TW202104290A - C2c3隨機共聚物 - Google Patents

C2c3隨機共聚物 Download PDF

Info

Publication number
TW202104290A
TW202104290A TW109116672A TW109116672A TW202104290A TW 202104290 A TW202104290 A TW 202104290A TW 109116672 A TW109116672 A TW 109116672A TW 109116672 A TW109116672 A TW 109116672A TW 202104290 A TW202104290 A TW 202104290A
Authority
TW
Taiwan
Prior art keywords
raco
random copolymer
group
range
measured
Prior art date
Application number
TW109116672A
Other languages
English (en)
Inventor
靜波 王
馬庫斯 加萊特爾
庫勞斯 博恩海特
保利 萊斯基寧
戈爾尼利亞 特蘭納
Original Assignee
奧地利商柏列利斯股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商柏列利斯股份公司 filed Critical 奧地利商柏列利斯股份公司
Publication of TW202104290A publication Critical patent/TW202104290A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本發明提供一種新C2 C3 隨機共聚物(RACO),其展示由低密封起始溫度(SIT)及高熱黏著力所致之經改良密封特性。此外,發明性C2 C3 隨機共聚物(RACO)展示極佳的滅菌特性,亦即在滅菌之後保持低霧度水準。此外,本發明係關於該C2 C3 隨機共聚物(RACO)之製造及其用途。

Description

C2C3隨機共聚物
本發明係關於一種新型C2 C3 隨機共聚物,其展示由低密封起始溫度(sealing initiation temperature;SIT)及高熱黏著力(hot tack force;HTF)所致之經改良密封特性。此外,發明性共聚物展示極佳的滅菌特性,亦即在滅菌之後保持低霧度水準。此外,本發明係關於該共聚物之製造及其用途。
聚丙烯適合許多應用。
舉例而言,聚丙烯(PP)在密封特性起重要作用之領域中為可適用的,如食品或醫藥包裝行業,尤其在需要透明度及機械效能之良好組合時。若材料應適用於多層膜之密封層,則此種組合難以實現,其需要密封起始溫度(SIT)與熱黏著力(HTF)之間的良好平衡。較低SIT及較高HTF力之組合允許轉換器在包裝步驟期間以較高速度運行生產線,但若密封層為足夠可撓、堅固且透明的,則膜構造之總體效能將僅為令人滿意的。
為確保快速密封,低SIT為有利的。藉由在較低溫度下操作,有利於使待密封物品不暴露於高溫。亦存在經濟優勢,此係因為產生且維持較低溫度當然成本更低。
避免高密封溫度存在其他優點,尤其在包裝溫度敏感性商品時。
此外,亦期望封裝材料具有令人滿意的光學特性,諸如低霧度及/或高清晰度。
在一些食品應用(諸如殺菌袋)或一些醫藥應用之領域中,需要進行滅菌處理。
最常見的滅菌程序為使用熱(蒸汽)、輻射(β輻射、電子或γ輻射)或化學品(通常為環氧乙烷)。通常在約120至130℃之範圍內的溫度下進行蒸汽滅菌。因此,材料應該具有足夠的熱穩定性,如熔融溫度高於約120至130℃之常用蒸汽滅菌溫度。
當然,在上述滅菌條件下處理聚合物可能損害其最終特性,尤其諸如透明度之光學特性。
與聚合物類型無關,聚合物最好必須滿足所有所需最終特性且另外必須易於加工,亦即其必須經受住應力。然而,最終特性及加工特性常常以衝突的方式起作用。
經常發現,所需特性中之一者之改良在損害其他特性中之至少一者的情況下實現。
已進行若干嘗試來解決以上問題。
舉例而言,EP 3064514 B1 揭示一種用於熱密封之C2 C3 隨機共聚物組成物,其包含具有不同共聚單體含量之三個聚合物部分(A)、(B)及(C),其中組成物係在存在茂金屬催化劑之情況下獲得。
所主張的為包含聚合物部分(A)、(B)及(C)之C2 C3 隨機共聚物組成物,其中部分(A)具有0.4至1.5 wt%之C2含量(C2 A),部分(B)具有3.0至10.0 wt%之C2含量(C2 B),且部分(C)具有7.0至15.0 wt%之C2含量(C2 C),其中根據(C2 A)<(C2 B)<(C2 C),聚合物部分之共聚單體含量自部分(A)增加至部分(C),且其中組成物之特徵在於(i)在3.0-7.0 wt%之範圍內的總C2含量,(ii)在2.0至15.0 g/10min之範圍內的熔體流動速率MFR2 (230℃),(iii)128℃至145℃之熔融溫度Tm,(iv)85℃至110℃之結晶溫度Tc,及(v)根據FDA章節177.1520測定之最多2.0 wt%的己烷可溶含量。此等組成物具有低密封起始溫度(SIT)以及低熱黏著力(HTF)。此等組成物之主要缺點為較差抗滅菌性,其使得滅菌之後霧度急劇增加。
EP 2965908 B1 揭示一種具有乙烯之PP隨機共聚物,其中(a)該丙烯共聚物具有在5.3至9.0 wt%之範圍內的C2含量在、在128至138℃之範圍內的熔融溫度Tm及在9.0至18.0 wt%之範圍內的二甲苯冷可溶性(XCS)部分。該丙烯共聚物包含兩個部分:第一丙烯共聚物部分(R-PP1)及第二丙烯共聚物部分(R-PP2),且該第一丙烯共聚物部分(R-PP1)在乙烯含量方面不同於該第二丙烯共聚物部分(R-PP2)。
此等組成物已經展示SIT及HTF之相當好的平衡,但仍然較差的抗滅菌性,其使得滅菌之後霧度急劇增加。
因此,由於低密封起始溫度(SIT)及高熱黏著力(HTF),仍然需要設計具有經改良密封特性且此外具有極佳滅菌特性(亦即在滅菌之後保持低霧度水準)的材料。
本發明係基於以下發現:上文論述之對熱密封應用之需求,亦即同時具有低密封起始溫度(SIT)、高熱黏著力(HTF)及極佳滅菌特性,可藉由C2 C3 隨機共聚物之特定設計來實現。
因此,根據第一態樣,本發明係關於一種C2 C3 隨機共聚物(RACO),其具有 (a)在2.5至5.2 wt%之範圍內的乙烯含量; (b)根據ISO 1133量測之在1.0至20.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg); (c)如根據ISO 11357由DSC測定之115至135℃之熔融溫度Tm,及 (d)0.1至低於15.0 wt%之二甲苯冷可溶性(XCS)部分。
較佳地,C2 C3 隨機共聚物(RACO)包含兩種聚合物部分(RACO-1)及(RACO-2),且為可獲得的,較佳地在存在茂金屬催化劑之情況下獲得。更佳地,部分(RACO-1)以30.0至70.0 wt%之量存在且具有在1.5至5.5 wt%之範圍內的乙烯含量,而部分(RACO-2)以70.0至30.0 wt%之量存在且具有在3.5至7.0 wt%之範圍內的乙烯含量,其中部分(RACO-1)之乙烯含量低於部分(RACO-2)之乙烯含量。
在另一態樣中,本發明係關於一種用於產生如上文或下文所描述之C2 C3 隨機共聚物(RACO)之方法,其中C2 C3 隨機共聚物(RACO)係在包含至少兩個聚合反應器(R1)及(R2)之依序聚合方法中製備,其中在第一聚合反應器(R1)中產生第一聚合物部分(RACO-1),隨後將其轉移至第二聚合反應器(R2)中,其中在第二聚合反應器(R2)中,接著在存在第一聚合物部分(RACO-1)之情況下產生第二聚合物部分(RACO-2),且聚合在存在特定催化劑系統之情況下進行,該催化劑系統包含(i)茂金屬,(ii)共催化劑系統,包含含硼共催化劑及鋁氧烷共催化劑,及(iii)矽石載體。
在另一態樣中,本發明係關於可滅菌或滅菌物品,較佳地係關於可滅菌或滅菌膜,其包含如上文或下文所描述之C2 C3 隨機共聚物(RACO),其中膜之特徵在於 (i)在80℃至低於120℃之範圍內的密封起始溫度(SIT)(如在實驗部分中所描述測定), (ii)高於1.5 N至6.0 N之所測定的熱黏著力(如在50 μm鑄造膜上之實驗部分中所描述), (iii)0.05%至低於2.00%之霧度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後0.30%至低於7.00%之霧度(根據ASTM D 1003-00在厚度為50 μm之鑄造膜上量測測定),及 (iv)至少85.0%至100.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後至少75.0%至100.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)。
在另一態樣中,本發明係關於根據本發明之膜在多層膜中作為密封層之用途,該多層膜可藉由共擠壓或層壓製造。
在下文中,更詳細地定義本發明。
C2 C3 隨機共聚物 RACO
本發明之C2 C3 隨機共聚物(RACO)為作為共聚單體之丙烯及乙烯之隨機共聚物。
C2 C3 隨機共聚物(RACO)為可獲得的,較佳地在存在茂金屬催化劑之情況下獲得。
根據本發明之C2 C3 隨機共聚物(RACO)之特徵在於中等至較低的乙烯共聚單體含量。
因此,C2 C3 隨機共聚物(A)具有在2.5至5.2 wt%之範圍內,較佳在2.7至5.0 wt%之範圍內,更佳在2.8至4.9 wt%之範圍內,且再更佳在3.0至4.8 wt%之範圍內的乙烯含量。
C2 C3 隨機共聚物(RACO)具有根據ISO 1133量測之在1.0至20.0 g/10min之範圍內,較佳在2.0至15.0 g/10min之範圍內,更佳在3.0至12.0 g/10min之範圍內且再更佳在5.0至10.0 g/10min之範圍內的熔體流動速率MFR2 (230℃)。
在一些具體實例中,C2 C3 隨機共聚物(RACO)具有根據ISO 1133量測之至少7.0 g/10min之熔體流動速率MFR2 (230℃)。
在該等具體實例中,熔體流動速率MFR2 (230℃)之上限可為至多20.0 g/10min,較佳為至多15.0 g/10min,更佳為至多12.0 g/10min且再更佳為至多10.0 g/10min。
此外,C2 C3 隨機共聚物(RACO)可由在25℃下根據ISO 16152測定之二甲苯冷可溶性(XCS)含量來定義;2005。因此,C2 C3 隨機共聚物(RACO)之特徵在於0.1 wt%至低於15.0 wt%,如在0.5至低於15.0 wt%之範圍內的二甲苯冷可溶性(XCS)含量。
較佳地,C2 C3 隨機共聚物(RACO)具有在2.0至低於14.0 wt%之範圍內且最佳在5.0至低於13.0 wt%之範圍內的二甲苯冷可溶性(XCS)含量。
C2 C3 隨機共聚物(RACO)可另外由根據ISO 11357經由DSC量測之熔融溫度(Tm)定義。因此,C2 C3 隨機共聚物(A)具有在115℃至135℃之範圍內,較佳地118℃至134℃之範圍內,且更佳在120℃至133℃之範圍內的熔融溫度Tm。
在一些具體實例中,C2 C3 隨機共聚物(RACO)具有在115℃至130℃之範圍內,較佳在118℃至128℃之範圍內,且更佳在120℃至126℃之範圍內的熔融溫度(Tm)。
為了有助於加工,尤其膜加工,亦期望根據本發明之C2 C3 隨機共聚物(RACO)甚至在不存在任何成核劑之情況下具有適合的結晶溫度。較佳地,C2 C3 隨機共聚物(RACO)因此具有如根據ISO 11357由DSC(差示掃描量熱法)測定之在75℃至110℃之範圍內,更佳在80℃至105℃之範圍內,如在82℃至100℃之範圍內的結晶溫度Tc。
C2 C3 隨機共聚物(RACO)較佳亦具有如根據ISO 178在注射模塑標本上測定之500至低於1000 MPa,較佳在550至900 MPa之範圍內,更佳在600至900 MPa之範圍內的撓曲模數。
因此,在另一具體實例中,本發明係關於一種C2 C3 隨機共聚物(RACO),其具有 (a)在2.5至5.2 wt%之範圍內的乙烯含量; (b)根據ISO 1133量測之在1.0至20.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg); (c)如根據ISO 11357由DSC測定之115℃至135℃之熔融溫度Tm; (d)0.1 wt%至低於15.0 wt%之二甲苯冷可溶性(XCS)部分, (e)如根據ISO 11357由DSC(差示掃描量熱法)測定之在75℃至110℃,較佳地80℃至105℃之範圍內的結晶溫度Tc,及 (f)如根據ISO 178在注射模塑標本上測定之500至低於1000 MPa,較佳地在550至900 MPa之範圍內的撓曲模數。
鑒於共聚單體含量,C2 C3 隨機共聚物(RACO)較佳為多模態(如雙模態)且包含聚合物部分(RACO-1)及(RACO-2),較佳由其組成。
因此,C2 C3 隨機共聚物(RACO)包含 30.0至70.0 wt%之聚合物部分(RACO-1),其具有 (i)在1.5至5.5 wt%之範圍內的乙烯含量,及 (ii)根據ISO 1133量測之在4.0至15.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg),及 70.0至30.0 wt%之聚合物部分(RACO-2),其具有 (i)在3.5至7.0 wt%之範圍內的乙烯含量,及 (ii)根據ISO 1133量測之在4.0至12.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg); 其中聚合物部分(RACO-1)之乙烯含量低於聚合物部分(RACO-2)之乙烯含量。
較佳地,C2 C3 隨機共聚物(RACO)包含40.0至70.0 wt%之聚合物部分(RACO-1)及30.0至60.0 wt%之聚合物部分(RACO-2)。
更佳地,C2 C3 隨機共聚物(RACO)包含45.0至65.0 wt%之聚合物部分(RACO-1)及35.0至55.0 wt%之聚合物部分(RACO-2)。
聚合物部分(RACO-1)較佳具有在2.8至5.0 wt%之範圍內且更佳地在3.0至4.8 wt%之範圍內的乙烯含量。
聚合物部分(RACO-1)之根據ISO 1133量測之熔體流動速率MFR2 (230℃/2.16kg)較佳地在5.0至12.0 g/10min之範圍內。
聚合物部分(RACO-2)較佳具有在3.7至6.5 wt%之範圍內且更佳地在3.8至5.5 wt%之範圍內的乙烯含量。
聚合物部分(RACO-2)之根據ISO 1133量測之熔體流動速率MFR2 (230℃/2.16kg)較佳地在5.0至10.0 g/10min之範圍內。
因此,C2 C3 隨機共聚物(RACO)較佳地係在存在茂金屬催化劑之情況下藉由利用包含至少兩個串聯連接之反應器的依序聚合方法聚合丙烯及乙烯來製備。
因此,C2 C3 隨機共聚物(RACO)較佳地以包含至少兩個聚合反應器(R1)及(R2)之依序聚合方法來製備,其中在第一聚合反應器(R1)中產生第一聚合物部分(RACO-1),隨後將其轉移至第二聚合反應器(R2)中。在第二聚合反應器(R2)中,接著在存在第一聚合物部分(RACO-1)之情況下產生第二聚合物部分(RACO-2)
適用於產生C2 C3 隨機共聚物(RACO)之聚合方法通常包含至少兩個聚合階段,且各階段可在溶液、漿料、流體化床、本體或氣相中進行。
術語「聚合反應器」將指示主要聚合進行。因此,在方法由一或兩個聚合反應器組成之情況下,此定義不排除整個系統包含例如預聚合反應器中之預聚合步驟的選擇。術語「由…組成」僅為考慮到主要聚合反應器之封閉表述。
術語「依序聚合方法」指示C2 C3 隨機共聚物(RACO)在至少兩個串聯連接之反應器中產生。因此,此聚合系統包含至少第一聚合反應器(R1)及第二聚合反應器(R2),且視情況包含第三聚合反應器(R3)。
第一反應器(R1)較佳為漿料反應器且可為在本體或漿料中操作的任何連續或簡單攪拌分批槽式反應器或環流反應器。本體意謂在包含至少60%(w/w)單體之反應介質中之聚合。根據本發明,漿料反應器較佳為(本體)環流反應器。
第二聚合反應器(R2)及視情況選用之第三聚合反應器(R3)較佳為氣相反應器(gas phase reactor;GPR),亦即第一氣相反應器(GPR1)及第二氣相反應器(GPR2)。根據本發明之氣相反應器(GPR)較佳為流體化床反應器、快速流體化床反應器或沉降床反應器或其任何組合。
較佳的多階段方法為「環-氣相(loop-gas phase)」方法,諸如由Borealis(稱為BORSTAR®技術)例如在專利文獻(諸如EP 0 887 379、WO 92/12182、WO 2004/000899、WO 2004/111095、WO 99/24478、WO 99/24479或WO 00/68315)中所描述研發。
另一適合的漿料-氣相方法為Basell之Spheripol®方法。
較佳地,在用於產生如上所定義之C2 C3 隨機共聚物(RACO)之本發明方法中,步驟(a)之第一反應器(R1),亦即漿料反應器(slurry reactor;SR)(如環流反應器(loop reactor;LR))之條件可如下: -溫度係在40℃至110℃之範圍內,較佳地在60℃與100℃之間,更佳地在65與95℃之間, -壓力係在20巴至80巴之範圍內,較佳地在40巴至70巴之間, -可添加氫氣以用於以本身已知之方式控制莫耳質量。
隨後,將第一反應器(R1)之反應混合物轉移至第二反應器(R2),亦即氣相反應器(GPR1),其中條件較佳地如下: -溫度係在50℃至130℃之範圍內,較佳地在60℃與100℃之間, -壓力係在5巴至50巴之範圍內,較佳地在15巴與35巴之間, -可添加氫氣以用於以本身已知之方式控制莫耳質量。
較佳地,根據本發明之C2 C3 隨機共聚物(RACO)係在存在茂金屬催化劑之情況下產生。
因此,C2 C3 隨機共聚物(RACO)藉由包含以下步驟之方法產生: a)在第一反應器(R1)中聚合丙烯及乙烯,獲得該C2 C3 隨機共聚物(RACO)之聚合物部分(RACO-1), b)將該聚合物部分(RACO-1)及該第一反應器之未反應共聚單體轉移於第二反應器(R2)中, c)將丙烯及乙烯饋送至該第二反應器(R2), d)在該第二反應器(R2)中且在存在該聚合物部分(RACO-1)之情況下聚合丙烯及乙烯,獲得聚合物部分(RACO-2) 該聚合物部分(RACO-1)及該聚合物部分(RACO-2)形成如上所定義之C2 C3 隨機共聚物(RACO), 其中聚合反應在存在茂金屬催化劑之情況下進行,該茂金屬催化劑包含(a)式(I)之錯合物:
Figure 02_image001
其中 M為鋯或鉿; 各X為δ配位體; L為選自以下之二價橋:-R'2 C-、-R'2 C-CR'2 -、-R'2 Si-、-R'2 Si-SiR'2 -、-R'2 Ge-,其中各R'獨立地為氫原子、C1 -C20 -烴基、三(C1 -C20 -烷基)矽烷基、C6 -C20 -芳基、C7 -C20 -芳烷基或C7 -C20 -烷芳基; R2 及R2 '各自獨立地為視情況含有一或多個來自第14族至第16族之雜原子的C1 -C20 烴基; R5 '為含有一或多個視情況經一或多個鹵原子取代之來自第14族至第16族之雜原子的C1-20 烴基; R6 及R6' 各自獨立地為氫或視情況含有一或多個來自第14族至第16族之雜原子的C1-20 烴基;其中R6 較佳為三級烷基 R7 為氫或視情況含有一或多個來自第14族至第16族之雜原子的C1-20 烴基; R7 '為氫; Ar及Ar'各自獨立地為具有至多20個視情況經一或多個基團R1 取代之碳原子的芳基或雜芳基; 各R1 為C1-20 烴基,或相鄰碳原子上之兩個R1 基團與Ar或Ar'基團一起可形成稠合5員或6員非芳族環,該環本身視情況經一或多個基團R4 取代; 各R4 為C1-20 烴基; 及 (ii)共催化劑,其包含至少一種或兩種第13族金屬之化合物,例如Al及/或硼化合物。
更佳地,使用包含含硼共催化劑(如硼酸鹽)及鋁氧烷共催化劑之共催化劑系統。
甚至更佳地,催化劑負載於矽石載體上。Ad 催化劑:
本發明方法中所使用之催化劑係呈固體顆粒形式。其可負載於技術人員已知之習知載體(如矽石)上。本發明中使用之較佳錯合物具有式(II')或(II)
Figure 02_image003
其中 M為鋯或鉿; 各X為δ配位體,各X較佳獨立地為氫原子、鹵素原子、C1-6 烷氧基、C1-6 烷基、苯基或苯甲基; L為選自以下之二價橋:-R'2 C-、-R'2 C-CR'2 -、-R'2 Si-、-R'2 Si-SiR'2 -、-R'2 Ge-,其中各R'獨立地為氫原子、C1-20 烷基、C3-10 環烷基、三(C1-20 -烷基)矽烷基、C6-20 -芳基、C7-20 芳烷基或C7-20 烷芳基;各R2 或R2 '為C1-10 烷基; R5 '為C1-10 烷基或Z'R3 '基團; R6 為氫或C1-10 烷基; R6 '為C1-10 烷基或C6-10 芳基;較佳為三級烷基; R7 為氫、C1-6 烷基或ZR3 基團; R7 '為氫; Z及Z'獨立地為O或S; R3 '為視情況經一或多個鹵基取代之C1-10 烷基或C6-10 芳基; R3 為C1-10 烷基; 各n獨立地為0至4,例如0、1或2; 且各R1 獨立地為C1-20 烴基,例如C1-10 烷基。
本發明中使用之更佳錯合物具有式(III')或(III):
Figure 02_image005
M為鋯或鉿; 各X為δ配位體,各X較佳獨立地為氫原子、鹵素原子、C1-6 烷氧基、C1-6 烷基、苯基或苯甲基; L為選自-R'2 C-或-R'2 Si-之二價橋,其中各R'獨立地為氫原子、C1-20 烷基或C3-10 環烷基; R6 為氫或C1-10 烷基; R6 '為C1-10 烷基或C6-10 芳基,較佳為三級烷基; R7 為氫、C1-6 烷基或OC1-6 烷基; Z'為O或S; R3 '為視情況經一或多個鹵基取代之C1-10 烷基或C6-10 芳基; n獨立地為0至4,例如0、1或2;且各R1 獨立地為C1-10 烷基。
本發明中使用之更佳錯合物具有式(IV')或(IV):
Figure 02_image007
M為鋯或鉿; 各X為δ配位體,各X較佳獨立地為氫原子、鹵素原子、C1-6 -烷氧基、C1-6 -烷基、苯基或苯甲基; 各R'獨立地為氫原子、C1-20 烷基或C3-7 環烷基; R6 為氫或C1-10 烷基; R6 '為C1-10 烷基或C6-10 芳基,較佳為三級烷基; R7 為氫、C1-6 烷基或OC1-6 烷基; Z'為O或S; R3 '為視情況經一或多個鹵基取代之C1-10 烷基或C6-10 芳基; n獨立地為0、1至2;及 各R1 獨立地為C3-8 烷基。
最佳地,本發明中使用之錯合物具有式(V')或(V):
Figure 02_image009
其中各X獨立地為氫原子、鹵素原子、C1-6 烷氧基、C1-6 烷基、苯基或苯甲基; R'獨立地為C1-6 烷基或C3-10 環烷基; R1 獨立地為C3-8 烷基; R6 為氫或C3-8 烷基; R6 '為C3-8 烷基或C6-10 芳基,較佳為三級C4-8 烷基; R3 '為視情況經一或多個鹵基取代之C1-6 烷基或C6-10 芳基;及 n獨立地為0、1或2。
本發明之特定化合物包括:
  
Figure 02_image011
  
Figure 02_image013
Figure 02_image015
Figure 02_image017
外消旋-抗Me2 Si(2-Me-4-Ph-6-tBu-Ind)(2-Me-4-Ph-5-OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4-(p-tBuPh)-Ind)(2-Me-4-Ph-5-OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4- (3,5-di-tBuPh)-6- tBu-Ind)(2-Me-4-Ph-5- OMe-6-tBu- Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4-Ph-6-tBu-Ind)(2-Me-4,6-di-Ph-5-OMe-Ind)ZrCl2
  
Figure 02_image019
  
Figure 02_image021
Figure 02_image023
Figure 02_image025
外消旋-抗Me2 Si(2-Me-4-(p-tBuPh)-Ind)(2-Me-4-Ph-5-OC6 F5 )-6-iPr-Ind)ZrCl2 外消旋-抗Me(CyHex)Si(2-Me-4-Ph-6-tBu-Ind)(2-Me-4-Ph-5-OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4-(3,5-di-tBuPh)-7-Me-Ind)(2-Me-4-Ph-5-OMe-6- tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4-(3,5- di-tBuPh)-7-OMe- Ind)(2-Me-4-Ph-5- OMe-6-tBu-Ind)ZrCl2
  
Figure 02_image027
  
Figure 02_image029
Figure 02_image031
Figure 02_image033
外消旋-抗Me2 Si(2-Me-4-(p-tBuPh)-6-tBu-Ind)(2-Me-4-Ph-5- OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4-(p-tBuPh)-Ind)(2-Me-4-(4-tBuPh)-5-OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4- (p-tBuPh)-Ind)(2-Me-4-(3,5-tBu2Ph)-5-OMe-6-tBu-Ind)ZrCl2 外消旋-抗Me2 Si(2-Me-4- (p-tBuPh)-Ind)(2-Me-4-Ph-5-OiBu-6-tBu- Ind)ZrCl2
最佳地,使用外消旋-抗Me2 Si(2-Me-4-(p-tBuPh)-Ind)(2-Me-4-Ph-5-OMe-6-tBu-Ind)ZrCl2
形成本發明之錯合物且從而形成本發明之催化劑所需的配位體可藉由任何方法來合成,且熟練的有機化學家能夠設計出用於製造必要的配位體材料的各種合成方案。舉例而言,WO2007/116034揭示必要的化學物質。合成方案亦可通常在WO2002/02576、WO2011/135004、WO2012/084961、WO2012/001052、WO2011/076780、WO2013/007650、WO2015/158790及WO2018/122134中發現。實例部分亦為技術人員提供足夠的指導。共催化劑
為形成活性催化物種,通常需要使用所屬技術領域中熟知的共催化劑。包含一或多種第13族金屬化合物之共催化劑適用於本發明,該一或多種化合物如用於活化茂金屬催化劑之有機鋁化合物或含硼共催化劑或得自其之組合。
在本發明之一較佳具體實例中,使用包含含硼共催化劑(例如,硼酸鹽共催化劑及鋁氧烷共催化劑)之共催化劑系統。
因此,用於本發明中之單點聚合催化劑系統可包含(i)如上所定義之錯合物及鋁氧烷共催化劑。
鋁氧烷共催化劑可為式(II)中之一者:
Figure 02_image035
其中n為6至20且R具有以下含義。
對有機鋁化合物部分水解形成鋁氧烷,該等有機鋁化合物例如式AlR3 、AlR2 Y及Al2 R3 Y3 之彼等化合物,其中R可為例如C1 -C10 -烷基(較佳為C1 -C5 -烷基)或C3 -C10 -環烷基、C 7 -C12 -芳烷基或C 7 -C12 -烷芳基及/或苯基或萘基,且其中Y可為氫、鹵素(較佳為氯或溴)或C1 - C10 -烷氧基(較佳為甲氧基或乙氧基)。所得含氧之鋁氧烷不在通用純化合物中但在式(II)之寡聚物之混合物中。
較佳的鋁氧烷為甲基鋁氧烷(MAO)。
由於根據本發明用作共催化劑之鋁氧烷由於其製備模式不為純化合物,下文中之鋁氧烷溶液之莫耳濃度係基於其鋁含量。
根據本發明,亦可使用含硼共催化劑。
所關注之含硼共催化劑包括式(III)之彼等共催化劑 BY3 (III) 其中Y為相同或不同的且為氫原子;具有1至約20個碳原子之烷基;具有6至約15個碳原子之芳基;各自在烷基中具有1至10個碳原子且在芳基中具有620個碳原子之烷芳基、芳烷基、鹵烷基或鹵芳基;或氟、氯、溴或碘。Y之較佳實例為氟、三氟甲基、芳族氟化基團(諸如對氟苯基)、3,5-二氟苯基、五氟苯基、3,4,5-三氟苯基及3,5-二(三氟甲基)苯基。較佳的選擇為三氟硼烷、參(4-氟苯基)硼烷、參(3,5-二氟苯基)硼烷、參(4-氟甲苯基)硼烷、參(2,4,6-三氟苯基)硼烷、參(五氟苯基)硼烷、參(3,5-二氟苯基)硼烷及/或參(3,4,5-三氟苯基)硼烷。
尤其較佳為參(五氟苯基)硼烷。
然而,較佳的為將硼酸鹽用作含硼共催化劑,亦即含有硼酸鹽之化合物。
此等化合物通常含有下式之陰離子: (Z)4 B- (IV) 其中Z為視情況經取代之苯基衍生物,該取代基為鹵基-C1-6 -烷基或鹵基。較佳的選擇為氟或三氟甲基。最佳地,苯基經全氟化。
此等離子共催化劑較佳含有弱配位陰離子,諸如肆(五氟苯基)硼酸鹽或肆(3,5-二(三氟甲基)苯基)硼酸鹽。適合的相對離子為質子化胺或苯胺衍生物,諸如甲基銨、苯銨、二甲基銨、二乙基銨、N-甲基苯銨、二苯基銨、N,N-二甲基苯銨、三甲基銨、三乙基銨、三正丁基銨、甲基二苯基銨、吡啶鎓、對溴-N,N-二甲基苯銨或對硝基-N,N-二甲基苯銨。
可根據本發明使用的較佳離子化合物包括:三丁基銨四(五氟苯基)硼酸鹽、三丁基銨四(三氟甲基苯基)硼酸鹽、三丁基銨四(4-氟苯基)硼酸鹽、N,N-二甲基環己基銨肆(五氟苯基)硼酸鹽、N,N-二甲基苯甲基銨肆(五氟苯基)硼酸鹽、N,N-二甲基苯銨肆(五氟苯基)硼酸鹽、N,N-二(丙基)銨肆(五氟苯基)硼酸鹽、二(環己基)銨肆(五氟苯基)硼酸鹽、三苯基碳鎓肆(五氟苯基)硼酸鹽或二茂鐵肆(五氟苯基)硼酸鹽。較佳的為三苯基碳鎓肆(五氟苯基)硼酸鹽、N,N-二甲基苯銨肆(五氟苯基)硼酸鹽、N,N-二甲基環己基銨肆(五氟苯基)硼酸鹽或N,N-二甲基苯甲基銨肆(五氟苯基)硼酸鹽。
根據本發明,尤其較佳的為使用鋁氧烷共催化劑(如MAO)以及含硼共催化劑(如硼酸鹽共催化劑)。共催化劑之適合量對於技術人員將為熟知的。
較佳地,選擇共催化劑之量以達至下文所定義之莫耳比。
茂金屬硼/M之硼(B)與金屬離子(M)(較佳為鋯)之饋入量之莫耳比可在0.1:1至10:1 mol/mol、0.3:1至7:1、尤其0.3:1至5:1 mol/mol之範圍內。
甚至更佳地,茂金屬硼/M之硼(B)與金屬離子(M)(較佳為鋯)之饋入量之莫耳比為0.3:1至3:1。
茂金屬Al/M之來自鋁氧烷之Al與金屬離子(M)(較佳為鋯)之莫耳比可在1:1至2000:1 mol/mol、較佳地10:1至1000:1且更佳地50:1至600:1 mol/mol之範圍內。催化劑系統
用於製造本發明之C2 C3 隨機共聚物的催化劑系統理想地以負載於外部載體上之固體顆粒形式提供。
所使用之顆粒載體材料為矽石或混合氧化物,諸如矽石-礬土。
使用矽石載體為較佳的。熟練技術人員知曉到負載茂金屬催化劑所需之程序。
尤其較佳地,載體為多孔材料,使得錯合物可負載至顆粒載體之孔中,例如使用與描述於WO94/14856、WO95/12622及WO2006/097497中之彼等方法類似的方法。
矽石載體之平均粒度可典型地為10至100 μm。然而,結果表明,若載體之平均粒度為15至80 μm,較佳為18至50 μm,則可獲得特定優勢。
矽石載體之平均孔徑可在10至100 nm之範圍內且孔體積為1至3 mL/g。
適合載體材料之實例為例如由PQ Corporation生產且市售之ES747JR、由Grace生產且市售之Sylopol 948或由AGC Si-Tech Co生產之SUNSPERA DM-L-303。載體可在用於催化劑製備中之前視情況經煅燒以便達成最佳矽烷醇基團含量。
此等載體之用途在所屬技術領域中為常規的。添加劑
發明性C2 C3 隨機共聚物(RACO)可視情況包含按共聚物計總量為0.1至5.0 wt%之一或多種添加劑,其選自包含以下之群:助滑劑、防黏劑、UV穩定劑、抗靜電劑、α-成核劑及抗氧化劑。所添加之添加劑之量及發明性C2 C3 隨機共聚物(RACO)之量總計為100.0 wt%。
此等添加劑通常為所屬技術領域具有通常知識者已知的。
助滑劑亦通常在所屬技術領域中已知。助滑劑轉移至表面且充當潤滑劑(聚合物對聚合物及聚合物對金屬輥),從而降低摩擦係數(CoF)。實例為脂肪酸醯胺,如芥酸醯胺(CAS編號112-845)、油醯胺(CAS編號301-02-0)、硬脂醯胺(CAS編號124-26-5)或其組合。
所屬技術領域中常用的抗氧化劑之實例為位阻酚(諸如CAS編號6683-19-8,亦由BASF以Irganox 1010 FF™形式出售)、磷基抗氧化劑(諸如CAS編號31570-04-4,亦由Clariant以Hostanox PAR 24(FF)™形式或由BASF以Irgafos 168(FF)TM形式出售)、硫基抗氧化劑(諸如CAS編號693-36-7,由BASF以Irganox PS-802 FL™形式出售)、氮基抗氧化劑(諸如4,4'-雙(1,1'-二甲基苯甲基)二苯胺)或抗氧化劑摻合物。
除酸劑亦為所屬技術領域中通常已知的。實例為硬脂酸鈣、硬脂酸鈉、硬脂酸鋅、氧化鎂及氧化鋅、合成水滑石(例如,SHT,CAS編號11097-59-9)、乳酸鹽(lactates/lactylates),以及硬脂酸鈣(CAS編號1592-23-0)及硬脂酸鋅(CAS編號557-05-1)。
常用的防黏劑為天然矽石,諸如矽藻土(諸如CAS編號60676-86-0(SuperfFloss™)、CAS編號60676-86-0(SuperFloss E™)或CAS編號60676-860(Celite 499™))、合成矽石(諸如CAS編號7631-86-9、CAS編號7631-86-9、CAS編號7631-86-9、CAS編號7631-86-9、CAS編號7631-86-9、CAS編號7631-86-9、CAS編號11292600-8、CAS編號7631-86-9或CAS編號7631-86-9)、矽酸鹽(諸如矽酸鋁(高嶺土(Kaolin))CAS編號1318-74-7、矽酸鋁鈉CAS編號1344-00-9、煅燒高嶺土CAS編號92704-41-1、矽酸鋁CAS編號1327-36-2或矽酸鈣CAS編號1344-95-2)、合成沸石(諸如鋁矽酸鈉鈣水合物CAS編號134401-0、CAS編號1344-01-0,或鋁矽酸鈉鈣水合物CAS編號1344-01-0)。
適合的UV穩定劑為例如雙(2,2,6,6-四甲基-4-哌啶基)-癸二酸鹽(CAS編號52829-07-9,Tinuvin 770);2-羥基-4-正辛氧基-苯甲酮(CAS編號1843-05-6,Chimassorb 81)α成核劑,如苯甲酸鈉(CAS編號532-32-1);亦可添加鋁-羥基-雙[2,2'-亞甲基-雙(4,6-二第三丁基苯基)磷酸鹽]及十四烷酸鋰(作為Adeka Palmarole之Adekastab NA-21市售,法國)或1,3:2,4-雙(3,4-二甲基苯亞甲基)山梨糖醇(CAS編號135861-56-2,作為Milliken之Millad 3988市售,USA)之混合物。
適合的抗靜電劑為例如甘油酯(CAS編號97593-29-8)或乙氧基化胺(CAS編號71786-60-2或61791-31-9)或乙氧基化醯胺(CAS編號204-393-1)。
通常以各單一組分之100-1.000 ppm之量添加此等添加劑。較佳地,至少添加抗氧化劑。物品
本發明不僅係關於C2 C3 隨機共聚物(RACO)自身,且係關於其用途及包含發明性C2 C3 隨機共聚物(RACO)之物品。
本發明之C2 C3 隨機共聚物(RACO)可藉由使用正常轉化技術轉化為最終產物,亦即物品,該等技術諸如注射模塑、壓縮模塑、吹塑(擠壓或注射延伸吹塑)、擠壓(膜、片、導管、根瘤、型面擠壓)、膜吹塑、熱成形及其類似者。較佳地,該等物品為藉由注射模塑、吹塑或熱成形製備之包裝容器或藉由膜擠壓製備之包裝膜。
因此,本發明之C2 C3 隨機共聚物(RACO)適用於製備各種物品,如用於軟質包裝系統之膜(鑄造及吹塑膜),諸如用於食品及醫藥包裝之袋子或小袋或通用醫療物品以及模製物品。
包含本發明之C2 C3 隨機共聚物(RACO)之物品具有足夠的熱穩定性以能夠進行滅菌處理。
因此,本發明亦係關於一種可滅菌或滅菌物品,較佳地係關於一種可滅菌或滅菌膜,如可滅菌或滅菌鑄造或吹塑膜。
此等膜可在約120℃至130℃之範圍內的溫度下經受蒸汽滅菌處理。
在一具體實例中,本發明係關於一種物品,該物品為包含發明性C2 C3 隨機共聚物(RACO)的未定向之單層膜。因此,本發明亦係關於一種物品,該物品為未定向之單層膜,如鑄造膜或吹塑膜,例如空氣冷卻吹塑膜,其包含至少70 wt%,較佳地包含至少80 wt%,但更佳地包含至少85 wt%的本發明之C2 C3 隨機共聚物(RACO)。
上述組成物適用於產生吹塑膜以及鑄造膜。較佳的膜為鑄造膜。
根據本發明,厚度為5至300 μm,較佳10至200 μm,更佳20至150 μm之單層膜為適合的。
包含發明性C2 C3 隨機共聚物(RACO)之膜(較佳為鑄造膜)具有有益特性(i)至(iv): (i)膜具有在80℃至低於120℃之範圍內的密封起始溫度(SIT)(在如實驗部分中所描述在50 μm鑄造膜上所測定)。
較佳地,膜具有在80℃至115℃之範圍內,更佳在85℃至112℃之範圍內,如在90℃至110℃之範圍內的密封起始溫度(SIT)。
此種膜之低SIT與在50 μm鑄造膜(如實驗部分中所描述)上所測定之高於1.5 N至6.0 N之高熱黏著力(HTF)組合。
較佳地,膜具有在1.6至6.0 N之範圍內,更佳在1.6至5.0 N之範圍內的高熱黏著力。
膜具有(iii)低於2.00%,較佳低於1.50%,且更佳低於1.00%之霧度(根據ASTM D 1003-00在50 μm鑄造膜上測定)。
適合的下限為例如0.05%。因此,適合範圍為0.05%至低於2.00%,較佳為0.10%至低於1.50%且更佳為0.15%至低於1.00%。
此外,在121℃下蒸汽滅菌30 min之後,膜具有低於7.00%,較佳低於5.00%且更佳低於4.00%之霧度值(根據ASTM D 1003-00在50 μm鑄造膜上測定)。
適合的下限為例如0.30%。因此,適合的範圍為0.30%至低於7.00%,較佳為0.50%至低於5.00%且更佳為0.80%至低於4.00%。
此外,膜具有(iv)至少85.0%至100.0%,較佳至少90.0%且更佳至少95.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)。
滅菌(在121℃下蒸汽滅菌30 min)之後的清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)為至少75.0%至98.0wt%,較佳為至少80.0%且更佳為至少85.0%。
因此,根據另一具體實例,本發明亦係關於可滅菌或滅菌物品,其中物品該等為膜且膜之特徵在於 (i)在80℃至低於120℃之範圍內的密封起始溫度(SIT)(如在實驗部分中所描述測定) (ii)高於1.5 N至6.0 N之熱黏著力(如在實驗部分中在50 μm鑄造膜上所描述測定)。 (iii)0.05%至低於2.00%之霧度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後0.30%至低於7.00%之霧度(根據ASTM D 1003-00在50 μm鑄造膜上量測測定),及 (iv)至少85.0%至100.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後至少75.0%至98.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)。
此外,此等膜將較佳具有根據ISO 527-3在23℃下在厚度為50 μm之鑄造膜上在縱向方向以及橫向方向上測定之在300至600 MPa之範圍內,更佳在320至550 MPa之範圍內,如在350至500 MPa之範圍內的拉伸模數。
在本發明之另一具體實例中,膜具有根據下式之抗性因子(R-因子):
Figure 02_image037
該抗性因子超過3 000至6 000。
較佳地,抗性因子(R-因子)係高於3 200至5 500,更佳地高於3 400至5 000。
藉由將拉伸模數(MD)及熱黏著力(HTF)相乘且將此產物與滅菌之前所測定的霧度相關聯來測定根據本發明之膜之抗性因子(R-因子)。
較佳地,上文所描述之膜包含發明性C2 C3 隨機共聚物(RACO)。
較佳地藉由多層共擠壓,隨後藉由膜鑄造或膜吹塑來產生包含至少一個包含發明性C2 C3 隨機共聚物(RACO)之層的多層膜構造。在此情況下,充當密封層之該多層膜構造之最外層中之至少一者將包含如上文所定義之發明性C2 C3 隨機共聚物(RACO)。發明性多層膜構造將較佳具有在30至500 μm之範圍內,更佳在50至400 μm之範圍內,如在60至300 μm之範圍內的厚度。包含發明性C2 C3 隨機共聚物(RACO)之密封層將較佳具有在3至50 μm之範圍內,更佳在5至30 μm之範圍內,如在8至25 μm之範圍內的厚度。
根據本發明之膜及/或多層膜構造將較佳用於軟質包裝系統,諸如用於食品及醫藥包裝之袋子或小袋或通用的醫療物品。
除非另外定義,否則術語及測定方法之以下定義適用於本發明之以上通用描述以及以下實施例。量測方法
計算第二聚合物部分( RACO-2 )之共聚單體含量:
Figure 02_image039
其中 w(A-1)為第一聚合物部分(RACO-1)之重量分率[以wt%計],w(A-2)為第二聚合物部分(RACO-2)之重量分率[以wt%計], C(A-1)為第一聚合物部分(RACO-1)之共聚單體含量[以wt%計], C(A)為C2 C3 隨機共聚物(RACO)之共聚單體含量[以wt%計], C(A-2)為第二聚合物部分(RACO-2)之所計算共聚單體含量[wt%]。
計算聚合物部分 RACO-2 之熔體流動速率 MFR2 230 ):
Figure 02_image041
其中 w(A1)為聚合物部分RACO-1之重量分率[以wt%計] w(A2)為聚合物部分RACO-2之重量分率[以wt%計], MFR(A1)為聚合物部分RACO-1之熔體流動速率MFR2 (230℃)[g/10min],MFR(A)為C2 C3 隨機共聚物(RACO)之熔體流動速率MFR2 (230℃)[g/10min],MFR(A2)為聚合物部分RACO-2之所計算之熔體流動速率MFR2 (230℃)[g/10min]。
MFR2 230 係根據ISO 1133(230℃,2.16 kg負載)量測。藉由 NMR 光譜法定量微觀結構
另外使用定量核磁共振(nuclear-magnetic resonance;NMR)光譜法來定量聚合物之共聚單體含量及共聚單體序列分佈。以溶液狀態使用對於1 H及13 C分別在400.15及100.62 MHz下操作之Bruker Advance III 400 NMR光譜儀記錄定量13 C{1 H} NMR光譜。所有光譜均使用13 C最佳化10 mm延長的溫度探頭在125℃下記錄,對於所有氣體力學,均使用氮氣。將約200 mg材料連同乙醯基丙酮酸鉻-(III)(Cr(acac)3 )一起溶解於3 ml之1,2-四氯乙烷-d2 (TCE-d2 )中,從而產生弛豫劑於溶劑中之65 mM溶液(Singh, G., Kothari, A., Gupta, V., Polymer Testing 28 5 (2009), 475)。為確保溶液均勻,在加熱塊中製備初始樣品後,另外在旋轉烘箱中加熱NMR管持續至少1小時。插入磁鐵中後,使管在10 Hz下旋轉。此設置主要為了高解析度而選擇且定量地為精確乙烯含量定量所需。標準單脈衝激勵在無NOE之情況下採用,使用最佳化頂錐角、1 s再循環延遲及雙水準WALTZ16解耦流程(Zhou, Z., Kuemmerle, R., Qiu, X., Redwine, D., Cong, R., Taha, A., Baugh, D. Winniford, B., J. Mag. Reson. 187 (2007) 225;Busico, V., Carbonniere, P., Cipullo, R., Pellecchia, R.,Severn, J., Talarico, G., Macromol. Rapid Commun. 2007, 28, 1128)。每個光譜獲得總共6144(6k)個瞬態。
使用專用電腦程式對定量13 C{1 H} NMR光譜進行處理、求積分,且自積分確定相關定量特性。所有化學位移使用溶劑之化學位移在30.00 ppm下間接參照乙烯嵌段(EEE)之中心亞甲基。甚至在此結構單元不存在時,此方法允許類似參照。觀察到對應於乙烯併入的特徵信號(Cheng, H. N., Macromolecules 17 (1984), 1950)。
在觀測到對應於2,1赤區域缺陷之特徵信號的情況下(如L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100 (4), 1253中,Cheng, H. N., Macromolecules 1984, 17, 1950中及W-J. Wang及S. Zhu, Macromolecules 2000, 33 1157中所描述),需要對區域缺陷對測定特性之影響進行校正。未觀察到對應於其他類型之區域缺陷的特徵信號。
使用Wang等人之方法(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)經由對13 C{1 H}光譜中整個光譜區域之多種信號進行積分來定量共聚單體部分。出於其穩固性質及在需要時考慮區域缺陷之存在的能力來選擇此方法。略微調整積分區域以增加在遇到之共聚單體含量之整個範圍內的適用性。
對於僅在PPEPP序列中觀察到經分離乙烯的系統,修改Wang等人之方法以降低已知不存在之位點之非零積分之影響。此方法降低了對此等系統之乙烯含量之過高估計且藉由將用於測定絕對乙烯含量之位點數目減少至以下而達成: E = 0.5(Sββ + Sβγ + Sβδ + 0.5(Sαβ + Sαγ))
經由使用此組位點,相應積分方程式變成: E = 0.5(IH +IG + 0.5(IC + ID )) 使用與Wang等人之文章(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)中所用相同的註解。不修改用於絕對丙烯含量之方程式。
根據莫耳分率計算共聚單體併入莫耳百分比: E [mol%] = 100 * fE
根據莫耳分率計算共聚單體併入重量百分比: E [wt%] = 100 * (fE * 28.06) / ((fE * 28.06) + ((1-fE) * 42.08))
使用Kakugo等人之分析方法(Kakugo, M., Naito, Y., Mizunuma, K., Miyatake, T. Macromolecules 15 (1982) 1150)測定在三合物水準下之共聚單體序列分佈。出於其穩定性質選擇此方法且略微調整積分區域以增加對於較寬共聚單體含量範圍之適用性。
二甲苯可溶物 XCS wt% ): 二甲苯冷可溶物(XCS)之含量係根據ISO 16152在25℃下測定;2005。
DSC 分析、熔融溫度 Tm 及結晶溫度 Tc ): 用TA Instrument Q2000差示掃描量熱法(DSC)對5至7 mg樣品進行量測。DSC根據ISO 11357/部分3/方法C2,在-30至+225℃之溫度範圍內以10℃/min之掃描速率以熱/冷/熱循環運行。
結晶溫度(Tc )及結晶焓(Hc )係自冷卻步驟測定,而熔融溫度(Tm )及熔融焓(Hm )係自第二加熱步驟測定。
撓曲模數 係根據ISO 178在根據EN ISO 1873-2注射模塑之80×10×4 mm3 測試棒上測定。
縱向及橫向方向上之拉伸模數 係根據ISO 527-3在23℃下在單層鑄造膜生產線上產生之厚度為50 μm之鑄造膜上測定,其中熔化溫度為220℃且冷卻輥溫度為20℃以及產生之厚度為50 μm,如下文所指示。以1 mm/min之十字頭速度(cross head speed)進行測試。
透明度、霧度及清晰度 係根據ASTM D1003-00在如下文所指示產生之厚度為50 μm的鑄造膜上測定。
密封起始溫度 SIT ); (密封終點溫度(sealing end temperature;SET),密封範圍): 方法測定聚丙烯膜(尤其吹塑膜或鑄造膜)之密封溫度範圍(密封範圍)。密封溫度範圍為其中膜可根據下文給出之條件密封的溫度範圍。下限(熱封起始溫度(SIT))為實現> 3 N之密封強度的密封溫度。當膜黏附至密封裝置時,達至上限(密封終點溫度(SET))。密封範圍係在膜厚度為50 μm的J&B通用密封機器型號3000上測定,其,其具有以下其他參數:
標本寬度: 25.4 mm
密封壓力: 0.1 N/mm2
密封時間: 0.1秒
冷卻時間: 99秒
剝離速度: 10毫米/秒
起始溫度: 80℃
終點溫度: 150℃
增量: 10℃
將標本在各密封棒溫度下密封於A與A之間且在各步驟下測定密封強度(力)。測定密封強度達至3 N時之溫度。熱黏著力
根據ASTM F1921-12-方法B在J&B熱黏性測試儀上在單層鑄造膜生產線上生產之50 μm厚度的膜上測定熱黏著力。
所有膜測試標本均在標準氛圍中製備以用於在23℃(±2℃)及50%(±10%)相對濕度下進行調節及測試。
在開始測試之前,測試標本在標準氛圍中之最小調節時間為至少16 h。擠壓膜樣品與開始測試之間的最小儲存時間為至少88 h。
緊接著在已進行密封之後且在使其冷卻至環境溫度之前,熱黏性量測確定形成於膜中的熱密封之強度。在以下條件下進行熱黏性量測。 膜標本寬度:25.4 mm。 密封棒長度:50 mm 密封棒寬度:5 mm 密封棒形狀:平的 密封壓力:0.3 N/mm2 。 密封時間:0.5秒。 冷卻時間:99秒。 剝離速度:200毫米/秒。 起始溫度:90℃。終點溫度:140℃。增量:10℃。
熱黏著力在溫度範圍內作為溫度之函數進行量測,且其中溫度增量如上文所指示。測試標本之數目為每個溫度至少3個標本。此方法之輸出為熱黏性曲線;力相比於溫度曲線。
熱黏著力(HTF)係根據曲線評估為最高力(最大峰值),其中失效模式為「剝離」。
蒸汽滅菌 係在Systec D系列機器(Systec Inc., USA)中進行。將樣品以5℃/min之加熱速率自23℃開始加熱。在121℃下保持30 min之後,立即自蒸汽滅菌器中移除樣品且在進一步處理前一直儲存於室溫下。Al Zr 測定 ICP- 方法
在手套箱中,使用分析天平將催化劑之等分試樣(約40 mg)稱重至玻璃稱重船中。接著使樣品暴露於空氣隔夜,同時置放於配備有進氣口之鋼製二級容器中。接著使用5 mL之濃縮(65%)硝酸以將船之內容物沖洗至Xpress微波烘箱容器(20 mL)中。接著使用MARS 6實驗室微波裝置在150℃下歷經35分鐘使樣品經受微波輔助分解。使經分解樣品冷卻至少4 h且接著轉移至100 mL體積之玻璃容量玻璃燒瓶中。添加含有1000 mg/L Y及Rh(0.4mL)之標準溶液。接著將燒瓶用蒸餾水填滿且充分搖晃。將溶液經由0.45 μm Nylon針筒過濾器過濾且接著使用Thermo iCAP 6300 ICP-OES及iTEVA軟體進行分析。
使用空白(5% HNO3 之溶液)及0.005 mg/L、0.01 mg/L、0.1 mg/L、1 mg/L、10 mg/L及100 mg/L之Al、B、Hf、Mg、Ti及Zr於5% HNO3 蒸餾水之溶液中的六種標準物來校準用於Al、B、Hf、Mg、Ti及Zr之儀器。然而,並非每個校準點用於各波長。各校準溶液含有4 mg/L之Y及Rh標準物。使用以下校準點來校準Al 394.401 nm:空白、0.1 mg/L、1 mg/L、10 mg/L及100 mg/L。使用空白、0.01 mg/L、0.1 mg/L、1 mg/L、10 mg/L及100 mg/L之標準物將Al 167.079 nm校準為Al 394.401 nm,從而排除100 mg/L及Zr 339.198 nm。曲線擬合及1/濃度稱重係用於校準曲線。
緊接著在進行分析之前,使用空白及10 mg/L Al、B、Hf、Mg、Ti及Zr標準物(其具有4 mg/L Y及Rh)來檢驗且調整校準(儀器斜率重校功能)。運行品質對照樣品(QC:1 mg/L Al、Au、Be、Hg & Se;2 mg/L Hf & Zr,2.5 mg/L As、B、Cd、Co、Cr、Mo、Ni、P、Sb、Sn & V;4 mg/L Rh & Y;5 mg/L Ca、K、Mg、Mn、Na & Ti;10 mg/L Cu、Pb及Zn;25 mg/L Fe及37.5 mg/L Ca於5% HNO3 於蒸餾水中之溶液中)以確認Al、B、Hf、Mg、Ti及Zr之斜率重校。在預定分析設置結束時亦運行QC樣品。
使用Zr 339.198 nm {99}線監測Zr之含量。當測試部分中之Al濃度低於2 wt%時,經由167.079 nm {502}線監測鋁之含量,且對於Al濃度高於2 wt%,經由394.401 nm {85}線監測鋁之含量。Y 371.030 nm {91}用作Zr 339.198 nm及Al 394.401 nm之內標,且Y 224.306 nm {450}用作Al 167.079 nm之內標。
使用催化劑等分試樣之原始質量及稀釋體積,將報導值反計算至原始催化劑樣品。2. 實施例
用於發明性實施例(IE1)之C2 C3 隨機共聚物之聚合方法中的催化劑係如下製備:
茂金屬(MC1)(外消旋-抗二甲基矽烷二基(2-甲基-4-苯基-5-甲氧基-6-第三丁基-茚基)(2-甲基-4-(4-第三丁基苯基)茚基)二氯化鋯)
Figure 02_image043
已根據如WO WO2013007650, E2中所描述之程序合成。使用茂金屬MC1及MAO及三苯甲基肆(五氟苯基)硼酸鹽之催化劑系統來製備催化劑系統。將催化劑負載至矽石上。製備 MAO- 矽石載體
將配備有機械攪拌器及過濾網之鋼製反應器用氮氣沖洗且將反應器溫度設定為20℃。接下來,自饋入筒中添加在600℃(7.4 kg)下預煅燒的來自AGC Si-Tech Co的矽石級DM-L-303,隨後使用手動閥小心地加壓且用氮氣減壓。接著添加甲苯(32 kg)。將混合物攪拌15 min。接著在70 min內,經由反應器頂部上之饋入管線添加來自Lanxess之30 wt% MAO於甲苯(17.5 kg)中之溶液。接著將反應混合物加熱至90℃且在90℃下攪拌另外兩小時。使漿料沉降且過濾出母液。將經MAO處理之載體用甲苯(32 kg)在90℃下洗滌兩次,隨後沉降且過濾。將反應器冷卻至60℃且將固體用庚烷(32.2 kg)洗滌。最終,將經MAO處理之SiO2 在氮氣流下在60°下乾燥2小時且接著在攪拌下在真空(-0.5巴)中乾燥5小時。收集呈自由流動之白色粉末形式的經MAO處理之載體,發現其含有12.6重量%之Al。發明性實施例 IE1 IE2 催化劑系統製備
在20℃下,經由滴定管將含30 wt% MAO之甲苯(2.2 kg)添加至鋼製氮氣消隱反應器中。接著在攪拌下添加甲苯(7 kg)。自金屬圓筒中添加茂金屬MC1(286 g),隨後用1 kg甲苯沖洗。將混合物在20℃下攪拌60分鐘。接著自金屬圓筒中添加三苯甲基肆(五氟苯基)硼酸鹽(336 g),隨後用1 kg甲苯沖洗。將混合物在室溫下攪拌1 h。歷經1小時將所得溶液添加至如上文所描述製備的MAO-矽石載體之經攪拌濾餅中。使濾餅保持12小時,隨後在60℃下在N2 下乾燥2 h且另外在攪拌下在真空(-0.5巴)中乾燥5 h。經乾燥催化劑以粉紅色自由流動粉末之形式取樣,含有13.9wt% Al及0.26wt% Zr。
對於比較實施例 CE1 CE2 使用齊格勒 - 納塔催化劑 Ziegler-Natta catalyst 製備CE1及CE2之齊格勒-納塔催化劑
所使用之化學物質: 丁基乙基鎂(MG(Bu)(Et),BEM)於甲苯中的20%溶液,由Chemtura提供;2-乙基己醇,由Amphochem提供;3-丁氧基-2-丙醇-(DOWANOL™PnB),由Dow提供;雙(2-乙基己基)檸康酸鹽,由SynphaBase提供,TiCl4 ,由Millenium Chemicals提供;甲苯,由Aspokem Viscoplex® 1-254提供,由Evonik提供;庚烷,由Chevron提供。製備 Mg 烷氧基化合物
藉由在攪拌(70 rpm)下在20 l不鏽鋼反應器中,向11 kg之丁基乙基鎂(Mg(Bu)(Et))於甲苯中的20 wt%溶液中添加4.7 kg之2-乙基己醇及1.2 kg之丁氧基丙醇之混合物來製備Mg醇鹽溶液。在添加期間,使反應器內容物保持低於45℃。在完成添加之後,在60℃下繼續混合(70 rpm)反應混合物持續30分鐘。在冷卻至室溫之後,將2.3 kg之供體雙(2-乙基己基)檸康酸鹽添加至Mg-醇鹽溶液中,保持溫度低於25℃。在攪拌(70 rpm)下繼續混合15分鐘。製備固體催化劑組分
將20.3 kg之TiCl4 及1.1 kg之甲苯添加至20 l不鏽鋼反應器中。在350 rpm下混合且使溫度保持處於0℃,在1.5小時期間添加14.5 kg的如上文所描述製備之Mg烷氧基化合物。添加1.7 l之Viscoplex® 1-254及7.5 kg之庚烷,且在0℃下混合1小時之後,在1小時內將所形成乳液之溫度升高至90℃。在30分鐘之後,停止混合,使催化劑液滴凝固且使所形成之催化劑粒子沉降。在沉降(1小時)後,虹吸走上清液。接著將催化劑粒子在90℃下用45 kg之甲苯洗滌20分鐘,隨後用庚烷洗滌兩次(30 kg,15 min)。在第一次庚烷洗滌期間,溫度降低至50℃,且在第二次洗滌期間,溫度降低至室溫。
由此獲得之催化劑與三乙基-鋁(TEAL)一起用作共催化劑且與二環戊基二甲氧基矽烷(D-供體)一起用作供體,以用於製備CE1及CE2之聚合物。
用於製備發明性C2 C3 隨機共聚物(RACO)以及CE1及CE2之聚合物的聚合在具有2個反應器裝置(環流-氣相反應器(GPR1))之Borstar試點設備中進行。
在表1中給出IE1及IE2之聚合條件。在表2中給出CE1及CE2之聚合條件,CE3與EP 3064514 A1之發明性實施例1(IE1)相同。 1 聚合資料(發明性)
   IE1 IE2
預聚合反應器      
溫度[℃] 25 25
壓力[Pa] 5208 5469
滯留時間[h] 0.4 0.4
環流反應器      
溫度[℃] 68 68
壓力[Pa] 5385 5388
饋入H2/C3比率[mol/kmol] 0.69 0.69
饋入C2/C3比率[mol/kmol] 48.4 48.4
聚合物分離[wt%] 53 52
MFR2 [g/10min](RACO-1之MFR) 9.9 9.9
C2環流[wt%](RACO-1之C2) 4.1 3.9
滯留時間 0.5 0.5
GPR1      
溫度[℃] 75 75
壓力[Pa] 2400 2400
H2/C3比率[mol/kmol] 8.0 8.0
C2/C3比率[mol/kmol] 243 242
聚合物滯留時間(h) 2.0 2.0
聚合物分離[wt%] 47 48
總MFR2 [g/10min] 8.4 8.3
GPR1之MFR2 [g/10min](RACO-2之MFR) 7.0 6.9
總C2 [wt%](環流+ GPR1) 4.6 4.4
GPR1中之C2 [wt%](RACO-2之C2) 5.1 4.9
XCS [wt%] 9.1 12.3
總產率(kg PP/g催化劑) 35 35
2 聚合資料(比較性)
   CE1 CE2
預聚合反應器      
溫度[℃] 30 30
壓力[Pa] 5469 5472
Al/供體比率[mol/mol] 6 6
Al/Ti比率[mol/mol] 165 163
滯留時間[h] 0.4 0.4
環流反應器      
溫度[℃] 65 65
壓力[Pa] 5425 5400
饋入H2/C3比率[mol/kmol] 0 0
饋入C2/C3比率[mol/kmol] 8 9
聚合物分離[wt%] 33 37
MFR2 [g/10min](A-1之MFR) 1.6 2.0
總C2環流[wt%](A-1之C2) 4.1 4.4
GPR1      
溫度[℃] 80 80
壓力[Pa] 2600 2550
H2/C3比率[mol/kmol] 6.5 6.0
C2/C3比率[mol/kmol] 35.6 39.3
聚合物滯留時間(h) 1.8 1.6
聚合物分離[wt%] 67 63
總MFR2 [g/10min] 1.6 1.4
GPR1中之MFR2 [g/10min](A-2之MFR) 1.6 1.1
總C2 [wt%](環流+ GPR1) 5.4 6.0
GPR1中之C2 [wt%](A-2之C2) 6.0 7.0
XCS [wt%] 14.7 17.4
總產率(kg PP/g催化劑) 34 30
所有聚合物粉末在共轉雙螺桿擠壓機Coperion ZSK 57中在220℃下與0.2 wt%防黏劑(合成矽石;CAS編號7631-86-9)、0.1 wt%抗氧化劑(Irgafos 168FF)、0.1 wt%之位阻苯酚(Irganox 1010FF)、0.02 wt%之硬脂酸鈣及0.02 wt%之非潤滑硬脂酸鹽(合成水滑石;CAS編號11097-59-9)混配。 3 基礎聚合物特性(發明性)
丸劑    IE1 IE2
XCS [wt%]    9.1 12.3
總C2 [wt%]    4.6 4.4
MFR2 [g/10min]    8.0 8.1
Tm [℃]    122 122
Tc [℃]    83 83
撓曲模數[MPa]    767 772
4 基礎聚合物特性(比較性)
丸劑 CE1 CE2 CE3
XCS [wt%] 14.7 17.4 19.8
總C2 [wt%] 5.1 6.0 4.6
MFR2 [g/10min] 1.6 1.4 7.1
Tm [℃] 139 137 137
Tc [℃] 103 101 98
撓曲模數[MPa] 620 575 664
在PM30鑄造生產線(由德國Plastik Maschinenbau GmbH.提供之實驗室型擠壓機)上,將發明性C2 C3 隨機共聚物(RACO)及CE1-CE3之聚合物轉化為厚度為50 μm之單層鑄造膜。設備由擠壓機、具有氣刀之冷卻輥及捲繞機組成。
與衣架式槽模總成組合應用直徑30 mm、長度25D、模口200 mm、模口間隙0.5 mm之PP 3區螺桿。
擠壓參數係如下: 擠壓機溫度概況:220℃/240℃/250℃/260℃/260℃(熔融溫度250℃;熔融壓力61巴);擠壓機速度:50 rpm;冷卻輥溫度:20℃;輸出速度:10.2 m/min。
在表5中,可看見發明性實施例之光學參數(滅菌之前,b.s.)以及密封效能(SIT及HTF)、拉伸模數及R-因子。表6給出比較實施例之各別資料。 5 滅菌之前(b.s.發明性)的密封效能、拉伸及光學特性
      IE1 IE2
拉伸模數(MD) [MPa] 407 409
拉伸模數(TD) [MPa] 396 411
SIT [℃] 100 100
熱黏著力 [N] 1.97 2.19
霧度b.s. [%] 0.21 0.25
清晰度b.s. [%] 100 100
R-因子 [(MPa*°N)/ (%)] 3818 3583
6 滅菌之前的密封效能、拉伸及光學特性(b.s.,比較性)
      CE1 CE2 CE3
拉伸模數(MD) [MPa] 349 326 351
拉伸模數(TD) [MPa] 348 330 365
SIT [℃] 114 109 107
熱黏著力 [N] 1.68 2.41 1.99
霧度b.s. [%] 0.35 0.31 2.1
清晰度b.s. [%] 99 99 96
R-因子 [(MPa*°N)/ (%)] 1675 2534 333
此外,對膜進行蒸汽滅菌。
蒸汽滅菌係在Systec D系列機器(Systec Inc.,USA)中進行。將樣品以5℃/min之加熱速率自23℃開始加熱。在121℃下保持30 min之後,立即自蒸汽滅菌器中移除樣品且在進一步處理前一直儲存於室溫下。
滅菌之後(a.s.)的光學參數可見於在發明性實施例之表7及比較性實施例之表8中。 7 滅菌之後(a.s.,發明性)的光學特性
      IE1 IE2
霧度(a.s.) [%] 3.33 2.43
清晰度(a.s.) [%] 93 95
8 滅菌之後(a.s.,比較性)的光學特性
      CE1 CE2 CE3
霧度(a.s.) [%] 17.3 18.2 19.1
清晰度(a.s.) [%] 66 56 86
自上表可明顯地看出,發明性C2 C3 隨機共聚物(RACO)之特徵在於低密封起始溫度(SIT)、高熱黏性及良好光學特性(如低霧度及高清晰度)及良好抗滅菌性之有利組合。

Claims (15)

  1. 一種C2 C3 隨機共聚物(RACO),其具有 (a)在2.5至5.2 wt%之範圍內的乙烯含量; (b)根據ISO 1133量測之在1.0至20.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg); (c)如根據ISO 11357由DSC測定之115至135℃之熔融溫度Tm,及 (d)0.1 wt%至低於15.0 wt%之二甲苯冷可溶性(XCS)部分。
  2. 如請求項1之C2 C3 隨機共聚物(RACO),其另外具有 (e)如根據ISO 11357由DSC測定之在75℃至110℃,較佳80℃至105℃之範圍內的結晶溫度Tc,及 (f)如根據ISO 178在注射模塑標本上測定之500至低於1000 MPa,較佳地在550至900 MPa之範圍內的撓曲模數。
  3. 如請求項1或2之C2 C3 隨機共聚物(RACO),其中該C2 C3 隨機共聚物(RACO)包含 30.0至70.0 wt%之聚合物部分(RACO-1),其具有 (i)在1.5至5.5 wt%之範圍內的乙烯含量,及 (ii)根據ISO 1133量測之在4.0至15.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg),及 70.0至30.0 wt%之聚合物部分(RACO-2),其具有 (i)在3.5至7.0 wt%之範圍內的乙烯含量,及 (ii)根據ISO 1133量測之在4.0至12.0 g/10min之範圍內的熔體流動速率MFR2 (230℃/2.16kg); 其中聚合物部分(RACO-1)之乙烯含量低於聚合物部分(RACO-2)之乙烯含量。
  4. 如前述請求項1至3中任一項之C2 C3 隨機共聚物(RACO),其中該C2 C3 隨機共聚物(RACO)為可獲得的,較佳地在存在茂金屬催化劑之情況下獲得。
  5. 一種用於產生如請求項1至4中任一項之C2 C3 隨機共聚物(RACO)之方法,其中該C2 C3 隨機共聚物(RACO)係在存在茂金屬催化劑之情況下藉由以包含至少兩個串聯連接之反應器的依序聚合方法聚合丙烯及乙烯來產生。
  6. 如請求項5之用於產生C2 C3 隨機共聚物(RACO)之方法,其中該方法包含以下步驟: a)在第一反應器(R1)中聚合丙烯及乙烯,獲得該C2 C3 隨機共聚物(RACO)之聚合物部分(RACO-1), b)將該聚合物部分(RACO-1)及該第一反應器之未反應共聚單體轉移於第二反應器(R2)中, c)將丙烯及乙烯饋送至該第二反應器(R2), d)在該第二反應器(R2)中且在存在該聚合物部分(RACO-1)之情況下聚合丙烯及乙烯,獲得聚合物部分(RACO-2) 該聚合物部分(RACO-1)及該聚合物部分(RACO-2)形成如請求項1至5中所定義之該C2 C3 隨機共聚物(RACO), 其中該聚合在存在茂金屬催化劑之情況下進行,該茂金屬催化劑包含(i)式(I)之錯合物:
    Figure 03_image045
    其中 M為鋯或鉿;各X為δ配位體; L為選自以下之二價橋:-R'2 C-、-R'2 C-CR'2 -、-R'2 Si-、-R'2 Si-SiR'2 -、-R'2 Ge-,其中各R'獨立地為氫原子、C1 -C20 -烴基、三(C1 -C20 -烷基)矽烷基、C6 -C20 -芳基、C7 -C20 -芳烷基或C7 -C20 -烷芳基; R2 及R2 '各自獨立地為視情況含有一或多個來自第14族至第16族之雜原子的C1 -C20 烴基; R5 '為含有一或多個視情況經一或多個鹵原子取代之來自第14族至第16族之雜原子的C1-20 烴基; R6 及R6' 各自獨立地為氫或視情況含有一或多個來自第14族至第16族之雜原子的C1-20 烴基;其中R6 較佳為三級烷基 R7 為氫或視情況含有一或多個來自第14族至第16族之雜原子的C1-20 烴基; R7 '為氫; Ar及Ar'各自獨立地為具有至多20個視情況經一或多個基團R1 取代之碳原子的芳基或雜芳基; 各R1 為C1-20 烴基,或相鄰碳原子上之兩個R1 基團與Ar基團一起可形成稠合5員或6員非芳族環,該環本身視情況經一或多個基團R4 取代; 各R4 為C1-20 烴基;以及 (ii)共催化劑,其包含至少一種或兩種第13族金屬之化合物,例如Al及/或硼化合物。
  7. 如請求項6之方法,其中使用包含含硼共催化劑及鋁氧烷共催化劑之共催化劑系統作為共催化劑(ii),且該催化劑負載於矽石載體上。
  8. 一種如請求項1至請求項7中任一項之C2 C3 隨機共聚物(RACO)之用途,其用於製備物品,較佳為可滅菌或滅菌物品。
  9. 一種可滅菌或滅菌物品,較佳為可滅菌或滅菌膜,其包含如請求項1至請求項7中任一項之C2 C3 隨機共聚物(RACO)。
  10. 一種包含如請求項1至請求項7中任一項之C2 C3 隨機共聚物(RACO)之可滅菌或滅菌物品,其中該等物品為膜且該等膜之特徵在於 (i)在80℃至低於120℃之範圍內的密封起始溫度(SIT)(如在實驗部分中所描述測定) (ii)高於1.5 N至6.0 N之熱黏著力(如在實驗部分中在50 μm鑄造膜上所描述測定) (iii)0.05%至低於2.00%之霧度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後0.30%至低於7.00%之霧度(根據ASTM D 100300在50 μm鑄造膜上量測測定),及 (iv)至少85.0%至100.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)及滅菌(在121℃下蒸汽滅菌30 min)之後至少75.0%至98.0%之清晰度(根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定)。
  11. 如請求項10之膜,其中該等膜另外具有根據ISO 527-3在23℃下在厚度為50 μm之鑄造膜上在縱向方向以及橫向方向上測定之在300至600 MPa之範圍內的拉伸模數。
  12. 如請求項10或11之膜,其中該等膜具有根據下式之抗性因子(R-因子)
    Figure 03_image047
    該抗性因子超過3 000至6 000,其中 拉伸模數(Tensile Modulus;MD)係根據ISO 527-3在23℃下在厚度為50 μm之鑄造膜上在縱向方向上測定 HTF為在50 μm鑄造膜上量測之熱黏著力,及 霧度(b.s.)係在滅菌之前根據ASTM D1003-00在厚度為50 μm之鑄造膜上測定。
  13. 如請求項10至12中任一項之膜,其中該膜包含如請求項1至請求項7中任一項之C2 C3 隨機共聚物(RACO)。
  14. 一種如前述請求項10至13中任一項之膜之用途,其在多層膜中作為密封層。
  15. 一種軟質包裝系統,其選自用於食品及醫藥包裝之袋子或小袋,包含如請求項10至13中任一項之膜。
TW109116672A 2019-05-29 2020-05-20 C2c3隨機共聚物 TW202104290A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19177299 2019-05-29
EP19177299.5 2019-05-29

Publications (1)

Publication Number Publication Date
TW202104290A true TW202104290A (zh) 2021-02-01

Family

ID=66676385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116672A TW202104290A (zh) 2019-05-29 2020-05-20 C2c3隨機共聚物

Country Status (6)

Country Link
US (1) US20220227901A1 (zh)
EP (1) EP3976677A1 (zh)
CN (1) CN113874407B (zh)
BR (1) BR112021023443A2 (zh)
TW (1) TW202104290A (zh)
WO (1) WO2020239583A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062014B (zh) 2014-03-21 2018-03-30 博里利斯股份公司 具有高熔点的异相丙烯共聚物
CN117098659A (zh) * 2021-04-01 2023-11-21 北欧化工公司 双轴取向聚丙烯系多层膜

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
US5332706A (en) 1992-12-28 1994-07-26 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
FI96866C (fi) 1993-11-05 1996-09-10 Borealis As Tuettu olefiinipolymerointikatalyytti, sen valmistus ja käyttö
FI111848B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto propeenin homo- ja kopolymeerien valmistamiseksi
FI980342A0 (fi) 1997-11-07 1998-02-13 Borealis As Polymerroer och -roerkopplingar
FI974175A (fi) 1997-11-07 1999-05-08 Borealis As Menetelmä polypropeenin valmistamiseksi
FI991057A0 (fi) 1999-05-07 1999-05-07 Borealis As Korkean jäykkyyden propeenipolymeerit ja menetelmä niiden valmistamiseksi
EP1313746B1 (en) 2000-06-30 2005-07-27 ExxonMobil Chemical Patents Inc. Metallocenes with a bridged 4-phenyl-indenyl-ligand for olefin polymerisation
JP2003073426A (ja) * 2001-06-20 2003-03-12 Japan Polychem Corp プロピレンランダム共重合体
JP4008238B2 (ja) * 2001-12-27 2007-11-14 日本ポリプロ株式会社 乳製品用積層容器
CN100519600C (zh) 2002-06-25 2009-07-29 玻利阿黎斯技术有限公司 提高了抗刮性的聚烯烃及其制备方法
EP1484343A1 (en) 2003-06-06 2004-12-08 Universiteit Twente Process for the catalytic polymerization of olefins, a reactor system and its use in the same process
BRPI0611557B1 (pt) 2005-03-18 2017-03-28 Basell Polyolefine Gmbh compostos metalocenos bis-indenila em ponte com simetria c2, sistema catalítico dessa classe de compostos e processo de polimerização de a-olefinas com a referida classe de compostos
US7413812B2 (en) * 2005-04-26 2008-08-19 Fina Technology, Inc. Polypropylene article and method of preparing polypropylene article
JP2009533382A (ja) 2006-04-12 2009-09-17 バーゼル・ポリオレフィン・ゲーエムベーハー メタロセン化合物
EP2147939A1 (en) * 2008-07-22 2010-01-27 Borealis AG Polypropylene composition with improved optics for film and moulding applications
EP2516486B1 (en) 2009-12-22 2018-02-07 Borealis AG Catalysts
CN102858869B (zh) * 2010-04-21 2014-08-20 博里利斯股份公司 具有低密封温度的丙烯/1-己烯共聚物组合物
EP2383299B1 (en) 2010-04-28 2017-12-20 Borealis AG Solid particulate catalysts comprising bridged metallocenes
EP2402353B1 (en) 2010-07-01 2018-04-25 Borealis AG Group 4 metallocenes useful as catalysts for the polymerization of olefins
WO2012044732A1 (en) * 2010-09-30 2012-04-05 Dow Global Technologies Llc Polymeric composition and sealant layer with same
EP2655431A1 (en) 2010-12-22 2013-10-30 Borealis AG Bridged metallocene catalysts
CN108409895A (zh) 2011-07-08 2018-08-17 博瑞立斯有限公司 催化剂
EP2639268A1 (en) * 2012-03-13 2013-09-18 Basell Poliolefine Italia S.r.l. Propylene polymer compositions
US10167355B2 (en) 2014-04-17 2019-01-01 Borealis Ag Catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
BR112016024633B1 (pt) * 2014-05-06 2022-05-03 Basell Poliolefine Italia S.R.L. Copolímeros de propileno-etileno aleatórios, processo para a preparação dos mesmos e artigos compreendendo os mesmos
ES2672332T3 (es) * 2014-07-09 2018-06-13 Borealis Ag Copolímero aleatorio de propileno para aplicaciones de película
EP3064514B1 (en) 2015-03-02 2018-01-10 Borealis AG C2C3 random copolymer composition with improved balance between sealing initiation temperature and melting point
EP3328955B1 (en) * 2015-07-30 2020-03-18 Borealis AG Polypropylene composition with improved hot-tack force
CN110352195B (zh) 2016-12-29 2022-11-11 博里利斯股份公司 催化剂
US20200056028A1 (en) * 2017-05-19 2020-02-20 Borealis Ag Propylene random copolymer composition with reduced sealing initiation temperature
BR112019024973A2 (pt) * 2017-07-14 2020-06-23 Borealis Ag Composição de polipropileno, processo para a preparação da composição de polipropileno, uso de uma composição de polipropileno, e, artigo.

Also Published As

Publication number Publication date
US20220227901A1 (en) 2022-07-21
EP3976677A1 (en) 2022-04-06
CN113874407B (zh) 2023-11-24
WO2020239583A1 (en) 2020-12-03
BR112021023443A2 (pt) 2022-01-18
CN113874407A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
RU2744581C1 (ru) Полипропиленовая композиция
EP3060589B1 (en) Low melting pp homopolymer with high content of regioerrors and high molecular weight
US11680118B2 (en) C2C3 random copolymer composition
EP3976675B1 (en) C2c3 random copolymer composition
TW202104290A (zh) C2c3隨機共聚物
US20240101735A1 (en) Film made from c2c3c4 terpolymer - c3c4 copolymer blend and c2c3c4 terpolymer - c3c4 copolymer blend
WO2022228812A1 (en) Polymer composition comprising polypropylene and hydrocarbon resin
RU2810068C2 (ru) C2C3 статистический сополимер
US11485845B2 (en) C2C3 random copolymer
CN115666900B (zh) 具有改进性能的多层薄膜
JP7488371B2 (ja) ポリプロピレンコーティング組成物
Wang et al. C 2 C 3 random copolymer composition
US20220259339A1 (en) Polypropylene film with improved slip performance
JP2023527015A (ja) ポリプロピレンコーティング組成物