TW202030964A - 零電流偵測系統 - Google Patents
零電流偵測系統 Download PDFInfo
- Publication number
- TW202030964A TW202030964A TW108104767A TW108104767A TW202030964A TW 202030964 A TW202030964 A TW 202030964A TW 108104767 A TW108104767 A TW 108104767A TW 108104767 A TW108104767 A TW 108104767A TW 202030964 A TW202030964 A TW 202030964A
- Authority
- TW
- Taiwan
- Prior art keywords
- delay
- signal
- current detection
- voltage
- zero current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
- H03K19/00323—Delay compensation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16504—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
- G01R19/16519—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using FET's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/175—Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/083—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Measurement Of Current Or Voltage (AREA)
- Dc-Dc Converters (AREA)
Abstract
本發明提出一種零電流偵測系統,適用於一具有電感器之切換式穩壓電路。在零電流偵測系統中,比較器之一正輸入端用以接收電感器之一端,一負輸入端連接該低電壓端,以及一輸出端用以輸出一比較結果訊號;第一訊號鎖存電路具有一時脈端接收比較結果訊號,並輸出一鎖存輸出訊號。延遲線模組係根據鎖存輸出訊號開始計時,並在計時一延遲時間後輸出一零電流偵測訊號。電壓取樣模組係反應零電流偵測訊號而於不同時間點取樣節點電壓,以產生兩個取樣電壓。延遲控制模組係根據兩個取樣電壓調整延遲線模組之延遲時間。
Description
本發明係有關於一種零電流偵測系統,特別是有關於一種可動態調整偵測用之延遲時間的零電流偵測系統。
一般的切換型穩壓器需要偵測一零電感電流的發生時刻,以切換操作狀態。零電感電流的精準度會影響切換型穩壓器的效率。傳統方法是使用比較器來偵測零電感電流,但是僅使用比較器偵測零電感電流的發生時刻會遇到精準度不夠的問題。其原因有二,第一原因是比較器本身的輸入對(input pair)會有因為元件不匹配造成的輸入電壓偏差(input offset voltage),而導致沒辦法精準判斷出零電流點(zero current point)。第二原因是當電感電流越接近零時,電感一端的電壓也就越靠近零,為了降低導通損(conduction loss)的緣故,所以低側(low-side)的功率電晶體的導通電阻(on-resistance)會設計得比較小,以1歐姆為例,當電感電流只剩下1mA時,電感一端的電壓就只有1mV,在這樣的情況下,比較器要能夠精準地辨別出零電流的點會相當困難。基於上述原因,所以使用一個比較器來精準偵測零電流時刻並不容易。
為解決上述問題,本發明之目的在於提出一種零電流偵測系統,用以適應性地偵測切換式穩壓電路之電感電流為零的時刻,以改善切換式穩壓電路的效率。
根據一實施例,本發明提出一種零電流偵測系統,適用於一切換式穩壓電路。切換式穩壓電路包含一電感器,其一端耦接切換式穩壓電路之一輸出端。零電流偵測系統包含一比較器、一第一訊號鎖存電路、一延遲線模組、一電壓取樣模組以及一延遲控制模組。比較器具有一正輸入端用以接收電感器之相對於切換式穩壓電路之輸出端之另一端、一負輸入端連接該低電壓端、以及一輸出端用以輸出一比較結果訊號。第一訊號鎖存電路具有一時脈端接收比較結果訊號,以及一輸出端用以輸出一鎖存輸出訊號。延遲線模組係根據鎖存輸出訊號開始計時,並在計時一延遲時間後輸出一零電流偵測訊號。電壓取樣模組係反應零電流偵測訊號而於不同時間點取樣節點電壓,以產生兩個取樣電壓。延遲控制模組係根據兩個取樣電壓調整延遲線模組之延遲時間。
較佳地,延遲線模組可包含複數個延遲單元以及複數個開關,複數個延遲單元係串聯連接,複數個開關中的每一個開關具有一端電性連接延遲線模組之一輸出端,而另一端係電性連接相對應之延遲單元之一輸出端,延遲控制模組係控制複數個開關以導通不同數量的延遲單元,以調整延遲線模組之延遲時間。
較佳地,延遲控制模組包含一位移暫存器,延遲控制模組係導通複數個開關中的其中一個,位移暫存器係根據兩個取樣電壓決定是否關閉目前導通開關而導通目前導通開關的前一開關或下一開關。
較佳地,位移暫存器導通目前導通開關的前一開關時,延遲線模組之延遲時間減少,而位移暫存器導通目前導通開關的該下一開關時,延遲線模組之延遲時間增加。
較佳地,當兩個取樣電壓皆為低位準時,延遲控制模組係控制延遲線模組增加延遲時間,而當兩個取樣電壓皆為高位準時,延遲控制模組係控制延遲線模組減少延遲時間。
較佳地,當兩個取樣電壓中的第一個取樣電壓為低位準而第二個取樣電壓為高位準時,延遲控制模組係維持延遲線模組之延遲時間。
較佳地,延遲控制模組包含一查詢表,該查詢表紀錄兩個取樣電壓與延遲時間之調整之間的對應關係。
較佳地,比較器具有一偏差電壓,而低電壓端係為一接地端,當節點電壓加上偏差電壓大於零電壓時,比較結果訊號係改變成高位準。
較佳地,切換式穩壓電路具有一第一操作階段、一第二操作階段以及一第三操作階段,在第一操作階段,從電感器流向該切換式穩壓電路之輸出端的一電感電流增加,在第二操作階段,該電感電流減少,零電流偵測訊號係用以控制切換式穩壓電路進入第三操作階段。
較佳地,電壓取樣模組包含一觸發器、第一延遲元件、第二延遲元件、第四訊號鎖存電路以及第五訊號鎖存電路,觸發器接收節點電壓,第四訊號鎖存電路以及第五訊號鎖存電路之資料端係接收觸發器之輸出訊號,第一延遲元件係接收一啟動訊號,第二延遲元件係電性連接第一延遲元件之輸出端,第四訊號鎖存電路以及第五訊號鎖存電路之時脈端係分別電性連接第一延遲元件以及第二延遲元件之輸出端,第四訊號鎖存電路以及第五訊號鎖存電路之輸出端係分別輸出兩個取樣電壓。
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。
請參閱第1圖,其為本發明之零電流偵測系統之方塊圖。如第1圖所示,本發明之零電流偵測系統係適用於一切換式穩壓電路60,而切換式穩壓電路60包含一電感器L,其一端電性連接切換式穩壓電路60之輸出端。切換式穩壓電路60通常具有三個操作階段,在第一操作階段P1,流經電感器之電感電流增加,當電感電流高過一預設電流門檻值,切換式穩壓電路60進入第二操作階段P2。在第二操作階段P2,流經電感器之電感電流減少,當電感電流減少為零時,切換式穩壓電路60進入第三操作階段P3。理想上,在第三操作階段P3中,切換式穩壓電路60維持電感電流為零電流,等待下一個觸發訊號以再此進入第一操作階段P1。零電流偵測系統係用以偵測在第二操作階段P2中電感電流減少為零的時刻,以精準地控制切換式穩壓電路60進入第三操作階段P3。如果零電流點的判斷不夠精準,則會降低切換式穩壓電路60的效率。
零電流偵測系統包含一比較器10、一第一訊號鎖存電路21、一延遲線模組30、一延遲控制模組40以及一電壓取樣模組50。比較器10係具有一正輸入端用以接收電感器之一端之節點電壓VX,以及一負輸入端連接低電壓端,例如接地端。輸出端Q可輸出比較結果訊號101。在理想情況下,當節點電壓VX為0時,其代表電感電流IL為0;但是,在實際情況,比較器10具有一偏差電壓VOFFSET以及磁滯效果,其會影響節點電壓VX是否為0的比較結果。因此,零電流偵測系統額外增加第一訊號鎖存電路21、延遲線模組30、延遲控制模組40以及電壓取樣模組50以提高零電流偵測的準確性。
在實際應用,比較器10具有一偏差電壓VOFFSET,因此在第1圖中,比較器10之正輸入端連接一偏差電壓VOFFSET的元件,而負輸入端接地,代表當節點電壓VX加上偏差電壓VOFFSET大於零時,比較結果訊號101係改變成高位準;反之,比較結果訊號101係為低位準。
第一訊號鎖存電路21係具有一時脈端CLK接收比較結果訊號101、一輸出端Q用以輸出一第一鎖存輸出訊號211、以及一資料端D電性連接一供電端。供電端之供電電壓為VDD。第一訊號鎖存電路21係提供一訊號鎖存功能,當時脈端CLK從低位準變成高位準時,輸出端Q的訊號會等於資料端D的訊號。因為資料端D上的電壓為供電電壓 VDD,其為高位準,因此當比較結果訊號101從低位準變成高位準時,輸出端Q上的電壓等於供電電壓 VDD,即變成高位準。
此外,第一訊號鎖存電路21可具有一重置端,當重置端被觸發時,輸出端Q上的電壓會變成低位準。在一實施例中,當節點電壓VX發生振盪時,第一訊號鎖存電路21可避免後續的延遲線模組30受到影響,藉此提高零電流偵測系統的穩定度。
延遲線模組30係根據第一鎖存輸出訊號211開始計時,並在計時延遲時間DD1後輸出零電流偵測訊號ZCD。在一實施例中,零電流偵測訊號ZCD係用以控制切換式穩壓電路60進入第三操作階段P3。例如,一開關控制單元61可接收零電流偵測訊號ZCD,並根據零電流偵測訊號ZCD控制切換式穩壓電路60進入第三操作階段P3。
在第三操作階段P3,電壓取樣模組50於不同取樣時間點ST1與ST2取樣節點電壓VX,以產生兩個取樣電壓S0與S1。應注意的是,取樣電壓S0與S1不限於類比或數位電壓值,亦可包含邏輯訊號,例如低位準訊號”0”或是高位準訊號”1”;換句話說,根據實際應用,電壓取樣模組50可產生兩個取樣類比或數位電壓值S0與S1,或是兩個取樣電壓邏輯訊號S0與S1。
延遲控制模組40係根據兩個取樣電壓S0與S1調整延遲線模組30之延遲時間DD1。當延遲控制模組40根據兩個取樣電壓S0與S1判斷零電流偵測訊號ZCD的偵測時刻早於真正零電流點,則延遲控制模組40可增加延遲線模組30之延遲時間DD1;當延遲控制模組40根據兩個取樣電壓S0與S1判斷零電流偵測訊號ZCD的偵測時刻晚於真正零電流點,則延遲控制模組40可減少延遲線模組30之延遲時間DD1;當延遲控制模組40根據兩個取樣電壓S0與S1判斷零電流偵測訊號ZCD的偵測時刻接近真正零電流點,則延遲控制模組40可維持延遲線模組30之延遲時間DD1。
在一實施例中,延遲控制模組40可包含一查詢表401,其紀錄兩個取樣電壓S0以及S1與延遲時間DD1之控制之間的對應關係。
請參閱第2圖以及第3圖,其為本發明之零電流偵測系統之實施例之方塊圖、以及本發明之零電流偵測系統之實施例之訊號波形示意圖。如第2圖所示,切換式穩壓電路60可包含一第一開關MP1、一第二開關MN1、以及一電感器L。第一開關MP1與第二開關MN1依序串接於一供電端以及一接地端之間。第一開關MP1耦接於供電端與一節點X之間,第二開關MN1係耦接於節點X與接地端之間。電感器L之一端係電性連接節點X,而另一端係作為切換式穩壓電路60之一輸出端且耦接一電容器C。切換式穩壓電路60之一輸出端上為輸出電壓VOUT。
在此實施例中,供電端提供一供電電壓VDD,第一開關MP1係為一P型金屬氧化物半導體場效電晶體(PMOS),第二開關MN1係為一N型金屬氧化物半導體場效電晶體(NMOS),但本發明不以此為限制。第一開關MP1之源極耦接供電端,而汲極耦接節點X。第二開關MN1之源極接地,而汲極耦接節點X,第一開關MP1與第二開關MN1之閘極接收控制訊號以控制其導通狀態。
在此實施例中,零電流偵測系統更包含一第二訊號鎖存電路22、一重置模組80以及一反相器INV。第二訊號鎖存電路22之時脈端CLK接收零電流偵測訊號ZCD,資料端D接收供電電壓VDD,而輸出端Q2的訊號係作為零電流偵測訊號ZCD。第一訊號鎖存電路21之一重置端R係接收重置模組80輸出之重置訊號801。
切換式穩壓電路60可包含一第三訊號鎖存電路23,其重置端R接收零電流偵測訊號ZCD,輸出端Q耦接第二開關MN1。因此,當零電流偵測訊號ZCD從低位準變成高位準時,第三訊號鎖存電路23之輸出端Q上的電壓變成低位準,例如0V,藉此截止第二開關MN1,使得切換式穩壓電路60進入第三操作狀態。
在一操作模式下,反相器INV之輸入端係耦接第二開關MN1之控制端,例如NMOS的閘極,而反相器INV之輸出端係耦接電壓取樣模組50的啟動端EN。當NMOS的閘極接收到低位準電壓訊號而截止,反相器INV之輸出端會輸出一高位準的啟動訊號232至電壓取樣模組50的啟動端EN,以啟動電壓取樣模組50。
以下將搭配第2圖以及第3圖說明零電流偵測系統之操作細節。切換式穩壓電路60具有一第一操作階段P1、一第二操作階段P2以及一第三操作階段P3,在第一操作階段,第一開關控制訊號601以及第二開關控制訊號602位於低位準,使得第一開關MP1導通而第二開關MN1截止,電感器之一端電性連接供電端,供電端提供電感電流IL。如第3圖所示,在第一操作階段,電感電流IL,節點電壓VX大於0。
當電感電流IL超過一預設電流門檻值,則切換式穩壓電路60進入第二操作階段P2,如第3圖所示之時間點T1。在第二操作階段P2,第一開關控制訊號601以及第二開關控制訊號602位於高位準,第一開關MP1截止而該第二開關MN1導通,電感器L之一端接地。根據電感器L的電氣特性,電感電流IL必須維持連續性,所以電感器L之一端接地後,電感電流IL從接地端流向電感器L,使得節點電壓VX小於0,如第2圖所示,從第一操作階段P1進入第二操作階段P2,節點電壓VX在時間點T1會從正值改變成負值。
第二操作階段P2中,電感電流IL逐漸降低,節點電壓VX在逐漸升高,當節點電壓VX加上比較器10之偏差電壓VOFFSET會大於0時,比較結果訊號101從低位準變成高位準,同時,第一鎖存輸出訊號211也從低位準變成高位準,如第3圖所示之時間點T2。
延遲線模組30從時間點T2開始經過一延遲時間DD1後,在時間點T3,其輸出端才輸出第一鎖存輸出訊號211變化,即是從低位準變成高位準,同時,第二鎖存輸出訊號221也會從低位準變成高位準,觸發第三訊號鎖存電路23重置,使得第三鎖存輸出訊號231變成低位準訊號,截止第二開關MN1,切換式穩壓電路60進入第三操作階段P3。
在第三操作階段,第一開關MP1截止且第二開關MN1截止,同時啟動訊號232變成高位準,所以電壓取樣模組50開始在不同取樣時間點ST1與ST2取樣節點電壓VX,以產生兩個取樣電壓S0與S1。因為第二開關MN1截止後,節點電壓VX會產生振盪,如第3圖所示,因此延遲控制模組40可根據兩個取樣電壓S0與S1的位準,來調整延遲線模組30之延遲時間DD1。
請參閱第4至8圖,係為本發明之零電流偵測系統之電壓取樣模組之實施例之示意圖、本發明之零電流偵測系統之電壓取樣訊號之示意圖、以及本發明之零電流偵測系統之零電流偵測訊號與零電流點之間的判斷示意圖。
在一實施例中,如第4圖所示,電壓取樣模組50包含一觸發器53、一第一延遲元件51、一第二延遲元件52、一第四訊號鎖存電路54以及一第五訊號鎖存電路55。觸發器53接收節點電壓VX,當節點電壓VX高於一預設電壓門檻值時,觸發器53輸出高位準訊號。較佳地,觸發器53可為一施密特觸發器(Schmitt trigger),當節點電壓VX高於一順向門檻電壓,則施密特觸發器輸出為高位準訊號;當節點電壓VX低於一負向閾值電壓,則施密特觸發器輸出為低位準訊號;當輸入在正負向閾值電壓之間,則輸出不改變。
第四訊號鎖存電路54以及第五訊號鎖存電路55之資料端D係接收觸發器53之輸出訊號531,第一延遲元件51係接收啟動訊號232,第二延遲元件52係電性連接第一延遲元件51之輸出端,第四訊號鎖存電路54以及第五訊號鎖存電路55之時脈端CLK係分別電性連接第一延遲元件51以及第二延遲元件52之輸出端。第四訊號鎖存電路54以及第五訊號鎖存電路55之輸出端Q係分別輸出兩個取樣電壓邏輯訊號S0與S1。
當啟動訊號232從低位準變成高位準時,表示切換式穩壓電路進入第三操作階段,所以電壓取樣模組50開始在兩個不同時間點取樣節點電壓VX的邏輯狀態。第一延遲元件51接收啟動訊號232後,經過一延遲時間D1,在時間點ST1,第一延遲元件51的輸出訊號511從低位準變成高位準。接著,第二延遲元件52接收輸出訊號511,經過一延遲時間D2,在時間點ST2,第二延遲元件52的輸出訊號521從低位準變成高位準。
輸出訊號511以及輸出訊號521分別輸入至第四訊號鎖存電路54以及第五訊號鎖存電路55之時脈端CLK,因此當輸出訊號511從低位準變成高位準,在時間點ST1,則第四訊號鎖存電路54將資料端D的訊號傳送至輸出端Q,即產生第一取樣電壓S0。同樣地,當輸出訊號521從低位準變成高位準,在時間點ST2,則第五訊號鎖存電路55將資料端D的訊號傳送至輸出端Q,即產生第二取樣電壓S1;換句話說,第一取樣電壓S0以及第二取樣電壓S1分別在時間點ST1以及ST2取得。
如第5圖所示,其以零電流偵測訊號過早的情形說明其他相關訊號的波形。當零電流偵測訊號221早於真正零電流點就產生時,雖然第二開關MN1關閉,但是電感電流IL仍為正電流值,導致第二開關MN1的寄生二極體導通讓VX點的電壓維持在寄生二極體的導通電壓,而電感電流IL逐漸減少。因此,當零電流偵測訊號221早於真正零電流點產生,則在零電流偵測訊號221產生後,節點電壓VX會維持為負電壓值直到電感電流IL為零,所以當在時間點ST1與ST2取得的兩個取樣電壓S0與S1皆為低位準時,其邏輯狀態為(0, 0),表示零電流偵測訊號221過早,延遲控制模組40係控制延遲線模組30增加延遲時間DD1,如第6圖所示。
當零電流偵測訊號221晚於真正零電流點才產生時,電感電流IL已經成為負值,電感電流IL從切換式穩壓電路60之輸出端流向節點X,導致節點電壓VX開始上升,導通第一開關MP1的寄生二極體,所以節點電壓VX維持在高位準。所以當在時間點ST1與ST2取得的兩個取樣電壓S0與S1皆為高位準時,其邏輯狀態為(1, 1),表示零電流偵測訊號221過晚,延遲控制模組40係控制延遲線模組30減少延遲時間DD1,如第7圖所示。
當兩個取樣電壓S0與S1分別為低位準以及高位準時,其邏輯狀態為(0, 1),表示零電流偵測訊號221產生時,節點電壓VX仍為負值,但隨即因為次諧波振盪(subharmonic oscillation)發生使得節點電壓VX變成正電壓,因此,零電流偵測訊號221產生的時刻係非常接近真實零電流點,所以延遲控制模組40可維持延遲線模組30之延遲時間DD1。
在一實施例中,本發明之零電流偵測系統亦可包含一振盪偵測器71,用以偵測節點電壓VX是否發生振盪,當振盪偵測器71輸出之振盪偵測結果701表示發生振盪,則判斷延遲控制模組40可減少延遲線模組30之延遲時間DD1。
在一實施例中,延遲控制模組40可包含一查詢表401,其紀錄兩個取樣電壓S0以及S1與延遲時間DD1之調整之間的對應關係,如下所示。
振盪偵測結果701 | 取樣電壓S0 | 取樣電壓S1 | 延遲時間DD1之調整 |
有振盪 | 0 | 0 | 減少 |
有振盪 | 0 | 1 | 減少 |
有振盪 | 1 | 0 | 減少 |
有振盪 | 1 | 1 | 減少 |
無振盪 | 0 | 0 | 增加 |
無振盪 | 0 | 1 | 維持 |
無振盪 | 1 | 0 | 減少 |
無振盪 | 1 | 1 | 減少 |
延遲控制模組40可根據查詢表401、以及取樣電壓S0與S1,判斷是否增加、減少或維持延遲線模組30之延遲時間DD1。
在一實施例中,在節點X的寄生電容過大,而導致於逆電感電流IL發生時,節點電壓VX並不會迅速上升,使得在時間點ST2,節點電壓VX仍會在史密特觸發器53的臨界電壓以下,所以取樣電壓S0與S1的邏輯狀態為(0, 1)。因此,此實施例的查詢表可修改成,當取樣電壓S0與S1的邏輯狀態為(0, 1)時,延遲控制模組40減少延遲時間DD1。
請參閱第9圖,其為本發明之零電流偵測系統之延遲線模組之實施例之示意圖。如第9圖所示,在一實施例中,延遲線模組30可包含複數個延遲單元31以及複數個開關32,複數個延遲單元31係串聯連接。每一個延遲單元31用以延遲一延遲單位時間。每一開關32具有一端電性連接延遲線模組30之一輸出端,而另一端係電性連接相對應之延遲單元31之一輸出端。如第9圖所示,第一個開關32之一端電性連接延遲線模組30之輸出端,而另一端電性連接第一個延遲單元31之輸出端;第二個開關32之一端電性連接延遲線模組30之輸出端,而另一端電性連接第二個延遲單元31之輸出端;第三個開關32之一端電性連接延遲線模組30之輸出端,而另一端電性連接第三個延遲單元31之輸出端,以此類推。
延遲控制模組40可控制複數個開關32之導通狀態,使得特定數量的延遲單元31能對第一鎖存輸出訊號211進行延遲處理,藉此調整延遲線模組30之延遲時間DD1。例如,當第二個開關32導通而其他開關32截止時,只有第二個延遲單元31之輸出端電性連接到延遲線模組30之輸出端,所以只有第一個延遲單元31以及第二個延遲單元31能依序對第一鎖存輸出訊號211進行延遲處理,延遲線模組30之延遲時間DD1等於延遲單元31之延遲單位時間的兩倍;同樣地,當第三個開關32導通而其他開關32截止時,延遲線模組30之延遲時間DD1等於延遲單元31之延遲單位時間的三倍;當第五個開關32導通而其他開關32截止時,延遲線模組30之延遲時間DD1等於延遲單元31之延遲單位時間的五倍,以此類推。因此,如第9圖所示,當越靠近右側的開關被導通,延遲線模組30之延遲時間DD1較長;當越靠近左側的開關被導通,延遲線模組30之延遲時間DD1較短。
延遲控制模組40可包含一位移暫存器,其複數個輸出端C1~Cn產生延遲控制訊號402,以控制導通複數個開關32之導通狀態。當延遲控制模組40根據兩個取樣電壓S0與S1以及查詢表401決定增加延遲時間DD1,則位移暫存器截止目前導通開關,而接著導通目前導通開關的下一開關,如第9圖所示,位於目前導通開關右側的開關32。例如,目前是第二個開關32導通而其他開關32截止,當延遲控制模組40決定要增加延遲時間DD1,則位移暫存器之輸出端C2輸出延遲控制訊號402,截止第二個開關32,而位移暫存器之輸出端C3輸出延遲控制訊號402,導通第三個開關32。
同樣地,當延遲控制模組40根據兩個取樣電壓S0與S1以及查詢表401決定減少延遲時間DD1,則位移暫存器截止目前導通開關,而接著導通目前導通開關的前一開關,如第9圖所示,位於目前導通開關左側的開關32。例如,目前是第四個開關32導通而其他開關32截止,當延遲控制模組40決定要減少延遲時間DD1,則位移暫存器之輸出端C4輸出延遲控制訊號402,以截止第四個開關32,而位移暫存器之輸出端C3輸出延遲控制訊號402,以導通第三個開關32。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
10:比較器101:比較結果訊號21:第一訊號鎖存電路211:第一鎖存輸出訊號22:第二訊號鎖存電路221:第二鎖存輸出訊號23:第三訊號鎖存電路231:第三鎖存輸出訊號232:致能訊號30:延遲線模組301:經延遲訊號31:延遲單元32:延遲開關40:延遲控制模組401:查詢表402:延遲控制訊號50:電壓取樣模組51:第一延遲元件511、512:輸出訊號52:第二延遲元件53:觸發器531:觸發器輸出訊號54:第四訊號鎖存電路55:第五訊號鎖存電路60:切換式穩壓電路61:開關控制單元601:第一開關控制訊號602:第二開關控制訊號71:振盪偵測器701:振盪偵測結果80:重置模組801:重置訊號VOFFSET:偏差電壓ZCD:零電流偵測訊號D:資料端Q:輸出端R:重置端CLK:時脈端VDD:供電電壓DD1:延遲時間D1、D2:延遲時間EN:啟動端S0、S1:取樣電壓L:電感器IL:電感電流C:電容器VOUT:輸出電壓MP1:第一開關MN1:第二開關INV:反相器T1、T2、T3、T4、T5、T6、T7、ST1、ST2:時間點X:節點VX:節點電壓C1、C2、C3、C4、Cn:輸出端
第1圖係為本發明之零電流偵測系統之方塊圖。
第2圖係為本發明之零電流偵測系統之實施例之方塊圖。
第3圖係為本發明之零電流偵測系統之實施例之訊號波形示意圖。
第4圖係為本發明之零電流偵測系統之電壓取樣模組之實施例之示意圖。
第5圖係為本發明之零電流偵測系統之電壓取樣訊號之示意圖。
第6圖係為本發明之零電流偵測系統之零電流偵測訊號過早之示意圖。
第7圖係為本發明之零電流偵測系統之零電流偵測訊號過晚之示意圖。
第8圖係為本發明之零電流偵測系統之零電流偵測訊號接近零電流點之示意圖。
第9圖係為本發明之零電流偵測系統之延遲線模組之實施例之示意圖。
10:比較器
101:比較結果訊號
21:第一訊號鎖存電路
211:第一鎖存輸出訊號
30:延遲線模組
301:經延遲訊號
40:延遲控制模組
401:查詢表
402:延遲控制訊號
50:電壓取樣模組
60:切換式穩壓電路
61:開關控制單元
Claims (10)
- 一種零電流偵測系統,適用於一切換式穩壓電路,該切換式穩壓電路包含一電感器,該電感器之一端耦接該切換式穩壓電路之一輸出端,該零電流偵測系統包含: 一比較器,具有一正輸入端耦接該電感器之相對於該切換式穩壓電路之該輸出端之另一端、一負輸入端耦接一低電壓端、以及一輸出端用以輸出一比較結果訊號; 一第一訊號鎖存電路,具有一時脈端接收該比較結果訊號,以及一輸出端用以輸出一鎖存輸出訊號; 一延遲線模組,係根據該鎖存輸出訊號開始計時,並在計時一延遲時間後輸出一零電流偵測訊號; 一電壓取樣模組,係反應該零電流偵測訊號而於不同時間點取樣該節點電壓,以產生兩個取樣電壓;以及 一延遲控制模組,係根據該兩個取樣電壓調整該延遲線模組之延遲時間。
- 如申請專利範圍第1項所述之零電流偵測系統,其中該延遲線模組包含複數個延遲單元以及複數個開關,該複數個延遲單元係串聯連接,每一該複數個開關之一端電性連接該延遲線模組之一輸出端,而另一端電性連接相對應之該延遲單元之一輸出端,該延遲控制模組係控制該複數個開關以導通不同數量的該延遲單元,以調整該延遲線模組之該延遲時間。
- 如申請專利範圍第2項所述之零電流偵測系統,其中該延遲控制模組包含一位移暫存器,該延遲控制模組係導通該複數個開關中的其中一個,該位移暫存器係根據該兩個取樣電壓決定是否關閉目前導通開關而導通該目前導通開關的前一開關或下一開關。
- 如申請專利範圍第3項所述之零電流偵測系統,其中該位移暫存器導通該目前導通開關的該前一開關時,該延遲線模組之該延遲時間減少,該位移暫存器導通該目前導通開關的該下一開關時,該延遲線模組之該延遲時間增加。
- 如申請專利範圍第1項所述之零電流偵測系統,其中當該兩個取樣電壓皆為低位準時,該延遲控制模組係控制該延遲線模組增加該延遲時間,而當該兩個取樣電壓皆為高位準時,該延遲控制模組係控制該延遲線模組減少該延遲時間。
- 如申請專利範圍第1項所述之零電流偵測系統,其中當該兩個取樣電壓中的第一個取樣電壓為低位準而第二個取樣電壓為高位準時,該延遲控制模組係維持該延遲線模組之該延遲時間。
- 如申請專利範圍第1項所述之零電流偵測系統,其中該延遲控制模組包含一查詢表,該查詢表紀錄該兩個取樣電壓與該延遲時間之調整之間的對應關係。
- 如申請專利範圍第1項所述之零電流偵測系統,其中該比較器具有一偏差電壓,而該低電壓端係為一接地端,當該節點電壓加上該偏差電壓大於零電壓時,該比較結果訊號係改變成高位準。
- 如申請專利範圍第1項所述之零電流偵測系統,其中該切換式穩壓電路具有一第一操作階段、一第二操作階段以及一第三操作階段,在該第一操作階段,從該電感器流向該切換式穩壓電路之該輸出端的一電感電流增加,在該第二操作階段,該電感電流減少,該零電流偵測訊號係用以控制該切換式穩壓電路進入該第三操作階段。
- 如申請專利範圍第1項所述之零電流偵測系統,其中該電壓取樣模組包含一觸發器、一第一延遲元件、一第二延遲元件、一第四訊號鎖存電路以及一第五訊號鎖存電路,該觸發器接收該節點電壓,該第四訊號鎖存電路以及該第五訊號鎖存電路之資料端係接收該觸發器之輸出訊號,該第一延遲元件係接收一啟動訊號,該第二延遲元件係電性連接該第一延遲元件之輸出端,該第四訊號鎖存電路以及該第五訊號鎖存電路之時脈端係分別電性連接該第一延遲元件以及該第二延遲元件之輸出端,該第四訊號鎖存電路以及該第五訊號鎖存電路之輸出端係分別輸出該兩個取樣電壓。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108104767A TWI686045B (zh) | 2019-02-13 | 2019-02-13 | 零電流偵測系統 |
CN202010000578.2A CN111562430B (zh) | 2019-02-13 | 2020-01-02 | 零电流检测系统 |
US16/788,890 US11456666B2 (en) | 2019-02-13 | 2020-02-12 | Zero current detection system used in switching regulator comprising an inductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108104767A TWI686045B (zh) | 2019-02-13 | 2019-02-13 | 零電流偵測系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI686045B TWI686045B (zh) | 2020-02-21 |
TW202030964A true TW202030964A (zh) | 2020-08-16 |
Family
ID=70413348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108104767A TWI686045B (zh) | 2019-02-13 | 2019-02-13 | 零電流偵測系統 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11456666B2 (zh) |
CN (1) | CN111562430B (zh) |
TW (1) | TWI686045B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3113139B1 (fr) * | 2020-07-30 | 2022-11-25 | St Microelectronics Rousset | Comparateur de tension |
US12107490B1 (en) * | 2020-11-04 | 2024-10-01 | Empower Semiconductor, Inc. | Voltage regulator having programmable adaptive dead time |
TWI782637B (zh) * | 2021-07-26 | 2022-11-01 | 新唐科技股份有限公司 | 增量型類比數位轉換器與使用其的電路系統 |
EP4345901A4 (en) * | 2021-08-31 | 2024-07-10 | Boe Technology Group Co Ltd | DISPLAY SUBSTRATE AND DISPLAY BOARD |
CN115811199A (zh) * | 2021-09-16 | 2023-03-17 | 深圳英集芯科技股份有限公司 | 一种电流检测装置和相关升压转换系统 |
CN118589839A (zh) * | 2024-08-06 | 2024-09-03 | 深圳市微源半导体股份有限公司 | 死区时间控制电路、电压变换器及开关电源 |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396252B1 (en) * | 2000-12-14 | 2002-05-28 | National Semiconductor Corporation | Switching DC-to-DC converter with discontinuous pulse skipping and continuous operating modes without external sense resistor |
US6366070B1 (en) * | 2001-07-12 | 2002-04-02 | Analog Devices, Inc. | Switching voltage regulator with dual modulation control scheme |
US6801146B2 (en) * | 2002-11-14 | 2004-10-05 | Fyre Storm, Inc. | Sample and hold circuit including a multiplexer |
US8299819B2 (en) * | 2005-05-04 | 2012-10-30 | St-Ericsson Sa | Peak or zero current comparator |
US7309977B2 (en) * | 2005-10-11 | 2007-12-18 | Active-Semi International, Inc. | System and method for an adaptive synchronous switch in switching regulators |
WO2008091346A1 (en) * | 2007-01-25 | 2008-07-31 | Semiconductor Components Industries, L.L.C. | Dc-dc converter controller having optimized load transient response and method thereof |
US7518350B2 (en) * | 2005-12-16 | 2009-04-14 | Silicon Laboratories Inc. | MCU/driver point of load digital controller with optimized voltage |
TW200841565A (en) * | 2007-04-04 | 2008-10-16 | Richtek Techohnology Corp | Device for detecting zero current applied in switching regulator and method thereof |
US8278889B2 (en) * | 2007-05-30 | 2012-10-02 | Texas Instruments Incorporated | Adaptive rectifier architecture and method for switching regulators |
US8552705B2 (en) * | 2007-11-09 | 2013-10-08 | St-Ericsson Sa | Lower power controller for DC to DC converters |
US7800928B1 (en) * | 2007-12-06 | 2010-09-21 | Universal Lighting Technologies, Inc. | Method of operating a resonant inverter using zero current switching and arbitrary frequency pulse width modulation |
JP5422922B2 (ja) * | 2008-05-29 | 2014-02-19 | 富士電機株式会社 | 同期整流型dc−dcコンバータの逆流防止回路 |
TWI396367B (zh) * | 2008-12-16 | 2013-05-11 | Green Solution Tech Co Ltd | 具有噪音防止之轉換電路及轉換控制器 |
GB0912745D0 (en) * | 2009-07-22 | 2009-08-26 | Wolfson Microelectronics Plc | Improvements relating to DC-DC converters |
US8278897B2 (en) * | 2009-12-17 | 2012-10-02 | Semiconductor Components Industries, Llc | Power supply converter and method |
TWI422158B (zh) * | 2010-04-28 | 2014-01-01 | Richtek Technology Corp | 用於切換式調節器的即時可調零電流偵測器及偵測方法 |
CN102244463B (zh) * | 2010-05-14 | 2015-09-02 | 立锜科技股份有限公司 | 用于切换式调节器的实时可调零电流侦测器及侦测方法 |
KR101658783B1 (ko) * | 2010-05-26 | 2016-09-23 | 삼성전자주식회사 | 영전류 검출 회로를 포함하는 전력 변환기 및 전력 변환 방법 |
US20120032664A1 (en) * | 2010-08-03 | 2012-02-09 | Microsemi Corporation | Single inductor power converter system and methods |
CN102377338A (zh) * | 2010-08-23 | 2012-03-14 | 立锜科技股份有限公司 | 切换式调节器的控制电路及方法 |
KR101179327B1 (ko) * | 2010-10-12 | 2012-09-03 | 서울시립대학교 산학협력단 | 역률 개선 회로 |
JP5942455B2 (ja) * | 2012-02-09 | 2016-06-29 | 株式会社ソシオネクスト | スイッチングレギュレータ |
CN102735914B (zh) * | 2012-05-10 | 2014-12-31 | 成都芯源系统有限公司 | 同步整流电路以及过零检测方法 |
TWI470933B (zh) * | 2012-07-18 | 2015-01-21 | Upi Semiconductor Corp | 零電流偵測電路及其操作方法 |
KR102031534B1 (ko) * | 2013-01-07 | 2019-10-14 | 삼성전자 주식회사 | 스위칭 레귤레이터 및 비교기를 이용한 스위칭 레귤레이터의 제로 커런트 감지 방법 |
US9548651B2 (en) * | 2013-02-22 | 2017-01-17 | Texas Instruments Incorporated | Advanced control circuit for switched-mode DC-DC converter |
US9257908B2 (en) * | 2013-03-15 | 2016-02-09 | Maxim Integrated Products, Inc. | Systems and methods to auto-adjust zero cross circuits for switching regulators |
JP2015070679A (ja) * | 2013-09-27 | 2015-04-13 | ルネサスエレクトロニクス株式会社 | 半導体装置及びその制御方法 |
CN103501112B (zh) * | 2013-10-12 | 2016-08-17 | 矽力杰半导体技术(杭州)有限公司 | 同步整流控制方法与控制电路以及开关型电压调节器 |
CN103616556B (zh) * | 2013-11-22 | 2017-01-18 | 矽力杰半导体技术(杭州)有限公司 | 用于同步降压型变换器的过零检测电路及检测方法 |
US9515556B2 (en) * | 2014-04-28 | 2016-12-06 | Intersil Americas LLC | Current pulse count control in a voltage regulator |
US9762121B2 (en) * | 2014-05-14 | 2017-09-12 | Cirel Systems Private Limited | Accurate zero current detector circuit in switching regulators |
JP2016048988A (ja) * | 2014-08-27 | 2016-04-07 | 株式会社東芝 | 電源回路とその制御方法 |
CN104467364B (zh) * | 2014-12-15 | 2017-03-01 | 矽力杰半导体技术(杭州)有限公司 | 一种过零检测电路及开关电源 |
US9685868B2 (en) * | 2015-02-10 | 2017-06-20 | Dialog Semiconductor (Uk) Limited | Synchronous rectifier for buck converter without the need for a comparator |
US10116211B2 (en) * | 2015-02-11 | 2018-10-30 | Mediatek Inc. | Power converter with adaptive zero-crossing current detection |
TWI560984B (en) * | 2015-04-16 | 2016-12-01 | Anpec Electronics Corp | Zero current detecting circuit and related synchronous switching power converter and method |
US9627974B1 (en) * | 2015-10-30 | 2017-04-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Adaptive voltage regulator |
US9819266B2 (en) * | 2015-12-23 | 2017-11-14 | Intel Corporation | Digitally controlled zero current switching |
CN107124112B (zh) * | 2016-02-24 | 2020-02-07 | 炬芯(珠海)科技有限公司 | 一种比较器的控制方法及控制电路 |
US10164537B2 (en) * | 2017-01-03 | 2018-12-25 | National Taipei University Of Technology | Switching regulator |
CN107147286A (zh) * | 2017-07-03 | 2017-09-08 | 中国科学院上海微系统与信息技术研究所 | 开关电源电感的电流过零检测方法、电路及控制方法 |
KR102028318B1 (ko) * | 2018-01-23 | 2019-10-04 | 어보브반도체 주식회사 | 디지털 방식의 역전류를 차단할 수 있는 저전력 직류-직류 변환 장치 및 그것의 동작 방법 |
US10763738B1 (en) * | 2019-07-03 | 2020-09-01 | Silanna Asia Pte Ltd | Light load mode entry or exit for power converter |
-
2019
- 2019-02-13 TW TW108104767A patent/TWI686045B/zh active
-
2020
- 2020-01-02 CN CN202010000578.2A patent/CN111562430B/zh active Active
- 2020-02-12 US US16/788,890 patent/US11456666B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI686045B (zh) | 2020-02-21 |
CN111562430A (zh) | 2020-08-21 |
US11456666B2 (en) | 2022-09-27 |
CN111562430B (zh) | 2022-10-11 |
US20200259415A1 (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI686045B (zh) | 零電流偵測系統 | |
US7036098B2 (en) | On-chip signal state duration measurement and adjustment | |
US7449936B2 (en) | Open-loop slew-rate controlled output driver | |
US4874971A (en) | Edge-sensitive dynamic switch | |
US8884676B2 (en) | Clock generator with duty cycle control and method | |
US7839171B1 (en) | Digital level shifter and methods thereof | |
CN110208673B (zh) | 一种适用于dc-dc变换器的功率管栅源电压欠压检测电路 | |
KR20010049227A (ko) | 레벨조정회로 및 이를 포함하는 데이터 출력회로 | |
US10804888B1 (en) | Delay circuit and electronic system equipped with delay circuit | |
US9337817B2 (en) | Hold-time optimization circuit and receiver with the same | |
JP4797631B2 (ja) | Dc−dcコンバータ及びその制御方法 | |
CN114826273A (zh) | 一种基于双比较器控制的电流频率转换电路和方法 | |
CN106849939B (zh) | Cmos鉴相器 | |
WO2021144550A1 (en) | Energy efficient power distribution circuits for protection of sensitive information | |
CN115575700B (zh) | 过零检测电路 | |
US20230110352A1 (en) | Clock gating circuit and method of operating the same | |
US20210152160A1 (en) | Level shifter with reduced duty cycle variation | |
CN107086863B (zh) | 用于功率开关的驱动电路 | |
TWI748800B (zh) | 電流導向式比較器與電容控制方法 | |
CN109613328B (zh) | 一种交叉耦合快速过流检测电路 | |
US10848135B1 (en) | Receiver design with reduced variation | |
TWI774563B (zh) | 靴帶式開關 | |
US9154120B2 (en) | Electronic circuit | |
CN101977039B (zh) | 一种基于阻塞控制的单稳态电路 | |
US10715117B1 (en) | Comparator hysteresis circuit |