TW202129456A - 參考電壓電路 - Google Patents

參考電壓電路 Download PDF

Info

Publication number
TW202129456A
TW202129456A TW109123275A TW109123275A TW202129456A TW 202129456 A TW202129456 A TW 202129456A TW 109123275 A TW109123275 A TW 109123275A TW 109123275 A TW109123275 A TW 109123275A TW 202129456 A TW202129456 A TW 202129456A
Authority
TW
Taiwan
Prior art keywords
current
diode
transistor
circuit
resistor
Prior art date
Application number
TW109123275A
Other languages
English (en)
Inventor
冨岡勉
Original Assignee
日商艾普凌科有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商艾普凌科有限公司 filed Critical 日商艾普凌科有限公司
Publication of TW202129456A publication Critical patent/TW202129456A/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/18Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using Zener diodes
    • G05F3/185Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using Zener diodes and field-effect transistors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/10Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only with diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

本發明的參考電壓電路包括:齊納二極體,陰極經由第一節點連接於電流源,陽極連接於接地點;第一電阻,一端與第一節點連接;第二電阻,一端連接於第一電阻的另一端;第一二極體,陽極於第二節點處連接於第二電阻的另一端,陰極連接於接地點;以及電流控制電路,生成與第一二極體的陽極電壓對應的控制電流,使電流源對第一二極體供給與控制電流對應的參考電流。

Description

參考電壓電路
本發明是有關於一種參考電壓電路。
先前以來,參考電壓電路廣泛用於電子電路,所述參考電壓電路相對於將所賦予的電壓與臨限值電壓進行比較的比較器,生成作為該臨限值電壓的參考電壓。 於該參考電壓電路中,由於可以簡單的結構生成參考電壓,因此使用包括齊納二極體、二極體及電阻的結構(例如,參照專利文獻1)。
圖7所示的現有的參考電壓電路100於定電流源103的輸出端子與接地點之間,並聯連接有齊納二極體104、以及串聯連接有電阻107、電阻106與二極體105的電路。另外,齊納二極體104以反向連接,二極體105以正向連接。 藉此,參考電壓電路100自電阻107與電阻106的連接點輸出作為參考電壓的輸出電壓Vout。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開昭49-128250號公報
[發明所欲解決之課題]
於參考電壓電路100中,輸出電壓Vout由(A1)式表示。 Vout=(R106 ·Vz +R107 ·VD )/(R106 +R107 )…(A1) 於所述(A1)式中,Vz 為齊納二極體104的陰極的電壓,VD 為二極體105的陽極的電壓,R106 及R107 為電阻106、電阻107各自的電阻值。
另外,於二極體105中流動的電流I105 由(A2)式表示。 I105 =(Vz -VD )/(R106 +R107 )…(A2) 此處,電壓Vz 具有正的溫度係數,電壓VD 具有負的溫度係數。 於電阻106及電阻107的溫度係數為0的情況下(於不具有溫度依存性的情況下),電流I105 具有正的溫度係數。
若將定電流源103所供給的電流設為I103 ,則於齊納二極體104中流動的電流I104 由(A3)式表示。 I104 =I103 -I105 …(A3) 於電流I103 不具有溫度依存性的情況下,電流I105 具有正的溫度係數,因此電流I104 具有負的溫度係數。
即,電流I103 不發生變化,隨著對應於溫度的上升而電流I105 增加,電流I104 相對地減少。因此,於參考電壓電路100的情況下,隨著溫度上升而電流I104 減少,因此無法保持電壓Vz 相對於溫度變化的線性。
另一方面,於溫度上升而電流I105 增加的情況下,為了減小電壓VD 的負的溫度係數的影響而增加電流I103 ,藉此可保持電壓Vz 相對於溫度變化的線性,而將輸出電壓Vout的溫度係數設為0。 然而,為了保持電壓Vz 的線性,需要於齊納二極體104中穩定地流動電壓VD 的負的溫度係數的影響減小的程度的大的電流I103 作為偏置電流,從而難以進行參考電壓電路的低電力消耗化。
本發明的目的在於提供一種參考電壓電路,其不使自定電流源流向齊納二極體的電流增加,而施加至齊納二極體的陰極的電壓的溫度依存性可維持線性,並抑制電力消耗,藉此能夠實現省電化。 [解決課題之手段]
本發明實施方式的參考電壓電路包括:齊納二極體,陰極經由第一節點連接於電流源,陽極連接於接地點;第一電阻,一端與所述第一節點連接;第二電阻,一端連接於所述第一電阻的另一端;第一二極體,陽極於第二節點處連接於所述第二電阻的另一端,陰極連接於接地點;以及電流控制電路,生成與所述第一二極體的陽極電壓對應的控制電流,使所述電流源對所述第一二極體供給與所述控制電流對應的參考電流。
根據本發明的參考電壓電路,可提供一種參考電壓電路,其不使增加自定電流源流向齊納二極體的電流,施加至齊納二極體的陰極的電壓的溫度依存性可維持線性,並抑制電力消耗,藉此能夠實現省電化。
以下,參照附圖對本實施方式進行說明。 <第一實施方式> 圖1是表示基於第一實施方式的參考電壓電路的結構例的電路圖。 參考電壓電路1包括:電流鏡電路10、電流控制電路20、電阻31(第一電阻)、電阻32(第二電阻)、齊納二極體ZD及二極體D1。 電流鏡電路10包括p通道型的電晶體11及p通道型的電晶體12。電晶體11的汲極連接於輸出端子To,電晶體12的汲極連接於輸入端子Ti。 電流控制電路20為參考電壓電路1中的電流源,且包括誤差放大電路OP1、電晶體21及V/I轉換元件22。
齊納二極體ZD中,陰極連接於電流鏡電路10的輸出端子To,陽極連接於接地點。 電阻31中,一端連接於齊納二極體ZD的陰極,另一端連接於電阻32的一端及輸出端子Tvout。 電阻32的另一端連接於二極體D1的陽極。 二極體D1的陰極連接於接地點。 電晶體21是n通道型的電晶體,且汲極連接於電流鏡電路10的輸入端子Ti,閘極連接於誤差放大電路OP1的輸出端子,源極連接於V/I轉換元件22的一端。 誤差放大電路OP1中,非反相輸入端子連接於二極體D1的陽極,反相輸入端子連接於V/I轉換元件22的一端。
V/I轉換元件22中,另一端連接於接地點,將二極體D1的電壓VD 轉換為控制電流Icon 。 圖2是表示V/I轉換元件的一例的電路圖。於圖2中,V/I轉換元件22包括:二極體22A、電阻22B、電阻22C及二極體22D。 於V/I轉換元件22的一端與另一端之間,並聯連接有二極體22A、以及電阻22B、電阻22C與二極體22D的串聯電路。此處,二極體22A及二極體22D於V/I轉換元件22的自一端至另一端正向連接。
參考電壓電路1藉由對電晶體11及電晶體12的源極施加電源電壓VDD,將輸出電壓Vout自輸出端子TVout輸出。 此時,藉由於齊納二極體ZD中流動電流IZD ,於齊納二極體ZD的陰極產生電壓VZ 作為反向電壓。另外,藉由於二極體D1中流動電流ID1 ,於二極體D1的陽極產生電壓VD 作為順向電壓。 輸出電壓Vout是對應於電壓VZ 、電壓VD 、電阻31及電阻32的分壓比而決定。於以下的(1)式中,將電阻31及電阻32的電阻值分別設為R31 、R32 。 Vout=(R32 ·Vz +R31 ·VD )/(R31 +R32 )…(1)
而且,齊納二極體ZD的電壓VZ 具有正的溫度係數,且與二極體D1的電壓VD 的負的溫度係數平衡,使得參考電壓電路1的輸出電壓Vout不具有溫度依存性(溫度係數為「0」)。因此,於在齊納二極體ZD中流動電流IZD 作為偏置電流時,以滿足以下的(2)式的方式設定電阻31及電阻32的電阻值R31 、電阻值R32 。 R32 ·(dVz /dT)+R31 ·(dVD /dT)=0…(2) 於所述(2)式中,(dVZ /dT)表示每單位的溫度變化所引起的陰極電壓VZ 的變化量,且具有正的溫度係數。另外,(dVD /dT)表示每單位的溫度變化所引起的電壓VD 的變化量,且具有負的溫度係數。
電流控制電路20作為V/I轉換電路發揮功能,所述V/I轉換電路將二極體D1的電壓VD 轉換為與所述電壓VD 對應的控制電流Icon 。 即,藉由誤差放大電路OP1使電晶體21進行負回饋處理,V/I轉換元件22的電壓降與電壓VD 相等。因此,於V/I轉換元件22中,自電流鏡電路10的輸入端子Ti流動與電壓VD 對應的控制電流Icon
該控制電流Icon 成為於二極體22A、以及串聯連接有電阻22B、電阻22C與二極體22D的電路中流動的電流的合成電流。 此處,於二極體22A中流動由與二極體D1的面積比(P/N結的面積比)決定的、與電流ID1成 比例的電流I22A 。二極體22A中的電壓降具有負的溫度係數。 另外,於電阻22B中流動與二極體D1的電壓VD 成比例的電流I22B (=VD /R22B )。R22B 為電阻22B的電阻值。電流I22B 具有負的溫度係數。 於電阻22C及二極體22D中流動和二極體D1的陽極電壓與二極體22D的陽極電壓的差電壓ΔVD 成比例的電流I22C (=ΔVD /R22C )。R22C 為電阻22C的電阻值。差電壓ΔVD 具有正的溫度係數。
當自電流控制電路20對輸入端子Ti輸入控制電流Icon 時,電流鏡電路10將基於所設定的鏡比的參考電流Icrt 自輸出端子To輸出至齊納二極體ZD及二極體D1。例如,於輸出電流相對於輸入電流的鏡比為K的情況下,參考電流Icrt 由以下的(3)式表示。 Icrt =K·(I22A +I22B +I22C )…(3) 例如,於二極體D1與二極體22A的面積比為1:1,二極體D1與二極體22D的面積比為1:N(>1,例如2以上),K=1的情況下,參考電流Icrt 由以下的(4)式表示。 Icrt =I22A +VD /R22B +ΔVD /R22C …(4) 此處,I22A =ID1
於(4)式中,第一項的電流I22A 為於具有與二極體D1相同的特性的二極體22A中流動的電流,且與於二極體D1中流動的電流ID1 相同。該電流ID1 作為與電壓VD 對應的回饋而自電流鏡電路10的輸出端子To被輸出至二極體D1。 因此,第二項VD /R22B 及第三項ΔVD /R22C 自電流鏡電路10的輸出端子To輸出至齊納二極體ZD。 於齊納二極體ZD中流動的電流IZD 由自式(4)除去第一項而成的(5)式表示。 IZD =VD /R22B +ΔVD /R22C …(5)
如根據所述(5)式可知,第一項及第二項分別是於電阻22B、電阻22C與二極體22D的串聯電路的各者中流動的電流,且不受於二極體D1中流動的電流ID1 影響。 另外,於電阻22B及電阻22C的溫度係數為「0」的情況下,電壓VD 為負的溫度係數,因此電流VD /R22B 的溫度係數為負,且差電壓ΔVD 為正的溫度係數,因此電流ΔVD /R22C 的溫度係數為正。因此,藉由調整電阻22B的電阻值R22B 及電阻22C的電阻值R22C ,可將於齊納二極體ZD中流動的電流IZD 的溫度特性任意調整為正或負。
如上所述,參考電壓電路1生成將與電壓VD 對應的電流和與在齊納二極體ZD中流動的電流IZD 對應的電流合成而成的控制電流Icon ,與該控制電流Icon 對應地自電流鏡電路10流動參考電流Icrt ,並與溫度變化對應地調整電流ID1 、電流Icrt 。 藉此,與基於電壓VD 及電壓VZ 的溫度依存性的變動對應地,於二極體D1中流動對該變動進行補償的電流ID1 ,並且於齊納二極體ZD中流動電流IZD ,藉此能夠任意地對電壓VZ 進行控制。
因此,參考電壓電路1可對應於溫度變化來將電流IZD 調整為所需最小限度的電流量來進行供給,因此能夠於保持施加至齊納二極體ZD的陰極的電壓VZ 的溫度依存性的線性的同時進行省電化。
再者,參考電壓電路1亦可構成為藉由未圖示的啟動電路,於起動時將規定的脈衝電流施加至電阻31。 另外,設為V/I轉換元件22包括二極體22A、電阻22B、電阻22C及二極體22D的結構進行了說明,但亦可設為包括二極體22A、以及電阻22B、電阻22C與二極體22D的串聯電路中的任一者或者它們的組合的結構。於該結構的情況下,以陰極電壓VZ 保持線性的方式調整電流鏡電路10的鏡比、或二極體22A、二極體22D的面積比、電阻22B、電阻22C的電阻值等,且以電流ID1 及電流IZD 成為對應於溫度變化而經適時調整的電流Icrt 的方式,根據電壓VD 生成控制電流Icon
圖3是表示基於第一實施方式的參考電壓電路的變形例的電路圖。以下,對與圖1的參考電壓電路1不同的結構及動作進行說明。 參考電壓電路1a相對於圖1附加了二極體D2。二極體D2中,陽極連接於電流鏡電路10的輸出端子To,陰極連接於電阻31的一端。於二極體D2的電壓降為VD2 的情況下,輸出電壓Vout由以下的(6)式表示。 Vout=(R32 ·(Vz -VD2 )+R31 ·VD )/(R31 +R32 )…(6)
藉由附加了二極體D2,二極體D2的陽極電壓為負的溫度係數,因此連接於二極體D2的陰極的電阻31的一端的電壓成為正的溫度係數,該電阻31的一端的電壓對應於溫度變化而變化。 由於電阻31的一端的電壓為正的溫度係數,因此為了消除輸出電壓Vout的溫度依存性,使電阻31的電阻值R31 如根據(6)式可知般增加。藉此,電阻31的電壓降增加,輸出電壓Vout降低。 因此,於與圖1的結構相比需要更低的輸出電壓Vout的情況下,如圖3所示,藉由追加二極體D2可容易地實現。
另外,如圖3所示,亦可設為附加定電流源41或者定電流源42的任一者的結構。 例如,於對齊納二極體ZD的陰極附加了定電流源41的情況下,自定電流源41對齊納二極體ZD供給電流IZD 。藉此,電流鏡電路10供給參考電流Icrt 作為於二極體D1中流動的電流ID1 。於該情況下,構成為於齊納二極體ZD中流動的電流IZD 不受由電壓VD 產生的影響,電流控制電路20對應於溫度變化僅進行於二極體D1中流動的電流ID1 的補償。
因此,V/I轉換元件22例如構成為僅包括圖2中的二極體22A,藉由與二極體D1相同的電壓降,對誤差放大電路OP1的反相輸入端子施加電壓VD 。 另外,與上述附加了定電流源41的情況同樣地,於對電流鏡電路10的輸入端子Ti附加了定電流源42的情況下,電流控制電路20亦構成為僅進行於二極體D1中流動的電流ID1 的補償。
<第二實施方式> 圖4是表示基於第二實施方式的參考電壓電路的結構例的電路圖。 參考電壓電路1A包括:電流源10A、電流控制電路20A、電阻31、電阻32、齊納二極體ZD及二極體D1。 電流源10A包括p通道型的電晶體13。 電流控制電路20A包括:誤差放大電路OP2、V/I轉換元件22及電晶體23。
電晶體13中,源極被施加電源電壓VDD,於閘極連接有誤差放大電路OP2的輸出端子及電晶體23的閘極,於汲極連接有齊納二極體ZD的陰極及電阻31的一端。 電晶體23是p通道型的電晶體,源極被施加電源電壓VDD,汲極連接於V/I轉換元件22的一端及誤差放大電路OP2的非反相輸入端子。 V/I轉換元件22的另一端連接於接地點。
電阻31的另一端連接於輸出端子TVout及電阻32的一端。 電阻32的另一端連接於二極體D1的陽極及誤差放大電路OP2的反相輸入端子。 齊納二極體ZD的陽極連接於接地點。 二極體D1的陰極連接於接地點。
電流控制電路20A作為V/I轉換電路發揮功能,所述V/I轉換電路將二極體D1的電壓VD 轉換為與所述電壓VD 對應的控制電流Icon 。 誤差放大電路OP2及電晶體23構成電壓跟隨器,因此V/I轉換元件22的電壓降藉由電晶體23的負回饋而與二極體D1的電壓VD 相同。
因此,於V/I轉換元件22中經由電晶體23流動控制電流Icon 作為與二極體D1的電壓VD 對應的電流。 電晶體13與電晶體23的閘極電壓相等,因此於電晶體13及電晶體23中流動與縱橫比相應的汲極電流。藉此,於電晶體13中流動與在V/I轉換元件22中流動的控制電流Icon 對應的參考電流Icrt
如上所述,與第一實施方式同樣地,本第二實施方式的參考電壓電路根據因溫度變化而變動的陽極電壓VD 生成控制電流Icon ,與該控制電流Icon 對應地,自電晶體13供給在二極體D1中流動的電流ID1 與於齊納二極體ZD中流動的電流IZD 的合成電流即參考電流Icrt 。 因此,本實施方式的參考電壓電路可對應於溫度變化來將電流IZD 調整為所需最小限度的電流量來進行供給,因此能夠於保持施加至齊納二極體ZD的陰極的電壓VZ 的溫度依存性的線性的同時進行省電化。
<第三實施方式> 圖5是表示基於第三實施方式的參考電壓電路的結構例的電路圖。 參考電壓電路1B除包括電流控制電路20B以外,為與第二實施方式相同的結構。 電流控制電路20B包括:p通道型的電晶體24及p通道型的電晶體25、n通道型的電晶體26及n通道型的電晶體27、及V/I轉換元件22。
電晶體24中,源極被施加電源電壓VDD,閘極連接於電晶體25的閘極及汲極,汲極連接於電晶體26的汲極及閘極。 電晶體25中,源極被施加電源電壓VDD,汲極連接於電晶體27的汲極。 電晶體26中,閘極連接於電晶體27的閘極,源極連接於二極體D1的陽極。 電晶體27的源極經由V/I轉換元件22連接於接地點。
電流控制電路20B作為V/I轉換電路發揮功能,所述V/I轉換電路將二極體D1的電壓VD 轉換為與所述電壓VD 對應的控制電流Icon 。 電晶體24及電晶體25構成電流鏡,和電晶體24與電晶體25的鏡比對應的電流於電晶體26及電晶體27中流動,決定電晶體27的源極電壓。
例如,於電晶體24與電晶體25的鏡比為1:1,電晶體26與電晶體27的縱橫比相同的情況下,於電晶體26及電晶體27中流動相同的汲極電流。藉此,電晶體26的源極電壓(電壓VD )與電晶體27的源極電壓相等,即V/I轉換元件22的電壓降與電壓VD 相同。 於V/I轉換元件22中經由電晶體25流動與電壓VD 對應的控制電流Icon ,因此於電晶體25及構成電流鏡的電晶體13中流動將於V/I轉換元件22中流動的控制電流Icon 乘以鏡比而得的參考電流Icrt
如上所述,參考電壓電路1B基於因溫度變化而變動的電壓VD 生成控制電流Icon ,與該控制電流Icon 對應地,自電晶體13供給在二極體D1中流動的電流ID1 與於齊納二極體ZD中流動的電流IZD 的合成電流即參考電流Icrt 。 因此,參考電壓電路1B可對應於溫度變化來將電流IZD 調整為所需最小限度的電流量來進行供給,因此可於保持施加至齊納二極體ZD的陰極的電壓VZ 的溫度依存性的線性的同時進行省電化。
<第四實施方式> 圖6是表示基於第四實施方式的參考電壓電路的結構例的電路圖。 參考電壓電路1C除包括電流控制電路20C、雙極電晶體BT1、定電流源41以外,為與第一實施方式相同的結構。 電流控制電路20C包括雙極電晶體BT2。 雙極電晶體BT1及雙極電晶體BT2為npn型的雙極電晶體,且構成電流鏡。
雙極電晶體BT1中,集電極連接於基極及電阻32的另一端,發射極連接於接地點。即,雙極電晶體BT1對應於第一實施方式中的二極體D1。 雙極電晶體BT2中,集電極連接於電流鏡電路10的輸入端子Ti,基極連接於雙極電晶體BT1的基極,發射極連接於接地點。此處,雙極電晶體BT2的基極/發射極對應於第一實施方式中的V/I轉換元件22的二極體22A,且具有與雙極電晶體BT1的基極/發射極相同的二極體特性。
雙極電晶體BT1於基極被施加電壓VD 的情況下,流動基於電壓VD 的基極電流,且流動與該基極電流對應的集電極電流(電流ID1 )。 於雙極電晶體BT2中,基於與雙極電晶體BT1的鏡比而流動集電極電流。 雙極電晶體BT2的集電極電流為對應於電壓VD 而流動的控制電流Icon ,被輸入至電流鏡電路10的輸入端子Ti。 藉此,電流鏡電路10自輸出端子To輸出與鏡比對應的參考電流Icrt
此處,於電流鏡電路10的鏡比為1:1,雙極電晶體BT1與雙極電晶體BT2的鏡比為1:1的情況下,自電流鏡電路10的輸出端子輸出的參考電流Icrt 與電流ID1 相等。 藉此,自定電流源41供給於齊納二極體ZD中流動的電流IZD ,且不受由電壓VD 產生的影響,因此電流控制電路20C構成為藉由雙極電晶體BT1僅進行於二極體D1中流動的電流ID1 的補償。 另外,與上述附加了定電流源41的情況同樣地,於電流鏡電路10的輸入端子Ti附加了定電流源42的情況下,電流控制電路20C亦構成為僅進行於集電極及基極經短路的雙極電晶體BT1(相當於二極體D1)中流動的電流ID1 的補償。
如上所述,參考電壓電路1C生成與雙極電晶體BT1的二極體連接中的電壓VD 對應的控制電流Icon ,與該控制電流Icon 對應地,自電晶體13流動參考電流Icrt ,並與溫度變化對應地調整電流ID1 。 因此,參考電壓電路1C可對應於溫度變化來將電流IZD 調整為所需最小限度的電流量來進行供給,因此可於保持施加至齊納二極體ZD的陰極的電壓VZ 的溫度依存性的線性的同時進行省電化。 有可能。
以上,參照附圖對實施方式進行了詳細敘述,但具體結構並不限於該些實施方式,亦包含不脫離本發明的主旨的範圍內的設計及變形等。
1、1a、1A、1B、1C、100:參考電壓電路 10:電流鏡電路 10A:電流源 11、12、13、23、24、25:電晶體(p通道型的電晶體) 21、26、27:電晶體(n通道型的電晶體) 20、20A、20B、20C:電流控制電路 22:V/I轉換元件 22A、22D、105、DI、D1、D2:二極體 22B、22C、106、107:電阻 31:電阻(第一電阻) 32:電阻(第二電阻) 41、42、103:定電流源 104、ZD:齊納二極體 BT1、BT2:雙極電晶體 OP1、OP2:誤差放大電路 Icon:控制電流 Icrt:參考電流 IDI:集電極電流(電流) IZD:電流 T0、Tvout:輸出端子 Ti:輸入端子 VDD:電源電壓 Vout:輸出電壓
圖1是表示基於第一實施方式的參考電壓電路的結構例的電路圖。 圖2是表示電壓/電流(Voltage/Current,V/I)轉換元件的一例的電路圖。 圖3是表示基於第一實施方式的參考電壓電路的變形例的電路圖。 圖4是表示基於第二實施方式的參考電壓電路的結構例的電路圖。 圖5是表示基於第三實施方式的參考電壓電路的結構例的電路圖。 圖6是表示基於第四實施方式的參考電壓電路的結構例的電路圖。 圖7是表示現有的參考電壓電路的電路圖。
1:參考電壓電路
10:電流鏡電路
11、12:電晶體(p通道型的電晶體)
20:電流控制電路
21:電晶體
22:V/I轉換元件
31:電阻(第一電阻)
32:電阻(第二電阻)
DI:二極體
Icon:控制電流
Icrt:參考電流
IDI:集電極電流(電流)
IZD:電流
OP1:誤差放大電路
T0、Tvout:輸出端子
Ti:輸入端子
VDD:電源電壓
Vout:輸出電壓
ZD:齊納二極體

Claims (14)

  1. 一種參考電壓電路,其特徵在於包括: 齊納二極體,陰極經由第一節點連接於電流源,陽極連接於接地點; 第一電阻,一端與所述第一節點連接; 第二電阻,一端連接於所述第一電阻的另一端; 第一二極體,陽極經由第二節點連接於所述第二電阻的另一端,陰極連接於接地點;以及 電流控制電路,生成與所述第一二極體的陽極電壓對應的控制電流,使所述電流源對所述第一二極體供給與所述控制電流對應的參考電流。
  2. 如請求項1所述的參考電壓電路,其中 所述電流源包括第一電流鏡電路,所述第一電流鏡電路將所述控制電流作為輸入電流,將所述參考電流作為輸出電流, 所述電流控制電路包括將所述陽極電壓轉換為所述控制電流的電壓/電流轉換元件。
  3. 如請求項2所述的參考電壓電路,其中 所述電流控制電路包括: 第一誤差放大電路,非反相輸入端子連接於所述第二節點,反相輸入端子連接於所述電壓/電流轉換元件的一端;以及 n通道型的第一電晶體,汲極連接於所述第一電流鏡電路的輸入端子,閘極連接於所述第一誤差放大電路的輸出端子,源極連接於所述電壓/電流轉換元件的一端。
  4. 如請求項1所述的參考電壓電路,其中 所述電流源為源極連接於電源、汲極所述第一節點連接的p通道型的第二電晶體, 所述電流控制電路以所述第二電晶體中流動與所述控制電流對應的所述參考電流的方式進行控制。
  5. 如請求項4所述的參考電壓電路,其中 所述電流控制電路包括: p通道型的第三電晶體,源極連接於所述電源; 第二誤差放大電路,反相輸入端子連接於所述第二節點,非反相輸入端子連接於所述第三電晶體的汲極,輸出端子連接於所述第二電晶體的閘極及所述第三電晶體的閘極;以及 電壓/電流轉換元件,連接於所述非反相輸入端子與所述接地點之間,且具有與所述第一二極體相同的特性。
  6. 如請求項4所述的參考電壓電路,其中 所述電流控制電路包括: 第二電流鏡電路; n通道型的第四電晶體,汲極連接於所述第二電流鏡電路的輸入端子; n通道型的第五電晶體,汲極及閘極連接於所述第二電流鏡電路的輸出端子及所述第四電晶體的閘極,源極連接於所述第二節點;以及 電壓/電流轉換元件,連接於所述第四電晶體的源極與接地點之間,且具有與所述第一二極體相同的特性。
  7. 如請求項1所述的參考電壓電路,包括正向連接於所述第一節點與所述第一電阻之間的第四二極體。
  8. 如請求項2所述的參考電壓電路,包括正向連接於所述第一節點與所述第一電阻之間的第四二極體。
  9. 如請求項4所述的參考電壓電路,包括正向連接於所述第一節點與所述第一電阻之間的第四二極體。
  10. 請求項5或請求項6所述的參考電壓電路,其中 所述電壓/電流轉換元件包括具有與所述第一二極體相同的特性的第二二極體。
  11. 請求項5或請求項6所述的參考電壓電路,其中 所述電壓/電流轉換元件為第二二極體、第三電阻、以及第四電阻與第三二極體串聯連接的串聯電路中的任一者或並聯連接組合。
  12. 請求項5或請求項6所述的參考電壓電路,包括正向連接於所述第一節點與所述第一電阻之間的第四二極體。
  13. 如請求項1所述的參考電壓電路,其中 所述電流源包括:定電流源,流動所述齊納二極體的電流;以及第三電流鏡電路,輸出端子與所述第一節點連接, 所述第一二極體由集電極及基極為二極體連接、發射極連接於接地點的npn型的第一雙極電晶體形成, 所述電流控制電路由集電極連接於所述第三電流鏡電路的輸入端子、基極連接於所述第一雙極電晶體的集電極及基極、發射極連接於接地點的npn型的第二雙極電晶體形成, 所述第三電流鏡電路將所述控制電流作為輸入電流,將所述參考電流作為輸出電流。
  14. 如請求項13所述的參考電壓電路,其中 所述第一雙極電晶體的基極-發射極的二極體特性與所述第二雙極電晶體的基極-發射極的二極體特性相同。
TW109123275A 2019-07-29 2020-07-10 參考電壓電路 TW202129456A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138412A JP7334081B2 (ja) 2019-07-29 2019-07-29 基準電圧回路
JP2019-138412 2019-07-29

Publications (1)

Publication Number Publication Date
TW202129456A true TW202129456A (zh) 2021-08-01

Family

ID=74259662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123275A TW202129456A (zh) 2019-07-29 2020-07-10 參考電壓電路

Country Status (5)

Country Link
US (1) US11402863B2 (zh)
JP (1) JP7334081B2 (zh)
KR (1) KR20210014079A (zh)
CN (1) CN112306131B (zh)
TW (1) TW202129456A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812873A1 (en) * 2019-10-24 2021-04-28 NXP USA, Inc. Voltage reference generation with compensation for temperature variation
US11703527B2 (en) * 2020-09-04 2023-07-18 Changxin Memory Technologies, Inc. Voltage detection circuit and charge pump circuit
CN114063696A (zh) * 2021-11-05 2022-02-18 格威半导体(厦门)有限公司 基于齐纳二级管的电压基准源与电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314423C3 (de) 1973-03-23 1981-08-27 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur Herstellung einer Referenzgleichspannungsquelle
JPS60119106A (ja) * 1983-11-30 1985-06-26 Mitsubishi Electric Corp 定電圧回路
DE10146849A1 (de) * 2001-09-24 2003-04-10 Atmel Germany Gmbh Verfahren zur Erzeugung einer Ausgangsspannung
DE10146831B4 (de) * 2001-09-24 2006-06-22 Atmel Germany Gmbh Verfahren zur Erzeugung eines zeitlich begrenzten Signals
US6724244B2 (en) * 2002-08-27 2004-04-20 Winbond Electronics Corp. Stable current source circuit with compensation circuit
JP2006133916A (ja) 2004-11-02 2006-05-25 Nec Electronics Corp 基準電圧回路
JP2006260209A (ja) * 2005-03-17 2006-09-28 Mitsubishi Electric Corp 電圧制御電圧源
US7554311B2 (en) * 2006-07-31 2009-06-30 Sandisk Corporation Hybrid charge pump regulation
CN101226414B (zh) * 2008-01-30 2012-01-11 北京中星微电子有限公司 一种动态补偿基准电压的方法以及带隙基准电压源
JP2009223850A (ja) * 2008-03-19 2009-10-01 Denso Corp 定電圧回路
JP5310856B2 (ja) * 2009-07-07 2013-10-09 富士通株式会社 定電流回路、および半導体集積回路
US8461912B1 (en) * 2011-12-20 2013-06-11 Atmel Corporation Switched-capacitor, curvature-compensated bandgap voltage reference
JP6061589B2 (ja) * 2012-03-22 2017-01-18 エスアイアイ・セミコンダクタ株式会社 基準電圧回路
JP5862434B2 (ja) * 2012-04-10 2016-02-16 富士電機株式会社 パワートランジスタの駆動回路
CN204667243U (zh) * 2015-06-15 2015-09-23 灿芯半导体(上海)有限公司 一种电压调整电路
CN108052154B (zh) * 2018-02-05 2023-08-01 成都信息工程大学 一种无运放高阶低温漂带隙基准电路

Also Published As

Publication number Publication date
JP2021022177A (ja) 2021-02-18
US20210034092A1 (en) 2021-02-04
CN112306131A (zh) 2021-02-02
US11402863B2 (en) 2022-08-02
KR20210014079A (ko) 2021-02-08
JP7334081B2 (ja) 2023-08-28
CN112306131B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
TW202129456A (zh) 參考電壓電路
US20150102789A1 (en) Voltage regulator
US7317358B2 (en) Differential amplifier circuit
TW201935168A (zh) 過電流限制電路、過電流限制方法及電源電路
CN109960309B (zh) 电流生成电路
TWI738416B (zh) 功率mosfet導通電阻補償裝置
US8237505B2 (en) Signal amplification circuit
US7253677B1 (en) Bias circuit for compensating fluctuation of supply voltage
KR101443178B1 (ko) 전압제어회로
US4308504A (en) Direct-coupled amplifier circuit with DC output offset regulation
CN108345336B (zh) 能隙参考电路
US11237586B2 (en) Reference voltage generating circuit
TW202303165A (zh) 電流感測電路
KR100599974B1 (ko) 기준 전압 발생기
JP2021096554A (ja) 定電流回路
CN111258364B (zh) 过热保护电路以及具备该过热保护电路的半导体装置
JP2013083471A (ja) 過電流検出回路
JP4946643B2 (ja) パワーアンプ回路
JP2647208B2 (ja) A級プッシュプル出力回路
JP5003176B2 (ja) 差動増幅回路
JPH067375Y2 (ja) 出力電圧温度補償型安定化直流電源
JP2023039271A (ja) 電流センス回路及びdc/dcコンバータ
CN114761903A (zh) 基准电压产生电路
KR100376484B1 (ko) 차동 전류/전압 변환회로
JPH07162242A (ja) バイアス回路