接觸孔以及基極接觸孔; 射極佈線,配置在上述絕緣膜上,通過上述射極接觸孔與上述射極電極連接;以及 基極佈線,配置在上述絕緣膜上,通過上述基極接觸孔與上述基極電極墊部連接; 在上述第一方向上,上述射極檯面層的上述基極佈線側的邊緣與上述射極接觸孔的上述基極佈線側的邊緣的間隔比上述射極檯面層與上述基極佈線的間隔窄。
若在第一方向上,使射極檯面層的基極佈線側的邊緣與射極接觸孔的基極佈線側的邊緣的間隔比射極檯面層與基極佈線的間隔窄,則可獲得遷移電壓增大,其結果SOA擴大這樣的優異的效果。
在對實施例進行說明之前,基於本申請發明人進行的評價實驗參照圖1至圖3的圖式對在一般的HBT中妨礙SOA的擴大的一個因素進行說明。
圖1是表示作為評價實驗的物件的參考例的HBT的多個構成部分的平面佈局的圖。在基板的表層部設置有由具有導電性的半導體構成的子集極層20。在子集極層20的部分區域上,配置有集極層21、基極層22、以及射極層23。在俯視時,集極層21、基極層22、以及射極層23幾乎一致,並在俯視時配置於子集極層20的內部。在射極層23的上表面內的2個區域上分別配置有射極檯面層25。集極層21、基極層22、射極層23、以及射極檯面層25構成雙極電晶體,例如HBT。
各個射極檯面層25具有在俯視時在一個方向(在圖1中為橫向)上較長的平面形狀。例如射極檯面層25的俯視時的形狀為長方形。將射極檯面層25的長邊方向定義為第一方向D1,將在俯視時與第一方向D1正交的方向定義為第二方向D2。2個射極檯面層25在第二方向D2上隔著間隔配置。在2個射極檯面層25上分別配置有射極電極33。在圖1中,對射極電極33標有陰影。在俯視時,射極電極33比射極檯面層25的邊緣稍微向外側延伸。射極電極33由金屬形成,與射極檯面層25歐姆接觸。
在俯視時,射極層23中與射極檯面層25重疊的區域作為HBT的射極而動作。在本說明書中,將射極層23中與射極檯面層25重疊的部分稱為本徵射極層23A。在俯視時,將射極層23中未與射極檯面層25重疊的部分稱為平臺層23B。平台層23B被耗盡,實際上沒有電流流動。
在平臺層23B上配置有具有T字形的平面形狀的基極電極32。基極電極32藉由合金化處理通過平臺層23B與基極層22連接,向基極層22流動基極電流。在圖1中,對基極電極32標注陰影。基極電極32包含基極電極主部32A和基極電極墊部32B。基極電極主部32A配置於2個射極檯面層25之間,在俯視時具有在第一方向D1上較長的形狀。基極電極墊部32B與射極檯面層25的長邊方向的一個端部(與第二方向D2平行的邊緣)在第一方向D1上隔著間隔配置,與基極電極主部32A連續。
在子集極層20的內側,且在第二方向D2上集極層21的兩側,分別配置有集極電極31。在圖1中對集極電極31標注陰影。即,2個集極電極31配置為在第二方向D2上夾著集極層21。各個集極電極31在俯視時具有在第一方向D1上較長的形狀。集極電極31透過子集極層20與集極層21連接。
在集極電極31、基極電極32、以及射極電極33上配置有絕緣膜。在該絕緣膜上,集極佈線C1、基極佈線B1、以及射極佈線E1分別配置為在俯視時與集極電極31、基極電極墊部32B、以及射極電極33重疊。基極佈線B1與射極檯面層25以及射極電極33在第一方向D1上隔著間隔配置。
集極佈線C1通過設置於其下方的絕緣膜的集極接觸孔35與集極電極31連接。基極佈線B1通過設置於其下方的絕緣膜的基極接觸孔36與基極電極32連接。射極佈線E1通過設置於其下方的絕緣膜的射極接觸孔37與射極電極33連接。
射極接觸孔37在俯視時配置於射極電極33的內部,具有在第一方向D1上較長的平面形狀。集極接觸孔35在俯視時配置於集極電極31的內部,具有在第一方向D1上較長的平面形狀。基極接觸孔36在俯視時配置於基極電極墊部32B的內部。
射極佈線E1向遠離基極電極墊部32B以及基極佈線B1的方向引出。基極佈線B1向遠離射極檯面層25以及射極佈線E1的方向引出。也有在射極佈線E1、集極佈線C1、以及基極佈線B1上進一步配置第二層佈線的情況。
在俯視時,射極檯面層25以及射極電極33相對於第一方向D1以及第二方向D2都具有大致對稱性。即,第一方向D1的一端的射極檯面層25與射極電極33的邊緣的位置關係與另一端的它們的邊緣的位置關係具有鏡面對稱的關係。進一步,射極檯面層25以及射極電極33的與第一方向平行的邊緣的位置關係也具有以與第一方向D1平行的直線為對稱軸的鏡面對稱的關係。另外,射極檯面層25的邊緣與基極電極主部32A的邊緣的第二方向D2的間隔幾乎恒定。
為了抑制HBT的高頻特性的降低,較佳為盡可能減小基極集極間結電容Cbc。即,較佳為盡可能減小集極層21以及基極層22的俯視時的尺寸。為了減小集極層21以及基極層22的尺寸,可以縮小基極電極墊部32B與射極檯面層25的第一方向D1的間隔,並且減小基極電極墊部32B的第一方向D1的尺寸。
為了減小集極層21以及基極層22的尺寸而基極佈線B1配置為與基極電極墊部32B幾乎重疊。因此,基極佈線B1的與射極檯面層25對置的邊緣接近射極檯面層25。由於射極佈線E1和基極佈線B1配置於同一佈線層,所以兩者的間隔例如不能小於該佈線層的外觀設計規則的最小間隔。該佈線層的外觀設計規則的最小間隔通常比基極電極墊部32B與射極檯面層25的間隔大。其結果,射極佈線E1相對於基極電極墊部32B配置於比射極檯面層25更遠的位置。射極接觸孔37由於在俯視時包含於射極佈線E1,所以從基極電極墊部32B觀察配置於比射極佈線E1更遠。
將基極佈線B1與射極檯面層25的第一方向D1的間隔記作L1,將射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的第一方向D1的間隔記作L2。若基於上述的外觀設計規則來配置它們,則通常間隔L2比間隔L1寬。
嵌入有功率放大器的單片微波積體電路元件(MMIC)包含多個圖1所示的HBT。多個HBT相互透過射極佈線E1、集極佈線C1、基極佈線B1、以及其上的第二層佈線等直接或者透過電阻等元件間接地電連接。由此,構成功率級、驅動器級的功率放大器。
圖2是表示HBT的SOA線的實測結果的曲線圖。橫軸用單位“V”表示集極電壓Vce,縱軸用單位“A”表示集極電流Ic。比SOA線低電壓側的區域相當於SOA的範圍內,比SOA線高電壓側的區域相當於SOA的範圍外。
可知在集極電壓Vce約為6V時,在伴隨著集極電壓Vce的增加SOA線不連續地急劇地降低。SOA線不連續地降低時的集極電壓Vce相當於遷移電壓Vt。
在圖1以及圖2所示的參考例中,將射極電極33設為2根,將基極電極主部32A設為1根,但在將射極電極33的根數和基極電極主部32A的根數設為其他的組合的HBT中,也可確認出SOA線不連續的降低。例如,在將射極電極33以及基極電極主部32A均設為1根的HBT、將射極電極33設為1根並將基極電極主部32A設為2根的HBT、將射極電極33設為2根並將基極電極主部32A設為3根的HBT、將射極電極33設為3根並將基極電極主部32A設為4根的HBT中,也可確認出SOA線不連續的降低。
圖3是表示集極電流-基極電壓特性(Ic-Vb特性)的實測結果的曲線圖。橫軸用任意單位表示基極電壓Vb,縱軸用任意單位表示集極電流Ic。在測定時,將集極電壓Vce設為恒定,並用電流源掃描基極電流Ib的大小並且測定出集極電流Ic以及基極電壓Vb。在集極電壓Vce=V1、V2、V3、V4以及V5的多個電壓下進行了測定。在這裡,電壓V1至V5的大小關係為V1<V2<V3<V4<V5。
在集極電流Ic較小的範圍內,隨著基極電壓Vb的增加而集極電流Ic單調地增加,集極電流Ic相對於基極電壓Vb的斜率緩緩地增大。若集極電流Ic進一步增大,則達到集極電流Ic相對於基極電壓Vb的斜率成為無限大的回彈點SB。若使集極電流Ic超過回彈點SB地增加,則集極電流Ic相對於基極電壓Vb的斜率變為負,且基極電壓Vb隨著集極電流Ic的增加而降低。
在集極電壓Vce為V4以及V5時,在集極電流Ic通過回彈點SB之後,出現集極電流Ic不連續地降低的扭結K。在集極電壓Vce為比V4、V5低的V1、V2、V3時,未出現扭結K。出現扭結K的最小的集極電壓Vce對應於遷移電壓Vt(圖2)。在這裡,所謂的扭結K是指在Ic-Vb特性中表示基極電壓Vb減少且集極電流Ic增加的趨勢的區域中,出現基極電壓Vb的暫時增加、或者集極電流Ic的暫時減少的特徵區域(參照圖3)。
接下來,對在超過集極電流-基極電壓特性的回彈點SB的區域出現扭結K的理由進行說明。
扭結K的出現被推斷為是由HBT具有的熱或者電的非對稱性引起的。在俯視時,射極檯面層25與射極電極33的配置相對於第一方向D1幾乎具有對稱性。但是,射極檯面層25與射極接觸孔37的配置相對於第一方向D1不具有對稱性。另外,基極電極墊部32B僅配置於射極檯面層25的一個端部附近,未配置於另一個端部附近。進一步,射極檯面層25的基極佈線B1側的端部不與射極佈線E1重疊,但另一個端部與射極佈線E1重疊。這樣,對於一個射極檯面層25而言,在第一方向D1上存在熱、電非對稱因素。
在集極電流Ic到達回彈點SB(圖3)之前,射極電流Ie主要流動的區域的電流分佈在射極檯面層25(圖1)的長邊方向的中央附近具有最大值,並向長邊方向的兩側擴展。若集極電流Ic超過回彈點SB而增加,則由於射極檯面層25的周圍的非對稱因素,射極電流Ie主要流動的區域的電流分佈變化為在第一方向D1上從射極檯面層25(圖1)的中央附近位移的位置具有最大值。在本說明書中,所謂的“非對稱性”意味著射極電流Ie主要流動的區域在長邊方向上從射極檯面層25(圖1)的中央附近位移的位置具有電流最大值的因素。認為由於射極電流Ie主要流動的區域的具有電流最大值的位置的位移,而出現扭結K(圖3)。在以下說明的實施例中,射極檯面層25的周邊的熱以及電對稱性的破壞被緩和。
[第一實施例] 接下來,參照圖4至圖10的圖式,對第一實施例的半導體裝置進行說明。
圖4是表示第一實施例的半導體裝置的多個構成部分的平面佈局的圖。以下,對與圖1所示的參考例的HBT的不同點進行說明。在圖1所示的參考例中,射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的第一方向D1的間隔L2比基極佈線B1與射極檯面層25的第一方向D1的間隔L1寬。相對於此在第一實施例中,間隔L2比間隔L1窄。即,在第一方向D1上,射極檯面層25配置於比射極接觸孔37的基極佈線B1側的邊緣與基極佈線B1的邊緣的中間點靠射極接觸孔37的一側。
另外,在圖1所示的參考例中,在俯視時,射極檯面層25的基極佈線B1側的端部不與射極佈線E1重疊。相對於此在第一實施例中,射極檯面層25在俯視時包含於射極佈線E1。即,在俯視時,射極檯面層25的兩端均與射極佈線E1重疊。
射極檯面層25的長度(第一方向D1的尺寸)例如為5μm以上60μm以下,寬度(第二方向D2的尺寸)例如為1μm以上8μm以下。射極電極33與射極檯面層25的長度以及寬度之差為1μm以下。即,射極電極33的邊緣與射極檯面層25的邊緣的間隔為0.5μm以下。
射極接觸孔37以射極檯面層25為基準相對於第一方向D1幾乎對稱地配置。例如,在第一方向D1上,一端的射極接觸孔37的邊緣與射極檯面層25的邊緣的間隔與另一邊緣的該間隔相等。射極接觸孔37的長度以及寬度例如配合射極電極33的尺寸,分別為4μm以上60μm以下、以及0.5μm以上8μm以下。
射極檯面層25與基極電極主部32A的間隔在長邊方向(第一方向D1)上幾乎恒定,例如為0.5μm以上2μm以下。
圖5是圖4的點劃線5-5處的剖視圖。在由半絕緣性的GaAs構成的基板60上配置有n型GaAs層,n型GaAs層的一部分藉由離子注入技術而被絕緣化。藉由未被絕緣化的n型GaAs層形成子集極層20。在子集極層20的部分區域上,層疊有集極層21、基極層22、以及射極層23。在射極層23的上表面內的2個區域上分別配置有射極檯面層25。射極檯面層25包含射極層23側的蓋層25A、和配置於蓋層25A上的接觸層25B。
射極層23劃分為射極檯面層25的正下方的本徵射極層23A、和未被射極檯面層25覆蓋的平臺層23B。本徵射極層23A在俯視時與射極檯面層25幾乎一致,動作電流主要在本徵射極層23A流動。
集極層21由n型GaAs形成,基極層22由p型GaAs形成。基極層22的薄層電阻ρs例如為130Ω/□以上300Ω/□以下。射極層23例如由Si摻雜濃度為2×1017 cm 3 以上5×1017 cm 3 以下的n型InGaP形成,其厚度為20nm以上50nm以下。蓋層25A例如由Si摻雜濃度為2×1018 cm 3 以上4×1018 cm 3 以下的n型GaAs形成,其厚度為50nm以上200nm以下。接觸層25B例如由Si摻雜濃度為1×1019 cm 3 以上3×1019 cm 3 以下的n型InGaAs形成,其厚度為100nm以上200nm以下。此外,這些半導體層也可以使用其他的化合物半導體。
在子集極層20上配置有集極電極31。集極電極31在圖5所示的剖面上配置於集極層21的兩側。配置在平臺層23B上的基極電極32透過貫通平臺層23B的合金層與基極層22連接。合金層是基極電極32的材料藉由熱處理製程擴散至平臺層23B內而被合金化的。在圖5所示的剖面上,基極電極32中出現了基極電極主部32A(圖4),基極電極主部32A配置於2個射極檯面層25之間。在射極檯面層25上配置有射極電極33。
射極電極33比射極檯面層25的邊緣向外側延伸成簷狀。換言之,射極檯面層25的邊緣從射極電極33的邊緣後退。該構造例如使用將射極電極33作為蝕刻掩模對構成射極檯面層25的半導體層的不必要的部分進行蝕刻的自對準製程而形成。
絕緣膜61配置為覆蓋集極電極31、基極電極32、以及射極電極33。在絕緣膜61上,配置有第一層射極佈線E1以及集極佈線C1。射極佈線E1通過設置於絕緣膜61的2個射極接觸孔37與2個射極電極33連接。即,2個射極電極33藉由射極佈線E1相互連接。集極佈線C1配置於每個集極電極31,通過設置於絕緣膜61的集極接觸孔35與集極電極31連接。
圖6是表示圖4的點劃線6-6處的剖視圖。以下,對圖5所示的剖視圖中呈現的構成部分省略說明。
在圖6所示的剖面中,基極電極32中呈現出基極電極墊部32B。在覆蓋基極電極32以及射極電極33的絕緣膜61上配置有第一層基極佈線B1以及射極佈線E1。基極佈線B1通過設置於絕緣膜61的基極接觸孔36與基極電極墊部32B連接。基極佈線B1和射極佈線E1配置於同一佈線層內,兩者的間隔例如被設計為成為配置有基極佈線B1和射極佈線E1的層的外觀設計規則的最小間隔。基極佈線B1以及射極佈線E1在第一方向D1上相互向相反側引出。
射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的第一方向D1的間隔L2比基極佈線B1的邊緣與射極檯面層25的邊緣的第一方向D1的間隔L1窄。
圖7是表示第一實施例的半導體裝置的俯視圖。在圖7中,對第一層佈線層的佈線圖案標注有陰影。第一實施例的半導體裝置包含多個單位電晶體70。多個單位電晶體70分別具有與圖4、圖5、圖6所示的半導體裝置相同的構造。多個單位電晶體70在與射極檯面層25(圖4)的長邊方向(第一方向D1)正交的方向(第二方向D2)上排列配置。
第一層射極佈線E1從單位電晶體70的每一個朝向第一方向的一側(在圖7中為右側)引出。從單位電晶體70的每一個引出的射極佈線E1與射極共用佈線(地線)71連續。在俯視時,在射極共用佈線71的內部設置有通孔72。通孔72貫通基板60(圖5、圖6)到達基板60的背面。射極共用佈線71透過配置於通孔72內的金屬部件與設置於基板60的背面的外部連接用的接地電極連接。
基極佈線B1從單位電晶體70的每一個朝向與射極佈線E1的引出方向相反方向(在圖7中為左側)引出。基極佈線B1的每一個被加寬,與配置於第二層佈線層的高頻輸入佈線75重疊。基極佈線B1的每一個與高頻輸入佈線75重疊的位置作為MIM構造的電容器76發揮作用(省略更微小的構造)。進一步,基極佈線B1的每一個透過薄膜電阻77與偏置佈線78連接。與薄膜電阻77的連接佈線以及偏置佈線78均配置於第一層佈線層。薄膜電阻77配置於與第一層佈線層不同的層,由與第一層佈線材料不同的材料形成。
第二層集極佈線C2配置為與單位電晶體70的每一個的第一層集極佈線C1重疊,並與第一層集極佈線C1電連接。集極佈線C2從與第一層集極佈線C1重疊的位置,沿與射極佈線E1的引出方向相同的方向引出。引出的第二層多個集極佈線C2與第二層集極共用佈線73連續。
接下來,對第一實施例的優異效果進行說明。 在第一實施例中,由於間隔L1比間隔L2(圖4)寬,所以與參考例(圖1)的情況相比,射極檯面層25以及射極接觸孔37的周圍的相對於第一方向D1的對稱性的破壞較小。例如,基極佈線B1、基極電極墊部32B對射極檯面層25、射極接觸孔37內的射極佈線E1給予的熱影響,比參考例(圖1)小。因此,在第一實施例中,難以產生由於射極檯面層25的周圍的對稱性的破壞而產生的扭結K(圖3)。因此,能夠抑制遷移電壓Vt(圖2)的降低,而擴大SOA。
在射極檯面層25的正下方的本徵射極層23A(圖5)以及其正下方的集極層21等中產生的熱量傳遞至射極電極33以及射極佈線E1。為了進一步提高相對於第一方向D1的熱的對稱性,較佳為使射極檯面層25遠離基極佈線B1,以在俯視時射極檯面層25包含於射極佈線E1。但是,使射極檯面層25遠離基極佈線B1成為基極集極間結電容Cbc相對於射極檯面層25的面積相對地增大,而使高頻特性劣化的因素。因此,並不較佳為使射極檯面層25過度地遠離基極佈線B1。
進一步,為了提高散熱性,較佳為射極接觸孔37覆蓋射極檯面層25、射極電極33的大部分,並使相互的對應的邊緣彼此接近。例如,較佳為在第一方向D1上,使射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的間隔比射極檯面層25與基極電極墊部32B的間隔窄。
例如,也可以將基極佈線B1與射極佈線E1的間隔設定為第一層佈線層的外觀設計規則的最小間隔,並使射極電極33的基極佈線B1側的邊緣與射極佈線E1的邊緣一致。此外,“一致”中包含產生在半導體製程中可能產生的允許範圍內的對準誤差程度的偏移的情況。藉由像這樣配置基極佈線B1、射極佈線E1、射極電極33,能夠抑制基極集極間結電容Cbc的增大,並抑制高頻特性的劣化。
為了使基極集極間結電容Cbc相對於射極基極間結電容Ceb相對地降低,較佳為在俯視時在集極層21以及基極層22內盡可能地增大射極檯面層25。因此,較佳為使射極檯面層25的邊緣盡可能地接近基極電極32。例如,較佳為使基極電極32與射極檯面層25的間隔的最小值比基極佈線B1的射極佈線E1側的邊緣與射極佈線E1的基極佈線B1側的邊緣的間隔窄。
為了確認藉由第一實施例能夠擴大SOA的效果,實際製作樣本並測定了SOA。以下,參照圖8以及圖9,對該評價實驗進行說明。
圖8是表示第一實施例的半導體裝置的SOA線的實測結果的曲線圖。橫軸用單位“V”表示集極電壓Vce,縱軸用單位“A”表示集極電流Ic。圖8的圖中的實線以及虛線分別表示第一實施例以及參考例(圖1)的半導體裝置的SOA線。此外,得到圖8所示的特性的第一實施例的半導體裝置將射極檯面層25的寬度以及長度分別設為3μm以及40μm。
確認出第一實施例的半導體裝置的遷移電壓Vt1比參考例的半導體裝置的遷移電壓Vt0上升約1.8V。
製作射極檯面層25和基極佈線B1的第一方向D1的間隔L1(圖4)不同的多個樣本,並測定出各樣本的遷移電壓Vt。在各樣本中,也根據間隔L1,使射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的間隔L2(圖4)變化。
圖9是表示使間隔L1以及L2變化時的遷移電壓Vt的測定結果的圖。橫軸用單位“μm”表示間隔L1,左縱軸用單位“V”表示遷移電壓Vt,右縱軸用單位“μm”表示間隔L2。圖9的圖中的圓圈符號表示遷移電壓Vt,方形符號表示間隔L2。圖中的虛線表示滿足L1=L2的關係的位置。
在間隔L1比基極佈線B1與射極佈線E1的設計間隔(恒定)窄的情況下,為了在圖6中在射極佈線E1與基極佈線B1之間確保設計間隔,必須將射極佈線E1的左側的邊緣配置於比射極檯面層25的左側的邊緣靠右側。若在該條件下縮小間隔L1,則為了確保射極佈線E1的邊緣與射極接觸孔37的邊緣的對準餘量必須擴大間隔L2。在間隔L1約為2μm以下的範圍下,隨著間隔L1變窄而擴大間隔L2是為了確保該對準餘量。
可知在間隔L1為2μm附近遷移電壓Vt最大。在該附近,間隔L1比間隔L2寬。可知在間隔L1為間隔L2以上的條件時,與間隔L1小於間隔L2的條件時相比,可獲得較高的遷移電壓Vt。在間隔L2比2μm寬的範圍內,即使擴大間隔L2也看不到遷移電壓Vt的上升。擴大間隔L1成為基極集極結介面的面積增大,並使高頻特性降低的因素。因此,不較佳為過分地擴大間隔L1。從圖9所示的評價實驗的結果可匯出,較佳為將間隔L1設為1.5μm以上3μm以下。
接下來,對獲得上述評價實驗的結果的理由進行說明。 在間隔L1小於2μm的範圍內,例如如圖1所示,射極檯面層25的基極佈線B1側的端部延伸到射極佈線E1的外側。隨著間隔L1的增加,射極檯面層25的基極佈線B1側的端部中不與射極佈線E1重疊的區域變窄。另外,由於隨著間隔L1的增加而間隔L2降低,所以射極檯面層25中位於比射極接觸孔37靠外側的區域變窄。因此,容易從射極檯面層25經由射極佈線E1的下方的絕緣膜61(圖6)、射極接觸孔37內的射極佈線E1向外部散熱。其結果,射極檯面層25的端部附近的溫度下降,熱的非對稱性被緩和。
進一步,由於間隔L1擴大相當於基極電極墊部32B遠離射極檯面層25,所以與未配置基極電極墊部32B的射極檯面層25的端部相比,電的非對稱性也被緩和。
像這樣,擴大間隔L1能夠使以射極檯面層25為基準的熱以及電的非對稱性緩和。其結果,難以產生扭結K(圖3),而擴大SOA。
在間隔L1約為2μm以上的範圍內,間隔L2根據射極電極33、射極佈線E1與射極接觸孔37的對準餘量來決定,不取決於間隔L1。因此,间隔L2是恒定的。藉由隨著間隔L1的增加,基極電極墊部32B遠離射極檯面層25,從射極檯面層25朝向基極佈線B1的散熱路徑消失。相對於此,在射極檯面層25的相反側的端部,仍確保著從射極檯面層25朝向射極佈線E1的散熱路徑。其結果,以射極檯面層25為基準的熱的非對稱性增大,而容易產生扭結K(圖3)。由此,認為在間隔L2比2μm寬的範圍內,隨著間隔L1的增加而遷移電壓Vt降低。
像這樣,若使間隔L1增加,則最初熱以及電非對稱被緩和,之後,熱的非對稱性會增大。推斷當熱以及電的非對稱性的緩和與熱的非對稱性的增大相平衡時,遷移電壓Vt表示最大值。
圖10是使用第一實施例的半導體裝置的功率放大器用單片微波積體電路元件(MMIC)的框圖。MMIC包含驅動器級放大器100、功率級放大器101、偏置電路102、103。偏置電路102以及偏置電路103分別向驅動器級放大器100以及功率級放大器101供給偏置電流。高頻輸入信號RFin被輸入至驅動器級放大器100。被驅動器級放大器100放大後的信號被輸入至功率級放大器101。被功率級放大器101放大後的高頻輸出信號RFout被輸出至MMIC的外部。
驅動器級放大器100以及功率級放大器101分別由相互並聯連接的多個HBT構成。構成功率級放大器101的HBT的個數比構成驅動器級放大器100的HBT的個數多。構成驅動器級放大器的HBT和構成功率級放大器101的HBT在共用的基板60(圖5、圖6)上使用共用的半導體製程,形成為一個半導體晶片。
接下來,對藉由採用圖10所示的結構獲得的優異的效果進行說明。 藉由任意地選擇間隔L1、L2(圖4),能夠在同一半導體晶片內形成遷移電壓Vt不同的多個HBT。
可以將第一實施例的HBT用於需要高耐壓化的功率級放大器101。另外,可以在無需高耐壓化但需要高增益的驅動器級放大器100中,使用間隔L1小於1.5μm的HBT。在間隔L1小於1.5μm的HBT的情況下,由於能夠減小基極集極間結電容Cbc,所以能夠確保驅動器級放大器100的充分的增益。
像這樣,藉由提高無需高耐壓化的驅動器級放大器100的增益,並且使功率級放大器101高耐壓化,整體能夠實現高增益並且足以承受負載變動的高耐壓的功率放大器。另外,由於能夠使用共用的半導體製程在一個晶片上製作適合驅動器級放大器100的HBT和適合功率級放大器101的HBT,所以與分別使用專用的製程來製造的情況相比能夠實現低成本化。
接下來,對第一實施例的變形例進行說明。 若進行包含相互並聯連接的多個HBT的放大電路的負載變動試驗,則存在僅部分HBT損傷的情況。在多個樣本間固定有容易受到損傷的HBT的情況下,也可以僅多個HBT中容易受到損傷的HBT使用第一實施例的HBT,而其它的HBT例如使用圖1所示的參考例的HBT。
藉由製作全部的HBT使用圖1所示的參考例的HBT的多個評價樣本,並對多個評價樣本進行負載變動試驗,能夠確定容易受到損傷的HBT。藉由對難以受到損傷的HBT使用圖1所示的參考例的HBT,能夠抑制高頻特性的降低。
在第一實施例中,對在基極層和射極層的結介面具有GaAs與InGaP的異質結的HBT進行了說明,但第一實施例的特徵也能夠應用於其他的雙極電晶體、具有由GaAs和InGaP以外的半導體材料構成的異質結的HBT。作為這樣的HBT的例子,可舉出具有Si和SiGe、InGaAs和InGaP、GaAsAb和InGaP、GaInAsN和InGaP、GaAs和AlGaAs等的異質結的HBT。
[第二實施例] 接下來,參照圖11、圖12、以及圖13,對第二實施例的半導體裝置進行說明。以下,對於第一實施例的半導體裝置(圖4、圖5、圖6、圖7)共用的結構省略說明。
圖11是表示第二實施例的半導體裝置的多個構成部分的平面佈局的圖。在第一實施例(圖4)中,第一層射極佈線E1從射極電極33沿第一方向D1引出。相對於此在第二實施例中,第一層射極佈線E1未沿第一方向D1引出,而收納於子集極層20的內部。代替於此,第一層集極佈線C1從集極電極31沿第一方向D1引出。
圖12是第二實施例的半導體裝置的俯視圖。圖13是圖11的點劃線13-13上的剖視圖。在圖12中,對第一層佈線層的佈線圖案標注有陰影。在俯視時,第二層射極佈線E2配置為包含多個單位電晶體70。第二層射極佈線E2配置在覆蓋第一層射極佈線E1的絕緣膜62(圖13)上,通過設置於絕緣膜62的射極佈線間接觸孔65(圖13)與射極佈線E1連接。第二層射極佈線E2將多個第一層射極佈線E1相互連接。
第二層射極佈線E2被保護膜63(圖13)覆蓋,在保護膜63上配置有射極凸塊83。射極凸塊83(圖13)包含下凸塊金屬83A、其上的柱形凸塊83B、以及其上的焊料83C。射極凸塊83通過設置於保護膜63的射極凸塊/佈線間接觸孔82與第二層射極佈線E2連接。在俯視時,射極凸塊83配置為包含多個單位電晶體70。
從多個集極電極31沿第一方向D1引出的第一層多個集極佈線C1與集極共用佈線81(圖12)連續。集極共用佈線81配置於在第一方向D1上與第二層射極佈線E2分離的位置。第二層集極佈線C2配置為與集極共用佈線81部分重疊。第二層集極佈線C2配置在絕緣膜62(圖13)上,通過設置於絕緣膜62的佈線間接觸孔66(圖12)與第一層集極共用佈線81連接。
集極凸塊85配置為與第二層集極佈線C2部分重疊。集極凸塊85配置在保護膜63(圖13)上,通過設置於保護膜63的集極凸塊/佈線間接觸孔84(圖12)與第二層集極佈線C2連接。集極凸塊85具有與射極凸塊83(圖13)相同的層疊構造。
接下來,對第二實施例的優異的效果進行說明。 在第一實施例(圖4、圖6)中,在著眼於射極檯面層25、射極電極33、以及射極接觸孔37的情況下,相對於第一方向D1幾乎維持對稱性。但是,由於將射極佈線E1從射極接觸孔37沿第一方向D1的單側引出,所以若包括射極佈線E1,則相對於第一方向D1的對稱性被破壞。相對於此在第二實施例中,射極佈線E1不從射極接觸孔37沿第一方向D1引出。在俯視時,射極佈線E1的第一方向D1的兩端的邊緣與射極電極33的邊緣幾乎重疊。因此,不僅是射極檯面層25、射極電極33、射極接觸孔37,即使在著眼於射極佈線E1的情況下,也幾乎能維持相對於第一方向D1的對稱性。
因此,在第二實施例中,與第一實施例相比更難以產生扭結K(圖3)。其結果,藉由遷移電壓Vt進一步上升,可獲得SOA進一步擴大的優異的效果。由此,實現HBT的高耐壓化,而能夠進行更高電壓的動作。
射極佈線間接觸孔65(圖13)內的射極佈線E2成為在射極檯面層25等產生的熱量傳導至射極凸塊83的散熱路徑。為了減小散熱路徑的熱電阻,較佳為在俯視時增大射極佈線間接觸孔65。例如,較佳為在第一方向D1上,將射極佈線間接觸孔65的兩側的邊緣配置在比射極檯面層25的中心更接近第一層射極佈線E1的邊緣的位置。進一步,較佳為將射極檯面層25和射極佈線間接觸孔65配置為相對於第一方向D1幾乎對稱。若像這樣配置,則可確保從射極檯面層25到第二層射極佈線E2的散熱路徑的對稱性。其結果,能夠緩和相對於第一方向D1的熱的非對稱性。由此,更加難以產生扭結K(圖3),並能夠實現遷移電壓Vt的進一步的上升以及SOA的進一步的擴大。
另外,在第二實施例中也與第一實施例相同,藉由調整射極檯面層25、射極接觸孔37、射極佈線E1的基極佈線B1側的邊緣的位置關係,能夠使遷移電壓Vt變化。進一步在第二實施例中,由於射極佈線E1的與基極佈線B1相反側的邊緣與射極佈線間接觸孔65的位置關係也能夠調整,所以與第一實施例相比遷移電壓Vt的設定的自由度提高。
藉由對功率級放大器101(圖10)使用第二實施例的HBT,與第一實施例的情況相同,能夠實現高增益,並且足以承受負載變動的高耐壓的功率放大器。另外,由於能夠使用共用的半導體製程在一個晶片上製作適合驅動器級放大器100的HBT和適合功率級放大器101的HBT,所以與分別使用專用的製程來製造的情況相比能夠實現低成本化。
[第三實施例] 接下來,參照圖14對第三實施例的半導體裝置進行說明。以下,對於與第一實施例的半導體裝置(圖4、圖5、圖6、圖7)共用的結構省略說明。
圖14是表示第三實施例的半導體裝置的多個構成部分的平面佈局的圖。在第一實施例(圖4)中,在2個射極檯面層25之間配置有一個基極電極主部32A。相對於此在第三實施例中,在一個射極檯面層25的第二方向D2的兩側分別配置有基極電極主部32A。基極電極墊部32B連接2個基極電極主部32A的端部彼此。
在第三實施例中,能夠定義基極佈線B1與射極檯面層25的間隔L1、以及射極檯面層25的基極佈線B1側的邊緣與射極接觸孔37的基極佈線B1側的邊緣的間隔L2。在第三實施例中也與第一實施例相同,較佳為使間隔L2比間隔L1窄。
上述的各實施例是例示,當然能夠進行在不同的實施例中示出的結構的部分置換或者組合。對於由多個實施例的相同的結構起到的相同的作用效果不在每個實施例中依次提及。進一步,本發明並不限於上述的實施例。例如,能夠進行各種變更、改進、組合等對發明所屬技術領域中具有通常知識者來說是顯而易見的。
20:子集極層 21:集極層 22:基極層 23:射極層 23A:本徵射極層 23B:平臺層 25:射極檯面層 25A:蓋層 25B:接觸層 31:集極電極 32:基極電極 32A:基極電極主部 32B:基極電極墊部 33:射極電極 35:集極接觸孔 36:基極接觸孔 37:射極接觸孔 60:基板 61、62:絕緣膜 63:保護膜 65:射極佈線間接觸孔 66:佈線間接觸孔 70:單位電晶體 71:射極共用佈線 72:通孔 73:集極共用佈線 75:高頻輸入佈線 76:電容器 77:薄膜電阻 78:偏置佈線 81:集極共用佈線 82:射極凸塊/佈線間接觸孔 83:射極凸塊 83A:下凸塊金屬 83B:柱形凸塊 83C:焊料 84:集極凸塊佈線間接觸孔 85:集極凸塊 100:驅動器級放大器 101:功率級放大器 102、103:偏置電路 B1:第一層基極佈線 C1:第一層集極佈線 C2:第二層集極佈線 D1:第一方向 D2:第二方向 E1:第一層射極佈線 E2:第二層射極佈線 L1、L2:間隔
[圖1]是表示作為評價實驗的物件的參考例的HBT的多個構成部分的平面佈局的圖。 [圖2]是表示參考例的HBT的SOA線的實測結果的曲線圖。 [圖3]是表示集極電流-基極電壓特性(Ic-Vb特性)的實測結果的曲線圖。 [圖4]是表示第一實施例的半導體裝置的多個構成部分的平面佈局的圖。 [圖5]是圖4的點劃線5-5處的剖視圖。 [圖6]是表示圖4的點劃線6-6處的剖視圖。 [圖7]是表示第一實施例的半導體裝置的俯視圖。 [圖8]是表示第一實施例的半導體裝置的SOA線的實測結果的曲線圖。 [圖9]是表示使間隔L1以及L2變化時的遷移電壓Vt的測定結果的圖。 [圖10]是使用第一實施例的半導體裝置的功率放大器用單片微波積體電路元件(MMIC)的框圖。 [圖11]是表示第二實施例的半導體裝置的多個構成部分的平面佈局的圖。 [圖12]是第二實施例的半導體裝置的俯視圖。 [圖13]是圖11以及圖12的點劃線13-13處的剖視圖。 [圖14]是表示第三實施例的半導體裝置的多個構成部分的平面佈局的圖。
20:子集極層
21:集極層
22:基極層
23:射極層
23A:本徵射極層
25:射極檯面層
31:集極電極
32:基極電極
32A:基極電極主部
32B:基極電極墊部
33:射極電極
35:集極接觸孔
36:基極接觸孔
37:射極接觸孔
B1:第一層基極佈線
C1:第一層集極佈線
E1:第一層射極佈線
L1、L2:間隔

Claims (9)

  1. 一種半導體裝置,具備: 配置在基板上的集極層、基極層、射極層、以及配置在上述射極層的一部分區域上的射極檯面層; 基極電極,配置在俯視時不與上述射極檯面層重疊的區域,向上述基極層流動基極電流;以及 射極電極,配置在上述射極檯面層上,向上述射極檯面層流動射極電流; 在俯視時,上述射極檯面層具有在第一方向上較長的形狀, 上述基極電極包含:基極電極主部、以及與上述基極電極主部連續的基極電極墊部,在俯視時上述基極電極主部具有在上述第一方向上較長的形狀,與上述射極檯面層在與上述第一方向正交的第二方向上隔著間隔配置,上述基極電極墊部與上述射極檯面層在上述第一方向上隔著間隔配置, 上述半導體裝置進而具備: 絕緣膜,配置在上述射極電極以及上述基極電極上,並設置有在俯視時分別包含於上述射極電極以及上述基極電極墊部的射極接觸孔以及基極接觸孔; 射極佈線,配置在上述絕緣膜上,通過上述射極接觸孔來與上述射極電極連接;以及 基極佈線,配置在上述絕緣膜上,通過上述基極接觸孔來與上述基極電極墊部連接; 在上述第一方向上,上述射極檯面層的上述基極佈線側的邊緣與上述射極接觸孔的上述基極佈線側的邊緣的間隔比上述射極檯面層與上述基極佈線的間隔窄。
  2. 如請求項1所述之半導體裝置,其中, 上述基極電極與上述射極檯面層的間隔的最小值比上述基極佈線的上述射極佈線側的邊緣與上述射極佈線的上述基極佈線側的邊緣的間隔窄。
  3. 如請求項1或2所述之半導體裝置,其中, 上述基極佈線的邊緣與上述射極檯面層的邊緣在上述第一方向的間隔為1.5μm以上2.5μm以下。
  4. 如請求項1或2所述之半導體裝置,其中, 在上述第一方向上,上述射極電極的上述基極佈線側的邊緣與上述射極接觸孔的上述基極佈線側的邊緣的間隔比上述射極電極與上述基極電極的間隔窄。
  5. 如請求項1或2所述之半導體裝置,其中, 在上述第一方向上,上述射極檯面層的上述基極佈線側的邊緣與上述射極接觸孔的上述基極佈線側的邊緣的間隔比上述射極檯面層與上述基極電極墊部的間隔窄。
  6. 如請求項1或2所述之半導體裝置,其中, 上述射極電極的上述基極佈線側的邊緣與上述射極接觸孔的上述基極佈線側的邊緣在上述第一方向的間隔為0.5μm以下。
  7. 如請求項1或2所述之半導體裝置,其中, 上述射極佈線在上述第一方向上配置於比上述射極層的兩端靠內側。
  8. 如請求項1或2所述之半導體裝置,其進而具有: 絕緣性的保護膜,配置在上述射極佈線上,並設置有在俯視時包含上述射極佈線的凸塊佈線間接觸孔;以及 凸塊,配置在上述保護膜上,通過上述凸塊佈線間接觸孔來與上述射極佈線電連接。
  9. 一種半導體裝置,具備: 至少一個第一雙極電晶體,用於設置於基板的驅動器級放大器; 至少一個第二雙極電晶體,用於設置於上述基板的功率級放大器; 絕緣膜,覆蓋上述第一雙極電晶體以及上述第二雙極電晶體; 第一射極佈線以及第一基極佈線,配置在上述絕緣膜上,並與上述第一雙極電晶體連接;以及 第二射極佈線以及第二基極佈線,配置在上述絕緣膜上,並與上述第二雙極電晶體連接; 上述第一雙極電晶體以及上述第二雙極電晶體之各個具備: 配置在上述基板上的集極層、基極層、射極層、以及配置在上述射極層的一部分區域上的射極檯面層; 基極電極,配置在俯視時不與上述射極檯面層重疊的區域,向上述基極層流動基極電流;以及 射極電極,配置在上述射極檯面層上,向上述射極檯面層流動射極電流; 在俯視時,上述第一雙極電晶體以及上述第二雙極電晶體的上述射極檯面層具有在第一方向上較長的形狀, 上述第一雙極電晶體以及上述第二雙極電晶體的上述基極電極包含:基極電極主部,在俯視時與上述射極檯面層在與上述第一方向正交的第二方向上隔著間隔配置且在上述第一方向上較長;以及基極電極墊部,與上述射極檯面層在上述第一方向上隔著間隔配置,並與上述基極電極主部連續, 在上述絕緣膜上設置有在俯視時分別包含於上述第一雙極電晶體以及上述第二雙極電晶體的上述射極電極以及上述基極電極墊部的射極接觸孔以及基極接觸孔, 上述第一射極佈線通過上述射極接觸孔來與上述第一雙極電晶體的上述射極電極連接, 上述第一基極佈線通過上述基極接觸孔來與上述第一雙極電晶體的上述基極電極墊部連接, 上述第二射極佈線通過上述射極接觸孔來與上述第二雙極電晶體的上述射極電極連接, 上述第二基極佈線通過上述基極接觸孔來與上述第二雙極電晶體的上述基極電極墊部連接, 在上述第二雙極電晶體中,在上述第一方向上,上述射極檯面層的上述第二基極佈線側的邊緣與上述射極接觸孔的上述第二基極佈線側的邊緣的間隔比上述射極檯面層與上述第二基極佈線的間隔窄,上述第二基極佈線與上述射極檯面層的上述第一方向的間隔為1.5μm以上2.5μm以下, 在上述第一雙極電晶體中,上述第一基極佈線與上述射極檯面層的上述第一方向的間隔小於1.5μm。
TW109110041A 2019-05-08 2020-03-25 半導體裝置 TWI744839B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2019-088387 2019-05-08
JP2019088387A JP2020184580A (ja) 2019-05-08 2019-05-08 半導体装置

Publications (2)

Publication Number Publication Date
TW202042307A TW202042307A (zh) 2020-11-16
TWI744839B true TWI744839B (zh) 2021-11-01

Family

ID=73045293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110041A TWI744839B (zh) 2019-05-08 2020-03-25 半導體裝置

Country Status (4)

Country Link
US (2) US11227804B2 (zh)
JP (1) JP2020184580A (zh)
CN (1) CN111916494A (zh)
TW (1) TWI744839B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118560A1 (ja) * 2020-12-04 2022-06-09 株式会社村田製作所 電力増幅器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200425506A (en) * 2003-04-24 2004-11-16 Sony Corp Semiconductor device and method of producing same
US20060249752A1 (en) * 2005-03-28 2006-11-09 Sanyo Electric Co., Ltd. Active element and switching circuit device
US20070295994A1 (en) * 2006-06-23 2007-12-27 Kazuhiro Mochizuki Hetero junction bipolar transistor
TW201705284A (zh) * 2015-02-17 2017-02-01 Murata Manufacturing Co 異質接面雙極性電晶體及電力增幅模組
TW201841371A (zh) * 2017-02-22 2018-11-16 美商高通公司 異質接面雙極電晶體單位單元及用於功率放大器之功率級

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296666A (ja) * 1988-05-25 1989-11-30 Hitachi Ltd ヘテロ接合バイポーラトランジスタの製造方法
EP1353384A3 (en) * 2002-04-10 2005-01-12 Hitachi, Ltd. Heterojunction bipolar transistor, manufacturing thereof and power amplifier module
JP2005011951A (ja) 2003-06-18 2005-01-13 Sharp Corp バイポーラトランジスタおよびバイポーラトランジスタ配列構造
JP4977313B2 (ja) * 2004-01-19 2012-07-18 ルネサスエレクトロニクス株式会社 ヘテロ接合バイポーラトランジスタ
JP5011549B2 (ja) * 2004-12-28 2012-08-29 株式会社村田製作所 半導体装置
JP2007287782A (ja) * 2006-04-13 2007-11-01 Hitachi Ltd メサ型バイポーラトランジスタ
JP5140347B2 (ja) * 2007-08-29 2013-02-06 株式会社日立製作所 バイポーラトランジスタ及びその製造方法
CN101855726B (zh) * 2007-11-09 2015-09-16 克里公司 具有台面结构及包含台面台阶的缓冲层的功率半导体器件
US9099518B1 (en) * 2014-02-04 2015-08-04 Triquint Semiconductor, Inc. Electrostatic discharge protection device
US10847436B2 (en) * 2017-10-11 2020-11-24 Murata Manufacturing Co., Ltd. Power amplifier module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200425506A (en) * 2003-04-24 2004-11-16 Sony Corp Semiconductor device and method of producing same
US20060249752A1 (en) * 2005-03-28 2006-11-09 Sanyo Electric Co., Ltd. Active element and switching circuit device
US20070295994A1 (en) * 2006-06-23 2007-12-27 Kazuhiro Mochizuki Hetero junction bipolar transistor
TW201705284A (zh) * 2015-02-17 2017-02-01 Murata Manufacturing Co 異質接面雙極性電晶體及電力增幅模組
TW201841371A (zh) * 2017-02-22 2018-11-16 美商高通公司 異質接面雙極電晶體單位單元及用於功率放大器之功率級

Also Published As

Publication number Publication date
US11817356B2 (en) 2023-11-14
JP2020184580A (ja) 2020-11-12
CN111916494A (zh) 2020-11-10
TW202042307A (zh) 2020-11-16
US20220115272A1 (en) 2022-04-14
US20200357699A1 (en) 2020-11-12
US11227804B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
US10249620B2 (en) Semiconductor device and power amplifier circuit
TWI671822B (zh) 半導體裝置
TWI752598B (zh) 放大電路之單位單元及功率放大器模組
US11949003B2 (en) Semiconductor device
TWI731250B (zh) 半導體裝置
US20070205432A1 (en) Heterojunction bipolar transistor and power amplifier using same
TWI754492B (zh) 高頻功率放大元件
TWI744839B (zh) 半導體裝置
US20220059527A1 (en) Semiconductor device
JP2020150250A (ja) 半導体装置
US11631758B2 (en) Semiconductor device
TWI763363B (zh) 功率放大元件
TWI757801B (zh) 半導體裝置
JP2007035809A (ja) 半導体装置及びその製造方法