TW202123972A - 抗血小板膜糖蛋白ib alpha人源化抗體及其應用 - Google Patents
抗血小板膜糖蛋白ib alpha人源化抗體及其應用 Download PDFInfo
- Publication number
- TW202123972A TW202123972A TW109143578A TW109143578A TW202123972A TW 202123972 A TW202123972 A TW 202123972A TW 109143578 A TW109143578 A TW 109143578A TW 109143578 A TW109143578 A TW 109143578A TW 202123972 A TW202123972 A TW 202123972A
- Authority
- TW
- Taiwan
- Prior art keywords
- seq
- fragments
- variants
- humanized antibody
- gpibα
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2896—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/54—F(ab')2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oncology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Communicable Diseases (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
多價的抗人血小板膜糖蛋白Ibα抗體可引起嚴重的副作用。本公開提供一種抗糖蛋白Ibα的缺乏Fc部分的人源化抗體片段,因此不與Fc受體相互作用。該人源化抗體能夠防止血小板活化,聚集,減少血栓體積/生成和預防血管堵塞;也能減少血小板-腫瘤細胞相互作用和減少腫瘤轉移。在治療劑量下,該人源化抗體不導致血小板活化,不導致血小板減少,以及在治療劑量下,不導致出血時間延長。
Description
本發明涉及特異性地識別並結合血小板糖蛋白I(b)α(GPIbα)的人源化抗體以及包含其的蛋白構建體,及其相關的治療用途。
本發明屬於生物醫藥領域,具體涉及一種具有與血小板膜糖蛋白IB ALPHA 的高特異性、高親合力結合的人源化抗體或其片段或其嵌合蛋白及其應用。
據世界衛生組織2017年統計數據,全球每年腦血栓、腦梗塞、心肌梗塞、冠心病、動脈粥樣硬化等心腦血管疾病奪走1790萬人生命,接近世界總死亡人數的31%,是全球死亡的首要原因。中國心腦血管病現患人數達3.3億,其中腦中風1300萬,死亡率第一。
動脈粥樣硬化血栓形成,是缺血性腦中風(又稱腦梗死),冠心病和外周血管病等心腦血管系統疾病的病理基礎。動脈粥樣硬化的血管斑塊破裂,啟動血小板聚集、血栓形成以及血管阻塞,造成局部組織因血液供應中斷而發生缺血、缺氧性壞死。因此,旨在抑制血小板功能的抗血小板治療成為了減少心腦血管疾病死亡的關鍵治療方案之一。根據抗血小板藥物的作用靶點,已上市的抗血小板藥物包括(1)環氧化酶(COX)抑制劑,例如阿司匹林;(2)P2Y12嘌呤受體拮抗劑,例如氯吡格雷、普拉格雷和替格瑞洛;(3)血小板膜糖蛋白IIB/IIIA(GPIIB/IIIA)受體拮抗劑,例如阿昔單抗、依替巴肽和替羅非班;和(4)蛋白酶活化受體1(PAR-1)拮抗劑如伏拉帕沙。然而,由於目前許多抗血小板聚集藥物仍有明顯的局限性,例如對血小板功能的抑制作用較緩慢或微弱,且常常伴有出血、血小板減少性紫斑、非預期的血小板活化及胃腸道副作用等風險,部分病人也出現抗血小板聚集藥耐藥的情況。這些不足是未來抗血小板藥物研發的主要發展方向。值得注意的是,在急性缺血性腦中風中,臨床目前使用的靜脈溶栓藥物(如重組組織型纖溶酶原活化劑,t-PA)或抗血栓藥物,存在嚴重顱內出血風險和或t-PA潛在的神經毒性風險,尤其對於那些錯過最佳靜脈溶栓治療窗口的患者治療手段非常有限。臨床上,僅有10%的病人能有機會接受溶栓治療且僅有3%的病人能改善;同時,溶栓治療後再梗發生率高。根據溶栓後血管再閉塞的各種機制,急性發作期24小時內溶栓治療伴隨抗血小板聚集治療是十分必需的。然而,目前臨床上幾乎所有的抗血小板藥物都增加了腦出血風險。
血小板是一類由骨髓巨核細胞產生的體積小、數量大(150-400×109
/L)的無核細胞。人血小板的壽命可達10天,而每天大約有100億的新血小板產生。由於血小板體積小,經常流動在血管腔的邊緣,故可以迅速地檢測並對血管損傷作出應答,從而發揮止血。
當組織創傷或血管損傷時,血小板迅速在損傷的血管壁上黏附、活化和聚集,形成到第一波/初級止血。隨後,凝血系統活化,導致血漿纖維蛋白原轉化為纖維蛋白,形成血凝塊,起到第二波/次級止血。然而,過度的血小板活化及黏附,可啟動早期的動脈粥樣硬化;且在粥樣斑塊破裂後形成血栓,可堵塞血管,導致血栓性事件如心肌梗死或者缺血性腦中風的發生。
血管內皮細胞受損後,暴露了血管內皮下許多的基質蛋白,如膠原蛋白、纖維蛋白原和血管性血友病因子(VWF)等。血小板細胞膜上一種糖蛋白GPIb-IX-V複合物(富含亮氨酸的超家族成員),通過其GPIbα亞基與VWF結合以啟動血小板滾動及隨後黏附於受損的血管壁上。VWF是一種多聚體黏附蛋白,由活化的內皮細胞和血小板分泌。GPIbα——VWF相互作用可以活化細胞信號轉導,促使血小板釋放活化因子,如血栓素A2和ADP等,並導致血小板受體整合素GPIIb/IIIa(αIIbβ3整合素)轉為活化狀態,暴露其配體識別位點,GPIIb/IIIa進而結合纖維蛋白原和其他配體分子,導致血小板聚集,形成血小板血栓。
動脈狹窄部位的血液流速往往超過10,000-40,00s-1
,而在這種高血流剪切力情況下,GPIbα與VWF的結合是閉塞性血栓形成的必要條件。相反,在低血流剪切力的條件下(如在大多數止血的情形下),血小板黏附可直接通過整合素GPIIb/IIIa與纖維蛋白原或纖維蛋白等的結合,或者整合素α2β1或GPVI與膠原蛋白的結合介導。
由於GPIbα受體與VWF相互作用是血小板在血管損傷部位發生黏附和動脈血栓形成的始動環節,更是高剪切力下血小板在血管病理性狹窄部位發生黏附和聚集和導致血管閉塞極為重要的關鍵,GPIbα受體被認為是抗血栓治療的重要靶點。相比於其他非針對高剪切血栓形成的抗血小板藥物,抑制GPIbα將具備更低的系統性出血的風險及更安全。此外,GPIbα不僅在血栓形成中至關重要,還是急性缺血性腦中風中血栓炎症通路的“卡控點”。研究表明,GPIbα對於在血栓炎性條件下,例如在急性缺血性中風中的免疫白細胞募集是非常重要的。此外,先前缺氧的大腦區域的缺血-再灌注(例如通過溶栓或機械取栓術)可以通過GPIbα來增強血小板的促炎功能,這可能進一步促進血栓炎性神經元損傷和梗塞生長。除此以外,GPIbα受體被認為僅表達在血小板和巨核細胞上。因此,GPIbα受體拮抗劑將更高效,安全與高度特異,具有巨大的開發潛力,對於心、腦血管疾病防治有著極為重要的意義。
值得注意的是,針對GPIbα-VWF相互作用的新型策略已被證明是治療獲得性血栓性血小板減少性紫斑(aTTP)的有效療法。aTTP是一種血栓性微血管疾病,其可嚴重威脅病人的生命,不及時治療病死率80~90%。ADAMTS13是一種VWF蛋白裂解酶,可裂解以及降低血液中VWF的多聚體。aTTP病人體內會產生抗ADAMTS13的自身抗體,導致ADAMTS13活性嚴重不足,進一步導致超大分子量VWF的形成。這些超大的VWF具有超強的黏附性,可導致血管中血小板GPIbα-VWF誘導的微血栓形成、終末器官梗塞和缺血、血小板計數降低和紅細胞的破壞。因此,阻斷VWF與血小板GPIbα的相互作用可以實現血小板計數更快的恢復正常並減少血栓栓塞,預防急性TTP的進展。
靶向VWF A1結構域的奈米單藥caplacizumab已被批准用於治療成年人aTTP 的急性發作,並與血漿置換和免疫抑制相結合,在停止每日血漿置換後至少持續給藥30天。然而,與出血相關的不良事件在caplacizumab使用中更為常見(65%比48%),其中嚴重的出血事件(11%比1%)也更為常見。Caplacizumab的另一個障礙是藥物價格極其昂貴。目前公佈的定價為每劑8,000美元以上,治療方案建議在最後一次血漿置換後30天內每日給藥,並有可能在ADAMTS13活性恢復之前延長治療。在aTTP急性發作期間,VWF由活化的內皮細胞和血小板持續分泌釋放,然而血小板表面GPIbα的水平相對穩定,且人血小板的壽命長達10天,因此GPIbα是TTP治療的另一個更優異的藥靶。
在中國專利103263662中描述了一種從尖吻蝮蛇蛇毒(Deinagkistrodon acutus)中分離得到的能夠結合GPIbα的抗血小板溶栓素。通過阻斷GPIbα與VWF的相互作用,抗血小板溶栓素可以抑制瑞斯托黴素誘導的人血小板聚集和血栓形成,同時不會顯著改變出血時間或凝血。目前,抗血小板溶栓素正在獲得性血栓性血小板減少性紫斑(TTP)和ST段抬高型心肌梗死患者中展開II期臨床試驗。然而,作為異體蛋白,人們目前尚不清楚抗血小板溶栓素是否可以在治療後誘導患者產生抗藥物抗體,進而中和並抵消藥物的治療作用。同時,這些抗藥物抗體有可能引起超敏反應並產生免疫複合物,從而可能損害腎臟或關節等組織。更有甚者,在需要多次給藥的情況下,記憶性免疫細胞將被刺激,有可能極大地增強免疫反應,產生大量的抗藥物抗體。
在美國專利(序列號7,049,128)中,描述了一種重組的免疫球蛋白(Ig)融合多肽,即GPG-290或GPIb-290/2V。該蛋白為一種可溶性嵌合蛋白,其包含一段GPIbα的氮末端胞外區片段,長290個氨基酸,並存在兩處突變,G233V和M239V。該片段通過一個脯氨酸連接人IgG1的Fc 片段。GPG-290與血小板GPIbα競爭結合vWF,對vWF的親和力是野生型GPIbα的14倍。在動物模型中,GPG-290劑量依賴性地延長了冠狀動脈閉塞的時間,並抑制了血小板聚集,血栓形成和復發型冠狀動脈循環血流減少。在50-100μg/kg的劑量範圍內,GPG-290沒有延長出血時間。但當給藥量增加到500μg/kg時會導致出血時間增加3-4倍,這可能是由於GPG-290高親和性的結合到alpha-凝血酶上,並抑制其凝血作用。
美國專利(序列號7,727,535)進一步描述了一種突變體的融合多肽,即GPIb-290/2V/FFF-Ig。其GPIbα部分包含了另外三個突變,Y276F,Y278F和Y279F的組合,可有效降低與alpha-凝血酶的親和力。與GPG-290相比,在復發型冠狀動脈血栓中,該突變體融合蛋白對冠狀動脈循環血流的抑制率減少了50%,且對尾靜脈出血時間的延長和在血小板功能分析(PFA-100系統)中ADP閉合時間的延長幅度也減少了50%。然而,由於GPIb-Ig融合蛋白分子量較高(〜130 kDa),且主要靶點為VWF,不僅包括高剪切流速下固定在內皮下基質的VWF,還包括血漿中游離的VWF,其所需的劑量以及藥物與藥靶的可及性很難預測,而可能的超大劑量的注射需求會限制其臨床應用。該藥物的另一個風險來自免疫原性。採用生物工程技術改造的融合蛋白,儘管GPIb-Ig採用了人源的GPIbα和Fc片段,這可降低其免疫原性,但GPIbα突變體以及融合蛋白接頭部分均可能產生新的抗原表位,從而可誘導免疫反應。另外,融合蛋白會存在一定的構象改變,亦可產生新的抗原表位,誘導抗藥物抗體的產生。
有文獻也描述針對血小板GPIbα的中和性單株抗體。然而,迄今為止的大多數抗GPIbα單株抗體是鼠源的,因此在臨床使用中可能會引發人抗鼠蛋白的免疫應答。這種免疫反應可能減弱或者破壞它的治療效果,甚至導致超敏反應。此外,完整的抗GPIbα抗體在結合血小板GPIbα後,往往誘導血小板活化信號傳導,導致非預期的血小板活化,血小板聚集和血栓加重。此外,完整的抗GPIbα抗體還可以觸發Fc依賴性和Fc非依賴性血小板清除,從而導致血小板減少症(即血小板計數低)。因此對於抗GPIbα抗體,如採用完整的抗體分子形式,開發潛力較低。
中國專利(CN102988983)描述了一種源於抗體chSZ2的Fab片段。其中,chSZ2為針對人GPIbα的嵌合抗體。該抗體片段可在體外,以劑量依賴性方式抑制瑞斯托黴素誘導的血小板聚集。然而,由於源自於嵌合抗體,該片段的抗體可變區仍保留了小鼠序列,僅有抗體恆定區被替代為人源蛋白,因此藥物的免疫原性仍然是該抗體片段的主要缺陷。更重要的是,目前尚無任何體內證據直接支持chSZ2可以預防或治療血栓性疾病,由於該抗體只識別人GPIbα,無法與鼠、犬、獼猴等其他常用模式動物的GPIbα結合,大大限制了chSZ2的臨床前藥理毒理學等研究。
美國專利(序列號7,332,162)描述了一個人源化抗體6B4的Fab片段,即h6B4-Fab。該抗體的前體為鼠源,通過免疫純化後的人GPIbα獲得。在狒狒血栓模型中,h6B4-Fab減少或完全消除了狹窄的股動脈的血流減少。但是,該抗體片段同時導致出血時間延長。此外,這些抗GPIbα的單抗是通過人重組GPIbα蛋白免疫野生型小鼠獲得的,故這些單抗及其Fab片段並無法識別鼠GPIbα。儘管鼠和人的GPIbα具有一定的同源性,但鼠和人共享的抗原表位庫是有限的。因此,這些抗GPIbα的單抗及其Fab片段無法在齧齒動物或其他小型實驗動物中進行臨床前藥理學,毒理學和藥代動力學評估。此外,h6B4-Fab能否引起血小板活化也值得關注,因為其前體(鼠源)單株抗體可以明顯引起血小板活化和嚴重的血小板減少。
因此,臨床上亟待開發一款藥物,可以在特異靶向血小板GPIb-IX-V複合體的同時,既不引起血小板活化、破壞或減少,也不伴有嚴重的出血併發症。
本發明的目的是提供一種抗人血小板膜糖蛋白Ibα人源化單株抗體以及包含其的蛋白構建體,及其相關的治療用途。該人源化抗體可以抑制血小板活化、聚集、血栓形成(尤其在高血流剪切力下),也不導致血小板活化、不導致血小板減少,以及在治療劑量下,不導致出血時間延長。
在第一方面,本發明提供了特異性識別糖蛋白I(b)α(GPIbα)的人源化抗體。該人源化抗體缺乏Fc受體部分。該人源化抗體可以抑制血小板活化、聚集、和/或血栓生成;不導致血小板活化;不導致血小板減少;以及在治療劑量下,不導致出血時間延長。在一個實施例中,該人源化抗體可以識別人GPIbα、小鼠GPIbα、狗GPIbα、大鼠GPIbα、兔子GPIbα和/或猴子GPIbα。在另一個實施例中,該人源化抗體是抗體片段。在一個實例中,該抗體可以是F(ab)2
片段。例如,該抗體片段可以是Fab抗體片段。在另一個實施例中,該抗體片段可以是單鏈可變片段(scFv)。在一個實施例中,該人源化抗體具有重鏈。在一些實施例中,該重鏈包含:第一CDR,該第一CDR具有GFTFSSFAMS的氨基酸序列(SEQ ID NO: 37)、其變體或其片段;第二CDR,該第二CDR具有SITSAGTPYYPDSVLG的氨基酸序列(SEQ ID NO: 38)、其變體或其片段;和/或第三CDR,該第三CDR具有SRGYEDYFDY的氨基酸序列(SEQ ID NO: 39)、其變體或其片段。在另一個實施例中,該重鏈進一步包含人IgG1
抗體的CH1區。例如,該人IgG1
抗體的CH1區具有SEQ ID NO: 40、47、54或61的氨基酸序列、其變體或其片段。在一個實施例中,該重鏈具有SEQ ID NO: 36、43、50或57的氨基酸序列、其變體或其片段。在另一個實施例中,該人源化單株抗體具有輕鏈。在一些實施例中,該輕鏈包含:第一CDR,該第一CDR具有KSSQSLLNSRNQKNYLA的氨基酸序列(SEQ ID NO: 65)、其變體或其片段;第二CDR,該第二CDR具有FTSTRES的氨基酸序列(SEQ ID NO: 66)、其變體或其片段;和/或第三CDR,該第三CDR具有QQHYSSPWT的氨基酸序列(SEQ ID NO: 67)、其變體或其片段。在一些實施例中,該輕鏈進一步包含人IgG1
抗體的κ鏈C區。在一些另外的實施例中,該κ鏈C區具有SEQ ID NO: 68、75、82、或89的氨基酸序列、其變體或其片段。在另一個實施例中,該輕鏈具有SEQ ID NO: 64、71、78或85的氨基酸序列、其變體或其片段。在一些實施例中,該人源化抗體具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段;SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段;SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段;SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段;SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段;SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段;SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段;SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段;SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段;SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段;SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段;SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段;SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段;SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段;SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段;或SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。
在第二方面,本發明提供了嵌合蛋白,其包含本文中所描述的人源化抗體和載體蛋白。
在第三方面,本發明提供了藥物組合物,其包含 (i) 本文中所描述的人源化抗體或本文中所描述的嵌合蛋白,以及 (ii) 藥物賦形劑。
在第四方面,本發明提供了預防或限制血小板上的糖蛋白I(b)α(GPIbα)和GPIbα配體(如例如,血管性血友病因子(VWF)、凝血酶、激肽原、P-選擇素、血小板應答蛋白等)之間相互作用的方法,該方法包括使本文中所描述的人源化抗體、本文中所描述的嵌合蛋白或本文中所描述的藥物組合物與血小板接觸。在一些實施例中,該方法用於預防或限制血小板活化。在一個實施例中,該GPIbα配體是血管性血友病因子(VWF)和/或凝血酶。在一個特定實施例中,人源化抗體、嵌合蛋白或藥物組合物在GPIbα配體與血小板接觸之前、同時或之後與血小板接觸。在另一個實施例中,該方法用於預防或限制有需要的受試者中的體內相互作用。在另一個實施例中,該方法用於預防有需要的受試者中血栓的形成或加重。在另一個實施例中,該方法用於減少有需要的受試者中血栓的體積或血栓的數目。在一些實施例中,該方法進一步包括確定受試者中血栓的存在、位置和/或大小。在又另一個實施例中,受試者處於正在經歷或已經經歷過病理性血栓形成的風險中。在又另一個實施例中,受試者處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險中。在一些實施例中,該方法用於減少或限制有需要的受試者中的腫瘤轉移。在另外的實施例中,腫瘤轉移是肝腫瘤轉移。在又另一個實施例中,該方法進一步包括確定受試者中腫瘤轉移的存在、位置和/或大小。
在第五方面,本發明提供了使用本文中所描述的人源化抗體、本文中所描述的嵌合蛋白、或藥物組合物用於預防或限制血小板上存在的糖蛋白I(b)α(GPIbα)與血管性血友病因子(VWF)和/或凝血酶以及其他GPIbα配體之間的相互作用。本發明還提供了使用本文中所描述的人源化抗體、本文中所描述的嵌合蛋白、或藥物組合物製造用於預防或限制血小板上存在的糖蛋白I(b)α(GPIbα)與血管性血友病因子(VWF)和/或凝血酶之間的相互作用的藥物。接觸步驟可以發生在低或高剪切速率下。在一些實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防或限制血小板活化。在一個特定實施例中,人源化抗體、嵌合蛋白或藥物組合物用於在VWF和/或凝血酶以及其他GPIbα配體與血小板接觸之前、同時或之後與血小板接觸。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防或限制有需要的受試者中的體內相互作用。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防有需要的受試者中血栓的形成或加重。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於減少有需要的受試者中血栓的大小或血栓的數目。在一些實施例中,血栓的存在、位置和/或大小是先前在受試者中確定的。在又另一個實施例中,受試者處於正在經歷或已經經歷過病理性血栓形成的風險中。在又另一個實施例中,受試者處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈栓塞、敗血症和/或血管炎症的風險中。在一些實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於減少或限制有需要的受試者中的腫瘤轉移。在另外的實施例中,腫瘤轉移是肝腫瘤轉移。在又另一個實施例中,腫瘤轉移的存在、位置和/或大小先前已經在受試者中確定。
在第六方面,本發明提供了本文中所描述的人源化抗體、本文中所描述的嵌合蛋白、或藥物組合物用於預防或限制血小板上存在的糖蛋白I(b)α(GPIbα)與血管性血友病因子(VWF)和/或凝血酶之間的相互作用。在一些實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防或限制血小板活化。在一個特定實施例中,人源化抗體、嵌合蛋白或藥物組合物用於在VWF和/或凝血酶以及其他GPIbα配體與血小板接觸之前、同時或之後與血小板接觸。在一個特定實施例中,人源化抗體、嵌合蛋白或藥物組合物用於在低或高剪切速率下與血小板接觸。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防或限制有需要的受試者中的體內相互作用。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於預防有需要的受試者中血栓的形成或加重。在另一個實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於減少有需要的受試者中血栓的大小或血栓的數目。在一些實施例中,血栓的存在、位置和/或大小是先前在受試者中確定的。在又另一個實施例中,受試者處於正在經歷或已經經歷過病理性血栓形成的風險中。在又另一個實施例中,受試者處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險中。在一些實施例中,人源化單株抗體、嵌合蛋白或藥物組合物用於減少或限制有需要的受試者中的腫瘤轉移。在另外的實施例中,腫瘤轉移是肝腫瘤轉移。在又另一個實施例中,腫瘤轉移的存在、位置和/或大小先前已經在受試者中確定。
《抗GPIbα抗體》
美國專利(序列號8,323,652)描述了鼠源的NIT mAb(NIT-A1、NIT-B1、和NIT-F1),其通過用野生型血小板免疫GPIbα基因敲除的BALB/c小鼠中生成,可以特異性識別人和小鼠GPIbα,顯著抑制瑞斯托黴素誘導的血小板聚集和血栓形成。然而,如以下實例中所示,這些完整的mAb可以誘導嚴重的血小板減少。此外,由於它們是小鼠來源的,因此它們在人類中具有免疫原性。
本發明提供了針對GPIbα多肽的特異性抗體。這些抗體被認為對GPIbα多肽具有“特異性”,因為它們對GPIbα多肽的親和力高於其他多肽(例如其他血小板表面多肽)。本發明的抗體可以識別並結合人GPIbα多肽(如在基因ID:2811中描述的)、小鼠GPIbα多肽(如在基因ID:110331805以及基因ID:110304274中描述的)、大鼠GPIbα多肽(如在基因ID:691992中描述的)、猴子GPIbα多肽(基因ID:721584)、狗GPIbα多肽(基因ID:403638)和/或兔子GPIbα多肽(基因ID:100349951)。在一個實施例中,本發明的抗體可以識別並結合人GPIbα多肽(如在基因ID:2811中描述的)、小鼠GPIbα多肽(如在基因ID:110331805以及基因ID:110304274中描述的)、大鼠GPIbα多肽(如在基因ID:691992中描述的)、猴子GPIbα多肽(基因ID:721584)、狗GPIbα多肽(基因ID:403638)和/或兔子GPIbα多肽(基因ID:100349951)。
在一個實施例中,本發明的人源化抗體與人GP1bα的解離常數(KD)為10 μM、10 nM、10 pM或更低。在一些實施例中,人源化抗體與人GP1bα的解離常數(KD)為9、8、7、6、5、4、3、2、1 μM或更低。在一些實施例中,人源化抗體與人GP1bα的解離常數(KD)為9、8、7、6、5、4、3、2、1 nM或更低。在一些實施例中,人源化抗體與人GP1bα的解離常數(KD)為9、8、7、6、5、4、3、2、1 pM或更低。
本發明的抗體是“人源化”抗體,因為它們包括衍生自人抗體或免疫球蛋白的區域以及衍生自非人抗體或免疫球蛋白的區域。使抗體人源化的作用在於用人抗體的相應部分取代非人抗體的一部分。例如,如本文所使用的人源化抗體可以包含能夠特異性識別GPIbα的非人來源的可變區(例如,衍生自鼠(例如,小鼠)抗體的區域)和衍生自人抗體的人框架區。在另一個實例中,人源化免疫球蛋白可以包含重鏈和輕鏈,其中該輕鏈包含一個或多個衍生自與GPIbα多肽結合的非人來源抗體的互補決定區(或CDR)以及衍生自人來源的輕鏈的框架區(或FR),並且該重鏈包含衍生自與GPIbα多肽結合的非人來源抗體的互補決定區以及衍生自人來源的重鏈的框架區。“互補決定區”或“CDR”是指位於多肽可變部分中的免疫球蛋白的區域,並參與與抗原表位的特異性結合。CDR的組合構成了抗體的互補位。
人源化抗體的人源區域可以衍生自IgG、IgM、IgA、IgE或IgD同種型。在一些實施例中,人源化抗體的人源區域可以衍生自IgG同種型,例如衍生自IgG1、IgG2、IgG3或IgG4亞類。在一些特定實施例中,人源化抗體的人源區域可以衍生自IgG1亞類。如下文所指出的,由於人源化抗體也是單價抗體,所以人源化抗體的人源區域可以包括衍生自CH1
區和/或VH
區(排除CDR)的重鏈,並且排除CH2
和/或CH3
區。人源化抗體的人源區域可以包括衍生自CL
區和/或VL
區(排除CDR)的輕鏈。人源化抗體的人源區域包括可以是κ或λ型的輕鏈。在一個特定實施例中,人源化抗體的人源區域包括來自κ型的輕鏈。
本發明的人源化抗體不包括(例如,缺乏)Fc部分。例如,人源化抗體部分是多價抗體的片段抗原結合區F(ab)2
。F(ab)2
片段是兩個分子實體(輕鏈片段和重鏈片段)的二聚體,由單個抗原結合位點組成,並且包含來自抗體的每個重鏈和輕鏈的一個恆定結構域和一個可變結構域,該抗體的每個重鏈和輕鏈通過二硫鍵相互締合。F(ab)2
的每條鏈包括三個VL
結構域和三個VH
結構域。當與可以衍生F(ab)2
抗體部分的親本多價抗體相比時,F(ab)2
抗體部分可以完全或部分糖基化。
在一些實施例中,本發明的抗體是“單價”抗體。如在本發明的上下文中所使用的,“單價”抗體含有單個抗原結合位點。單價抗體部分具有不多於一個締合(共價或非共價)的可變輕鏈結構域(VL
)和不多於一個相應的可變重鏈結構域(VH
)。這與包含至少兩個抗原結合位點和多於一個VH
和多於一個VL
結構域的多價全長抗體不同。當與可以衍生單價抗體部分的親本多價抗體相比時,單價抗體部分可以完全或部分糖基化。在一些情況下,單價抗體部分不被糖基化。單價抗體部分能夠競爭由相應的多價抗體(例如,在一些實施例中,NIT-B1)識別的結合位點。單價抗體部分不包括衍生其的多價抗體的可結晶片段(Fc片段)。
在某些情況下,單價抗體是從一個或多個多價抗體衍生的單鏈可變片段(scFv)。scFv是單分子實體(融合蛋白),其由單個抗原結合區組成,並且具有來自多價抗體的、與接頭(例如,通常是短肽接頭)連接的不多於一個VH
和不多於一個VL
結構域。因此,scFv由單個抗原結合區組成,並包含一個VH
和一個VL
結構域。scFv可以從篩選scFv的合成文庫(如例如,scFv的噬菌體展示文庫)獲得。本發明的scFv可以包括例如VH
和VL
結構域之間的一個或多個GGGGS(SEQ ID NO: 92)接頭。在一些實施例中,VL
結構域的羧基末端可以連接到VH
結構域的氨基末端。在另一個實施例中,VH
結構域的羧基末端可以連接到VL
結構域的氨基末端。在一些實施例中,本發明的scFv可以包括純化標簽(如例如6 X His標簽多肽),一旦scFv被純化,就可以將該純化標簽去除。在一些另外的實施例中,scFv可以(共價地)與載體蛋白相互締合以形成嵌合蛋白。在這樣的實施例中,載體蛋白可以連接在scFv的氨基末端或羧基末端。在一些實施例中,scFv不包括純化標簽多肽或已經被處理以去除純化標簽多肽。
在其他情況下,單價抗體是多價(並且在一些實施例中為單株)抗體的片段抗原結合區(Fab)。Fab片段包含兩個分子實體(輕鏈片段和重鏈片段),由單個抗原結合位點組成,並且包含來自抗體的每個重鏈和輕鏈的一個恆定結構域和一個可變結構域,該抗體的每個重鏈和輕鏈通過二硫鍵相互締合。Fab包括單個VL
結構域和單個VH
結構域。
在另外的情況下,單價抗體是單結構域抗體或奈米抗體。單結構域抗體包括包含至少三個互補決定區(CDR)的單個單體可變抗體結構域。單結構域抗體可以從駱駝科(例如VH
H抗體)、從魚(例如VNAR
抗體)或從噬菌體展示中獲得。單結構域抗體可以衍生自重鏈或輕鏈。單結構域抗體可以是人源化的。
本發明的抗體可以抑制血小板活化和聚集。該表述“可以抑制血小板活化和聚集”是指本發明的人源化抗體在存在血小板和血小板激動劑的情況下避免活化血小板並聚集血小板的能力。血小板活化主要發生在止血或血栓開始期間。一旦活化,血小板改變其形狀並釋放其顆粒中的內含物。活化的血小板調節其膜蛋白(例如,P-選擇素)、脂質(例如,磷脂醯絲氨酸)的表達以及導致血小板聚集的血小板αIIbβ3整合素的構象變化。血小板的活化和聚集可以例如通過確定血小板的形狀、血小板的聚集水平(例如使用血小板聚集儀)、表面蛋白或脂質的表達等來測量。血小板可以使用以下激動劑(活化劑)、凝血酶、ADP、膠原及其他來活化。瑞斯托黴素也可以引起血管性血友病因子(VWF)與血小板受體GPIbα結合。為了確定人源化抗體是否抑制血小板活化和聚集,血小板(例如可以以富含血小板的血漿或凝膠過濾後的血小板的形式獲得)可放置成首先與人源化抗體接觸,並且然後與激動劑接觸。然後,應通過本領域已知的方法來確定血小板是否被活化/聚集。抑制血小板活化和聚集的抗體被認為是本發明的抗體。
此外,本發明的人源化抗體可以不導致血小板活化。該表述“不導致血小板活化”是指本發明的人源化抗體的特性之一,即在不存在已知的血小板激動劑的情況下,它們不活化血小板。為了確定人源化抗體是否不導致血小板活化,可以將血小板(例如可以以富含血小板的血漿或凝膠過濾後的血小板的形式獲得)放置成與抗體接觸(在不存在已知的血小板激動劑的情況下),然後應通過本領域已知的方法來確定血小板是否被活化。不導致血小板活化的抗體被認為是本發明的抗體。
本發明的抗體可以不導致血小板減少。該表述“不導致血小板減少”是指本發明的人源化抗體的特性之一,即它們不會引起血小板總數的實質性和病理性缺陷。在人中,需要急診處理的血小板減少計數為低於50000個血小板/μL血液。為了確定人源化抗體是否導致血小板減少,將其施用至測試受試者(例如小鼠),並使用本領域已知的技術監測血小板水平,以確定該抗體是否導致血小板計數減少(並且如果是,則是實質性或病理性減少)。不導致血小板減少的抗體被認為是本發明的抗體。
本發明的抗體可以不導致出血時間延長(在治療劑量下)。該表述“不導致出血時間延長”是指本發明的人源化抗體的特性之一,即它們不會引起止血所需的時間的實質性和病理性增加。為了確定人源化抗體是否導致出血時間延長,在測試受試者(例如小鼠)的尾部做一個切口(具有標準化的寬度和深度),使用本領域中已知的技術(在一些實施例中,Ivy方法或Duke方法)確定止血(例如,在最短時間內停止血流)所花費的時間,並與標準進行比較,以確定抗體是否導致出血時間增加(如果是,則是實質性增加)。在指定劑量下不延長出血時間的抗體被認為是本發明的抗體。
本發明的抗體也可以拮抗GPIbα多肽的生物活性。GPIbα多肽是血小板表面膜糖蛋白,其作為血管性血友病因子(VWF)、凝血酶以及其他配體的受體。通過拮抗其生物活性,本發明的抗體因此可用於限制或抑制血小板活化和聚集(尤其是在高剪切條件下)。
本發明的抗體可以衍生自單株抗體。對GPIbα多肽上的單一表位具有特異性的抗體被認為是單株抗體(也稱為mAb或MoAb)。在一些實施例中,單株抗體由免疫細胞的單個殖株產生。單株抗體可以由本領域已知的技術來產生,例如通過使用通過將骨髓瘤細胞與來自受試者(例如小鼠或人)的脾細胞融合的細胞培養,該受試者已經用包含GPIbα多肽的表位的抗原進行免疫。單株抗體也可以通過使用包含GPIbα多肽的表位的抗原篩選單株抗體庫來獲得噬菌體展示。用於製備單株抗體的另外的技術包括但不限於單個B細胞培養、來自B細胞群的單細胞擴增。本發明的單株抗體可以來自各種來源(例如,小鼠或人),並且可以包括兩個相同的輕鏈和兩個相同的重鏈,其中每個鏈包含三個CDR。單株抗體可來自任何同種型,包括但不限於免疫球蛋白A(IgA)、IgD、IgE、IgG(包括IgG1、IgG2、IgG3或IgG4亞型)或IgM。在一個實施例中,單株抗體可來自IgG同種型。
在一個實施例中,本發明的抗體具有至少一個互補決定區,該互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66或67的氨基酸序列、其變體或其片段。在本發明的上下文中,尤其是當提及CDR的氨基酸序列時,該表述“基本上由……組成”表示CDR必然包含SEQ ID NO: 37、38、39、65、66或67的氨基酸序列,但是另外的、非必需的氨基酸殘基可以添加在那些序列的氨基或羧基末端(只要這些氨基酸殘基基本上不改變抗體對GPIbα多肽的親和力或其拮抗GPIbα多肽的生物活性的能力)。
在一個實施例中,本發明的抗體具有至少兩個互補決定區,這些互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66或67的氨基酸序列、其變體或其片段。在仍另一個實施例中,本發明的抗體具有至少三個互補決定區,這些互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66或67的氨基酸序列、其變體或其片段。在又另一個實施例中,本發明的抗體具有至少四個互補決定區,這些互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66或67的氨基酸序列、其變體或其片段。在仍另一個實施例中,本發明的抗體具有至少五個互補決定區,這些互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66或67的氨基酸序列、其變體或其片段。在仍另一個實施例中,本發明的抗體具有互補決定區,該互補決定區包含以下或基本上由以下組成:SEQ ID NO: 37、38、39、65、66和67的氨基酸序列、其變體或其片段。
在一些實施例中,本發明的抗體具有包含SEQ ID NO: 37、38和39的氨基酸序列(包括變體和片段)或基本上由其組成的互補決定區,以及至少一個包含SEQ ID NO: 65、66或67(包括變體和片段)或基本上由其組成的互補決定區。在一些實施例中,本發明的抗體具有包含SEQ ID NO: 37、38和39的氨基酸序列(包括變體和片段)或基本上由其組成的互補決定區,以及至少兩個包含SEQ ID NO: 65、66或67(包括變體和片段)或基本上由其組成的互補決定區。在一些另外的實施例中,本發明的抗體具有包含SEQ ID NO: 65、66和67的氨基酸序列(包括變體和片段)或基本上由其組成的互補決定區,以及至少一個包含SEQ ID NO: 37、38或39(包括變體和片段)或基本上由其組成的互補決定區。在一些另外的實施例中,本發明的抗體具有包含SEQ ID NO: 65、66和67的氨基酸序列(包括變體和片段)或基本上由其組成的互補決定區,以及至少兩個包含SEQ ID NO: 37、38或39(包括變體和片段)或基本上由其組成的互補決定區。
本發明的抗體可以包括具有SEQ ID NO: 37、38、39、65、66或67的氨基酸序列的CDR的功能變體。當與CDR的氨基酸序列相比時,變體CDR包含至少一個氨基酸差異。如本文所用,變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一些實施例中,可以改變抗體的總電荷、結構或疏水-親水特性而不會對生物活性產生不利影響。因此,可以改變CDR的氨基酸序列,例如使抗體更疏水或親水,而不會對抗體的生物活性產生不利影響。CDR變體與本文中所描述的CDR具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的同一性。如本領域已知的術語“百分比同一性”是兩個或更多個多肽序列或兩個或更多個多核苷酸序列之間的關係,如通過比較這些序列所確定的。同一性水平可以使用已知的計算機程序常規地確定。同一性可以通過已知方法容易地計算出,這些方法包括但不限於以下文獻中描述的那些:Computational Molecular Biology [計算分子生物學] (Lesk, A. M., 編輯) Oxford University Press [牛津大學出版社], 紐約州 (1988);Biocomputing: Informatics and Genome Projects [生物計算:信息學和基因組項目] (Smith, D. W., 編輯) Academic Press [學術出版社], 紐約州 (1993);Computer Analysis of Sequence Data [序列數據的計算機分析], 第I部分 (Griffin, A. M.和Griffin, H. G., 編輯) Humana Press [胡瑪納出版社], 新澤西州 (1994);Sequence Analysis in Molecular Biology [分子生物學的序列分析](von Heinje, G., 編輯) Academic Press [學術出版社] (1987);以及Sequence Analysis Primer [序列分析引物](Gribskov, M.和Devereux, J., 編輯) Stockton Press [斯托克頓出版社], 紐約州 (1991)。設計了用於確定同一性的優選方法,以得到測試序列之間的最佳匹配。用於確定同一性和相似性的方法被編入可公開獲得的計算機程序中。序列比對和百分比同一性計算可使用LASERGENE生物信息學計算套件(DNASTAR公司,麥迪遜市,威斯康辛州)的Megalign程序進行。本文公開的序列的多重比對是使用Clustal比對方法(Higgins和Sharp (1989) CABIOS. [計算機在生物學中的應用] 5:151-153),使用默認參數(空位罰分 = 10,空位長度罰分 = 10)進行的。使用Clustal方法進行的成對比對的默認參數為KTUPLB 1,空位罰分 = 3,窗口 = 5,並且DIAGONALS SAVED = 5。
CDR變體可以是 (i) 其中一個或多個氨基酸殘基被保守或非保守氨基酸殘基(優選保守氨基酸殘基)取代的CDR變體,並且這樣的經取代的氨基酸殘基可以是或可以不是由遺傳密碼編碼的氨基酸殘基,或 (ii) 其中一個或多個氨基酸殘基包括取代基基團的CDR變體。CDR的“變體”可以是保守變體或等位基因變體。
本發明的抗體可以包括具有SEQ ID NO: 37、38、39、65、66或67的氨基酸序列的CDR功能片段。CDR片段包含比CDR的氨基酸序列少至少一個氨基酸殘基。CDR片段包含SEQ ID NO: 37、38、39、65、66或67的氨基酸序列的CDR的一些連續氨基酸殘基。CDR片段與本文中所描述的CDR具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的同一性。
在另一個實施例中,本發明的抗體包含重鏈並且該重鏈包含至少一個CDR,該至少一個CDR包含以下或基本上由以下組成:SEQ ID NO: 37、38或39的氨基酸序列、其功能變體及其功能片段。在另一個實施例中,該重鏈包含至少兩個CDR,每個CDR包含來自以下的不同的氨基酸序列或基本上由其組成:SEQ ID NO: 37、38或39、其功能變體及其功能片段。在仍另一個實施例中,該重鏈包含三個CDR,每個CDR包含來自以下的不同的氨基酸序列或基本上由其組成:SEQ ID NO: 37、38和39、其功能變體及其功能片段。
在另一個實施例中,該重鏈包括人IgG1抗體的CH1區,並包含SEQ ID NO: 40、47、54或61的氨基酸序列、其功能變體及其功能片段。如在本發明的上下文中所使用的,人IgG1抗體的CH1區的功能變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一個實施例中,人IgG1抗體的CH1區的功能變體與本文中所描述的CH1區(如例如,具有SEQ ID NO: 40、47、54或61的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。還如在本發明的上下文中所使用的,人IgG1抗體的CH1區的功能片段是指包含比人IgG1抗體的CH1區的氨基酸序列少至少一個氨基酸殘基,該氨基酸殘基不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響。在一個實施例中,人IgG1抗體的CH1區的功能片段與本文中所描述的CH1區(如例如,具有SEQ ID NO: 40、47、54或61的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。
在一些實施例中,該重鏈包含以下或基本上由其組成:SEQ ID NO: 36、43、50或57的氨基酸序列、其功能變體及其功能片段。在本發明的上下文中,尤其是當提及重鏈的氨基酸序列時,該表述“基本上由……組成”表示該重鏈必然包含SEQ ID NO: 36、43、50或57的氨基酸序列,但是另外的、非必需的氨基酸殘基可以添加在那些序列的氨基或羧基末端(只要這些氨基酸殘基基本上不改變抗體對GPIbα多肽的親和力或其拮抗GPIbα多肽生物活性的能力)。如在本發明的上下文中所使用的,重鏈抗體的功能變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一個實施例中,重鏈的功能變體與本文中所描述的重鏈(如例如,具有SEQ ID NO: 36、43、50或57的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。還如在本發明的上下文中所使用的,重鏈的功能片段包含比重鏈的氨基酸序列少至少一個氨基酸殘基,該氨基酸殘基不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響。在一個實施例中,重鏈的功能片段與本文中所描述的重鏈(如例如,具有SEQ ID NO: 36、43、50或57的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。
在另一個實施例中,抗體包含輕鏈並且該輕鏈包含至少一個CDR,該至少一個CDR包含以下或基本上由以下組成:SEQ ID NO: 65、66或67的氨基酸序列、其功能變體及其功能片段。在另一個實施例中,該輕鏈包含至少兩個CDR,每個CDR包含來自以下的不同的氨基酸序列或基本上由其組成:SEQ ID NO: 65、66或67、其功能變體及其功能片段。在仍另一個實施例中,該輕鏈包含三個CDR,每個CDR包含來自以下的不同的氨基酸序列或基本上由其組成:SEQ ID NO: 65、66和67、其功能變體及其功能片段。
在另一個實施例中,該輕鏈包括人IgG1 κ鏈C區,該區可具有例如SEQ ID NO: 68、75、82或89的氨基酸序列、其變體或其片段。如在本發明的上下文中所使用的,人IgG1 κ鏈C區的功能變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一個實施例中,人IgG1 κ鏈C區的功能變體與本文中所描述的人IgG1 κ鏈C區(如例如,具有SEQ ID NO: 68、75、82或89的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。還如在本發明的上下文中所使用的,人IgG1 κ鏈C區的功能片段是指包含比人IgG1 κ鏈C區的氨基酸序列少至少一個氨基酸殘基,該氨基酸殘基不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響。在一個實施例中,人IgG1 κ鏈C區的功能片段與本文中所描述的CH1區(如例如,具有SEQ ID NO: 68、75、82或89的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。
在另一個實施例中,該輕鏈包含以下或基本上由其組成:SEQ ID NO: 64、71、78或85的氨基酸序列、其功能變體及其功能片段。在本發明的上下文中,尤其是當提及輕鏈的氨基酸序列時,該表述“基本上由……組成”表示該輕鏈必然包含SEQ ID NO: 64、71、78或85的氨基酸序列,但是另外的、非必需的氨基酸殘基可以添加在那些序列的氨基或羧基末端(只要這些氨基酸殘基基本上不改變抗體對GPIbα多肽的親和力或其拮抗GPIbα多肽生物活性的能力)。如在本發明的上下文中所使用的,輕鏈抗體的功能變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一個實施例中,輕鏈的功能變體與本文中所描述的輕鏈(如例如,具有SEQ ID NO: 64、71、78或85的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。還如在本發明的上下文中所使用的,輕鏈的功能片段包含比重鏈的氨基酸序列少至少一個氨基酸殘基,該氨基酸殘基不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響。在一個實施例中,輕鏈的功能片段與本文中所描述的輕鏈(如例如,具有SEQ ID NO: 64、71、78或85的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。
在一些實施例中,該重鏈包含以下或基本上由其組成:SEQ ID NO: 36、43、50或57的氨基酸序列、其功能變體及其功能片段。在本發明的上下文中,尤其是當提及重鏈的氨基酸序列時,該表述“基本上由……組成”表示CDR必然包含SEQ ID NO: 36、43、50或57的氨基酸序列,但是另外的、非必需的氨基酸殘基可以添加在那些序列的氨基或羧基末端(只要這些氨基酸殘基基本上不改變抗體對GPIbα多肽的親和力或其拮抗GPIbα多肽生物活性的能力)。如在本發明的上下文中所使用的,重鏈抗體的功能變體是指氨基酸序列中不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響的改變。在一個實施例中,重鏈的功能變體與本文中所描述的重鏈(如例如,具有SEQ ID NO: 36、43、50或57的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。還如在本發明的上下文中所使用的,重鏈的功能片段包含比重鏈的氨基酸序列少至少一個氨基酸殘基,該氨基酸殘基不會對抗體的生物功能(例如,提供對GPIbα多肽的特異性和親和力)產生不利影響。在一個實施例中,重鏈的功能片段與本文中所描述的重鏈(如例如,具有SEQ ID NO: 36、43、50或57的氨基酸序列的那些)具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性。
在又另一個實施例中,該抗體可包含重鏈和輕鏈兩者。在這樣的實施例中,該人源化抗體可以具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段。在另一個實施例中,該人源化抗體可以具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段。在仍另一個實施例中,該人源化抗體可以具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段。在又另一個實施例中,該人源化抗體可以具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段。在另一個實施例中,該人源化抗體可以具有SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。在仍另一個實施例中,該人源化抗體可以具有SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段。在又另一個實施例中,該人源化抗體可以具有SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段。在又另一個實施例中,該人源化抗體可以具有SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段。在另一個實施例中,該人源化抗體可以具有SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。在另一個實施例中,該人源化抗體可以具有SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段。在另一個實施例中,該人源化抗體可以具有SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段。在又另一個實施例中,該人源化抗體可以具有SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段。在仍另一個實施例中,該人源化抗體可以具有SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。在一個實施例中,該人源化抗體可以具有SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段。在仍一個實施例中,該人源化抗體可以具有SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段。在又另一個實施例中,該人源化抗體可以具有SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段。在仍另一個實施例中,該人源化抗體可以具有SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。
本發明抗體的重鏈和輕鏈可以包括前導序列,該前導序列在自細胞分泌後被裂解。例如,SEQ ID NO: 35的氨基酸序列包括SEQ ID NO: 36的氨基酸序列以及作為前導序列的在N末端處的另外的氨基酸殘基。可以包括在重鏈和/或輕鏈中的前導序列包括但不限於SEQ ID NO: 91的氨基酸序列。
在一些實施例中,本發明的抗體可被進一步修飾或設計成嵌合蛋白(包含載體蛋白),以增加(除其他事物以外)其循環半衰期。人源化抗體部分可以(直接或間接地使用接頭,如例如,一個或多個GGGGS(SEQ ID NO: 92)接頭)與載體在任何一個或多個氨基酸殘基處締合,前提是該締合不會阻礙人源化抗體部分與GPIbα結合以及抑制其生物活性。在一個實施例中,接頭包括GGGGS(SEQ ID NO:92)接頭的三個拷貝。 在另一個實施例中,接頭包括GGGGS(SEQ ID NO:92)接頭的四個拷貝。在一些情況下,接頭(當存在時)或載體與人源化抗體部分的一個或多個氨基酸殘基締合,該氨基酸殘基不參與與GPIbα特異性結合以及抑制其生物活性。在一些情況下,接頭或載體與人源化抗體部分的單個氨基酸殘基締合。接頭或載體可以與人源化抗體部分的任何氨基酸殘基(包括位於人源化抗體部分的氨基末端或位於人源化抗體部分的羧基末端的氨基酸殘基)締合。在一些實施例中,載體蛋白可以位於人源化抗體部分的上游(在氨基末端)或下游(在羧基末端)。在接頭和載體也具有蛋白質性質的情況下,人源化抗體部分可以與接頭或載體的任何氨基酸殘基(包括位於接頭或載體的氨基末端的氨基酸殘基或位於接頭或載體的羧基末端的氨基酸殘基)締合。在一個實施例中,位於接頭或載體的氨基末端的氨基酸殘基與位於人源化抗體部分的羧基末端的氨基酸殘基締合。在仍另一個實施例中,當存在接頭並且接頭具有蛋白質性質時,其氨基末端與人源化抗體的羧基末端締合,並且其羧基末端與載體的氨基末端締合。在一個實施例中,載體蛋白是白蛋白(例如,人血清白蛋白)。在一個實施例中,載體包含一個或多個另外的抗體或抗體片段。
在人源化抗體部分和載體之間尋求共價締合的情況下,這兩個實體之間的締合可以是肽鍵。這樣的實施例尤其可用於嵌合蛋白,其中至少兩個實體都是蛋白質性的,並且意欲使用基因重組技術以生物體(原核或真核)中的融合蛋白形式產生。可替代地,這兩個部分之間的共價締合可以由任何其他類型的化學共價結合來介導。在一些情況下,設計嵌合蛋白以便其在大循環中(例如在血漿中)不易被裂解成兩部分。
如上所述,這兩個實體(例如,人源化抗體部分和載體部分)之間的締合可以是非共價的。示例性非共價締合包括但不限於生物素-鏈黴親和素/親和素系統。在這樣的系統中,標簽(生物素)共價地與一個實體/部分締合,而蛋白質(鏈黴親和素或生物素)與另一個實體/部分共價締合。在這樣的實施例中,生物素可以與人源化抗體部分或與載體締合,前提是系統中的另一個實體與鏈黴親和素或親和素締合。
在非共價締合的另一個系統中,第一實體僅在其施用至預定接收者時才設計為與第二實體非共價締合。當載體是存在於接收者血液中的蛋白質時,本實施例尤其有用。例如,人源化抗體部分可以(以共價或非共價方式)與第二抗體、凝集素或其片段(在本文中稱為抗體源性接頭)締合,該第二抗體、凝集素或其片段一旦施用至該預定接收者就可以非共價結合該載體。例如,第二抗體、凝集素或其片段可對存在於預定接收者中的任何血液/血漿蛋白(如例如,血清白蛋白、免疫球蛋白片段(前提是這些片段不直接結合活化型Fc受體或引起嵌合蛋白同時結合到活化型Fc受體上的多於一個位點)、α-1酸性糖蛋白、轉鐵蛋白或脂蛋白)具有特異性。第二抗體、凝集素或其片段可優選地以共價方式在人源化抗體部分的任何氨基酸殘基處(但優選地在人源化抗體部分的氨基或羧基末端)與人源化抗體部分締合。在這樣的實施例中,第二抗體、凝集素或其片段類似於人源化抗體部分與載體之間的接頭。在接收者中施用人源化抗體部分的本實施例時,載體(例如血液或血漿蛋白)與第二抗體、凝集素或其片段締合以在體內形成嵌合蛋白。在一個特定實施例中,第二抗體是特異性識別白蛋白的抗體(如例如,特異性識別人白蛋白的抗體)。
本發明還提供了編碼本文中所描述的抗體的核苷酸分子。核苷酸分子能以分離的形式提供,並且可以衍生自多種來源,包括DNA、cDNA、合成DNA、合成RNA、其衍生物、模擬物或其組合。此類序列可以包含基因組DNA,其可以包括或可以不包括天然存在的內含子、基因區、非基因區和調控區。此外,這樣的基因組DNA能以與啟動子區或poly (A)序列締合的方式獲得。序列、基因組DNA或互補DNA(cDNA)能以幾種方式中的任何一種獲得。基因組DNA可以通過本領域熟知的手段從合適的細胞中提取和純化。可替代地,mRNA可以從細胞中分離,並用於通過反轉錄或其他手段來產生cDNA。本文中所描述的核苷酸分子用於在本發明的方法的某些實施例中,用於通過摻入宿主細胞、組織或生物體中來生產RNA、蛋白質或多肽。在一個實施例中,核苷酸分子可經密碼子優化以在特定宿主中表達。在一些實施例中,核苷酸分子可以包括一個或多個啟動子序列和/或一個或多個終止子序列。核苷酸分子可包括在載體中以在重組宿主中表達。在一些實施例中,本發明的核苷酸分子可包括SEQ ID NO: 41、48、55、62、69、76、83和/或90的核酸序列。在一個實施例中,本發明的核苷酸序列包括SEQ ID NO: 41和69、41和76、41和83、或41和90的核酸序列。在另一個實施例中,本發明的核苷酸序列包括SEQ ID NO: 48和69、48和76、48和83、或48和90的核酸序列,本發明的核苷酸序列包括SEQ ID NO: 55和69、55和76、55和83、或55和90的核酸序列,本發明的核苷酸序列包括SEQ ID NO: 62和69、62和76、62和83、或62和90的核酸序列。
《人源化抗體的治療用途》
由於血小板GPIbα及其配體(如VWF)的相互作用被認為是多種疾病發病的重要參與者,因此人源化抗體可用於在預防和/或治療缺血性中風、急性心肌梗塞、再狹窄、心絞痛、急性冠脈綜合症、動脈粥樣硬化血栓形成、血管炎症、深靜脈血栓、外周血管疾病、血栓性血小板減少性紫斑、敗血症和/或腫瘤轉移中使用。人源化抗體或嵌合蛋白可用於在具有血小板被人源化抗體(或嵌合蛋白的人源化抗體部分)特異性識別的受試者中使用。因此,人源化抗體可用於在哺乳動物受試者(如例如人、猴子、小鼠、兔子和/或狗等)中使用。
本發明提供了用於預防或限制GPIbα與其同源配體之間的物理相互作用的方法。該方法包括在允許人源化抗體/人源化抗體部分與GPIbα結合的條件下,使本文中所描述的人源化抗體、嵌合蛋白或藥物組合物與血小板(其在其表面上表達GPIbα)接觸。如以下實例中所示,本發明的人源化抗體和嵌合蛋白可以在低剪應力和高剪切應力下與GPIbα結合並拮抗其生物活性。因此,該方法可用於與GPIbα結合,而不管施加的剪切應力如何。該方法可在體外或體內用於有需要的受試者中。該方法可以在低或高剪切速率下使用。
當試圖防止GPIbα與其配體(如VWF)之間的相互作用時,可在GPIbα與其配體之間接觸之前使用人源化抗體或嵌合蛋白。因此,血小板首先與人源化抗體(其任選地呈現為嵌合蛋白或藥物組合物)接觸,然後人源化抗體的配體被放置在血小板附近或在血小板附近被發現。在這樣的實施例中,應理解本發明的人源化抗體的結合將防止GPIbα與其配體的物理締合,並最終防止或限制血小板活化和聚集。
當試圖限制GPIbα與其配體(如VWF)之間的相互作用時,人源化抗體可在GPIbα與其配體之間發生接觸的同時或之後使用。因此,血小板在人源化抗體的配體被放置在血小板附近或在血小板附近被發現時或之後與人源化抗體(其任選地呈現為嵌合蛋白或藥物組合物)接觸。在這樣的實施例中,應理解,本發明的人源化抗體的結合將限制GPIbα與其配體的物理締合,並且在一些實施例中,防止或限制血小板活化和聚集。
人源化抗體(任選地以嵌合形式或藥物組合物形式)可用於預防、治療或減輕在有需要的受試者中與病理性血栓形成相關聯的症狀。由於本發明的人源化抗體可防止血小板活化和聚集(至少在以下實例中),因此它們可用於預防易患病理性血栓形成的受試者中的病理性血栓形成。此外,由於本發明的人源化抗體不導致血小板減少或延長出血時間,因此使用它們更安全(例如,與衍生出它們的原始單株抗體相比)。如在本發明的上下文中所使用的,術語“病理性血栓形成”是指血栓(血塊)在血管中形成並對周圍組織引起損傷的情況。病理性血栓形成可以發生在靜脈或動脈中。病理性血栓可發生於海綿竇、腎靜脈、深靜脈或肺(肺栓塞)中或於海綿竇、腎靜脈、深靜脈或肺(肺栓塞)中被觀察到。在一些實施例中,人源化抗體或嵌合蛋白用於預防、治療或減輕在高剪切應力條件下與病理性血栓形成相關聯的症狀。在閉塞或部分閉塞的血管附近,血流剪切應力高,此時GPIbα與VWF之間的相互作用是導致血管閉塞的關鍵因素。
在保證防止血栓形成或加重的實施例中,人源化抗體或嵌合蛋白可用於處於形成或加重血栓的風險的受試者。在一個實施例中,該方法可包括在施用抗體之前確定受試者是否處於形成或加重血栓的風險(使用本領域已知的方法和測定)中。人源化抗體可用於先前已經確定處於形成或加重血栓的風險的受試者中。在另一個實施例中,該方法可包括在施用至少一個劑量的人源化抗體或嵌合蛋白後,確定受試者是否具有至少一個血栓,並且在一些另外的實施例中,確定血栓的大小。這樣的確定可有助於確定是否應向受試者施用另外的劑量以達到所希望的治療效果。
在患有多個血栓的受試者中,人源化抗體或嵌合蛋白可用於減小血栓的大小和/或數目。在一個實施例中,該方法可包括在施用抗體之前確定受試者是否具有一個或多個血栓以及任選地確定血栓的大小(使用本領域已知的方法和測定)。人源化抗體可用於在先前已確定具有多個血栓以及任選地確定血栓的大小的受試者中使用。在另一個實施例中,該方法可包括在施用至少一個劑量的人源化抗體或嵌合蛋白後,確定血栓的存在、數目和大小。這樣的確定可有助於確定是否應向受試者施用另外的劑量以達到所希望的治療效果。
在一些實施例中,本發明的方法包括確定受試者是否處於正在經歷或已經經歷過病理性血栓形成的風險。受試者處於正在經歷或已經經歷過病理性血栓形成的陽性確定表明受試者將受益於接受本發明的人源化抗體。因此,本發明的方法可包括將人源化抗體或嵌合蛋白施用於已被確定處於正在經歷或已經經歷過病理性血栓形成的風險的受試者。本發明的人源化抗體和嵌合蛋白可用於已確定其處於正在經歷或已經經歷過病理性血栓形成的風險的受試者。
在一些另外的實施例中,本發明的方法包括確定受試者是否處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險。受試者處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險中的陽性確定表明受試者將受益於接受本發明的人源化抗體。因此,本發明的方法可以包括向受試者施用人源化抗體,該受試者已經確定處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險中。本發明的人源化抗體可用於已確定其處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險的受試者中。
由於GPIbα和VWF之間的相互作用對於腫瘤轉移的播散重要,所以本發明的人源化抗體或嵌合蛋白可用於減少或限制有需要的受試者的腫瘤轉移。在一些實施例中,人源化抗體或嵌合蛋白可用於減少腫瘤轉移的數目和/或腫瘤轉移的大小。在一個實施例中,腫瘤轉移與肝癌(例如肝癌或腺癌)相關,並且人源化抗體可用於減少或限制肝腫瘤轉移。
在一些實施例中,本發明的方法包括在提供一個或多個劑量的人源化抗體或嵌合蛋白之前和/或之後確定腫瘤轉移的存在、位置和/或大小。這樣的評估可用於確定是否應施用另外的劑量的人源化抗體以在受試者中實現所希望的治療結果。
人源化抗體或包含該人源化抗體的嵌合蛋白可配製為與賦形劑一起施用的藥物組合物。賦形劑或“藥物賦形劑”是藥學上可接受的溶劑、懸浮劑或用於將一種或多種嵌合蛋白遞送給受試者的任何其他的藥理學惰性媒介物,並且通常是液體。考慮到預期的施用模式,當與給定的藥物組合物的各組分組合時,通常選擇藥物賦形劑以提供所希望的體積、稠度等。典型的藥物賦形劑包括但不限於黏合劑(例如,預膠凝化玉米澱粉、聚乙烯吡咯烷酮或羥丙基甲基纖維素等);填充劑(例如,乳糖和其他糖、微晶纖維素、果膠、明膠、硫酸鈣、乙基纖維素、聚丙烯酸酯或磷酸氫鈣等);潤滑劑(例如,硬脂酸鎂、滑石、矽石、膠體二氧化矽、硬脂酸、金屬硬脂酸鹽、氫化植物油、玉米澱粉、聚乙二醇、苯甲酸鈉、乙酸鈉等);崩解劑(例如,澱粉、羧基乙酸澱粉鈉等);和潤濕劑(例如,月桂基硫酸鈉等)。
人源化抗體或包含該人源化抗體的嵌合蛋白可配製成用於與藥學上可接受的賦形劑一起以單位劑型施用或作為藥物組合物施用。可採用常規的藥物實踐來提供合適的配製品或組合物以將此類組合物施用於受試者。儘管優選的是靜脈內施用,但可以採用任何適當的施用途徑,例如經口、腸胃外、皮下、肌內、顱內、眼眶內、眼部、心室內、囊內、脊柱內、鞘內、硬膜外、腦池內、腹膜內、鼻內或氣霧劑施用。治療性配製品可以呈液體溶液或懸浮液的形式。本領域熟知的用於製備配製品的方法見於,例如,Remington: The Science and Practice of Pharmacy [雷明頓:藥物科學與實踐], (第19版) 編輯 A.R. Gennaro AR., 1995, Mack Publishing Company [麥克出版公司], 伊斯頓, 賓夕法尼亞州。
此外,在一些實施例中,可以施用藥學有效量的人源化抗體或嵌合蛋白。術語“藥學有效量”或“治療有效量”是指有效治療患有或懷疑患有血栓性、轉移性或炎性病症或障礙的受試者的量(劑量)。在此還應該理解的是,“藥學有效量”可解釋為給予所希望的治療效果的量,可以是以一個劑量或任何劑量或途徑服用,單獨服用或與其他治療劑組合服用。
對於受試者而言,包含本文所公開的人源化抗體或嵌合蛋白、或藥物組合物的治療有效量或劑量可在約0.001至30 mg/kg體重範圍內,本發明的其他範圍包括約0.01至25 mg/kg體重、約0.025至10 mg/kg體重、約0.3至20 mg/kg體重、約0.1至20 mg/kg體重、約1至10 mg/kg體重、2至9 mg/kg體重、3至8 mg/kg體重、4至7 mg/kg體重、5至6 mg/kg體重、以及20至50 mg/kg體重。在其他實施例中,治療有效量或劑量的總範圍可在從約為0.001至50 mg,本發明的其他範圍包括約0.01至10 mg、約0.3至3 mg、約3至10 mg、約6 mg、約9 mg、約10至20 mg、約20-30 mg、約30至40 mg、以及約40至50 mg。在一個實施例中,該嵌合體按約40-80 mg/kg(例如60 mg/kg)之間的劑量施用。實施例 1 鼠源抗體 NIT-B1 人源化
通過對鼠源抗體NIT-A1和NIT-B1(描述於美國專利序列號8323652中,並分別於2008年10月7日保藏在加拿大的國際保存機構,登錄號為071008-01(NIT A1 clone)和071008-02(NIT B1 clone))測序發現,鼠源抗體NIT-A1包含一條重鏈序列SEQ ID NO: 1 (含CDR1序列SEQ ID NO: 3, CDR2序列 SEQ ID NO: 4 以及CDR3序列 SEQ ID NO: 5) 和一條輕鏈序列SEQ ID NO: 11 (含CDR1序列SEQ ID NO: 13, CDR2序列SEQ ID NO: 14 以及CDR3序列SEQ ID NO: 15)。鼠源抗體NIT-B1包含一條重鏈序列SEQ ID NO: 6 (含CDR1序列 SEQ ID NO: 8, CDR2序列SEQ ID NO: 9以及CDR3 序列SEQ ID NO: 10)和一條輕鏈序列SEQ ID NO: 16 (含CDR1 序列 SEQ ID NO: 18, CDR2序列SEQ ID NO: 19以及CDR3序列 SEQ ID NO: 20)。
通過將NIT-B1重鏈可變域(SEQ ID NO:6)與人IgG1恆定區CH1(SEQ ID NO:26; https://www.uniprot.org/uniprot/P01857)融合,並將NIT-B1輕鏈可變域(SEQ ID NO:16)與人Ig的kappa輕鏈恆定區(SEQ ID NO:33; http://www.uniprot.org/uniprot/P01834)融合,鼠源抗體NIT-B1被進一步開發為嵌合體C100-Fab。實施例 2 人源化抗 GPIb α 抗體的鑒定
利用CDR移接法(Safdari等,2013),四個人重鏈可變區(VH1序列SEQ ID NO:35,VH2序列SEQ ID NO:42,VH3序列SEQ ID NO:49和VH4序列SEQ ID NO:56)以及四個人輕鏈可變區(VL1序列SEQ ID NO:63,VL2序列SEQ ID NO:70,VL3序列SEQ ID NO:77和VL4序列SEQ ID NO:84)被合成。序列的選擇基於NCBI數據庫中所注釋的人類CDR區框架序列的同源性排序。
簡言之,用NCBI 免疫球蛋白序列Blast(http://www.ncbi.nlm.nih.gov/projects/igblast/)在人種系免疫球蛋白的數據庫中搜索母本抗體的可變域序列。對於重鏈和輕鏈,分別選擇四個不同的人源受體序列(即與母本抗體具有高度同源性的人類可變域)。人源受體的CDR序列將被對應的小鼠CDR取代,從而產生了人源化的可變域序列。
人源化的單鏈可變片段( scFv )和相關的嵌合蛋白。
一個包含VH1和VL2的scFv可以通過以下方法製備。VH1和VL2(方向為VH1-(G4
S)4-VL2)之間包含一段由4個GGGGS(SEQ ID NO:92)組成的接頭。為了便於純化,scFv在VH1之前可設計有一個由6 個組氨酸(His)組成的標簽和一個TEV切割位點,序列為ENLYFQG。在進行不同測試之前,需先用TEV蛋白酶切除此His標簽。scFv也可通過連接人血清白蛋白(HSA)形成融合蛋白(scFv-HSA)。在此類情況下,HSA之前需含有一個額外的接頭,序列為GGGGS(SEQ ID NO:92)。scFv-HSA融合蛋白可以穩定的生產,並且在其生產或純化過程中不形成聚集體。
大小。
合成編碼人源化重鏈和輕鏈的DNA序列,並將其插入pTT5載體中以構建Fabs的表達質粒。在HEK 293或CHO 3E7細胞培養物中瞬時表達16種人源化Fabs,然後離心分離並過濾上細胞培養清液,並通過SDS-PAGE和Western-blot對產物進行分析。在非還原條件下,人源化Fabs的分子量約為47 kDa(圖1和2)。
通過Capture selectTM
Kappa XL Affinity Matrix樹脂,對8個選定的人源化Fabs的上清液進行蛋白純化(表1)。使用PD-10脫鹽柱將純化的人源化Fabs進行溶劑置換,使之溶解於PBS。通過OD280
和SDS-PAGE確定所得純化蛋白的濃度和純度(每個泳道中分別加樣約2微克蛋白)。如圖3所示,所得純化的人源化Fabs在非還原SDS-PAGE電泳中,呈一條條帶,大小約為47 kDa,而在還原條件下,蛋白產物呈現兩條帶,分別約為24 kDa和23 kDa。
表一
人源化
Fabs
的描述
名字 | 重鏈 | 輕鏈 |
H001 | VH1 (SEQ ID NO: 35) | VL2 (SEQ ID NO: 70) |
H002 | VH1 (SEQ ID NO: 35) | VL3 (SEQ ID NO: 77) |
H003 | VH2 (SEQ ID NO: 42) | VL1 (SEQ ID NO: 63) |
H004 | VH3 (SEQ ID NO: 49) | VL2 (SEQ ID NO: 70) |
H005 | VH3 (SEQ ID NO: 49) | VL3 (SEQ ID NO: 77) |
H006 | VH4 (SEQ ID NO: 56) | VL1 (SEQ ID NO: 63) |
H007 | VH4 (SEQ ID NO: 56) | VL2 (SEQ ID NO: 70) |
H008 | VH4 (SEQ ID NO: 56) | VL3 (SEQ ID NO: 77) |
特異性。
人和小鼠全血在300g速度下離心7分鐘,以製備富血小板血漿(PRP)。將200微升PRP加入10毫升PBS中並在800g速度下離心10分鐘。去除上清後,將血小板重懸於200微升PBS中。將洗滌後的血小板(10微升)加入含不同的抗體(2.5-5微克/毫升)的200微升的PBS中,於室溫培養30分鐘,使之與抗體充分結合,並通過FITC標記的抗人Fab抗體進行流式細胞術檢測。這八種選擇的人源化Fabs(H001-H008),scFv和scFv-HSA融合蛋白均能夠與人和野生型小鼠血小板結合,但不與GPIbα基因敲除的小鼠的血小板結合,表明這些人源化Fabs對血小板GPIbα具有高特異性(圖4和19)。
將小鼠,大鼠,狗,兔子和人的血小板(2x105
)加入到含不同濃度的Fabs H001或H002 的200微升PBS中。其中,對於小鼠和狗的血小板,抗體濃度依次為50、16.7、5.6、1.8、0.6、0.2 nM;對於人和大鼠的血小板,抗體濃度依次為 200、67、22、7.4、2.5、0.8、0.3、0.1 nM;而對於兔子的血小板,抗體濃度依次為 500、100、20、4、0.8 nM。室溫下培養30分鐘後,加入檢測抗體(FITC標記的抗人Kappa輕鏈抗體,1:200),並避光培養15分鐘。抗體與血小板的結合情況通過流式細胞術(BD LSR FortessaTM
-20流式細胞儀)進行檢測。結果顯示H001和H002也可以與大鼠,狗和兔子的血小板結合(圖5)。
經過SEC-FPLC色譜法二次純化的人源化Fabs(H001或H002,5微克/毫升),和未經二次純化的人源化Fabs(H001或H002,5微克/毫升),分別與洗滌過的食蟹猴血小板(2 x 106
)共同培養30分鐘。然後加入檢測抗體(FITC標記的抗人Kappa輕鏈抗體)並避光培養30分鐘。抗體與血小板的結合情況通過流式細胞術進行檢測。結果顯示Fab H001和H002抗體能夠與猴血小板結合(圖6)。
利用表面電漿共振技術(SPR)檢測了H001與重組GPIbα之間的親和力。為了製備SPR生物傳感芯片,先使用0.5M的硼氫化鈉溶液(溶解於1:1無水乙醇:ddH2
O)清潔SPR裸金塗層的生物傳感芯片(美國亞利桑那州Biosensing Instrument Inc.)2小時。之後用大量無水乙醇沖洗生物傳感芯片,然後在1 mM巰基丙酸的二甲基甲醯胺溶液中培養芯片16小時。培養後,先用大量的二甲基甲醯胺,然後用無水乙醇,最後用雙蒸水沖洗SPR生物傳感芯片。然後將生物傳感芯片在溶於雙蒸水的40 mM 1-乙基-3-(3-二甲基氨基丙基)碳二亞胺和20 mM N-羥基琥珀醯亞胺中培養1小時。然後將芯片用大量雙蒸水沖洗,然後與100 mM NΑ,NΑ-二(羧甲基)-L-賴氨酸水合物培養4小時。培養後,將生物傳感芯片表面用雙蒸水沖洗。SPR實驗之前的最後一步是用100 mM NiCl2
暴露功能化的生物傳感芯片表面1小時。
SPR實驗是在Biosensing Instrument 4000上進行的。將功能化的生物傳感芯片加載到儀器上,並以40微升/分鐘的流速運行緩衝液(10 mM三(羥甲基)氨基甲烷,140 mM氯化鈉,20 mM咪唑pH = 7.4)平衡。為了進行結合檢測,將25微升500 nM的 GPIbα(帶有六個組氨酸標簽)注入固定在SPR傳感芯片的生物傳感表面上。使基線平衡後注入25微升所需濃度的配體(H001或對照)。在不同濃度配體注入之間,通過在運行緩衝液中注入100 微升500 mM咪唑,然後注入100 微升100 mM NiCl2來再生生物傳感表面。數據分析使用儀器隨附的SPR分析軟件。
將固定有GPIbα的SPR生物傳感器暴露於500、100、50和10nM H001和100nM對照抗體(PSI E1,抗GPIIbIIIa的抗體)。對照抗體在注射結束前未結合GPIbα,並與生物傳感器完全分離。相反,H001結合了GPIbα,產生了清晰的SPR位移,並在注射結束後只有部分解離(圖7A)。使用SPR位移適合動力學結合模型,得到結合速率(ka
)為2.61 x 107
s-1
,解離速率(kd
)= 1.1 x 10-1
s-1
,解離常數(Kd)為4.4 nM(圖7B)。為了確定解離常數,針對H001濃度繪製了SPR位移的大小,並擬合到一個位點結合模型,產生的擬合R2
為0.9929,解離常數(Kd)為8.0±2.1 nM。這些數據清楚地證明,H001與重組GPIbα結合緊密,結合與解離速度較快。
對激動劑誘導的血小板體外聚集的抑制作用。
通過體外血小板聚集實驗,可以評估人源化Fabs是否會誘導異常的血小板活化,並檢測其在血小板聚集中的作用。來自健康人與外周血管疾病病人的經檸檬酸鈉抗凝的全血在300g速度下離心7分鐘,以製備富血小板的血漿(PRP)。在無激動劑條件下,給予5微克/毫升不同的人源化Fabs,並通過計算機化的Chrono-log血凝集儀(Chrono-Log Corporation,美國)對體外PRP的血小板聚集情況進行監控。同時,在有激動劑條件下,包括瑞斯托黴素(1毫克/毫升)對PRP的血小板誘導的聚集,以及凝血酶(0.05單位/毫升)對凝膠過濾後的血小板誘導的聚集,人源化Fabs在其中的作用也被評估。
Fab H001、H002、H005和H008抗體以及scFv抗體皆不會誘導血小板自發性的活化。此外,H001和H002可以顯著抑制瑞斯托黴素誘導的人PRP聚集,並在經凝膠過濾的血小板中,H001和H002也抑制了低濃度凝血酶誘導的血小板聚集(圖8、9、20和21)。
在低剪切和高剪切血液流速下對血栓形成的抑制作用。
利用體外模擬體內灌注腔室系統,並連接實時螢光顯微鏡系統,監控和檢測在不同剪切力的血液流速下,30位健康志願者的經肝素抗凝的全血灌注經過被I型膠原蛋白包被的腔室時血小板的黏附、聚集和血栓形成過程。簡而言之,矩形毛細管腔室(ibidi channel slides,GmbH)內側首先包被了Horm膠原蛋白(100微克/毫升,4°C過夜,Nycomed Linz,奧地利)。將健康志願者的抗凝(肝素15單位/毫升)全血進行DiOC6
(1μM,10 min,37°C; Sigma)螢光標記,並給予對照溶劑、人源化Fabs或scFv-HSA。使用注射泵(Harvard Apparatus, USA)將以上經過藥物處理的全血灌注入毛細管腔室,使其以300 s-1
、1200 s-1
和1800 s-1
的剪切速率通過膠原蛋白包被的表面,持續3分鐘。利用Zeiss Axiovert 135倒置螢光顯微鏡(60×/0.90 NA水物鏡)實時記錄血小板的聚集和血栓形成。使用SlideBook軟件對血小板螢光強度的變化進行定量分析。
人源化Fabs H001和H002顯著抑制了300 s-1
和1800 s-1
剪切速率下血栓的形成(在1800 s-1
下作用更明顯)。其中,300 s-1
相當於小靜脈或大動脈的血液流速,而1800 s-1
相當於小動脈的流速(圖10)。此外,融合蛋白scFv-HSA可以顯著地阻止1200 s-1
的剪切速率下血栓的形成(圖22)。這些結果表明,人源化的C100-Fab,scFv和融合蛋白scFv-HSA在低血流剪切和高血流剪切條件下,均可有效抑制血栓的形成。
體內抑制血栓形成和血管阻塞。
應用兩個互補的體內顯微攝影活體小動脈血栓模型和一個大動脈血栓模型,評估人源化的Fabs對體內血栓生成的影響。
在3到4周大的C57BL/6野生型小鼠中監測腸系膜小動脈血栓的形成。給小鼠注射供體匹配的螢光標記的血小板,並在Zeiss Axiovert 135倒置螢光顯微鏡下(Zeiss,德國)下動態觀察。簡單來說,從供體匹配的小鼠中收集全血(ACD抗凝),離心製備PRP並經凝膠過濾,所得血小板與Calcein AM(1毫克/毫升,Invitrogen,加拿大)在室溫下共培養20min以標記螢光。經尾靜脈給受體小鼠注射血小板,同時給予對照溶液生理鹽水、Fab H001或H002(每隻小鼠2.5或5微克)。小鼠麻醉後暴露腸系膜於Zeiss Axiovert 135倒置螢光顯微鏡,選取單個直徑為100-120微米的腸系膜小動脈,於其正上方滴加30微升 250 mM三氯化鐵誘導血管損傷。通過螢光顯微鏡對血栓形成和溶解的過程錄像,並記錄自血管完全阻塞所需要的時間。如圖11和表2所示,與生理鹽水對照組相比,注射人源化Fabs H001和H002可以明顯抑制三氯化鐵損傷誘導的血栓形成並延長血管閉塞所需時間。
表
2
接受治療時血管未閉塞的小鼠數量
對照組 | 0 |
H002 – 5 微克 | 1 |
H001 – 5微克 | 3 |
H001 – 2.5微克 | 0 |
在雷射損傷誘導的提睪肌動脈血栓形成模型中,6到8周大的C57BL/6野生型小鼠經麻醉後插入氣管導管以預防呼吸阻塞。在顯微鏡下解剖暴露小鼠提睪肌,並選取合適的提睪肌動脈。整個實驗過程中,需使用預熱的碳酸氫鹽緩衝液持續濕潤血管。小鼠經頸靜脈插管注射大鼠抗小鼠CD41螢光抗體(Leo.A1; EMFRET Analytics,德國; 0.1微克/克)以標記血小板。10分鐘後,給予生理鹽水以及人源化Fabs H001或H002(每隻小鼠2.5或5微克)。利用脈衝氮染料雷射沿血管上游造成了多個獨立的損傷。通過Olympus BX51WI螢光顯微鏡和Slidebook軟件對血栓形成進行錄像,並分析栓塊中血小板螢光強度的動態變化。值得注意的是,該提睪肌動脈血栓活體顯微鏡模型,因雷射造成的血管損傷程度較輕,並不涉及血管氧化應激反應。而在此模型中,靜脈內注射人源化Fabs H001和H002後,血栓的生長幾乎完全被阻斷(圖12)。這些結果表明,人源化的Fabs可以抑制血栓的生長並促進血栓的溶解,因此作為新型抗血栓藥具有巨大的開發潛力。
在活體顯微鏡血栓造模前後,對實驗小鼠採血,分離血小板,利用FITC標記的抗人CD62P抗體和Annexin V- Alexa Fluor® 647,在流式細胞儀中檢測血小板活化。如圖13所示。人源化Fab H001給藥後,未發現血小板P-選擇素表達上升,或磷脂醯絲氨酸(PS)的外翻。這表明H001在體內不會導致血小板異常活化。此外,人源化Fab H002體內給藥也得到了相似的結果。
在三氯化鐵誘導的頸動脈血栓形成的模型中,首先麻醉C57BL/6J野生型小鼠(> 8周齡,25-30g),在誘導動脈損傷5分鐘前靜脈注射Fab H001和H002(每小鼠5,10或20微克)或等體積(200微升)的PBS。解剖左頸總動脈並用微型多普勒血流探頭(TS42血管周流量計,美國Transonic Systems Inc.)固定。測量基線血流速率30秒。然後用一條由7.5%三氯化鐵飽和的Whatman濾紙條誘發頸動脈損傷3分鐘。監測血流直至觀察到完全的血管閉塞。 人源化Fabs H001和H002顯著減少了血栓的生長並阻止了穩定的血管堵塞(圖14)。
體內減少缺血性腦梗塞的區域面積而不增加腦出血的風險。
為了評估抗GPIbα的C100在缺血性腦梗塞中的治療潛力,我們建立了腦缺血和再灌注損傷模型(短暫性大腦中動脈阻塞(tMCAO)模型)。用吸入的異氟烷麻醉雄性小鼠(25g),進行中線頸部切口,將軟組織拉開。小心切開左頸總動脈(LCCA),使其與周圍神經分離(不損害迷走神經),並用5.0根線進行結紮。然後分離左頸外動脈(LECA),並進行第二次打結。接下來,分離左頸內動脈(LICA)並用6.0細絲做打結準備。在獲得左頸內動脈(LICA)和左翼動脈(LPA)的良好視野之後,使用微血管夾將兩條動脈夾住。在LCCA分叉至LECA和LICA之前,在LCCA上切一個小孔。將標準化的矽橡膠塗層的6.0尼龍單絲(6021; Doccol Corp,Redlands,CA)引入LICA,直到其停在夾子上為止。將被切開的動脈張開,將細絲插入LICA以堵塞LMCA在Willis圓內的起源。閉合LICA上的第三個結以將細絲固定在適當的位置。1小時後,打開第三個結,並抽出長絲。插入長絲後立即或在1小時後拔出細絲時靜脈內注射人源化Fabs。
為了測量腦梗塞體積,在誘導tMCAO後24小時對小鼠實施安樂死。用2% 2,3,5-三苯基氯化四氮唑(TTC,Sigma-Aldrich,聖路易斯,密蘇裡州)對從全腦切下的多個2毫米厚的冠狀腦切片進行染色,以可視化腦梗塞,並且可宏觀評估是否有腦出血的存在。為了測量tMCAO誘導後24小時的神經功能,對小鼠進行改良的Bederson測試和抓地力測試來分別評估整體神經和運動功能。結果表明,人源化Fabs H001和H002抗體以及C100-scFv-HSA對GPIbα的阻斷可顯著減少tMCAO後的腦梗塞的面積並改善功能結局,並且不會增加腦出血的風險(圖15)。
對血栓性血小板減少性紫斑的保護作用。
為了檢測人源化抗體在血栓性血小板減少性紫斑(TTP)中的治療效果,我們首先使用了由離子載體引發的超大型VWF(ULVWF)介導的微血管血栓形成模型。
將ADAMTS 13基因敲除(ADAMTS 13-/-)小鼠麻醉,並靜脈注射從相同基因型的供體小鼠純化的螢光標記的血小板,並在活體顯微鏡下實時監測離子載體引起的腸系膜微靜脈血栓形成。對於血小板的製備,在腹腔內注射氯胺酮/甲苯噻嗪(分別為100 毫克/公斤和10毫克/公斤體重)麻醉小鼠(6-8周齡)後,使用肝素塗層的玻璃毛細管從眶後叢收集全血。將血液收集到裝有檸檬酸鹽-葡萄糖溶液(38 mmol/L檸檬酸,75 mmol/L檸檬酸三鈉,100 mmol/L葡萄糖)的試管中。全血在300g下離心7分鐘,可獲得富含血小板的血漿。然後使用瓊脂糖凝膠2B柱在PIPES緩衝液(PIPES 5 mmol/L,NaCl 1.37 mmol/L,KCl 4 mmol/L,葡萄糖0.1%,pH 7.0)中從富含血小板的血漿中分離出凝膠過濾的血小板。使用Hemovet(HV950,Drew Scientific)確認血小板計數。通過在室溫下將血小板與鈣黃綠素-乙醯氧基甲酯(1微克/毫升)培養15分鐘來實現血小板的螢光標記。在用於體內成像之前,在螢光顯微鏡下確認了血小板的螢光標記的功效。
對於活體顯微鏡成像,麻醉4周齡的小鼠,並靜脈注射螢光標記的血小板(來自相同基因型的小鼠1.25×106
血小板/g)。腸系膜血管經過手術準備,並在倒置螢光顯微鏡(Zeiss Axio Observer Z1 Advanced Marianas Microscope)下使用25倍油物鏡(Zeiss)進行監控。用10微升的10μmol/L的鈣離子載體局部處理約2.5 mm的腸系膜小靜脈切面(直徑100至150μmol/ L)以誘導內皮Weibel-Palade體中ULVWF的分泌,其立即導致了血小板的黏附和在血管壁上的血小板血栓的形成。對於每隻小鼠,除了預先記錄外,還監測並記錄血栓形成過程和血栓形成情況20分鐘。 人源化Fab H001和C100-scFv-HSA在腸系膜微脈管系統中鈣離子載體誘導血栓形成之前的10分鐘通過尾靜脈導管給藥。通過(1)血栓數量(直徑大於20微米的血小板血栓)和(2)恢復正常血流的時間來定量分析所選血管段中血小板聚集的動力學:定義為螢光標記的血小板返回基線附近所需的時間。
如圖16所示,在所有用生理鹽水(對照)或人源化Fab H001或C100-scFv-HSA處理的ADAMTS13-/-小鼠中,在應用離子載體之前,在活體顯微鏡下未檢測到血小板黏附於腸系膜血管壁。在對照組ADAMTS13-/-小鼠的腸系膜血管上局部應用鈣離子載體鈣後,我們立即觀察到血小板黏附在腸系膜小靜脈上,表現為沿血流方向附著在內皮上的單個血小板帶形成。一分鐘之內,形成了多個大血栓(直徑> 20微米),其中一些長到了血管直徑的50%。血小板帶和血栓明顯很鬆散,很容易從血管壁和栓子上脫落到下游。對照小鼠中血小板黏附於血管壁和栓塞性血栓形成持續長達10分鐘或更長時間,但隨著時間的流逝而消失,並最終恢復了受影響血管的正常血流。預防性地給予H001和C100-scFv-HSA治療均可顯著抑制ADAMTS13-/-小鼠的血栓反應。H001和C100-scFv-HSA處理均強烈抑制血小板黏附及其在血管壁上形成的大血栓。與對照組相比,H001和C100-scFv-HSA治療組的大血栓數量明顯減少,腸系膜小靜脈恢復正常血流的時間更短。這些結果表明,人源化Fab H001和C100-scFv-HSA可有效抑制離子載體誘發的VWF介導的微血管血栓形成,這模仿TTP疾病中血小板積累聚集在新釋放的結合在內皮細胞表面的超大VWF。
不導致血小板減少症。
C57BL/6小鼠經尾靜脈注射10微克IVIg、人源化Fab H001、H002(每組3隻)或5微克NIT-B1抗體(每組2隻)。分別於給藥後0、0.5、1、2、4、8小時,以及1、2、3、4、5、6和7天,經大隱靜脈採集10微升全血,並立即稀釋於240微升1% PBS-EDTA(pH 7.4)抗凝劑中。將50微升稀釋後血液樣品加入10 毫升Isoton II緩衝液(Coulter Corporation),並經細胞計數儀(Beckman Z2,Coulter Corporation)進行血小板計數。如圖17所示,人源化Fabs H001或H002在給藥後的最初24小時內未引起血小板計數的顯著降低,這與NIT-B1抗體形成鮮明對比。
出血時間測試。
在手術前120分鐘,BALB/c小鼠經尾靜脈注射PBS(每組4隻),H001或H002(每組3隻,每隻5-10微克)。小鼠按18毫升/公斤體重,腹腔接受2.5%的avertine注射麻醉,並被置於37℃恆溫加熱墊上。用鋒利的手術刀切掉2毫米長度的尾巴尖端。每隔15秒用吸水紙巾輕輕蘸去傷口血液。動物止血時間定義為自尾尖切除至傷口血流完全終止的時間(血流停止需超過連續的10秒以上)。如果15分鐘內流血仍未終止,則停止測試,止血時間記錄為大於等於15分鐘。如圖18所示,H001或H002給藥不會延長出血時間。參考文獻
Yaghoub Safdari, Safar Farajnia, Mohammad Asgharzadeh & Masoumeh Khalili (2013) Antibody humanization methods - a review and update, Biotechnology and Genetic Engineering Reviews, 29:2, 175-186
雖然已經結合其具體實施例描述了本發明,但應該理解的是申請專利範圍的範圍不應受實例中列出的優選實施例限制,而是應當被給予與說明書總體相一致的最寬泛的解釋。
無。
圖1顯示了培養液上清中人源化Fab在非還原條件下的SDS-PAGE結果。不同抗體株的輕重鏈組合已在凝膠圖上方標識。分子量標誌(KDa)顯示在左側。箭頭指向為人源化的Fabs。牛血清白蛋白(BSA)用作對照。
圖2顯示了人源化Fabs在非還原條件下的Western blot結果。每個泳道上樣約20微升的培養液上清。分子量標誌(KDa)顯示在左側。僅抗重鏈抗體(HCAb)用作對照。
圖3A-H顯示了純化後的Fabs在非還原(標記為“N”)和還原(標記為“R”)條件下的SDS-PAGE的結果。其中包括VH1+VL2(圖3A),VH1+VL3(圖3B),VH2+VL1(圖3C),VH3+VL2(圖3D),VH3+VL3(圖3E),VH4+VL1(圖3F),VH4+VL2(圖3G)以及VH4+VL3(圖3H)。
圖4A和B顯示5微克/毫升的人源化的Fabs H001-H008能夠結合野生型小鼠血小板(圖4A),但不結合GPIbα基因敲除(GPIbα-/-)小鼠的血小板(圖4B)。圖4B所示的“*”表示對照組的信號。
圖5A-D顯示純化後的人源化Fabs H001(▲)和H002(▼)與小鼠(圖5A),狗(圖5B),人(圖5C),大鼠(圖5D)和兔子(圖5E)血小板體外結合的流式細胞術結果。
圖6顯示人源化Fabs H001和H002與猴子血小板結合的流式細胞術結果。
圖7顯示了在表面電漿共振(SPR)測定中人源化Fab H001與重組蛋白GPIbα的結合。分別以500、100、50和10 nM H001的濃度進行25微升體積進樣來測定動力學結合模型,得出以下數據:ka
(結合速率常數)= 2.61 x 107
s-1
; kd
(解離速率常數)= 1.1 x 10-1
s-1
;和Kd
(解離或結合常數)= 4.4 nM(圖7A)。相對於配體濃度,繪製了500、100、50和10 nM H001濃度(25微升體積進樣)下的SPR劑量反應曲線(圖7B)。將該曲線擬合到單點配體結合模型,計算出R2
= 0.9929和Kd
= 8.0±2.1 nM。
圖8A-D顯示了標準的血小板聚集曲線,結果表明,在富血小板血漿中,人源化Fabs H001(圖8A),H002(圖8B),H005(圖8C)和H008(圖8D)不會誘導血小板活化。
圖9A-D顯示了標準的血小板聚集曲線,結果表明,人源化Fab H001(圖9A和9D)和H002(圖9B,9C和9D)抑制了瑞斯托黴素(A、B和D)或低濃度的凝血酶(C)誘導的血小板聚集。血小板來自於健康人(A、B和C)或患有外周血管疾病的患者(D)。
圖10A-D顯示了人源化Fabs H001(圖10A和10B)和H002(圖10C和10D)在體外低血流剪切力(300 s-1
,圖10A和10C)和高血流剪切力(1800 s-1
,圖10B和10D)條件下,均能抑制人全血在體外灌注腔室中的血栓形成。圖10A:圖片表示在低剪切(300 s-1
)條件下,肝素化的人全血在灌注1分鐘、2分鐘和3分鐘後形成的血小板血栓。其中上層圖為PBS緩衝液對照組的代表性照片,而底層圖代表人源化Fab H001在5微克/毫升濃度下的抗血栓作用。圖10B:圖片表示在高剪切(1800 s-1
)條件下,肝素化的人全血在灌注1分鐘、2分鐘和3分鐘後形成的血小板血栓。其中上層圖為PBS緩衝液對照組的代表性照片,而中層圖和底層圖分別表示人源化Fab H001在2.5和5微克/毫升濃度下的抗血栓作用。圖10C:圖片表示在低剪切(300 s-1
)條件下,肝素化的人全血在灌注1分鐘、2分鐘和3分鐘後形成的血小板血栓。其中上層圖為PBS緩衝液對照組的代表性照片,而底層圖代表人源化Fab H002在5微克/毫升濃度下的抗血栓作用。圖10D:圖片表示在高剪切(1800 s-1
)條件下,肝素化的人全血在灌注1分鐘、2分鐘和3分鐘後形成的血小板血栓。其中上層圖為PBS緩衝液對照組的代表性照片,而中層圖和底層圖分別表示人源化Fab H002在2.5和5微克/毫升濃度下的抗血栓作用。
圖11A-B顯示在三氯化鐵損傷的腸系膜小動脈活體血栓形成模型中,人源化Fabs H001和H002可顯著延長血管閉塞所需要的時間。圖11A:柱狀圖顯示了不同Fab劑量下血管的阻塞時間(單位:分鐘)。圖11B:三氯化鐵誘導血管損傷在不同時間點的腸系膜小動脈血栓形成的代表性照片。其中,上層圖為對照組;中層圖為小鼠靜脈注射人源化Fab H001 5微克下血栓的形成情況;底層圖為小鼠靜脈注射人源化Fab H002 5微克下血栓的形成情況。* P<0.05,** P<0.01。
圖12A-C顯示在雷射損傷誘導的小鼠提睪肌動脈血栓活體模型中,人源化Fabs H001和H002有效抑制血栓的形成。圖12A:直方圖顯示雷射損傷後,對照組動物(上)和5微克H001給藥的動物(下),血栓發生處隨時間變化的血小板平均螢光強度(MFI;陰影部分表示SD)。圖12B:直方圖顯示雷射損傷後,對照組動物(上)和5微克H002給藥的動物(下),血栓發生處隨時間變化的血小板平均螢光強度(MFI)。圖12C:直方圖表示,提前24小時給予小鼠PBS緩衝液對照治療(上)或10微克H002(下)治療,雷射損傷後血栓發生處隨時間變化的血小板平均螢光強度(MFI)。
圖13A-C顯示注射人源化Fab H001後,其能夠在體內與血小板結合,但並未引起P-選擇素蛋白表達的上升,或細胞膜磷脂醯絲氨酸(PS)的外翻。流式細胞術結果分別顯示血小板上Fab H001的結合(圖13A),P-選擇素的表達(圖13B)和磷脂醯絲氨酸(PS)的外翻(膜聯蛋白V結合,圖13C)。
圖14A-B顯示在三氯化鐵損傷誘導的小鼠頸動脈血栓活體模型中,人源化Fabs H001和H002抗體有效預防或延長了血管堵塞的時間。圖14A:小鼠提前5分鐘靜脈注射了PBS緩衝液(上圖)或H001(中圖,劑量為10微克)或H002(下圖,劑量為10微克),三氯化鐵損傷頸動脈後小鼠的頸動脈血流量(毫升/分鐘)的代表性照片。箭頭指示血管完全堵塞的時間點。圖14B:柱狀圖顯示了不同抗體或所用劑量下小鼠血管堵塞時間(單位:分鐘)。* P<0.05,# P<0.05,** P<0.01。
圖15A-C顯示人源化Fabs H001和H002在腦缺血和再灌注損傷小鼠模型(短暫性大腦中動脈閉塞(tMCAO)模型)中顯著減小了缺血性腦梗塞的區域,但並不導致腦出血。圖15A:柱狀圖顯示在tMCAO誘導後立即靜脈注射不同劑量的Fabs大大減少了缺血性腦梗塞的區域。圖15B:柱狀圖顯示在tMCAO誘導1小時後,靜脈注射H002(劑量為100微克)有效減少了缺血性腦梗塞的區域。圖15C:代表性照片顯示假模組(不插入細絲),接受PBS緩衝液組(200微升),H001(100微克/小鼠)治療組,或H002(100微克/小鼠和50微克/小鼠)治療組在誘導tMCAO後24小時的冠狀腦切片圖。白色區域表示梗塞的大腦。* P<0.05,** P<0.01。
圖16A-B顯示,在小鼠TTP模型中,給ADAMTS13基因敲除(ADAMTS13-/-)小鼠提前靜脈注射人源化Fab H001,和C100-scFv-HSA(scFv與人白蛋白的融合蛋白)可有效抑制離子載體誘發的VWF介導的微血管血栓形成。圖16A:代表性照片顯示未經治療組(上),經H001治療組(中)和經C100-scFv-HSA治療組(下)的ADAMTS13-/-小鼠中血小板血栓的積聚。圖16B:柱狀圖顯示H001和C100-scFv-HSA可有效減少由離子載體引起的超大VWF介導的微血管血栓形成中的血栓數目(以血小板血栓直徑大於20微米為計)。圖16C:柱狀圖顯示了不同抗體或所用劑量下ADAMTS13-/-小鼠血流恢復正常所需的時間。* P<0.05,** P<0.01。
圖17顯示人源化Fabs H001和H002給藥後不導致血小板減少。結果顯示了給藥後(○:IVIG,◆:NIT-B1,△:H001和▼:H002)小鼠血小板計數隨時間(小時)的變化情況(%)。
圖18顯示人源化Fabs H001和H002給藥後不延長出血時間,而鼠源的完整抗體NIT-B則顯著增加了出血時間。結果顯示了給予不同劑量的抗體後(見X軸下方標識)小鼠的出血時間(分鐘)。
圖19A-D顯示人源化C100-scFv以及C100-scFv與人白蛋白的融合蛋白(C100-scFv-HSA)可以結合野生型小鼠血小板(圖19A),但不結合GPIbα基因敲除(GPIbα-/-)小鼠的血小板(圖19B),並且可結合人血小板(圖19C)。圖19A和C中的“ *”表示對照組信號。
圖20顯示了標準的血小板聚集曲線。結果表明,人源化C100-scFv可以抑制瑞斯托黴素誘導的人血小板聚集。
圖21顯示了標準的血小板聚集曲線。結果表明,在富血小板血漿中,人源化C100-scFv不會導致血小板活化和自發的聚集。
圖22顯示了人源化的C100-scFv-HSA在高血流剪切力(1200 s-1
)下抑制了人全血在體外灌注腔室中的血栓形成。代表性照片顯示肝素化的人全血在灌注1分鐘,2分鐘和3分鐘後形成的血小板血栓,其中上層為PBS緩衝液對照組,而底層為人源化的C100-scFv-HSA組(10微克/毫升)。
Claims (33)
- 一種特異性識別糖蛋白I(b)α(GPIbα)的人源化抗體,其中該人源化抗體缺乏Fc部分並且: - 可以抑制血小板活化,聚集,和/或血栓生成; - 不導致血小板活化; - 不導致血小板減少;和/或 - 在治療劑量下,不導致出血時間延長。
- 如請求項1所述的人源化抗體,該人源化抗體可以識別人GPIbα、小鼠GPIbα、狗GPIbα、大鼠GPIbα、兔子GPIbα和/或猴子GPIbα。
- 如請求項1或2所述的人源化抗體,該人源化抗體是抗體片段。
- 如請求項3所述的人源化抗體,該人源化抗體是F(ab)2 片段。
- 如請求項3所述的人源化抗體,其中該抗體是單價抗體。
- 如請求項5所述的人源化抗體,該人源化抗體是Fab抗體片段。
- 如請求項5所述的人源化抗體,該人源化抗體是單鏈可變片段(scFv)。
- 如請求項1至7中任一項所述的人源化抗體,該人源化抗體具有重鏈。
- 如請求項8所述的人源化抗體,其中該重鏈包含: - 第一CDR,該第一CDR具有GFTFSSFAMS的氨基酸序列(SEQ ID NO: 37)、其變體或其片段; - 第二CDR,該第二CDR具有SITSAGTPYYPDSVLG的氨基酸序列(SEQ ID NO: 38)、其變體或其片段;和/或 - 第三CDR,該第三CDR具有SRGYEDYFDY的氨基酸序列(SEQ ID NO: 39)、其變體或其片段。
- 如請求項8或9所述的人源化抗體,其中該重鏈進一步包含人IgG1 抗體的CH1區。
- 如請求項10所述的人源化抗體,其中該人IgG1 抗體的CH1區具有SEQ ID NO: 40、47、54或61的氨基酸序列、其變體或其片段。
- 如請求項11所述的人源化抗體,其中該重鏈具有SEQ ID NO: 36、43、50或57的氨基酸序列、其變體或其片段。
- 如請求項1至12中任一項所述的人源化抗體,該人源化抗體具有輕鏈。
- 如請求項13所述的人源化抗體,其中該輕鏈包含: - 第一CDR,該第一CDR具有KSSQSLLNSRNQKNYLA的氨基酸序列(SEQ ID NO: 65)、其變體或其片段; - 第二CDR,該第二CDR具有FTSTRES的氨基酸序列(SEQ ID NO: 66)、其變體或其片段;和/或 - 第三CDR,該第三CDR具有QQHYSSPWT的氨基酸序列(SEQ ID NO: 67)、其變體或其片段。
- 如請求項13或14所述的人源化抗體,其中該輕鏈進一步包含人IgG1 抗體的κ鏈C區。
- 如請求項15所述的人源化抗體,其中該κ鏈C區具有SEQ ID NO: 68、75、82或89的氨基酸序列、其變體或其片段。
- 如請求項16所述的人源化抗體,其中該輕鏈具有SEQ ID NO: 64、71、78或85的氨基酸序列、其變體或其片段。
- 如請求項1至17中任一項所述的人源化抗體,該人源化抗體具有: - SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段; - SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段; - SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段; - SEQ ID NO: 36的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段; - SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段; - SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段; - SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段; - SEQ ID NO: 43的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段; - SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段; - SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段; - SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段; - SEQ ID NO: 50的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段; - SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 64的輕鏈、其變體或其片段; - SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 71的輕鏈、其變體或其片段; - SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 78的輕鏈、其變體或其片段;或 - SEQ ID NO: 57的重鏈、其變體或其片段以及SEQ ID NO: 85的輕鏈、其變體或其片段。
- 一種嵌合蛋白,其包含如請求項1至18中任一項所述的人源化抗體、以及載體蛋白。
- 一種藥物組合物,其包含 (i) 如請求項1至18中任一項所述的人源化抗體或如請求項19所述的嵌合蛋白,以及 (ii) 藥物賦形劑。
- 一種預防或限制血小板上存在的糖蛋白I(b)α(GPIbα)與GPIbα配體之間的相互作用的方法,該方法包括使如請求項1至18中任一項所述的人源化抗體、如請求項19所述的嵌合蛋白或如請求項20所述的藥物組合物與血小板接觸。
- 如請求項21所述的方法,該方法用於預防或限制血小板活化。
- 如請求項21或22所述的方法,其中該GPIbα配體是血管性血友病因子(VWF)和/或凝血酶。
- 如請求項21至23中任一項所述的方法,其中該接觸發生在低或高剪切速率下。
- 如請求項21至24中任一項所述的方法,其中該人源化抗體、該嵌合蛋白或該藥物組合物在該GPIbα配體與血小板接觸之前、同時或之後與血小板接觸。
- 如請求項21至25中任一項所述的方法,該方法用於預防或限制有需要的受試者的體內相互作用。
- 如請求項26所述的方法,該方法用於預防有需要的受試者中血栓的形成或加重。
- 如請求項26所述的方法,該方法用於減少有需要的受試者中血栓的體積或血栓的數目。
- 如請求項26至28中任一項所述的方法,該方法進一步包括確定該受試者中血栓的存在、位置和/或大小。
- 如請求項26至28中任一項所述的方法,其中該受試者處於正在經歷或已經經歷過病理性血栓形成的風險中。
- 如請求項26至28中任一項所述的方法,其中該受試者處於正在經歷或已經經歷過缺血性中風、血栓性血小板減少性紫斑、心肌梗塞、急性冠脈綜合症、動脈粥樣硬化血栓形成、外周血管疾病、深靜脈血栓、敗血症和/或血管炎症的風險中。
- 如請求項26至28中任一項所述的方法,該方法用於減少或限制有需要的受試者中的腫瘤轉移。
- 如請求項32所述的方法,該方法進一步包括確定該受試者中腫瘤轉移的存在、位置和/或大小。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962946086P | 2019-12-10 | 2019-12-10 | |
US62/946,086 | 2019-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202123972A true TW202123972A (zh) | 2021-07-01 |
TWI786485B TWI786485B (zh) | 2022-12-11 |
Family
ID=74971870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109143578A TWI786485B (zh) | 2019-12-10 | 2020-12-10 | 抗血小板膜糖蛋白ib alpha人源化抗體及其應用 |
Country Status (17)
Country | Link |
---|---|
US (1) | US20230022143A1 (zh) |
EP (1) | EP4073123A4 (zh) |
JP (2) | JP2023506772A (zh) |
KR (1) | KR20220127250A (zh) |
CN (1) | CN112500483B (zh) |
AU (1) | AU2020399790A1 (zh) |
BR (1) | BR112022011226A2 (zh) |
CA (1) | CA3159975A1 (zh) |
CL (1) | CL2022001504A1 (zh) |
CO (1) | CO2022008680A2 (zh) |
CU (1) | CU20220035A7 (zh) |
IL (1) | IL293736A (zh) |
MX (1) | MX2022007118A (zh) |
PE (1) | PE20221325A1 (zh) |
TW (1) | TWI786485B (zh) |
WO (1) | WO2021113974A1 (zh) |
ZA (1) | ZA202207325B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113663822A (zh) * | 2021-08-20 | 2021-11-19 | 中国人民解放军陆军军医大学第一附属医院 | 一种富血小板纤维蛋白凝胶的分离配套管路 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113264995A (zh) * | 2021-05-26 | 2021-08-17 | 苏州大学 | 一种血小板GPIbα蛋白相关的抗原表位肽及其应用 |
WO2023007182A1 (en) * | 2021-07-29 | 2023-02-02 | The University Of Birmingham | Protein interaction inhibitors |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL162181A (en) * | 1988-12-28 | 2006-04-10 | Pdl Biopharma Inc | A method of producing humanized immunoglubulin, and polynucleotides encoding the same |
IL137121A0 (en) * | 1998-10-30 | 2001-06-14 | Miller Jonathan L | Variable heavy chain and variable light chain regions of antibodies to human platelet glycoprotein ib alpha |
GB9918788D0 (en) * | 1999-08-10 | 1999-10-13 | Leuven K U Res & Dev | Antithrombotic effect of platelet glycoprotein 1b blocking monoclonal Fab fragments |
EP2186829B1 (en) * | 2008-11-14 | 2014-12-31 | Canadian Blood Services | Antibodies against GPIbalpha |
CN102988983B (zh) * | 2011-09-09 | 2014-06-11 | 苏州苏大赛尔免疫生物技术有限公司 | 抗人血小板膜糖蛋白Ibα嵌合抗体药物组合物 |
CN107082809B (zh) * | 2017-06-13 | 2020-11-10 | 华东理工大学 | 靶向血小板膜糖蛋白GPIbα的抑制肿瘤转移的单克隆抗体及其筛选方法 |
-
2020
- 2020-12-10 CA CA3159975A patent/CA3159975A1/en active Pending
- 2020-12-10 KR KR1020227023620A patent/KR20220127250A/ko unknown
- 2020-12-10 PE PE2022001049A patent/PE20221325A1/es unknown
- 2020-12-10 JP JP2022535596A patent/JP2023506772A/ja active Pending
- 2020-12-10 EP EP20898495.5A patent/EP4073123A4/en active Pending
- 2020-12-10 TW TW109143578A patent/TWI786485B/zh active
- 2020-12-10 IL IL293736A patent/IL293736A/en unknown
- 2020-12-10 WO PCT/CA2020/051699 patent/WO2021113974A1/en active Application Filing
- 2020-12-10 CU CU2022000035A patent/CU20220035A7/es unknown
- 2020-12-10 BR BR112022011226A patent/BR112022011226A2/pt unknown
- 2020-12-10 AU AU2020399790A patent/AU2020399790A1/en active Pending
- 2020-12-10 MX MX2022007118A patent/MX2022007118A/es unknown
- 2020-12-10 US US17/783,198 patent/US20230022143A1/en active Pending
- 2020-12-10 CN CN202011432940.XA patent/CN112500483B/zh active Active
-
2022
- 2022-06-08 CL CL2022001504A patent/CL2022001504A1/es unknown
- 2022-06-22 CO CONC2022/0008680A patent/CO2022008680A2/es unknown
- 2022-07-01 ZA ZA2022/07325A patent/ZA202207325B/en unknown
-
2024
- 2024-06-27 JP JP2024103442A patent/JP2024123243A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113663822A (zh) * | 2021-08-20 | 2021-11-19 | 中国人民解放军陆军军医大学第一附属医院 | 一种富血小板纤维蛋白凝胶的分离配套管路 |
CN113663822B (zh) * | 2021-08-20 | 2023-12-05 | 中国人民解放军陆军军医大学第一附属医院 | 一种富血小板纤维蛋白凝胶的分离方法 |
Also Published As
Publication number | Publication date |
---|---|
CA3159975A1 (en) | 2021-06-17 |
CN112500483B (zh) | 2022-11-29 |
AU2020399790A1 (en) | 2022-07-14 |
EP4073123A1 (en) | 2022-10-19 |
IL293736A (en) | 2022-08-01 |
CN112500483A (zh) | 2021-03-16 |
CO2022008680A2 (es) | 2022-06-30 |
PE20221325A1 (es) | 2022-09-09 |
CL2022001504A1 (es) | 2023-02-03 |
MX2022007118A (es) | 2022-10-03 |
JP2023506772A (ja) | 2023-02-20 |
KR20220127250A (ko) | 2022-09-19 |
WO2021113974A1 (en) | 2021-06-17 |
EP4073123A4 (en) | 2024-01-10 |
BR112022011226A2 (pt) | 2022-08-30 |
ZA202207325B (en) | 2022-08-31 |
US20230022143A1 (en) | 2023-01-26 |
JP2024123243A (ja) | 2024-09-10 |
CU20220035A7 (es) | 2023-01-16 |
TWI786485B (zh) | 2022-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7168702B2 (ja) | 抗-cd3抗体、活性化可能抗-cd3抗体、多重特異的抗-cd3抗体、多重特異的活性化可能抗-cd3抗体、及びそれらの使用方法 | |
TWI786485B (zh) | 抗血小板膜糖蛋白ib alpha人源化抗體及其應用 | |
JP7099957B2 (ja) | ヒト化、マウスまたはキメラ抗cd47モノクローナル抗体 | |
JP6693872B2 (ja) | 多重特異性抗体、多重特異性活性化可能抗体、及びそれらの使用方法 | |
US20210238311A1 (en) | Antibodies against phosphorylcholine | |
JP2021527698A (ja) | 様々な血栓性の疾患および障害の治療のためのmasp−2を阻害する組成物および方法 | |
US20210230310A1 (en) | Antibodies binding to phosphorylcholine (pc) and/or pc conjugates | |
JP2018510613A (ja) | 新規な抗線維芽細胞活性化タンパク質(fap)抗体およびその派生使用 | |
TWI810173B (zh) | 使用抗人類gpvi抗體抑制血小板凝集 | |
JP2020533022A (ja) | ヒトトロンビン受容体par4に対する結合タンパク質 | |
JP6886922B2 (ja) | L型電位開口型チャネルに対する抗体および関連方法 | |
CA3142632A1 (en) | Anti-cd38 antibody and methods of use thereof | |
EP4431526A1 (en) | Anti-gpvi antibodies and functional fragments thereof | |
US20230227580A1 (en) | Anti-vwf antibodies and uses thereof |