TW202127683A - 發光二極體及發光二極體陣列 - Google Patents

發光二極體及發光二極體陣列 Download PDF

Info

Publication number
TW202127683A
TW202127683A TW109143011A TW109143011A TW202127683A TW 202127683 A TW202127683 A TW 202127683A TW 109143011 A TW109143011 A TW 109143011A TW 109143011 A TW109143011 A TW 109143011A TW 202127683 A TW202127683 A TW 202127683A
Authority
TW
Taiwan
Prior art keywords
led
semiconductor layer
top surface
layer
well
Prior art date
Application number
TW109143011A
Other languages
English (en)
Other versions
TWI758996B (zh
Inventor
瑋歆 陳
Original Assignee
英商普利希半導體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商普利希半導體有限公司 filed Critical 英商普利希半導體有限公司
Publication of TW202127683A publication Critical patent/TW202127683A/zh
Application granted granted Critical
Publication of TWI758996B publication Critical patent/TWI758996B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Abstract

提供一種形成單晶LED前驅物之方法。方法包括以下步驟:提供具有頂表面的基板;在基板之頂表面上形成包括III族氮化物的第一半導體層;由LED遮罩層選擇性地遮蔽第一半導體層,LED遮罩層包括孔,此孔界定穿過LED遮罩層之厚度至第一半導體層之未遮蔽部分的LED井,此LED井包括從第一半導體層之頂表面延伸至LED遮罩層之頂表面的LED井側壁;及在第一半導體層之未遮蔽部分上的LED井內選擇性地形成單晶LED堆疊。單晶LED堆疊包括:在第一半導體層上形成的包括III族氮化物的n型半導體層;在第一半導體層上形成的包括一或更多個量子井子層的主動層,此主動層包括III族氮化物;及在第二半導體層上形成的包括III族氮化物的p型半導體層。從第一半導體層之頂表面延伸的單晶LED堆疊之LED堆疊側壁符合LED遮罩層之LED井側壁。

Description

發光二極體及發光二極體陣列
本揭示案關於發光二極體(LED)。特定地,本揭示案關於包括III族氮化物的LED。
微型LED陣列通常被界定為尺寸為100×100 μm2 或更小的LED之陣列。微型LED陣列為微型顯示器/投影機中的自發光部件,微型LED陣列適用於各種裝置,如智慧型手錶(smartwatch)、頭戴式顯示器(head-wearing display)、抬頭顯示器(head-up display)、攝錄影機(camcorder)、取景器(viewfinder)、多站點激發源(multisite excitation source)及微投影機(pico-projector)。
一種類型的微型LED陣列包括由III族氮化物形成的複數個LED。III族氮化物LED為無機半導體LED,其在主動發光區域中包括例如GaN及其與InN及AlN的合金。比起習知的大面積LED,例如,其中發光層為有機化合物的有機發光二極體(OLED),III族氮化物LED可以顯著更高的電流密度來驅動並且發射更高的光功率密度。
在用於製造包括III族氮化物的LED的一種已知製程中,如揭示於Wong, M. S的「High efficiency of III-nitride micro-light emitting diodes by sidewall passivation using atomic layer deposition 」(Optics express, Vol. 26, No. 16,2018年8月6日),跨藍寶石基板沉積微型LED結構及ITO接觸層。隨後使用反應性離子蝕刻步驟來界定個別微型LED台面(mesa)結構,此步驟其中移除ITO層及微型LED結構之部分。上述蝕刻製程造成微型LED結構從基板延伸而具有暴露的側壁表面。RIE步驟將缺陷引入至微型LED台面之側壁表面中,使得在側壁表面上存在電荷捕捉位點(charge trapping site)。側壁表面上捕捉位點的存在減少了微型LED之外部量子效率(EQE)。
隨著LED之表面尺寸減小至微型LED尺寸,LED周長與LED表面積之比率增加。因此,可能包含蝕刻造成的缺陷的側壁表面對元件EQE具有更多的顯著影響。
如Wong, M. S等人所解釋的,改善微型LED之EQE的一種方法為在側壁表面上方沉積介電鈍化層。例如,包括SiO2 的介電鈍化層可用於覆蓋LED台面結構之側壁表面以試圖鈍化側壁缺陷。
用於形成包括III族氮化物的LED的替代製程使用選區生長(selective area growth; SAG)製程。例如,英國專利申請案GB 1811109.6揭示經由遮罩層之孔生長LED前驅物。每個LED前驅物形成為具有垂直於基板的規則梯形截面的柱。遮罩中的材料使得在生長條件下,沒有另外的材料直接在遮罩上生長,而僅在下層的緩衝層之表面之暴露部分上生長。沿[0001]方向生長的III族氮化物之選區生長之另一個值得注意的特徵為,取決於生長參數(如生長溫度、壓力及V/III比率),相對於(0001)平面(亦稱為c平面)的傾斜刻面是繞由圖案化的遮罩之開口區域所界定的c平面半導體之生長部分之周圍而獲得。傾斜的刻面大致上沿纖鋅礦晶體之{10 1}或{10 2}平面定向,並且與c平面表面(半極性表面)相比呈現減小的偏振場。如此,LED前驅物之傾斜刻面(側壁)不是藉由蝕刻步驟所形成。
本發明之目的為提供用於形成LED前驅物的改善的方法,以及改善的LED前驅物,其解決與先前技術的方法及陣列有關的至少一個問題,或至少對其提供商業上有用的替代方案。
本發明之目的為提供具有改善的EQE的LED前驅物。如此,本發明之目的為使用不會將缺陷(例如,由蝕刻步驟造成的缺陷)引入LED結構之側壁中的製程來形成LED結構。
根據本揭示案之第一方面,提供形成單晶(monolithic) LED前驅物之方法。方法包括以下步驟: (a)提供具有頂表面的基板; (b)在基板之頂表面上形成包括III族氮化物的第一半導體層; (c)由LED遮罩層選擇性地遮蔽第一半導體層,LED遮罩層包括孔,孔界定穿過LED遮罩層之厚度至第一半導體層之未遮蔽部分的LED井,LED井包括從第一半導體層之頂表面延伸至LED遮罩層之頂表面的LED井側壁; (d)在第一半導體層之未遮蔽部分上的LED井內選擇性地形成單晶LED堆疊,單晶LED堆疊包括: 在第一半導體層上形成的包括III族氮化物的n型半導體層; 在第一半導體層上形成的包括一或更多個量子井子層的主動層,此主動層包括III族氮化物; 在第二半導體層上形成的包括III族氮化物的p型半導體層; 其中從第一半導體層之頂表面延伸的單晶LED堆疊之LED堆疊側壁符合LED遮罩層之LED井側壁。
單晶LED堆疊之LED堆疊側壁抵靠LED遮罩層之LED井側壁而形成。如此,LED堆疊側壁由LED遮罩層成形。因此,單晶LED堆疊可在不蝕刻LED堆疊側壁的情況下形成及成形,使得沒有蝕刻引起的損壞被引入至單晶LED堆疊中。藉由減少或消除在製造過程期間對LED堆疊側壁的損壞,可改善所造成的LED之EQE。
在垂直於第一半導體層的平面中的單晶LED堆疊之截面形狀由LED遮罩層中的LED井之截面形狀來控制。因此,與SAG製程不同,LED結構之側壁之形狀可被控制以基於界定LED井的LED遮罩側壁之截面形狀來提供不同的幾何形狀。也就是說,第一半導體層上的單晶LED堆疊之截面積符合由LED井暴露的第一半導體層之未遮蔽部分之截面積(亦即,LED井之截面積)。反之,在SAG製程中,LED形成在遮罩層之頂部上,使得LED之截面之形狀及尺寸與遮罩孔不同。
在單晶LED堆疊之製造期間LED遮罩層的存在造成形成與LED遮罩側壁直接接觸的LED堆疊側壁表面。如此,LED堆疊側壁形成有已經就位的鈍化層(LED遮罩側壁)。因此,形成LED前驅物之方法可使用有效、經濟的製造方法來提供具有改善的EQE的LED前驅物。
在一些實施例中,由LED遮罩層選擇性地遮蔽第一半導體層之步驟包括:跨第一半導體層之頂表面沉積LED遮罩層;及穿過LED遮罩層之厚度選擇性地移除LED遮罩層之第一部分以形成LED井。如此,LED遮罩層可使用微影技術來形成。
在一些實施例中,LED井側壁在大致上垂直於第一半導體層之頂表面的方向上延伸。因此,單晶LED堆疊可形成有在大致上垂直於第一半導體層之頂表面的方向上延伸的LED堆疊側壁。反之,在SAG製程中,由於生長過程,LED之側壁可能相對於法線傾斜。
在一些實施例中,在第一半導體層與LED遮罩層之頂表面之間延伸的LED井側壁之一部分相對於垂直於第一半導體層之頂表面的方向傾斜。例如,在一些實施例中,LED井側壁可包括第一部分及第二部分,第一部分大致上垂直於第一半導體層延伸,第二部分在相對於垂直於第一半導體層之頂表面的方向傾斜的方向上延伸。第一部分可佈置在第二部分與第一半導體層之頂表面之間,反之亦然。在一些實施例中,實質上所有的LED井側壁可相對於垂直於第一半導體層之頂表面的方向傾斜。
在一些實施例中,LED井側壁之部分可傾斜,使得LED井在平行於第一半導體層之頂表面的平面中的截面積在從第一半導體層之頂表面朝向LED遮罩層之頂表面的方向上減少。或者,LED井側壁之部分可傾斜,使得LED井在平行於第一半導體層之頂表面的平面中的截面積在從第一半導體層之頂表面朝向LED遮罩層之頂表面的方向上增加。如此,LED井側壁可成形為界定所產生的單晶LED堆疊之特徵,此舉改善了從LED的光提取。例如,減少的表面積可提供光準直特徵。
在一些實施例中,從第一半導體層延伸的每個LED井側壁之準直部分在大致上垂直於第一半導體層之方向上延伸;及在準直部分與LED遮罩層之頂表面之間延伸的每個LED井側壁之錐形部分為傾斜的,使得LED井在平行於第一半導體層之頂表面的平面中的截面積在從第一半導體層之頂表面朝向LED遮罩層之頂表面的方向上減少。
在一些實施例中,第一方面之方法進一步包括以下步驟: (f)從LED遮罩層之頂表面移除LED遮罩層之第二部分,使得LED遮罩層與單晶LED堆疊之頂表面形成平面化的表面。 如此,可在製造過程期間保留用於成形單晶LED堆疊的一部分的LED遮罩層,以用作間隙填充絕緣體,間隙填充絕緣體亦可鈍化LED堆疊側壁。藉由不移除LED遮罩層之與LED堆疊側壁接觸的部分,可減少及/或防止對LED堆疊側壁的損壞,並且可簡化製造過程。
在一些實施例中,LED遮罩層之第二部分是使用研磨(polishing)製程來移除。在其他實施例中,選擇性蝕刻劑可用於移除LED遮罩層。如此,僅LED遮罩層可被選擇性地移除,而沒有蝕刻單晶LED堆疊。
在一些實施例中,第一方面之方法進一步包括以下步驟: (f)在形成單晶LED堆疊之後,選擇性地移除所有的LED遮罩層。 如此,在形成單晶LED堆疊之後,可移除所有的LED遮罩層。方法亦可進一步包括在環繞單晶LED堆疊的第一半導體層之頂表面上沉積間隙填充絕緣體,此間隙填充絕緣體與單晶LED堆疊之頂表面形成平面化的表面。
一旦形成平面化的表面,方法可進一步包括以下步驟: (g)將LED前驅物之平面化的表面接合至包括背板電子裝置的進一步基板;及任選地 (h)從第一半導體層移除基板。 如此,第一方面之LED前驅物可被製造為使得其與覆晶(flip-chip)接合表面相容。特定地,在一些實施例中,可在不使用蝕刻步驟的情況下製造及製備LED前驅物,以用於基板接合至背板電子裝置。
在一些實施例中,LED遮罩層包括介電質,例如SiO2 或SiNx
在一些實施例中,第一半導體層上的LED井之截面積不大於100 µm x 100 µm。如此,第一方面之方法可用於製造微型LED前驅物。特定地,第一半導體層上的LED井之截面面積可不大於50 µm x 50 µm、30 µm x 30 µm、20 µm x 20 µm、10 µm x 10 µm、5 µm x 5 µm、2 µm x 2 µm或1 µm x 1 µm,使得根據第一方面之方法來製造具有相應的截面積的微型LED前驅物。
根據本揭示案之第二方面,提供製造LED陣列前驅物之方法。方法包括根據本揭示案之第一方面之方法在基板上形成複數個LED前驅物。
如此,第二方面之方法可併入以上列出的任選的特徵中之任一者。
根據本揭示案之實施例,提供形成LED前驅物之方法100。LED前驅物包括複數個III族氮化物層。在第1圖中圖示方法100之流程圖。
藉由LED前驅物中的用語「前驅物」,應注意,所述的LED前驅物未必包含每個LED的電接觸以允許發光,也未必包含相關聯的電路。當然,LED前驅物及其形成方法並不排除進一步電接觸及相關聯的電路之添加。如此在本揭示案中,用語前驅物的使用旨在包含最終產品(即,LED、LED陣列等)。
本揭示案提及LED前驅物之層之各種頂表面。在本揭示案中,頂表面之概念被認為是相對於其上形成有LED前驅物的基板10。也就是說,層之頂表面為各個層之在垂直於基板10的方向上距基板10最遠的表面。
如第1圖所示,方法100包括步驟: (a)提供基板(101); (b)在基板上形成第一半導體層(102); (c)選擇性地遮蔽第一半導體層(103); (d)在LED井中選擇性地形成單晶LED堆疊(104); (e)形成包括單晶LED堆疊的平面化的表面(105); (f)將LED前驅物對準並且接合至背板電子基板(106); (g)移除基板(107)。
在步驟101中,提供基板10。基板10可為適合與III族氮化物半導體層一起使用的任何基板。例如,基板10可由多種材料形成,包含矽、GaN、藍寶石、碳化矽、SiO2或本領域已知的任何其他已知的基板10材料。在一些實施例中,基板可包括Si晶圓、藍寶石晶圓或SiC晶圓。基板10包括適合在其上形成III族氮化物層的頂表面12。
在步驟102中,在基板10之頂表面12上形成第一半導體層20。第一半導體層20包括III族氮化物。在一些實施例中,第一半導體層20包括GaN。在一些實施例中,第一半導體層20可為n型摻雜的。例如,第一半導體層可包括n型摻雜的GaN。n型摻雜物可為用於III族氮化物的任何適合的n型摻雜物,例如Si或Ge。第一半導體層20可為n型摻雜的而具有約1016 至1019 cm-3 的施體(donor)密度。
第一半導體層20可跨基板10之實質上整個頂表面12提供作為連續層。第一半導體層20包括大致上與基板10之頂表面12對準的頂表面22。如此,第一半導體層22之頂表面22位於第一半導體層20之與基板10之頂表面12相反的側上。
第一半導體層20可藉由本領域已知的用於形成III族氮化物層的任何適合的沉積技術來沉積。例如,包括n型摻雜的GaN的第一半導體層20可藉由金屬有機化學氣相沉積(MOCVD)、分子束磊晶(MBE)、氫化物氣相磊晶(HVPE)或遠端電漿化學氣相沉積(RPCVD)來沉積。
在一些實施例中,第一半導體層20可在垂直於基板表面的方向上具有至少500 nm的厚度。因此,第一半導體層20可在基板10上提供大致上均勻的層,此層適合在其上形成複數個LED前驅物。在一些實施例中,第一半導體層20可具有垂直於基板表面12的至少700 nm、1 µm、1.3 µm或1.5 µm的厚度。在一些實施例中,第一半導體層20可具有垂直於基板表面12的不大於2 µm的厚度。
在步驟103中,LED遮罩層30選擇性地形成在第一半導體層20之頂表面上。如第2圖所示,LED遮罩層30選擇性地形成以便界定穿過LED遮罩層30之厚度至第一半導體層20之未遮蔽部分24的複數個LED井31。
在一些實施例中,藉由LED遮罩層30選擇性地遮蔽第一半導體層20的步驟包括跨第一半導體層20之頂表面22沉積LED遮罩層。例如,在一些實施例中,LED遮罩層30最初形成為跨第一半導體層20之頂表面22的實質上連續的層。隨後,穿過LED遮罩層30之厚度選擇性地移除LED遮罩層30之第一部分以形成LED井31。例如,LED遮罩層30可被選擇性地蝕刻以移除LED遮罩層30之部分,以便界定每個LED井31。在其他實施例中,可使用適合的圖案層將第一半導體層30選擇性地圖案化,隨後將LED遮罩層30沉積至第一半導體層20之暴露的部分上。如第2圖所示,隨後可移除圖案層以界定LED井31。如此,將認知,LED遮罩層30之孔可藉由本領域已知的微影方法來形成。
LED遮罩層30包括複數個孔。每個孔界定穿過LED遮罩層30之厚度的LED井31。每個LED井界定其中形成LED前驅物(亦即,單晶LED堆疊)的容器容積。如第2圖所示,每個LED井31包括LED井側壁34,LED井側壁34從第一半導體層20之頂表面22延伸至LED遮罩層之頂表面32。LED井側壁34界定LED井31。
LED遮罩層30可包括為電絕緣體的材料。特定地,LED遮罩層30可包括材料,相對於在第一半導體層20上的生長速率,在此種材料上的III族氮化物之生長速率顯著降低。例如,LED遮罩層可包括:SiNx 、SiON或SiO2
界定每個LED井31的LED遮罩層30中的孔界定在其中形成的單晶LED堆疊之形狀。在第一半導體層20之頂表面22之平面(及平行於這平面的平面)中的孔(LED井31)之形狀及大小界定LED之表面積。每個LED井之截面形狀可為任何期望的二維形狀。例如,LED井31之截面形狀可為橢圓形、三角形、矩形、五邊形、六邊形或任何其他多邊形(規則或不規則)。
在一些實施例中,LED前驅物為微型LED前驅物。因此,每個LED井31之截面形狀可界定不大於100 µm x 100 µm的截面積(亦即,形狀符合在100 µm x 100 µm的面積內)。在一些實施例中,每個LED井31之截面形狀可不大於:50 µm x 50 µm、30 µm x 30 µm、20 µm x 20 µm、10 µm x 10 µm、5 µm x 5 µm、2 µm x 2 µm或1 µm x 1 µm。如此,可根據本實施例之方法形成微型LED。
LED遮罩層30可具有在垂直於第一半導體層20的方向上的厚度,使得在LED井31內形成單晶LED堆疊。LED遮罩層30之厚度將取決於單晶LED堆疊40之期望的厚度。例如,在一些實施例中,LED遮罩層之厚度被提供為比單晶LED堆疊40之厚度厚至少100 nm。在一些實施例中,LED遮罩層之厚度被提供為比單晶LED堆疊40之厚度厚至少500 nm、700 nm、1 µm、2 µm或5 µm。在一些實施例中,LED遮罩層之厚度可為至少2 µm。在其他實施例中,LED遮罩層30之厚度可為至少:3 µm、5 µm或10 µm。在一些實施例中,LED遮罩層30之厚度可不大於30 µm。因此,可以有效的方式提供LED遮罩層30,並且還以便不產生LED井31之過度陰影(shadowing)。
在步驟104中,可在每個LED井31中形成單晶LED堆疊40。單晶LED堆疊40形成在第一半導體層之暴露的頂表面22上。如此,單晶LED堆疊與第一半導體層20電接觸。在第3圖中圖示根據此步驟104形成的單晶LED堆疊40之實例。
每個單晶LED堆疊40包括複數個層。每一層可包括III族氮化物。特定地,單晶LED堆疊40包括n型半導體層42、主動層44及p型半導體層46。如第3圖所示,形成單晶LED堆疊40的每一層之側壁形成LED堆疊側壁47。每個單晶堆疊之LED堆疊側壁47從第一半導體層20之頂表面22延伸至單晶LED堆疊之頂表面(例如,p型半導體層46之頂表面)。
n型半導體層42包括形成在第一半導體層上的III族氮化物。n型半導體層42可包括III族氮化物。n型半導體層42可摻雜有適合的電子施體,例如Si或Ge。n型半導體層42沉積在第一半導體層20之暴露部分上作為連續層。n型半導體層42可改善電荷載子注入至第一LED之第一主動層21中。
n型半導體層42可在垂直於第一半導體層表面22的方向上具有至少100 nm的厚度。在一些實施例中,n型半導體層42可在垂直於第一半導體層表面22的方向上具有不大於2 µm的厚度。
主動層44形成在第一半導體層42上。主動層包括一或更多個量子井子層。主動層包括III族氮化物。在第3圖之實施例中,主動層44可包括一或更多個量子井層(未圖示)。如此,主動層44可為多個量子井層。主動層44內的量子井層可包括III族氮化物半導體,較佳地包含In的III族氮化物合金。例如,在第3圖之實施例中,主動層44可包括GaN與InX Ga1-X N的交替層,其中0 < X ≤ 1。特定地,在一些實施例中,主動層42可包括InX Ga1-X N層,其中0 < X ≤ 0.5。如此,在一些實施例中,LED前驅物之主動層42可經配置成輸出具有至少360 nm且不大於650 nm的波長的光。可控制量子井層之厚度及In含量(X),以便控制由主動層42產生的光之波長。可使用用於製造III族氮化物薄膜的任何適合的製程來沉積主動層44,例如,金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶(HVPE)、遠端電漿化學氣相沉積(RPCVD)或分子束磊晶(MBE)。例如,在一些實施例中,主動層44可在垂直於第一半導體表面22的方向上具有至少50 nm的總厚度(亦即,主動層40之所有的層合計)。在一些實施例中,主動層44之總厚度可不大於300 nm。
p型半導體層46包括III族氮化物。例如,p型層可包括GaN。p型半導體層46形成在主動層上。p型半導體層46可摻雜有適合的電子受體(acceptor),例如Mg。p型半導體層46可具有約1017 至1021 cm-3 的受體密度(NA)。p型半導體層46可形成為覆蓋每個LED井31中的主動層4之暴露表面之大部分(例如全部)的連續層。在一些實施例中,p型半導體層46可在垂直於第一半導體層22的方向上具有至少50 nm的厚度。在一些實施例中,在垂直於第一半導體層22的方向上的p型半導體層46之厚度可不大於400 nm。
在一些實施例中,可使用用於製造III族氮化物薄膜的任何適合的製程來沉積單晶LED堆疊40之每一層,例如,金屬有機化學氣相沉積(MOCVD)或分子束磊晶(MBE)。
將理解,單晶LED堆疊40之層將實質上形成在第一半導體層20之暴露表面上,而不形成在LED遮罩層30之表面上。因此,單晶LED堆疊40將形成在由LED遮罩層30界定的LED井31內。由於單晶LED堆疊40之層形成在LED井31中,單晶LED堆疊之LED堆疊側壁符合LED遮罩層30之LED井側壁。亦即,LED井側壁34經配置成隨著單晶LED堆疊生長時成形單晶LED堆疊之LED堆疊側壁47。因此,LED井31之LED井側壁可用於控制生長的單晶LED堆疊40之形狀。特定地,如以下更詳細地解釋,可實現用於LED堆疊側壁的各種不同的形狀及輪廓。
將理解,單晶LED堆疊40之總厚度將取決於形成單晶LED堆疊的層之數量及層之厚度。例如,單晶LED堆疊40可在垂直於第一半導體層表面22的方向上具有至少400 nm的厚度。在一些實施例中,單晶LED堆疊40可在垂直於第一半導體層表面22的方向上具有不大於2.7 µm的厚度。
第4圖及第5圖圖示LED井側壁34與單晶LED堆疊40之間的兩種可能的介面之詳細視圖。在第4圖中,單晶LED堆疊40之層以大致上均勻的層生長成,每一層均跨LED井31延伸。如此,在第4圖之實施例中,跨LED井31之所有區域上,單晶LED堆疊之每一層之生長速率實質上相同。特定地,在靠近LED井側壁34的LED井31之區域中的單晶LED堆疊40之層之生長速率與在朝向LED井側壁31之中心的區域中的單晶LED堆疊40之層之生長速率大致上相同。
在第5圖之實施例中,朝向LED井側壁34的單晶LED堆疊40之層與朝向LED井31之中心具有不同的厚度(垂直於第一半導體層20)。如第5圖所示,由於較低的生長速率,單晶LED堆疊40之層在靠近LED井側壁34的區域處可能較薄。由於III族氮化物層之纖鋅礦晶體結構,單晶LED堆疊之層42、44、46可在此區域中沿傾斜平面生長。在第5圖中,LED堆疊側壁47在大致上垂直於第一半導體層20的方向上延伸,以使其符合LED井側壁34。p型半導體層46之頂表面遠離LED井側壁34延伸。
在第4圖及第5圖兩者中,應理解,LED堆疊側壁47符合LED井之LED井側壁34。在第10圖及第11圖中,單晶LED堆疊40之每一層均由LED井側壁34終止。也就是說,每個單晶LED堆疊40藉由LED遮罩層30與其他單晶LED堆疊40分隔。如此,每個單晶LED堆疊40之層與其他單晶LED堆疊40之層不連續。因此,每個單晶LED堆疊40之所形成的層與其他可形成在相同的第一半導體層20上用以形成LED的單晶LED堆疊40適當地電隔離。如此,根據這實施例的形成LED前驅物之方法可減少或消除與在LED前驅物之形成期間電隔離LED堆疊之所沉積的層有關的處理步驟。
在一些實施例中,應理解,遮罩層30亦用作LED堆疊側壁47的鈍化層。因此,如第4圖及第5圖所示,遮罩層30將鈍化LED堆疊側壁47上的表面狀態。因此,根據這實施例之方法形成的LED前驅物可併入鈍化層作為製造過程之一部分,從而使得LED前驅物之製造更有效率。
在第2圖至第5圖中,LED井側壁34被描繪為大致上垂直於第一半導體層20延伸。在其他實施例中,LED井側壁34可經配置以在LED堆疊側壁47上賦予不同的側壁輪廓。在第6圖至第8圖中圖示這種LED井側壁之實例。
在第6圖及第7圖中,在第一半導體層20與LED遮罩層30之頂表面32之間延伸的LED井側壁34之一部分相對於垂直於第一半導體層20之頂表面的方向傾斜。在第6圖及第7圖中,LED井側壁34在界定LED井31的LED遮罩層30之所有表面上具有相同的傾斜度。當然,在其他實施例中,LED井側壁34之傾斜度可繞LED井31之周圍變化。
在第6圖中,LED井側壁34相對於(第一半導體層20之)法線傾斜,使得LED井31在平行於第一半導體層20之頂表面22的平面中的截面積在從第一半導體層20之頂表面22朝向LED遮罩層32之頂表面的方向上增加。在第6圖中,LED側壁34在LED井側壁34與第一半導體層20之暴露表面24之間以鈍角(α)傾斜。
在第7圖中,LED側壁34相對於(第一半導體層20之)法線傾斜,使得LED井31在平行於第一半導體層20之頂表面22的平面中的截面積在從第一半導體層之頂表面朝向LED遮罩層30之頂表面32的方向上減少。在第7圖中,LED側壁34在LED井側壁34與第一半導體層20之暴露表面24之間以銳角(β)傾斜。
在第8圖中,LED井側壁34具有包括複數個LED井側壁部分的複合輪廓。如此,LED井側壁34可包括在第一方向上延伸的第一LED井側壁部分34a及在第二方向上延伸的第二LED井側壁部分34b。在第8圖之實施例中,第一LED側壁部分34a從第一半導體層20延伸至第二LED側壁部分34b,第二LED側壁部分34b從第一LED側壁部分34a延伸至LED遮罩層30之頂表面32。如第8圖所示,第一LED側壁部分34a在大致上垂直於第一半導體層的第一方向上延伸。第二LED井側壁部分34b在相對於法線傾斜的第二方向上延伸。應理解,第8圖為複合輪廓之一種可能的實例。在其他實施例中,複合輪廓可由複數個LED井側壁部分形成。每個LED井側壁部分可在各自的方向(垂直、或相對於法線傾斜(銳角或鈍角))上延伸以形成任何期望的複合輪廓。
在第8圖中,沿第二LED井側壁部分34b之一部分佈置單晶LED堆疊40之主動層44。n型半導體層42經佈置為填充第一LED井側壁部分34a。如此,單晶LED堆疊40包括n型半導體層的細長的柱狀部分,其在主動層44與第一半導體層20之間(朝發光表面28)延伸。因此,n型半導體層42用作LED前驅物的光導特徵,以幫助提高從LED提取的光之光提取效率及/或準直性。
如此,在第8圖中,每個LED井側壁之準直部分34a從第一半導體層20在大致上垂直於第一半導體層20的方向上延伸。這準直部分造成形成LED堆疊側壁之準直部分47a。LED堆疊側壁之準直部分從第一半導體層20在大致上垂直於第一半導體層20的方向上延伸。LED井側壁亦包括LED井側壁之錐形部分34b,此錐形部分在準直部分34a與LED遮罩層30之頂表面32之間延伸。錐形部分34a以銳角傾斜,使得LED井31在平行於第一半導體層20之頂表面22的平面中的截面積在從第一半導體層之頂表面朝向LED遮罩層30之頂表面的方向上減小。此舉造成以銳角傾斜的LED堆疊側壁之錐形部分47b的形成。LED堆疊側壁之錐形部分47b從準直部分47a延伸至單晶LED堆疊40之頂表面。
可使用熟知技術者已知的微影技術來形成用於LED遮罩側壁的複合輪廓。
儘管在第6圖至第8圖中圖示的LED遮罩側壁34之實例包括大致上平面的(即,平坦的)表面,但將理解,在其他實施例中,LED遮罩側壁34可包括凹入或凸出的部分。因此,LED堆疊側壁47亦可包括凹入或凸出的部分。
藉由將單晶LED堆疊40沉積在LED井31中,可提供LED前驅物。在步驟101至步驟104之後,可經由添加電接觸及相關聯的電路來進一步處理LED前驅物以形成LED。第1圖之步驟105至步驟107概述用於形成LED的另外的製程步驟。
一旦在LED井31中形成單晶LED堆疊40,方法之步驟105包括形成至單晶LED堆疊的接觸並且使接觸表面平面化以用於基板接合。步驟105可取決於LED遮罩層30被進一步處理的程度以各種方式來執行。現將描述兩種可能的方法。在第一方法中,如第9圖至第13圖所示,保留了LED井側壁34。在第二方法中,如第14圖至第18圖所示,在沉積接觸層之前移除LED遮罩層30。
在第一方法中,陽極接觸層50可形成在p型半導體層46之頂表面上。陽極接觸層可包括用於形成與p型半導體層46歐姆接觸的任何適合的材料。
可使用任何適合的圖案化技術來將陽極接觸層50圖案化。例如,可使用微影製程來將陽極接觸層50圖案化。在第9圖所示的實例中,陽極接觸層50經圖案化以覆蓋每個單晶LED堆疊40之頂表面。陽極接觸層50沉積在LED井31中。如此,LED遮罩層30之頂表面在垂直於第一半導體層的方向上超出陽極接觸層50而延伸。藉由將陽極接觸層50沉積在LED井中,陽極接觸層形成單晶LED堆疊40之一部分。
在沉積陽極接觸層50之後,使LED前驅物平面化。使LED前驅物平面化的步驟提供適合於接合至背板電子基板的LED前驅物之表面。根據第一方法,使用化學機械研磨(CMP)製程將LED前驅物平面化。第10圖圖示第9圖之LED前驅物已進行了CMP之圖。如第10圖所示,LED遮罩層之在垂直於第一半導體層的方向上超出陽極接觸層50而延伸的部分已被移除。如此,CMP製程從LED遮罩層之頂表面移除LED遮罩層之第二部分,使得LED遮罩層之剩餘的第一部分與單晶LED堆疊之頂表面形成平面化的表面。因此,在CMP之後,LED遮罩層30之頂表面與陽極接觸層50之頂表面52(亦即,單晶LED堆疊40之頂表面)形成實質上連續的平面表面。
化學機械研磨製程可為適合與III族氮化物等一起使用的任何已知的CMP製程。
一旦形成平面化的表面,即可將LED前驅物接合至背板電子基板60(第1圖中的步驟106)。第11圖圖示背板電子基板60之實例,背板電子基板60與LED前驅物對準以用於基板接合。背板電子基板包括複數個接觸墊62及介電接合層64。
接觸墊62可以與對應於第一半導體層20上的陽極接觸/單晶LED堆疊40之佈置的圖案來佈置在背板電子基板上。接觸墊62經配置以在背板電子基板60與陽極接觸50之間形成電連接。接觸墊60可經佈置成在接合過程期間形成與陽極接觸50的擴散接合、直接接合或共晶接合。
介電接合層64繞背板電子基板60上的接觸墊62周圍佈置。介電接合層可經配置以在接合過程期間與LED遮罩層30形成接合,使得形成混合式基板接合。至少在GB 1917182.6中解釋了關於適合的混合式接合過程的進一步資訊。
可藉由施加壓力及/或溫度將基板接合在一起。例如,在一些實施例中,在對準之後,可在至少100度的溫度下在壓機(press)中將基板擠壓在一起。在一些實施例中,可施加至少10 kN的壓力。在一些實施例中,可施加至少20 kN、30 kN或40 kN的壓縮力。藉由施加較大的壓縮力至待接合的基板,可改善在基板之間形成接合的可靠性。在一些實施例中,壓機可施加不大於45 kN的壓縮力,以便減小在接合期間基板破裂或接觸墊62與陽極接觸50之不期望的變形之風險。
一旦將LED前驅物接合至背板電子基板60,即可移除基板10(第1圖中的步驟107)。第12圖圖示移除基板10以暴露第一半導體層20之發光表面28的示意圖。
在移除基板之後,可對第一半導體層20之發光表面28進行進一步處理步驟。例如,在第13圖中,共用陰極接觸70形成在第一半導體層20上。由於共用陰極接觸70形成在發光表面28上,在這實施例中,共用陰極包括可透射可見光的材料。例如,共用陰極接觸70可包括氧化銦錫或任何其他適合的透明導電氧化物。當然,將理解第13圖僅為共用陰極接觸70之可能的佈置之一個實例。在其他實施例中,可經由LED遮罩層30與背板電子基板60進行與第一半導體層20的電接觸。
如第13圖所示,在移除基板之後,可形成進一步光導特徵80。在第13圖中,在每個單晶LED堆疊40周圍形成光導特徵80,以防止LED之間的串擾。在一些實施例中,光導特徵80包括一或更多個金屬層。例如,光導特徵可包括Al、Ag、Au或任何其他適合的金屬。在一些實施例中,光導特徵可包括反射器,例如分佈式布拉格反射器(DBR)。因此,將理解可根據以上概述的第一方法來形成LED之陣列。
根據第二方法,亦可提供LED之陣列。第14圖至第18圖圖示第二方法。
如第14圖所示,在形成單晶LED堆疊40之後,可選擇性地移除LED遮罩層30。在第14圖之實施例中,實質上所有的LED遮罩層30都被移除。如此,在第14圖中所示的中間處理步驟期間,LED堆疊側壁47被暴露出。
接著可形成與p型半導體層46及第一半導體層20的接觸。如第14圖所示,可在p型半導體層46之頂表面上形成陽極接觸50。陽極接觸50可包括與以上針對第一方法所論述的陽極接觸50類似的材料。
亦可形成陰極接觸71,陰極接觸71經配置以與第一半導體層20進行電接觸。可在單晶LED堆疊之至少一部分上方提供絕緣層74,以如第14圖所示在陰極接觸71與單晶LED堆疊40之間提供電隔離。
在形成接觸(陽極接觸50與陰極接觸71)之後,可在單晶LED堆疊40之間的空隙中形成間隙填充絕緣體90。如此,間隙填充絕緣體填充在移除LED遮罩層後留下的剩餘空隙。可沉積間隙填充絕緣體,此間隙填充絕緣體包括頂部絕緣體表面92,頂部絕緣體表面92分別與陽極接觸50及陰極接觸71之頂表面52、72形成實質上連續的平面表面(亦即,平坦表面)。
間隙填充絕緣體可經配置以在移除LED遮罩層30之後填充單晶LED堆疊40之間的空隙。間隙填充絕緣體包括絕緣材料以確保每個單晶LED堆疊不一起短路。間隙填充絕緣體亦用作每個單晶LED堆疊40之LED堆疊側壁47的鈍化層。間隙填充絕緣體90可包括SiO2 、SiNx 或任何其他適合的絕緣體。間隙填充絕緣體90可例如經由化學氣相沉積方法或其他適合的沉積技術來形成。
一旦形成平面化的表面,即可將LED前驅物接合至背板電子基板60(第1圖中的步驟106)。在第16圖中示意地圖示用於將LED前驅物接合至背板基板的過程。在第16圖中,將背板電子基板60與第一半導體層20上的陽極接觸及陰極接觸對準。可以與上述方法類似的方式來執行將兩個基板接合在一起的過程。
在接合基板之後,可從第一半導體層20移除基板10(第1圖中的步驟107)。在第17圖中圖示這種過程之示意圖。用於執行這步驟的步驟可與以上針對第一方法所述的實質上相同。在移除基板10之後,剩餘結構包括LED之陣列(即,LED陣列)。
在第18圖中,可在第一半導體層20之發光表面上形成另外的光導特徵(即,透鏡84)。例如,可將第一半導體層之發光表面進一步圖案化或成形。光導特徵84可包括準直特徵(如透鏡84),以改善從LED的光提取。
在第19圖中,第18圖之實施例進一步經處理以包含用於減少串擾的光導特徵80(即,串擾減少特徵)。可環繞每個LED提供串擾減少特徵,以減少或防止LED之間的串擾。光導特徵80可以與第13圖之光導特徵類似的方式來提供。
因此,可根據本揭示案之方法由LED前驅物之陣列來形成LED之陣列。
10:基板 12:基板之表面 20:第一半導體層 22:第一半導體層之頂表面 24:第一半導體層之未遮蔽部分/暴露表面 28:發光表面 30:LED遮罩層 31:LED井 32:LED遮罩層之頂表面 34:LED井側壁 34a:第一LED井側壁部分/LED井側壁之準直部分 34b:第二LED井側壁部分/LED井側壁之錐形部分 40:單晶LED堆疊 42:n型半導體層 44:主動層 46:p型半導體層 47:LED堆疊側壁 47a:LED堆疊側壁之準直部分 47b:LED堆疊側壁之錐形部分 50:陽極接觸層/陽極接觸 52:陽極接觸層之頂表面 60:背板電子基板 62:接觸墊 64:介電接合層 70:共用陰極接觸 71:陰極接觸 72:陰極接觸之頂表面 74:絕緣層 80:光導特徵 84:光導特徵/透鏡 90:間隙填充絕緣體 92:頂部絕緣體表面 100:方法 101:步驟 102:步驟 103:步驟 104:步驟 105:步驟 106:步驟 107:步驟 α:鈍角 β:銳角
現在將關於以下非限制性圖式來描述本揭示案。當結合圖式考量時藉由參照實施方式,本揭示案之進一步優點將為顯而易見,其中: 第1圖圖示根據本揭示案之實施例的形成LED陣列之方法之流程圖; 第2圖圖示包括形成在第一半導體層上的複數個LED井的LED遮罩層之圖; 第3圖圖示在第2圖之結構之每個LED井中形成的單晶LED堆疊之圖; 第4圖圖示第3圖之部分A之詳細視圖,其中根據第一生長機制圖示LED堆疊側壁與LED井側壁之間的介面; 第5圖圖示第3圖之部分A之詳細視圖,其中根據第二生長機制圖示LED堆疊側壁與LED井側壁之間的介面; 第6圖圖示具有鈍角傾斜的LED井側壁之圖; 第7圖圖示具有銳角傾斜的LED井側壁之圖; 第8圖圖示具有第一LED井側壁部分及第二LED井側壁部分的複合LED井側壁之圖; 第9圖圖示在第3圖之結構之單晶LED堆疊上形成的接觸層之圖; 第10圖圖示在化學機械研磨製程之後第9圖之結構之圖; 第11圖圖示與第10圖之結構對齊的背板電子基板之圖; 第12圖圖示在基板接合之後從第11圖之結構移除Si基板之示意圖; 第13圖圖示第12圖之結構之圖,其中進一步在第一半導體層之發光表面上形成光提取特徵; 第14圖圖示在移除LED遮罩層之後在第3圖之結構之單晶LED堆疊上形成的接觸層之圖; 第15圖圖示在第14圖之結構上形成的間隙填充絕緣體之圖; 第16圖圖示與第15圖之結構對準的背板電子基板之圖; 第17圖圖示在基板接合之後從第16圖之結構移除Si基板之示意圖; 第18圖圖示第17圖之結構之圖,其中進一步在第一半導體層之發光表面上形成光提取特徵; 第19圖圖示包含串擾(cross talk)減少特徵的LED之圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
10:基板
12:基板之表面
20:第一半導體層
30:LED遮罩層
32:LED遮罩層之頂表面
34:LED井側壁
40:單晶LED堆疊
42:n型半導體層
44:主動層
46:p型半導體層
47:LED堆疊側壁

Claims (16)

  1. 一種形成一單晶LED前驅物之方法,該方法包括以下步驟: (a)提供具有一頂表面的一基板; (b)在該基板之該頂表面上形成包括一III族氮化物的一第一半導體層; (c)由一LED遮罩層選擇性地遮蔽該第一半導體層,該LED遮罩層包括一孔,該孔界定穿過該LED遮罩層之一厚度至該第一半導體層之一未遮蔽部分的一LED井,該LED井包括從該第一半導體層之一頂表面延伸至該LED遮罩層之一頂表面的LED井側壁; (d)在該第一半導體層之該未遮蔽部分上的該LED井內選擇性地形成一單晶LED堆疊,該單晶LED堆疊包括: 在該第一半導體層上形成的一n型半導體層,包括一III族氮化物; 在該第一半導體層上形成的一主動層,包括一或更多個量子井子層,該主動層包括一III族氮化物; 在該主動層上形成的一p型半導體層,包括一III族氮化物; 其中從該第一半導體層之該頂表面延伸的該單晶LED堆疊之LED堆疊側壁符合該LED遮罩層之該等LED井側壁。
  2. 如請求項1所述之方法,其中由一LED遮罩層選擇性地遮蔽該第一半導體層的步驟包括以下步驟: 跨該第一半導體層之該頂表面沉積該LED遮罩層;及 穿過該LED遮罩層之一厚度選擇性地移除該LED遮罩層之一第一部分以形成該LED井。
  3. 如請求項1或請求項2所述之方法,其中該等LED井側壁在大致上垂直於該第一半導體層之該頂表面的一方向上延伸。
  4. 如前述任一項請求項所述之方法,其中在該第一半導體層與該LED遮罩層之該頂表面之間延伸的該等LED井側壁之一部分相對於垂直於該第一半導體層之該頂表面的方向傾斜。
  5. 如請求項4所述之方法,其中該等LED側壁為傾斜的,使得該LED井在平行於該第一半導體層之該頂表面的一平面中的一截面積在從該第一半導體層之該頂表面朝向該LED遮罩層之該頂表面的方向上減少。
  6. 如請求項5所述之方法,其中該等LED井側壁為傾斜的,使得該LED井在平行於該第一半導體層之該頂表面的一平面中的一截面積在從該第一半導體層之該頂表面朝向該LED遮罩層之該頂表面的方向上增加。
  7. 如請求項4或請求項5所述之方法,其中 從該第一半導體層延伸的每個LED井側壁之一準直部分在大致上垂直於該第一半導體層之一方向上延伸;及 在該準直部分與該LED遮罩層之該頂表面之間延伸的每個LED井側壁之一錐形部分為傾斜的,使得該LED井在平行於該第一半導體層之該頂表面的一平面中的一截面積在從該第一半導體層之該頂表面朝向該LED遮罩層之該頂表面的方向上減少。
  8. 如前述任一項請求項所述之方法,進一步包括以下步驟: (f)從該LED遮罩層之該頂表面移除該LED遮罩層之一第二部分,使得該LED遮罩層與該單晶LED堆疊之一頂表面形成一平面化的表面。
  9. 如請求項8所述之方法,其中該LED遮罩層之該第二部分是使用一研磨製程來移除。
  10. 如請求項1至請求項7中任一項所述之方法,進一步包括以下步驟: (f)在形成該單晶LED堆疊之後,選擇性地移除所有的該LED遮罩層。
  11. 如請求項10所述之方法,進一步包括以下步驟:在環繞該單晶LED堆疊的該第一半導體層之該頂表面上沉積一間隙填充絕緣體,該間隙填充絕緣體與該單晶LED堆疊之一頂表面形成一平面化的表面。
  12. 9或11所述之方法,進一步包括以下步驟: (g)將該LED前驅物之該平面化的表面接合至包括背板電子裝置的一進一步基板。
  13. 如請求項12所述之方法,進一步包括以下步驟: (h)從該第一半導體層移除該基板。
  14. 如前述任一項請求項所述之方法,其中該LED遮罩層包括介電質,例如SiO2 或SiNx
  15. 如前述任一項請求項所述之方法,其中該第一半導體層上的該LED井之一截面積不大於100 µm x 100 µm。
  16. 一種形成一LED陣列前驅物之方法,包括以下步驟: 根據請求項1至15中任一項所述之方法在一基板上形成複數個LED前驅物。
TW109143011A 2019-12-12 2020-12-07 發光二極體及發光二極體陣列 TWI758996B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1918318.5A GB2589907B (en) 2019-12-12 2019-12-12 Light emitting diode and light emitting diode array
GB1918318.5 2019-12-12

Publications (2)

Publication Number Publication Date
TW202127683A true TW202127683A (zh) 2021-07-16
TWI758996B TWI758996B (zh) 2022-03-21

Family

ID=69186768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143011A TWI758996B (zh) 2019-12-12 2020-12-07 發光二極體及發光二極體陣列

Country Status (8)

Country Link
US (1) US20230019237A1 (zh)
EP (1) EP4073843B1 (zh)
JP (1) JP7418583B2 (zh)
KR (1) KR20220107267A (zh)
CN (1) CN114788003A (zh)
GB (1) GB2589907B (zh)
TW (1) TWI758996B (zh)
WO (1) WO2021115934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142147A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124892B1 (fr) * 2021-07-02 2023-05-26 Commissariat Energie Atomique Procede de realisation de diodes electroluminescentes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279718B2 (en) * 2002-01-28 2007-10-09 Philips Lumileds Lighting Company, Llc LED including photonic crystal structure
US20070054467A1 (en) * 2005-09-07 2007-03-08 Amberwave Systems Corporation Methods for integrating lattice-mismatched semiconductor structure on insulators
JP5247109B2 (ja) * 2007-10-05 2013-07-24 パナソニック株式会社 半導体発光装置およびそれを用いる照明装置ならびに半導体発光装置の製造方法
US8101447B2 (en) * 2007-12-20 2012-01-24 Tekcore Co., Ltd. Light emitting diode element and method for fabricating the same
KR101101133B1 (ko) * 2008-06-03 2012-01-05 삼성엘이디 주식회사 질화물 단결정 성장 방법 및 질화물 반도체 발광소자제조방법
US8378367B2 (en) * 2010-04-16 2013-02-19 Invenlux Limited Light-emitting devices with vertical light-extraction mechanism and method for fabricating the same
CN102130230A (zh) 2010-12-28 2011-07-20 中国科学院半导体研究所 发光二极管的制备方法
CN109950201B (zh) * 2019-03-25 2021-11-23 京东方科技集团股份有限公司 光电器件外延结构的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142147A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel

Also Published As

Publication number Publication date
WO2021115934A1 (en) 2021-06-17
KR20220107267A (ko) 2022-08-02
EP4073843B1 (en) 2024-01-31
US20230019237A1 (en) 2023-01-19
JP7418583B2 (ja) 2024-01-19
CN114788003A (zh) 2022-07-22
EP4073843A1 (en) 2022-10-19
GB2589907B (en) 2021-12-08
GB201918318D0 (en) 2020-01-29
TWI758996B (zh) 2022-03-21
JP2023505585A (ja) 2023-02-09
GB2589907A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5855422B2 (ja) 発光素子及びその製造方法
JP5286045B2 (ja) 半導体発光素子の製造方法
JP2019114804A (ja) 支持基板に接合された発光デバイス
JP2018014521A (ja) 発光デバイスを支持基板に取り付ける方法
CN111989777A (zh) 用于制造具有二极管的矩阵的光电器件的方法
JP2014036231A (ja) 半導体素子の製造方法
TWI758996B (zh) 發光二極體及發光二極體陣列
KR101106139B1 (ko) 확장된 금속 반사층을 갖는 플립 본딩형 발광다이오드 및 그 제조방법
TWI796658B (zh) 單體電子器件、測試基片及其形成與測試方法
TWI804898B (zh) 發光陣列
US20210359186A1 (en) Subpixel light emitting diodes for direct view display and methods of making the same
TWI770898B (zh) 單體led像素
TW201535785A (zh) 半導體發光裝置及其製造方法
KR20150109143A (ko) 버퍼 구조물을 구비하는 발광 소자 및 이의 제조 방법