TW202039057A - 碳分子篩熱解生成期間之孔結構塌陷之反應性抑制 - Google Patents

碳分子篩熱解生成期間之孔結構塌陷之反應性抑制 Download PDF

Info

Publication number
TW202039057A
TW202039057A TW108146852A TW108146852A TW202039057A TW 202039057 A TW202039057 A TW 202039057A TW 108146852 A TW108146852 A TW 108146852A TW 108146852 A TW108146852 A TW 108146852A TW 202039057 A TW202039057 A TW 202039057A
Authority
TW
Taiwan
Prior art keywords
stream
pim
membrane
pyrolysis
polymer precursor
Prior art date
Application number
TW108146852A
Other languages
English (en)
Inventor
馬瑤
麗華 周
萊恩 萊孚利
德佛爾 阿吉特 班達里
Original Assignee
美商艾克森美孚研究與工程公司
美商喬治亞科技研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾克森美孚研究與工程公司, 美商喬治亞科技研究公司 filed Critical 美商艾克森美孚研究與工程公司
Publication of TW202039057A publication Critical patent/TW202039057A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0044Inorganic membrane manufacture by chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/208Sediments, e.g. bottom sediment and water or BSW
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本文揭示碳分子篩及在包含氫氣源之反應性氣體物流之存在下藉由熱解聚合物前驅物來製造該碳分子篩之方法。

Description

碳分子篩熱解生成期間之孔結構塌陷之反應性抑制
本發明大體上係關於碳分子篩及製造其之相關方法。特別地,本發明係關於用於抑制碳分子篩熱解生成期間之孔結構塌陷之方法。
碳分子篩(CMS)係一類衍生自聚合物前驅物之熱解分解之微孔碳質材料。CMS膜具有亂層片狀結構,從而形成非晶及各向同性結構。一方面,在短程內,碳片層包含雜化縮合六角碳片,其可以任意旋轉角度彼此平行配向。基本上,咸信基本結構單元包括由前驅物主鏈之芳構化及片段化期間所產生股形成之活動被困之板陣列。另一方面,在長程內,此等片層隨機地配向、彎曲及扭轉以形成非晶結構。較大微孔經較小超微孔互連之該雙峰孔尺寸分佈係衍生自碳片之堆積缺陷。超微孔可進行分子篩分,而微孔提供大量吸附位點。該組合使CMS膜同時達成高滲透性及高選擇性,此對分離具有吸引力。此外,CMS膜具有承受在經製造成非對稱中空纖維之形式時的高跨膜壓力之能力並展現化學及熱穩定性。
CMS之分子篩分性能可藉由其微孔結構來確定,該等結構可藉由聚合物前驅物及熱解條件來控制。先前技術藉由最佳化溫度分佈,選擇不同惰性氣體環境及定劑量特定濃度之氧分子來調諧CMS微孔結構。一般而言,較高熱解溫度會得到孔尺寸減小之CMS,此會增加選擇性,但會犧牲生產率。溫度對CMS結構之影響對於各種類型之聚合物前驅物(諸如聚醯亞胺、含氟聚合物、螺聚合物等)而言係常見的。與真空熱解相比,熱解期間之惰性氣體(氬氣、氦氣及二氧化碳)淨化會導致具有更高生產率及更低選擇性之CMS膜,因為增強的熱量及質量傳遞促進降解製程。熱解氛圍中適宜濃度之氧氣亦已用於減小孔尺寸。
本文揭示用於抑制碳分子篩(「CMS」)之熱解生成期間之孔結構塌陷之方法,該方法包括提供聚合物前驅物,在腔室中加熱該聚合物前驅物至至少聚合物前驅物發生熱解之溫度,及在加熱期間使反應性氣體物流流經該腔室。在一些實施例中,碳分子篩係膜、吸附劑、觸媒或過濾器。
在一些實施例中,反應性氣體物流包括氫氣源。在一些實施例中,反應性氣體物流包括H2 。在一些實施例中,H2 係藉由在自熱或蒸汽甲烷重整型製程中將氫及烴組合來原位產生。
在一些實施例中,聚合物前驅物係膜、中空纖維、管或盤。在一些實施例中,聚合物前驅物包括剛性聚合物。在一些實施例中,聚合物前驅物包括剛性微孔聚合物。在一些實施例中,剛性微孔聚合物係具有固有微孔性之聚合物,其係選自由PIM-1、PIM-7、PIM-8、PIM-9、KAUST-PI-1、PIM-BADAS-1、PIM-DUCKY-1、PIM-Tz25 、PIM-DUCKY-2、PIM-BADAS-2及PIM-SADAS組成之群。
在一些實施例中,反應性氣體物流進一步包含選自由氬氣、氖氣、N2 、氦氣及CO2 組成之群之惰性氣體。在一些實施例中,反應性氣體物流包含H2 及氬氣。
在一些實施例中,聚合物前驅物膜之熱解溫度為500℃至1100℃。
在一些實施例中,H2 之濃度為反應性氣體物流之1 ppm至4體積%。在一些實施例中,惰性氣體物流在加熱期間流經腔室,其中該惰性氣體物流包含氬氣,且其中該惰性氣體物流之流率係不同於反應性氣體物流之流率。
本文亦揭示用於控制碳分子篩膜之孔結構之方法,該方法包括以下步驟:提供聚合物前驅物,在腔室中將該聚合物前驅物加熱至至少該聚合物前驅物發生熱解之溫度,及在加熱期間使反應性氣體物流流經該腔室,其中該反應性氣體物流包含H2
在一些實施例中,該聚合物前驅物包含PIM-1。在一些實施例中,該反應性氣體物流進一步包含選自由氬氣、氖氣、N2 、氦氣及CO2 組成之群之惰性氣體。在一些實施例中,該反應性氣體物流包含H2 及氬氣。
在一些實施例中,該聚合物前驅物膜之熱解溫度為500℃至1100℃。
在一些實施例中,該H2 在反應性氣體物流中之濃度為1 ppm至4體積%。
在一些實施例中,該方法之斜升速率為0.1℃/min至200℃/min。
在一些實施例中,該方法之冷卻降溫速率為0.1℃/min至200℃/min。
在一些實施例中,該反應性氣體物流在熱解期間與聚合物前驅物反應以形成H2 O。
在一些實施例中,惰性氣體物流在加熱期間流經腔室,其中該惰性氣體物流包含氬氣,且其中該惰性氣體物流之流率係不同於反應性氣體物流之流率。
在一些實施例中,該腔室包括通風櫥,該通風櫥包括管式爐、至少部分地設置在該管式爐內部之石英管、設置在該石英管內部之網板支撐物,及該聚合物前驅物膜係設置在該網板支撐物上。
在一些實施例中,該反應性熱解方法選擇性地靶向超微孔,同時留下微孔相對不變。
在一些實施例中,提高該聚合物前驅物之擴散選擇性,同時該聚合物前驅物之吸附選擇性基本上不變。
本文亦揭示根據以上所提及的方法製備之碳分子篩膜。
在一些實施例中,該碳分子篩膜包括5 Å至20 Å之超微孔。
在一些實施例中,該碳分子篩膜於膜中包含0.10至1.0之sp3 /sp2 雜化碳比。
在一些實施例中,該碳分子篩膜具有2 m2 /g至1000 m2 /g之表面積。
在一些實施例中,該碳分子篩膜具有比加熱期間無H2 下製備的膜之對二甲苯透過率大十四倍之對二甲苯透過率。
在一些實施例中,該碳分子篩膜具有
Figure 02_image001
Figure 02_image003
之對二甲苯透過率。
在一些實施例中,提供一種模組,其包括複數個碳分子篩且用作吸附劑床或膜床。在一些實施例中,該吸附劑床及膜床係用於氣體及氣相分離、水相分離、有機物分離及烴分離。
本文亦揭示用於對進料物流進行分離之方法,該方法包括模組,其中該進料物流包含第一組分及第二組分,以形成富含第一組分之滲透物流及耗乏第一組分之滯留物流。在一些實施例中,該進料物流包含在1重量%至99重量%之濃度範圍內之第一組分。
在一些實施例中,該進料物流係天然氣物流,該滲透物流係富含包含CO2 、H2 S、H2 O及He中之至少一者之第一組分,及該滯留物流係富含包含CH4 及N2 中之至少一者之第二組分。在其他實施例中,該進料物流包含C8 芳族烴物流,該滲透物流係富含包含苯及對二甲苯中之至少一者之第一組分,及該滯留物流係富含包含乙苯、鄰二甲苯及間二甲苯中之至少一者之第二組分。在一些實施例中,該進料物流包含直餾石腦油物流(初始沸點(IBP)-380℉),該滲透物流係富含包含正鏈烷烴及芳族烴中之至少一者之第一組分,及該滯留物流係富含包含異鏈烷烴及環鏈烷烴中之至少一者之第二組分。在一些實施例中,該進料物流包含全原油(whole crude)流,該滲透物流係富含包含石腦油(IBP至380℉)及煤油餾分(380至530℉)中之至少一者之第一組分,及該滯留物流係富含包含殘留餾分(530℉+)中之至少一者之第二組分。在其他實施例中,該進料物流包含具有瀝青、常壓渣油、減壓渣油、蒸汽裂化器焦油及/或流體催化裂化器主管柱底部之重烴物流,該滲透物流係富含包含飽和分及/或3-環芳族烴中之至少一者之第一組分,及該滯留物流係富含包含3+環芳族烴、瀝青質、金屬及/或微碳殘餘物中之至少一者之第二組分。
本文亦揭示模組,其包括根據以上所提及的方法製備並用作吸附劑床或膜床之複數個碳分子篩。
在一些實施例中,該吸附劑床及膜床係用於氣體及氣相分離、水相分離、有機物分離及烴分離。
雖然詳細解釋本發明之一些實施例,但應明瞭,可設想其他實施例。因此,無意於將本發明之範疇限於在以下描述中闡述或在附圖中說明之組件之構造及佈置之詳細內容。本發明能夠具有其他實施例且能夠以各種方式來實踐或實施。再者,在描述實施例中,為了清楚起見,將提出特定術語。
亦應明瞭,提及一或多個方法步驟並不排除在明確標識之其等步驟之間存在另外方法步驟或中間方法步驟。類似地,亦應明瞭,提及裝置或系統中之一或多種組件並不排除在明確標識之其等組件之間存在另外組件或中間組件。
CMS之分子篩分性能係藉由其微孔結構來確定,該等結構係藉由聚合物前驅物及熱解條件來控制。已知方法藉由最佳化溫度分佈,選擇不同惰性氣體環境及定劑量特定濃度之氧分子來調諧CMS微孔結構。一般而言,較高熱解溫度會得到孔尺寸減小之CMS膜,此會增加選擇性,但會犧牲生產率。溫度對CMS結構之效應對於各種類型之聚合物前驅物(諸如聚醯亞胺、含氟聚合物、螺旋聚合物等)而言係常見的。與真空熱解相比,熱解期間之惰性氣體(例如,氬氣、氦氣及二氧化碳)淨化會得到具有更高生產率及更低選擇性之CMS膜,因為增強的熱量及質量傳遞促進降解製程。熱解氛圍中適宜濃度之氧氣亦已用於減小孔尺寸。
本文所提出的方法提供一種操縱CMS膜之微孔結構之新穎途徑。首次,將反應性氣體引入至惰性熱解氛圍中。其中,該氣體係經選擇為氫氣或氫氣源。根據勒夏特列(Le Chatelier)原理,氫氣之存在假設上有利於生成更多扭轉碳應變並抑制側向相鄰支架之固結,從而導致更大的超微孔。一些先前技術利用二氧化碳作為惰性熱解氛圍,根據勒夏特列原理,此亦可影響所得結構。然而,在高溫(例如,800℃)下,二氧化碳可係氧化性的並得到具有高度開放孔之CMS,其對客體分子沒有選擇性。在熱解環境中引入反應性氣體組分(例如氫氣)會拓寬可調諧性範圍。
本文揭示碳分子篩及其製備方法。本文亦揭示用於抑制碳分子篩之熱解生成期間之孔結構塌陷之方法,其包括提供聚合物前驅物,在腔室中將該聚合物前驅物加熱至至少該聚合物前驅物發生熱解之溫度,及在加熱期間使反應性氣體物流流經該腔室。在一些實施例中,該第一反應性氣體物流包含H2 。所得的H2 輔助碳分子篩具有可控之孔結構及當用作膜時展現作為超滲透分離膜之良好性能。與在純氬氣氛圍下熱解之碳分子篩相比,該製造方法可使對二甲苯理想透過率提高15倍。
在第一態樣中, 1 描繪根據本發明之熱解方法之一個示例性實施例。其包括在腔室中將聚合物前驅物100 加熱至至少該聚合物前驅物發生熱解之溫度並在加熱期間使第一反應性氣體物流流經該腔室。 1 顯示包括通風櫥110 之腔室。該通風櫥可包括管式爐120 、至少部分地設置在管式爐120 內部之石英管130 、設置在石英管130 內部之網板支撐物140 、及設置在網板支撐物140 上之聚合物前驅物100 。在一些實施例中,管式爐120 可進一步包括三個加熱區150 。每個區均可藉由獨立地連接每個加熱區的其自身的熱電偶來控制。在該類型之爐中,管基本上居中,使得前驅物聚合物在加熱區內。如 1 中進一步顯示,包括氫氣源及氬氣之反應性氣體物流190 可經進料至爐120 之石英管130 中。石英管130 可包括入口170 及出口180 。在一些實施例中,亦可將包含氬氣之單獨惰性氣體物流160 進料至爐120 之石英管130 之入口170 中。反應性氣體物流及惰性氣體物流中之惰性氣體均可調節反應性氣體之效應,因此不會過度工程改造孔。在一些實施例中,反應性氣體物流及惰性氣體物流中之惰性氣體均可選自由氬氣、氖氣、N2 、氦氣及CO2 組成之群。替代石英管,可使用可經受熱解條件之任何其他類似化學上惰性設備。在又一些實施例中,該通風櫥可進一步包括在石英管之出口下游的O2 偵測器200 及/或用於排出反應性及惰性氣體物流之排氣口210 。在一些實施例中,該惰性氣體物流係以不同於反應性氣體物流之流率比率經進料至石英管。
在一些實施例中,反應性氣體物流氫氣源可包含H2 。在一些實施例中,反應性氣體物流係純H2 物流。在一些實施例中,反應性氣體物流中H2 之濃度為1 ppm至4體積%(例如,10 ppm、100 ppm、1000 ppm、1體積%、2體積%、3體積%)。應注意,出於安全考慮,本發明實例揭示內容各將H2 濃度限制為4體積%,但亦可考慮更高的H2 濃度。在熱解方法期間,H2 之存在抑制所得CMS材料之孔結構塌陷。H2 濃度可經選擇以獲得所需分子滲透性或滲透選擇性。
熱解通常在加熱步驟之後。藉由利用三個關鍵變量控制加熱方案將聚合物前驅物碳化成特定結構形態及碳組成:每個加熱區中之溫度設定點、達到此等溫度設定點之速率(「斜升」)、及維持在此等設定點之時間量(「浸泡」)。在一些實施例中,該方法之斜升速率為0.1℃/min至200℃/min (例如,10℃/min、2℃/min、50℃/min、75℃/min、100℃/min、125℃/min、150℃/min、175℃/min)。熱解係一般以在幾分鐘至幾小時範圍內(例如30分鐘、1小時、2小時、4小時、6小時、8小時、10小時、12小時、14小時、16小時、18小時、20小時、22小時、24小時)之浸泡時間進行。一般而言,熱解產生非晶材料,其為80重量%或更高碳且具有僅具有短程量級之特定孔尺寸之微孔尺寸分佈。
熱解一般可在寬溫度範圍內(從碳質材料之分解溫度至石墨化溫度)實現。在一些實施例中,熱解溫度可在每個加熱區中從500℃至1100℃變化。在一些實施例中,每個加熱區及任何加熱區中之熱解溫度可在500℃至1300℃之範圍內(例如,450℃、550℃、600℃、650℃、700℃、750℃、850℃、900℃、950℃、1000℃、1050℃、1150℃、1200℃、1250℃)。可選擇熱解溫度以獲得所需分子滲透性或滲透選擇性。
可使用任何適宜聚合物前驅物,其允許待分離(例如二甲苯異構體分離)的所需化學品選擇性通過。為使碳分子篩之生產具有足夠的可縮放性,聚合物前驅物可係呈膜、纖維、中空纖維、管、粉末或盤、單塊、集結粒之形式。可將聚合物塗佈至熱解穩定的支撐物諸如金屬、陶瓷支撐物上,或可與黏合劑(諸如黏土、二氧化矽、氧化鋁等)結合在一起。在一些實施例中,聚合物前驅物包含剛性聚合物。在一些實施例中,聚合物前驅物包括剛性微孔聚合物。可將聚合物粉末轉化成用於熱解方法中之聚合物膜。所得CMS具有一定孔尺寸並用作分子篩。
理想地,碳分子篩係藉由聚合物材料之適宜粉末或膜或纖維或中空纖維之可控熱解來製備。聚合物粉末可例如藉由使用習知方法研磨聚醯亞胺聚合物來形成。或者,聚合物膜可藉由使用習知方法溶液澆鑄聚醯亞胺溶液,例如,利用可變厚度的聚合物膜施料器澆鑄在平坦玻璃表面上來形成。適宜之聚醯亞胺可例如藉由使適宜二酐與二胺反應而形成。在一些實施例中,芳族聚醯亞胺樹脂係用於形成平坦膜。實際上,可使用任何粉末尺寸,只要可將經熱解之材料研磨成所需尺寸即可。儘管可使用更厚或更薄的顆粒,但該粉末之適宜顆粒尺寸係在10微米至500微米之範圍內。可將具有所需厚度及面積之聚合物膜切成所需區段且然後進行熱解。儘管可使用更厚或更薄的膜,但適宜之膜厚度係在0.001英寸至0.003英寸之範圍內,例如,0.002英寸。
適宜聚合物之實例包括經取代或未經取代之聚合物且可選自聚碸;聚(苯乙烯),包括含苯乙烯共聚物,諸如丙烯腈苯乙烯共聚物、苯乙烯-丁二烯共聚物及苯乙烯-乙烯基苄基鹵共聚物;聚碳酸酯;纖維素聚合物,諸如乙酸丁酸纖維素酯、丙酸纖維素酯、乙基纖維素、甲基纖維素、硝基纖維素等;聚醯胺及聚醯亞胺,包括芳基聚醯胺及芳基聚醯亞胺;聚醚;聚醚醯亞胺;聚醚酮;聚(芳醚),諸如聚(苯醚)及聚(二甲苯醚);聚(酯醯胺-二異氰酸酯);聚胺基甲酸酯;聚酯(包括聚芳基酯),諸如聚(對苯二甲酸乙二酯)、聚(甲基丙烯酸烷酯)、聚(丙烯酸酯)、聚(對苯二甲酸苯二酯)等;聚吡咯酮(polypyrrolone);多硫化物;來自除以上所提及以外的具有α-烯烴不飽和之單體之聚合物,諸如聚(乙烯)、聚(丙烯)、聚(丁烯-1)、聚(4-甲基戊烯-1)、聚乙烯基,例如,聚(氯乙烯)、聚(氟乙烯)、聚(偏二氯乙烯)、聚(偏二氟乙烯)、聚(乙烯醇)、聚(乙烯酯)(諸如聚(乙酸乙烯酯)及聚(丙酸乙烯酯))、聚(乙烯基吡啶)、聚(乙烯基吡咯啶酮)、聚(乙烯基醚)、聚(乙烯基酮)、聚(乙烯基醛)(諸如聚(乙烯基甲醛)及聚(乙烯基丁醛))、聚(乙烯基醯胺)、聚(乙烯基胺)、聚(乙烯基胺基甲酸酯)、聚(乙烯基脲)、聚(乙烯基磷酸酯)及聚(乙烯基硫酸酯);聚烯丙基;聚(苯并苯并咪唑);聚醯肼;聚噁二唑;聚三唑;聚(苯并咪唑);聚碳二亞胺;聚膦嗪等、及互聚物,包括包含來自以上之重複單元之嵌段互聚物,諸如丙烯腈-溴乙烯-對磺基苯基甲基烯丙基醚之鈉鹽之三元共聚物;及包含任何前述之接枝物及摻合物。提供經取代之聚合物之典型取代基包括鹵素,諸如氟、氯及溴;羥基;低碳數烷基;低碳數烷氧基;單環芳基;低碳數醯基及類似者。在一些實施例中,適宜聚合物前驅物可係具有固有微孔性之聚合物,其選自但不限於以下:PIM-1、PIM-7、PIM-8、PIM-9、KAUST-PI-1、PIM-BADAS-1、PIM-DUCKY-1、PIM-Tz25 、PIM-DUCKY-2、PIM-BADAS-2及PIM-SADAS,其結構如以下圖表所示。
剛性微孔聚合物 結構
PIM-1
Figure 02_image005
PIM-7
Figure 02_image007
PIM-8
Figure 02_image009
PIM-9
Figure 02_image011
KAUST-PI-1
Figure 02_image013
PIM-BADAS-1
Figure 02_image015
PIM-DUCKY-1
Figure 02_image017
PIM-Tz25
Figure 02_image019
PIM-DUCKY-2
Figure 02_image021
於製備待熱解以形成篩顆粒之粉末或膜中使用之聚合物材料之選擇可基於耐熱性、耐化學性、機械強度及定製分離性質以及由選擇性滲透之操作條件決定的其他因素來進行。在一些實施例中,碳分子篩係藉由芳族聚醯亞胺或纖維素聚合物之熱解來製備。適宜前驅物之熱解(一般而言,在習知上用於製備碳篩之條件下)可產生具有一定分子尺寸微孔性之產物,該微孔性負責碳之分子篩性質。在熱解製程期間,加熱可在反應性氣體氛圍下受到影響。聚合物前驅物之受控熱降解導致開孔,且因此可獲得預定孔尺寸範圍,適用於預期分離方法。
本文所述的分子篩膜係碳基分子篩膜。然而,在一些實施例中,碳分子篩可係吸附劑、觸媒、複合材料或過濾器。本文所述的篩可根據以上所提及的方法藉由熱解聚合物前驅物來製備。例如,分子篩可藉由熱解聚合物膜或其他連續聚合物體來製備。在一些實施例中,可獲得具有孔尺寸及孔尺寸分佈之流體分離膜,該流體分離膜可有效地分離氣體、流體等之特定混合物。在一些實施例中,碳分子篩可包括5 Å至20 Å(例如7 Å、9 Å、11 Å、13 Å、15 Å、18 Å)之超微孔,此係可用於二甲苯異構體分離之範圍。此外,碳分子篩可於篩中包括0.10至1.0 (例如0.20、0.40、0.60、0.70、0.80、0.90)之sp3 /sp2 雜化碳比。在一些實施例中,碳分子篩膜可具有2 m2 /g至1000 m2 /g(例如,14 m2 /g、447 m2 /g、450 m2 /g、461 m2 /g、471 m2 /g)之表面積。在一些實施例中,碳分子篩之對二甲苯透過率比加熱期間無H2 下製備的膜之對二甲苯透過率大1至1000倍(例如5倍、10倍、14倍、20倍、100倍、250倍、500倍、750倍)。在一些實施例中,碳分子篩膜具有
Figure 02_image023
Figure 02_image025
(例如8.5 × 10-16
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
)之對二甲苯透過率。
在其他實施例中,複數個碳分子篩可以任何適宜方式組合以產生分離模組。此等模組可用作吸附劑床或膜床。在一些實施例中,該等吸附劑床及膜床係用於氣體及氣相分離、水相分離、有機物分離及烴分離。進一步設想一種用於對進料物流進行分離之方法,其可包括模組。進料物流可包含第一組分及第二組分,其能夠形成富含第一組分之滲透物流及耗乏第一組分或富含第二組分之滯留物流。在一些實施例中,進料物流可包含濃度範圍為1重量%至99重量%(例如5重量%至75重量%、10重量%至60重量%、20重量%至45重量%)之第一組分。在一些實施例中,進料物流係天然氣物流。又在一些實施例中,富含第一組分之滲透物流可包含CO2 、H2 S、H2 O、He中之至少一者,及富含第二組分之滯留物流可包含CH4 及N2 中之至少一者。在其他實施例中,該進料物流可包含C8 芳族烴物流,該滲透物流係富含可包含苯、對二甲苯中之至少一者之第一組分,及該滯留物流係富含可包含乙苯、鄰二甲苯及間二甲苯中之至少一者之第二組分。在一些實施例中,該進料物流可包含直餾石腦油物流(IBP至380℉),該滲透物流係富含可包含正鏈烷烴及芳族烴中之至少一者之第一組分,及該滯留物流係富含可包含異鏈烷烴及環鏈烷烴中之至少一者之第二組分。在其他實施例中,該進料物流可包含全原油物流,該滲透物流係富含可包含石腦油(IBP至380℉)及煤油餾分(380至530℉)中之至少一者之第一組分,及該滯留物流係富含可包含殘留餾分(530℉+)中之至少一者之第二組分。在一些實施例中,該進料物流可包含重烴物流,諸如瀝青、常壓渣油、減壓渣油、蒸汽裂化器焦油、流體催化裂化器主管柱底部,該滲透物流係富含可包含飽和分及/或3-環芳族烴中之至少一者之第一組分,及該滯留物流係富含可包含3+環芳族烴、瀝青質、金屬及/或微碳殘餘物中之至少一者之第二組分。
由反應性熱解方法所賦予的微孔率、剛性、熱、化學及機械穩定性之有利的組合使得此等膜在氣體及液體分離中具有高透過率及選擇性。基於聚合物前驅物之膜基於其溶解度及經由超微孔及微孔之擴散(分子大小及形狀)之間的相對差異來分離分子。
該等膜具有在150至2000道爾頓範圍(例如,150至1500道爾頓範圍、150至600道爾頓範圍)之截止分子量(亦即,高於指定分子量之物質之>90%截留)。該等膜之孔尺寸可在5至20 Å之範圍內,使得其適合在石化、精煉、上游、天然氣、空氣純化及醫藥應用中分離多種氣體及液體。
該等膜可達成全原油及原油餾分之基於尺寸之分離。典型全原油分子量係在50至2000道爾頓之範圍內。該等膜可提供從全原油中刪除的石腦油或煤油,在該等膜具有100至500道爾頓之MWCO之情況下。在石腦油及煤油範圍內,該等膜可進一步基於MW及分子類別來分離。可利用此等膜以提供某些原油餾分(諸如石腦油(IBP至380℉)及煤油(380至530℉)、餾出物(530至650℉)及真空氣體油(650至1050℉)餾分)中芳族烴、環鏈烷烴、正鏈烷烴及異鏈烷烴之基於類別之分離。由於此等膜之MWCO在<500道爾頓範圍內,因此該等膜可用於自原油及其餾分移除瀝青質、多環(3+環)芳族烴、雜原子、金屬(鎳、釩、鐵、鈣)、硫化物。
該等膜可進一步以奈米過濾模式用於自有機溶劑移除均質觸媒,諸如基於銠、鎳配位體之鈷羰基觸媒,自己烷移除聚烯烴寡聚物及聚合物,自真空渣油或真空氣體油範圍的芳族分子移除環丁碸/NMP溶劑,自溶劑移除高碳數烯烴之金屬茂觸媒及自溶劑(諸如MEK及甲苯)移除潤滑油。該等膜可用於將有機物(諸如醇(乙醇、丁醇)或酮)自水脫水。碳分子篩膜為膜提供所需結構、化學及機械穩定性,此使得能夠分離各種有機分子,否則該等有機分子會膨脹、增塑或溶解聚合物膜,從而顯著縮短其實際壽命。
CMS由於其較高的熱、化學及機械穩定性而可替代地用於反應性分離。膜反應器能夠選擇性滲透產物或反應物分子,從而提高平衡控制反應之效率。膜反應器之實例包括可提高氣相或液相異構化反應之效率之對二甲苯選擇性膜、可提高直接甲烷至液體反應、水氣體移位轉化反應及丙烷脫氫反應之效率之H2 選擇性膜,從而藉由除去水來提高酯化產率。
該等膜可用於具有多個階段之製程或在各種模態(例如,奈米過濾(NF)、逆向滲透(RO)、正向滲透(FO)、壓力阻滯滲透(PRO)、全蒸發、氣體分離、蒸汽分離)下操作且具有不同幾何形狀(例如中空纖維、單塊、螺旋纏繞及板框、盤、試樣塊)之級聯型構造。可運行膜製程以得到約1重量%至99重量%之滲透產率。穿過膜的通量可取決於膜孔尺寸及測試條件而變化。通量在約0.1至20加侖/ft2 /天範圍之範圍內。
用於該製程中之膜應在約75至932℉ (24至500℃) (例如,120至775℉ (49至413℃)、212至525℉ (100至274℃)、361至454℉ (183至234℃)之溫度下穩定。取決於膜模態,本文所使用的膜應能夠承受大於約環境至約2000 psig (約13.8 MPag)之跨膜壓力。對於NF及RO,進料通常係經加壓為約100 psig (約700 kPag)至2000 psig (約13.8 MPag),且約2000 psig (約13.8 MPag)係商業膜模組之典型極限。在NF及RO中,滲透側通常為環境壓力至約100 psig (約700 kPag)。在全蒸發中,進料為環境至約60 psig (約400 kPag)之任何者及滲透側係在真空,其中壓力通常係約0.2至0.3巴(3至5 psia),但可低至約0.02巴。在FO中,壓力差不驅動分離,而是,驅動力係藉由使用濃度梯度之正向滲透壓力。在FO中,大分子由於其較高滲透壓力而自然地將更快滲透的物質吸引穿過膜。FO需要在滲透物中進行另一個分離步驟,但所吸引的分子與滲透物分子相比非常大且然後可使用已知技術(諸如蒸餾)輕易地分離。
該等膜可定位於單個膜單元(階段)中或定位於幾個單元中,其中每個單元可包含一或多個單獨膜。通常,膜單元之數量可取決於單獨膜之表面積與意欲滲透的所需蒸汽量之組合。就組合物或構造而言,膜單元可包括相同類型或不同類型之膜。因此,膜單元在就形狀、滲透性、滲透選擇性或可用於滲透之表面積中之一者或多者而言可彼此不同。此外,膜可例如串聯或並聯佈置。
咸信,本發明之碳分子篩(CMS)膜係具有能夠增強分子滲透之孔尺寸分佈及互連通道之超孔及微孔材料。在孔尺寸分佈內是侷限的超微孔開孔,其尺寸與分子之分子尺寸為相同數量級。通常咸信,「超微孔」在碳分子篩材料中進行分子篩分(尺寸選擇性)過程,而連接超微孔之較大「微孔」提供吸附腔並藉由促進較大平均擴散躍遷而允許高通量之氣體滲透物。因此,本發明之碳分子篩之多孔性質提供其對高氣體透過率之能力,但其分子篩分形態允許對氣體滲透物進行精確區分以產生高度選擇性膜。此外,在典型熱解中,超微孔塌陷,但在根據所揭示的示例性實施例之熱解中,超微孔不塌陷。
用於熱解方法中之PIM-1聚合物可如下獲得。其合成可以四氟對苯二甲腈(TFTPN)及5,5’,6,6’-四羥基-3,3,3’,3’-四甲基-1,1’-螺雙茚滿(TTSBI)在二甲基甲醯胺溶劑中之反應開始。使用PIM-1/四氫呋喃溶液澆鑄方法,可製備螢光黃獨立式緻密聚合物PIM-1膜。
碳分子篩材料可係非晶、各向同性及/或微孔的。最初,在熱斜升製程中,纏結的半撓性PIM-1前驅物會經歷芳構化及片段化且可經歷足夠的局部應力,此導致沿其主鏈之周期性斷裂。此類主鏈斷裂與CO2 及H2 O生成一起發生以移除PIM-1之大部分氧原子,從而導致可能的剛性、高芳族性股。基於逸出的CO2 及H2 O的量(可藉由質譜法測量),如 2A 中所顯示, 2B 中提出假設的反應途徑。然後,生成的反應產物彼此連接以形成剛性股。然後,剛性股可組織成更多可堆積板以具有總體更高的熵值並減少股「隨機」相堆積中存在的排除體積。應注意,股之間的側向鍵聯可出於反應性固結目的而發生,在該過程中會逸出分子H2 。然而,動力學限制(例如最終「斜升」及高溫「浸泡」期之有限時間)導致板自身內部的股組織不完美及長程板堆疊缺陷。典型理想化微孔「細胞」由包含經不完美組織股之經不完美堆積板形成。在CMS材料中,股之間的縫隙係超微孔,其能分子篩分,而板之間的空隙係提供大量吸附位點之微孔。在浸泡及冷卻階段期間,多個相鄰細胞之持續形成及固結(細胞之間共享超微孔「壁」)將產生具有雙峰孔分佈之理想化CMS結構。在一些實施例中,該方法之冷卻降溫速率為0.1℃/min至200℃/min(例如,10℃/min、25℃/min、50℃/min、75℃/min、100℃/min、125℃/min、150℃/min、175℃/min)。由於引入H2 之超微孔擴大說明於 2C 中且可以兩種方式解釋。一方面,熱解環境中H2 之存在將抑制氧呈CO2 之形式之損失及促進氧原子呈H2 O之形式之移除,此點藉由 2A 證實。結果,與形成於純Ar中之股相比,在包含H2 之熱解環境中之所形成的股將更加紐結。該紐結結構性質將使股之配向困難得多,此增加股之缺陷並因此增加超微孔之尺寸。另一方面,考慮到勒夏特列原理,側向支架之固結將受到存在於氛圍中之H2 分子抑制,從而導致股之間的縫隙更大。由於此等兩個因素,H2 輔助式CMS內部的超微孔尺寸顯著增加,且因此,H2 可抑制CMS熱解生成期間之孔結構塌陷。CMS之超選擇性分離性能可歸因於CMS之獨特「狹縫狀」雙峰孔結構。實例
以下實例係例示(但不限制)本發明之方法及組合物。本領域中通常會遇到且熟習此項技術者明瞭之各種條件及參數之其他適宜修改及改編係在本發明之精神及範疇內。實例 1 PIM-1 之合成
使用低溫縮聚法來合成PIM-1。將兩種經純化單體四氟對苯二甲腈(TFTPN)及5,5’,6,6’-四羥基-3,3,3’,3’-四甲基-1,1’-螺雙茚滿(TTSBI)以等莫耳比添加至圓底燒瓶內的無水二甲基甲醯胺(DMF)中。在該等單體完全溶解後,將無水高度碎裂的K2 CO3 (相對於TFTPN單體莫耳濃度為2.5倍)添加至該溶液,並在氮氣氛圍下於65℃下連續攪拌聚合反應72小時。反應後,於冷卻後,使用去離子水以淬滅該反應並沉澱出PIM-1聚合物。然後藉由過濾收集粗產物並用另外去離子水洗滌以除去鹽及溶劑殘餘物。自氯仿重複再沉澱進一步純化該聚合物。最後,在使用前,在真空烘箱中於70℃下乾燥螢光黃PIM-1聚合物12小時。與聚苯乙烯標準品相比,藉由凝膠滲透層析(GPC)在四氫呋喃(THF)中測定的分子量為Mn =46,500,PDI=1.5。實例 2 :聚合物膜之製備
將經乾燥之PIM-1 (0.5 g)溶解在THF (25 g)中以形成2重量%聚合物溶液並在室溫下置於輥上6小時以形成均質溶液。然後將所得的聚合物溶液用於藉由溶液澆鑄法在室溫下在通風櫥中的手套袋(Glas-Col)內部製備聚合物PIM-1膜。在澆鑄製程之前,將聚合物溶液、玻璃板、刮刀、包含過量THF之燒杯置於手套袋內部。然後密封該手套袋,用氮氣淨化三次,並用THF完全飽和5小時。隨後,將該溶液從小瓶轉移至該玻璃板並澆鑄成均勻膜。隨後,該膜隨著THF在手套袋中緩慢蒸發3天而固化,然後在使用前再真空乾燥24小時。實例 3 PIM-1 衍生之 CMS 膜之製造
CMS膜係於位於如圖1中所述的通風櫥內部的熱解裝置中自聚合物前驅物(PIM-1)膜製成。首先將經乾燥之圓形PIM-1聚合物膜置於不銹鋼網板上,放入石英管中並負載至三區熱解爐(OTF-1200X-III-S-UL,MTI Corporation)中。藉由獨立地連接至控制器之三個通道的三個熱電偶,石英管內部之溫度分佈係均勻的。石英管之密封係藉由一對具有雙重高溫聚矽氧o型環之SS 304真空法蘭來確保。藉由用4體積%氫氣/氬氣混合氣體及/或UHP氬氣淨化管至少12小時來達成無氧氛圍。使用兩個數位流量計(Bubble-O-Meter)以監測氫氣/氬氣混合氣體及純氬氣線之流率,此可精確控制惰性環境中之氫氣濃度(0至4體積%)。就安全考慮,若通風櫥內部的氫氣量高於8000 pm,則將觸發表面安裝式氫氣偵測器。如藉由氧氣分析儀(R1100-ZF Rapidox 1100ZF,CEA Instruments, Inc.)測得,典型氧氣濃度係低於0.5 ppm。所使用的加熱方案繪示於下 1 中。 表1. 用於製造PIM-1衍生之CMS之加熱方案
方案階段 步驟 加熱速率(℃/min) 最終熱解溫度
500℃ 800℃ 1100℃
斜升 1 10 25至200℃ 25至500℃ 25至800℃
2 3 200至485℃ 500至785℃ 800至1085℃
3 0.25 485至500℃ 785至800℃ 1085至1100℃
浸泡 4 0 在500℃下浸泡2小時 在800℃下浸泡2小時 在1100℃下浸泡2小時
冷卻 5 - 在熱解環境下自然冷卻回至25℃
實例 4 :藉由氮氣物理吸附之材料表徵
3A 3B 中展示H2 對CMS之孔結構之調諧效應。在77 K下進行N2 物理吸附實驗。在500℃之最終熱解溫度下選擇四種氫氣體積分率4體積%、2體積%、1體積%及0體積%。無法獲得在77 K下針對在0% H2 氛圍下熱解的CMS膜之合理的N2 物理吸附等溫線,這指示此等CMS內部的超微孔尺寸極類似於N2 (3.64 Å)並導致N2 擴散極緩慢。相比之下,在包含H2 之環境下熱解的CMS顯示在5至20 Å之範圍內之超微孔。此外,當氫氣量從4體積%減少至1體積%時,超微孔之分佈變窄。H2 對熱解製程期間之結構塌陷之抑制效應亦可理解為PIM-1前驅物內部的超微孔在更多H2 存在下受到更佳保護。可觀察到,對於不同H2 量條件(例如,1體積%、2體積%、4體積%),微孔之分佈幾乎沒有變化,如 3A 中所顯示。此外,藉由比較在500℃及800℃下熱解的CMS樣品之孔尺寸分佈,可看出較高的熱解溫度可窄化微孔及超微孔兩者。然而,在極高熱解溫度(例如1100℃)下,在H2 之存在下會發生嚴重的結構塌陷。因此,以上分析指示,最終熱解溫度及熱解氛圍中之H2 濃度分別基本上影響CMS之孔結構。
氮氣物理吸附實驗係在Belsorp MAX (MicrotracBEL,Japan)中於77K下進行。利用Micro Active軟體包(Micromeritics,USA),藉由BJH方法,從N2 等溫線獲得2D-NLDFT(二維非局部密度泛函理論)孔尺寸分佈計算。如下表2中所顯示之總孔體積係基於在0.95之P/P0 下吸附的總N2 量計算。於Belsorp-Vac II上低於10-2 kPa之真空下於110℃下使樣品脫氣12小時。每次分析後進行自由空間測量。 表2.不同條件下PIM-1前驅物及CMS材料之N2 物理吸附實驗之孔體積
樣品 孔體積(cm3 /g) 表面積(m2 /g)
PIM-1前驅物 0.725 723
CMS_500℃_0% H2 0.007 23
CMS_500℃_1% H2 0.153 450
CMS_500℃_2% H2 0.158 461
CMS_500℃_4% H2 0.161 471
CMS_800℃_4% H2 0.156 447
CMS_1100℃_4% H2 0.004 14
實例 5 碳結合測試
為研究樣品內部之碳結合性質,將在不同條件下製造的CMS樣品各者之x射線光電子光譜之每個光譜解迴旋為三個高斯峰。使用配備有單色Al-Kα X射線源之K-Alpha XPS (Thermo Fisher Scientific,West Palm Beach,FL)進行X射線光電子光譜(XPS)。氧化銀用作內標準來校準光譜。在收集XPS光譜之前,將XPS分析腔室抽真空至2×10-8 mbar或更低之壓力。
對於所有所研究的樣品,均獲得良好擬合度,藉由約化平方根值χ 2 小於3及測定係數R 2 大於0.99指示。在其最大值之間具有約1 eV之相對結合能距離的兩個最強信號與不同雜化狀態相關。在較低結合能處之信號對應於sp2 雜化碳(二維石墨層狀結構)及能量偏移約1 eV之信號歸因於sp3 雜化碳。此外,在289 eV附近觀察到的第三信號證實存在呈C-O之碳狀態。尚不清楚形成sp3 (亞穩狀態)之確切機理,但可藉由碰撞級聯效應理論來解釋,該機理藉由組合或「壓縮」由緊密相鄰的碳-碳雙鍵形成sp3 碳結構。Sp3 雜化碳(三維結構)可用於高通量,而sp2 雜化碳會導致孔塌陷。每個CMS樣品中sp2 及sp3 雜化碳之含量可藉由其信號面積比來估算。如 3C 3E 中所顯示,隨著熱解溫度之降低或氫氣濃度之增加,CMS膜中之sp3 /sp2 碳比單調地增加。增加的sp3 /sp2 碳比亦意指CMS樣品之自由體積更高。實例 6 :有機吸附測量
在55℃下用TA VTI-SA+自動化蒸氣吸附分析儀(TA Instruments,New Castle,DE)在0.000至0.400範圍之相對壓力下測量PIM-1衍生之CMS膜中單二甲苯組分之重量蒸氣吸附。在每次測試之前,首先將碳膜壓碎成較小顆粒(平均顆粒尺寸可從SEM獲得)以確保足夠的樣品負載且然後在流動氮氣下於120℃下原位乾燥720分鐘。將每個步驟之平衡標准設定為歷時60分鐘時間質量變化小於0.0005重量%。由於儀器限制,手動測量在單位活性相對壓力點之所有吸收量至少3次,每次在新膜上。在每次測試中,在真空下於120℃下乾燥PIM-1衍生之CMS膜12小時以移除水分並稱重以獲得初始質量值。之後,將膜浸泡於20 mL小瓶內的純對二甲苯或鄰二甲苯中且然後置於55℃的烘箱中以測量純組分單位活性點。浸泡25天及30天後稱量樣品及發現每種情況下樣品重量相同。最後,使用飽和膜質量值以獲得在單位活性點之吸收量。
4A 顯示在500℃及4% H2 下形成之CMS及在500℃及0% H2 下形成之CMS之在55℃下收集的對二甲苯及鄰二甲苯之吸附等溫線。在每個相對壓力下對二甲苯及鄰二甲苯之吸收彼此之間僅展現很小的差異(在1重量%之內),顯示不存在吸附選擇性分離機理。然而,令人意外地,剛性CMS膜內部的超微孔能夠進行分子篩分並允許較小的對二甲苯分子比較大的鄰二甲苯分子更快地擴散。如 4B 中所繪示,在將H2 引入熱解環境中後,輸送擴散率顯著增加(在55℃及0.05相對飽和下,對於對二甲苯,為1.0×10-9 cm2 /s相對7.2 ×10-11 cm2 /s,對於鄰二甲苯,為4.0×10-11 cm2 /s相對2.3 ×10-12 cm2 /s)。此主要係歸因於藉由具有較大超微孔之剛性碳結構提供之對客體分子之擴散較少抵抗。因此,H2 輔助式CMS展現略低擴散選擇性,此指示在CMS型材料之擴散選擇性與擴散率之間的權衡。實例 7 Wicke-Kallenbach 滲透測量
H2 輔助式PIM-1衍生之CMS膜之分離性能可藉由Wicke-Kallenbach技術進行測試。對於Wicke-Kallenbach滲透測量,將獨立式緻密CMS膜固定在外徑為1英寸且內徑為3/8英寸之鋁帶環(McMaster-carr鋁遮蔽鋁帶,0.003英寸厚)之間並藉由化學抗性環氧樹脂(JB Weld MarineWeld)密封。
在吾人先前使用的設備中實施二甲苯蒸氣之Wicke-Kallenbach滲透實驗。進行測量直到達成平衡,此通常在連續測試24小時後達成。藉由Wicke-Kallenbach滲透測得的對二甲苯或鄰二甲苯之透過率可藉由使用等式6計算。
Figure 02_image035
Figure 02_image037
係對二甲苯或鄰二甲苯之莫耳流率且可藉由氣相層析及質量流量控制器來獲得。此處,
Figure 02_image039
設定為
Figure 02_image041
,對二甲苯或鄰二甲苯在相對操作溫度下之飽和蒸氣壓,同時
Figure 02_image043
設定為0。
Figure 02_image045
係CMS膜之厚度及係藉由SEM測量。
Figure 02_image047
係CMS膜之滲透面積且可使用Image J® 軟體獲得。
在跨膜總壓力差維持在零時,純二甲苯或二甲苯混合物之進料沖洗上游同時氮氣流過滲透物側且然後至氣相層析以測量已滲透穿過膜之二甲苯分子。如 5A5B 中所繪示,熱解環境中之較低熱解溫度或較高H2 濃度可導致對二甲苯之較高透過率及對二甲苯/鄰二甲苯間之較低滲透選擇性。以上已證明,H2 量及熱解溫度均可有效地影響CMS膜內部的孔尺寸分佈及sp3 /sp2 雜化碳比。如前面所提及,sp3 雜化碳具有有助於通量之3D結構而sp2 雜化碳主要構成不能透過之平坦結構。此表明CMS膜之sp3 /sp2 雜化碳比與客體分子之透過率間可能正相關。如 5C 中所顯示,因為sp3 /sp2 雜化碳比從0.24增加至0.65,故對二甲苯穿過CMS膜之透過率確實從2.8×10-16 顯著增加至
Figure 02_image049
(增加~30257%)而滲透選擇性從38.9略減小至18.8(減小~52%)。
H2 對用於分離二甲苯異構體之CMS膜之滲透性能之令人意外且有益之效應進一步繪示於 5D 5E 中。為證實CMS膜之實際二甲苯分離性能,在55℃下測試等莫耳對二甲苯/鄰二甲苯混合蒸氣穿過此等膜之滲透。 5D 顯示基於等莫耳Wicke-Kallenbach測試,氫氣濃度及熱解溫度對CMS膜之對二甲苯/鄰二甲苯分離性能之效應。證實在減少H2 量或提高熱解溫度下緊縮超微孔會改良二甲苯異構體之區分,但犧牲透過率。 5E 顯示與在純氬氣環境(中空)下熱解的膜之對二甲苯/鄰二甲苯分離性能相比,4體積% H2 輔助式CMS膜(實心)之對二甲苯/鄰二甲苯分離性能。如所示,在500℃及4體積% H2 /Ar下製備的膜獲得相比無H2 下製備的膜大至少14倍之對二甲苯透過率,無論至經吸附擴散模型預測之透過率,從純組分Wicke-Kallenbach測量值或等莫耳Wicke-Kallenbach測量值至實驗值。
因此,與由於純氬氣熱解所產生的極狹窄超微孔相比,藉助於H2 產生的較大超微孔提供對客體分子之擴散較少抵抗。不同於透過率,滲透選擇性僅可展現可忽視之變化。此可能係由於以下事實:滲透選擇性主要由CMS膜內部之超微孔及約5至7 Å之H2 擴大超微孔尺寸(例如,所使用的二甲苯異構體對二甲苯及鄰二甲苯分別具有5.8 Å及6.8 Å之動力學直徑)決定。因此,H2 輔助式CMS仍可有效地以藉由具有適宜尺寸之剛性超微孔提供的分子篩分效應區分對二甲苯及鄰二甲苯。應注意,對於純組分Wicke-Kallenbach測試,與經吸附擴散模型預測之結果相比,對二甲苯之透過率更高(8.5×10-14 相對
Figure 02_image051
)及滲透選擇性較低(例如18.8相對24.6)。此可能係由於CMS膜內部的一些小的非選擇性洩漏途徑所致。等莫耳混合物測試中之對二甲苯透過率小於從純組分測試獲得之值(6.0×10-14 相對
Figure 02_image053
)而在混合物情況下之滲透選擇性下降(例如14.7相對18.8),此係快速及緩慢輸送二甲苯分子之間的摩擦耦合效應之信號。實例 8 X 射線繞射分析
在具有X’加速器偵測器及Cu Kα輻射(λ=1.5406 Å)之X'Pert PRO Alpha-1X射線繞射儀上,在45 kV之電壓及40 mA之電流下,使用5°至60°之掃描角2θ,在0.016°之步長及20 s/步之掃描時間下,進行X射線繞射(XRD)分析。
XRD資料(如 6A 中所顯示)提供詳細資訊以研究CMS材料之d間距,其表現為代表碳片之間平均晶面間距離之寬反射。由於CMS中之狹縫狀微孔係由相鄰碳片之不充分堆積形成的,因此可使用層間距離定性評估客體分子之擴散通道。隨著熱解溫度之升高,偵測到的CMS膜之寬反射逐漸地從22.7°移至23.8°。顯示於XRD中之反射之中心位置之移動顯示,相鄰平面之間的層間間距隨著熱解溫度之升高而減小。特別是,平均d間距從3.91 Å減小至3.74 Å,此主要由不同熱解溫度之原子組織條件及碳化程度之差異所決定。CMS材料之d間距值減小指示自由體積降低。另外,在較高熱解溫度下,在44.0°附近所觀察到的反射更明顯。該反射(其顯示2.06 Å之d間距值)係石墨平面(理想石墨中之(100)平面)之碳-碳間距之信號,並顯示CMS中堆積良好且更有序之碳結構之形成。在某種程度上,該現象證實在更高熱解溫度下,CMS膜之結構變得更像理想石墨之結構。本文呈現的XRD結果(其支持CMS材料中溫度引起之孔隙度損失之假設)與衍生自PIM-1之CMS類似物之結果相當一致。亦研究熱解氫氣濃度對XRD圖案之效應,如 6B 中所顯示。隨著H2 濃度從0%增加至4%,寬反射從23.2°逐漸地移至22.7°,此意指平均d間距從3.83 Å增加至3.91 Å。此亦證明H2 可抑制熱解製程期間之孔結構塌陷。實例 9 傅立葉變換紅外光譜
在Thermo Scientific Nicolet iS50 FT-IR光譜儀(Thermo Scientific,West Palm Beach,FL)上以透射模式記錄傅立葉變換紅外光譜(FTIR),其中樣品係用溴化鉀(KBr)以1:100之質量比研磨並壓成晶圓。範圍設定為2400至800 cm-1 ,掃描64次及解析度為8 cm-1
FTIR光譜( 7A 7B )顯示碳化PIM-1之化學演進呈熱解溫度及H2 量之函數關係。PIM-1之光譜顯示在2238 cm-1 (C≡N)、1607 cm-1 (芳族C=C彎曲)、1470-1430 cm-1 (於-CH2 -及-C-CH3 基團內之-C-H彎曲)及1300-1000 cm-1 (-C-O-拉伸)之特徵吸收帶。如 7B 中所顯示,對於在500℃下熱解的CMS樣品,即使幾個譜帶之峰強度與PIM-1前驅物相比顯著降低,但仍存在明顯的吸收帶,此意指在相對低溫度下熱解的CMS樣品在某種程度上保留一些聚合特性。然而,如圖7A 中所顯示,隨著熱解溫度進一步升高至800℃或甚至1100℃,吸收帶消失。XRD結果顯示,在較高熱解溫度下形成的CMS樣品更具石墨狀。應注意,對於理想石墨,FTIR光譜中不存在官能基。另外,隨著熱解環境中之氫氣濃度之增加,特徵帶之峰強度明顯增加。該現象表明,在較高H2 量條件下熱解的CMS樣品在某種程度上更具聚合性,如同此亦藉由關於熱解後總樣品重量損失的實驗得以證明。
應明瞭,本文所揭示的實施例及申請專利範圍在其應用方面不受限於本描述中所陳述及附圖中所說明之組件之構造及佈置之詳細內容。而是,本描述及附圖提供所設想的實施例之實例。本文所揭示的實施例及申請專利範圍進一步能夠用於其他實施例且能夠以各種方式來實踐及實施。再者,應明瞭,本文所採用的行語(phraseology)或術語(terminology)係出於描述之目的而不應被視為限制申請專利範圍。
因此,熟習此項技術者應明瞭,本申請案及申請專利範圍所基於的概念可容易地用作用於實施呈現於本申請案中之實施例及申請專利範圍之若干目的之其他結構、方法及系統之設計的基礎。因此,重要的是,申請專利範圍被認為包括此類等效構造。
100:聚合物前驅物 110:通風櫥 120:管式爐 130:石英管 140:網板支撐物 150:加熱區 160:惰性氣體物流 170:入口 180:出口 190:反應性氣體物流 200:O2偵測器 210:排氣口
現將參考附圖,該等附圖不一定按比例繪製,且其中:
圖1描繪本文所揭示的熱解方法之一個實施例,不一定按比例繪製。
圖2A至2C描繪根據本發明之一個示例性實施例之熱解所包括的氫氣對CMS生成方法之影響。
圖3A至3E描繪根據本發明之各種實施例製造的PIM-1及CMS之表徵結果。
圖4A至4B描繪根據本發明之一個示例性實施例之CMS膜之吸附及擴散性能。
圖5A至5E描繪根據本發明之一個示例性實施例之CMS膜之滲透性能。
圖6A至6B描繪根據本發明之各種實施例之X射線繞射分析。
圖7A至7B描繪根據本發明之各種實施例之傅立葉(Fourier)變換紅外光譜分析。
100:聚合物前驅物
110:通風櫥
120:管式爐
130:石英管
140:網板支撐物
150:加熱區
160:惰性氣體物流
170:入口
180:出口
190:反應性氣體物流
200:O2偵測器
210:排氣口

Claims (38)

  1. 一種用於控制碳分子篩之孔結構之方法,該方法包括: 提供聚合物前驅物; 在腔室中加熱該聚合物前驅物至至少該聚合物前驅物發生熱解之溫度;及 在該加熱期間使反應性氣體物流流經該腔室。
  2. 如請求項1之方法,其中該反應性氣體物流包含氫氣源。
  3. 如請求項1之方法,其中該反應性氣體物流包含H2
  4. 如請求項1之方法,其中該反應性氣體物流進一步包含選自由氬氣、氖氣、N2 、氦氣及CO2 或其組合組成之群之惰性氣體。
  5. 如請求項1之方法,其中該反應性氣體物流包含H2 及氬氣。
  6. 如請求項1之方法,其中該聚合物前驅物膜之熱解溫度為500℃至1500℃。
  7. 如請求項1之方法,其中該聚合物前驅物膜之熱解之浸泡時間為30分鐘至24小時。
  8. 如請求項1之方法,其中該反應性氣體物流係純H2 物流。
  9. 如請求項1之方法,其中該H2 之濃度為該反應性氣體物流之1 ppm至4體積%。
  10. 如請求項1之方法,其中該聚合物前驅物包括剛性聚合物。
  11. 如請求項10之方法,其中該聚合物前驅物包括剛性微孔聚合物。
  12. 如請求項11之方法,其中該剛性微孔聚合物係選自由PIM-1、PIM-7、PIM-8、PIM-9、KAUST-PI-1、PIM-BADAS-1、PIM-DUCKY-1、PIM-Tz25 、PIM-DUCKY-2、PIM-BADAS-2、PIM-SADAS及其組合組成之群之具有固有微孔性之聚合物。
  13. 如請求項1之方法,其中該碳分子篩係用作膜、吸附劑、觸媒、複合材料或過濾器。
  14. 如請求項1之方法,其中該聚合物前驅物具有膜、片狀纖維、中空纖維、經塗佈管、經塗佈盤或經塗佈單塊之形狀因子。
  15. 如請求項1之方法,其中惰性氣體物流在該加熱期間流經該腔室,其中該惰性氣體物流包含氬氣,且其中該惰性氣體物流之流率係不同於該反應性氣體物流之流率。
  16. 如請求項1之方法,其中該聚合物前驅物包含PIM-1。
  17. 如請求項1之方法,其中該方法之斜升速率為0.1℃/min至200℃/min。
  18. 如請求項1之方法,其中該方法之冷卻降溫速率為0.1℃/min至200℃/min。
  19. 如請求項1之方法,其中該反應性氣體物流在熱解期間與該聚合物前驅物反應以形成H2 O及/或CO2
  20. 如請求項1之方法,其中該腔室包括通風櫥,該通風櫥包括管式爐、至少部分地設置在該管式爐內部之石英管、設置在該石英管內部之網板支撐物,及該聚合物前驅物係設置在該網板支撐物上。
  21. 如請求項1之方法,其中藉由該熱解選擇性地靶向該碳分子篩之超微孔以防止塌陷同時留下該等微孔相對不變。
  22. 如請求項1之方法,其中提高該聚合物前驅物之擴散選擇性,同時該聚合物前驅物之吸附選擇性基本上不變。
  23. 如請求項1之方法,其中選擇H2 濃度及/或熱解溫度以獲得所需分子滲透率或滲透選擇性。
  24. 一種碳分子篩膜,其係根據請求項1之方法製備。
  25. 如請求項24之碳分子篩膜,其包含5 Å至20 Å之超微孔。
  26. 如請求項24之碳分子篩膜,其中該膜中之sp3 /sp2 雜化碳比為0.1至1.0。
  27. 如請求項24之碳分子篩膜,其中該表面積為2 m2 /g至1000 m2 /g。
  28. 如請求項24之碳分子篩膜,其具有比加熱期間在無H2 下製備之膜之對二甲苯透過率大十四倍之對二甲苯透過率。
  29. 如請求項24之碳分子篩膜,其具有8.5 ×10-15
    Figure 03_image055
    至8.5 ×10-13
    Figure 03_image055
    之對二甲苯透過率。
  30. 一種模組,其包括根據請求項1之方法製備並用作吸附劑床或膜床之複數個碳分子篩。
  31. 如請求項30之模組,其中該吸附劑床及該膜床係用於氣體及氣相分離、水相分離、有機物分離及烴分離。
  32. 一種用於對進料物流進行分離之方法,其包括如請求項30之模組,其中該進料物流包含第一組分及第二組分,以形成富含該第一組分之滲透物流及耗乏該第一組分之滯留物流。
  33. 如請求項32之方法,其中該進料物流包含在1重量%至99重量%之濃度範圍內之該第一組分。
  34. 如請求項32之方法,其中該進料物流係天然氣物流,該滲透物流係富含包括CO2 、H2 S、H2 O及He中之至少一者之第一組分,及該滯留物流係富含包括CH4 及N2 中之至少一者之第二組分。
  35. 如請求項32之方法,其中該進料物流包含C8 芳族烴物流,該滲透物流係富含包括苯及對二甲苯中之至少一者之第一組分,及該滯留物流係富含包括乙苯、鄰二甲苯及間二甲苯中之至少一者之第二組分。
  36. 如請求項32之方法,其中該進料物流包含直餾石腦油物流(IBP至380℉),該滲透物流係富含包括正鏈烷烴及芳族烴中之至少一者之第一組分,及該滯留物流係富含包括異鏈烷烴及環鏈烷烴中之至少一者之第二組分。
  37. 如請求項32之方法,其中該進料物流包含全原油(whole crude)物流,該滲透物流係富含包括石腦油(IBP至380℉)及煤油餾分(380至530℉)中之至少一者之第一組分,及該滯留物流係富含包括殘留餾分(530℉+)中之至少一者之第二組分。
  38. 如請求項32之方法,其中該進料物流包含具有瀝青、常壓渣油、減壓渣油、蒸汽裂化器焦油及/或流體催化裂化器主管柱底部之重烴物流,該滲透物流係富含包括飽和分及/或3-環芳族烴中之至少一者之第一組分,及該滯留物流係富含包括3+環芳族烴、瀝青質(asphaltene)、金屬及/或微碳殘餘物中之至少一者之第二組分。
TW108146852A 2018-12-31 2019-12-20 碳分子篩熱解生成期間之孔結構塌陷之反應性抑制 TW202039057A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862786894P 2018-12-31 2018-12-31
US62/786,894 2018-12-31

Publications (1)

Publication Number Publication Date
TW202039057A true TW202039057A (zh) 2020-11-01

Family

ID=71121633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146852A TW202039057A (zh) 2018-12-31 2019-12-20 碳分子篩熱解生成期間之孔結構塌陷之反應性抑制

Country Status (4)

Country Link
US (1) US11660575B2 (zh)
AR (1) AR117545A1 (zh)
TW (1) TW202039057A (zh)
WO (1) WO2020142207A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237021B2 (ja) * 2017-06-15 2023-03-10 ダウ グローバル テクノロジーズ エルエルシー 支持された炭素分子ふるい膜およびそれらを形成する方法
WO2020154146A1 (en) * 2019-01-25 2020-07-30 Dow Global Technologies Llc A carbon molecular sieve membrane produced from a carbon forming polymer-polyvinylidene chloride copolymer blend
CN116194191A (zh) * 2020-08-26 2023-05-30 阿卜杜拉国王科学技术大学 基于无氧聚合物前体的碳分子筛膜
CN113289675B (zh) * 2021-06-16 2023-05-02 西京学院 一种用于重油催化裂化的催化剂及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9600082D0 (en) * 1996-01-04 1996-03-06 Exxon Chemical Patents Inc Molecular sieves and processes for their manufacture
KR20030015287A (ko) * 2000-06-22 2003-02-20 이 아이 듀폰 디 네모아 앤드 캄파니 혼합 매트릭스 나노다공성 탄소 멤브레인
CN104125855B (zh) * 2011-12-20 2017-05-17 佐治亚科技研究公司 高性能碳分子筛中空纤维膜的多孔形态的稳定化
EP2911769A4 (en) * 2012-10-29 2016-06-15 Georgia Tech Res Inst CARBON MOLECULAR SIEVE MEMBRANES FOR NITROGEN / METHANE SEPARATION
JP6532476B2 (ja) 2014-02-27 2019-06-19 国立大学法人京都大学 架橋ポリマー、その製造方法、モレキュラーシーブ組成物及び材料分離膜
US9795927B2 (en) * 2014-12-31 2017-10-24 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Manufacturing carbon molecular sieve membranes using a pyrolysis atmosphere comprising sulfur-containing compounds
CN107635646A (zh) * 2015-06-01 2018-01-26 佐治亚科技研究公司 超选择性碳分子筛膜以及制造方法
US20190030491A1 (en) * 2017-07-25 2019-01-31 Georgia Tech Research Corporation Methods for preparing carbon molecular sieve hollow fiber membranes for gas separation
US11135552B2 (en) * 2017-12-12 2021-10-05 Sogang University Research & Business Development Foundation Hybrid polymeric hollow fiber membrane, hybrid carbon molecular sieve hollow fiber membrane, and processes for preparing the same
CA3097831A1 (en) * 2018-05-02 2019-11-07 Dow Global Technologies Llc Improved method of making carbon molecular sieve membranes
DE102018216163A1 (de) * 2018-09-21 2020-03-26 Forschungszentrum Jülich GmbH CMS-Membran, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2020154146A1 (en) * 2019-01-25 2020-07-30 Dow Global Technologies Llc A carbon molecular sieve membrane produced from a carbon forming polymer-polyvinylidene chloride copolymer blend

Also Published As

Publication number Publication date
WO2020142207A1 (en) 2020-07-09
AR117545A1 (es) 2021-08-11
US11660575B2 (en) 2023-05-30
US20200206696A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
TW202039057A (zh) 碳分子篩熱解生成期間之孔結構塌陷之反應性抑制
JP6815398B2 (ja) 混合キシレンの分離
Sanyal et al. Next generation membranes—using tailored carbon
Salinas et al. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide
James et al. Thermal stability of ZIF-8 membranes for gas separations
Pan et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes
Hosseini et al. Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process
Kim et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment
Tin et al. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide
Pérez-Francisco et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance
Ma et al. Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes
Hou et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes
Zhang et al. Preparation and characterization of carbon membranes made from poly (phthalazinone ether sulfone ketone)
Chng et al. Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether ketone)/2, 6-bis (4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network
Kim et al. Aging-resistant carbon molecular sieve membrane derived from pre-crosslinked Matrimid® for propylene/propane separation
CN114340764B (zh) 杂化无机氧化物-碳分子筛膜
Guo et al. Fine‐tuned, molecular‐composite, organosilica membranes for highly efficient propylene/propane separation via suitable pore size
Xiao et al. Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes
Efimova et al. Gas permeability through graphite foil: The influence of physical density, membrane orientation and temperature
Garcia et al. High activated carbon loading mixed matrix membranes for gas separations
Abdulhamid et al. Carbon molecular sieve membranes with integrally skinned asymmetric structure for organic solvent nanofiltration (OSN) and organic solvent reverse osmosis (OSRO)
US9731249B2 (en) Polymeric molecular sieve membranes for gas separation
Li et al. Simultaneously enhanced gas permeability, selectivity and aging stability of carbon molecular sieve membranes by the molecule doping of silicon
Dong et al. Sub-nanometer scale tailoring of the microstructures of composite organosilica membranes for efficient pervaporation of toluene/n-heptane mixtures
Kim et al. ZIF-8 nanoplate/6FDA-DAM membrane for hydrogen extraction from propane dehydrogenation process