TW202029265A - 包含多束粒子顯微鏡的系統及其操作方法 - Google Patents

包含多束粒子顯微鏡的系統及其操作方法 Download PDF

Info

Publication number
TW202029265A
TW202029265A TW108146249A TW108146249A TW202029265A TW 202029265 A TW202029265 A TW 202029265A TW 108146249 A TW108146249 A TW 108146249A TW 108146249 A TW108146249 A TW 108146249A TW 202029265 A TW202029265 A TW 202029265A
Authority
TW
Taiwan
Prior art keywords
level
data
layer
processing
processing systems
Prior art date
Application number
TW108146249A
Other languages
English (en)
Other versions
TWI743626B (zh
Inventor
迪瑞克 列德雷
妮可 凱默
克里斯欽 克須傑
Original Assignee
德商卡爾蔡司顯微鏡有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司顯微鏡有限責任公司 filed Critical 德商卡爾蔡司顯微鏡有限責任公司
Publication of TW202029265A publication Critical patent/TW202029265A/zh
Application granted granted Critical
Publication of TWI743626B publication Critical patent/TWI743626B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/226Image reconstruction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示一種系統,該系統包括用於對3D樣本逐層成像的多束粒子顯微鏡和具有多層級架構之電腦系統。在發生不同處理系統之間的數據交換及/或源自不同檢測通道的數據時,該多層級架構允許藉由逐漸減少並行處理速度的量來實現優化的圖像處理。另外,揭露了一種用於對3D樣本逐層成像之方法,以及一種電腦程式產品,該電腦程式產品具有用於執行所揭露方法的程式碼。

Description

包含多束粒子顯微鏡的系統及其操作方法
本發明係關於帶電粒子束系統和方法。更特別地,本發明係關於一種包括對3D樣本成像的多束粒子顯微鏡以及特定電腦系統架構的系統。另外,本發明係關於一種用於對3D樣本逐層成像之方法以及一種對應的電腦程式產品。本發明特別是適用於積體電路的逆向工程。
單粒子束顯微鏡早已為人所知。其中,單粒子束經由粒子光學器件聚焦到所欲檢查的物體上並在該物體上進行掃描。粒子束可以是離子束或電子束。從粒子束入射的位置發射的次級粒子(比如電子)被檢測到,並且所檢測到的粒子強度被指派給掃描粒子束當前所指向的物體的位置。因此,可以生成物體的粒子光學圖像。用粒子束掃描粒子顯微鏡的視場需要時間。視場範圍係有限的。如果要對物體的較大部分進行掃描,則必須將物體相對於粒子顯微鏡移動,以掃描更遠的視場。這又需要時間。需要能夠在較短時間內掃描許多物體和相對大的物體的粒子顯微鏡。可以設想為此類問題提供更多數量的單束粒子顯微鏡,該等顯微鏡平行作業以同時掃描多個物體。然而,這係非常昂貴的解決方案,因為必須為每個單獨的粒子束提供帶有粒子光學器件的專用粒子顯微鏡。
在此,多束粒子顯微鏡形成了有前途之方法,因為多個粒子 束被共同引導通過單個粒子光學裝置,以便用一束粒子束同時掃描要檢查的物體。
單束粒子顯微鏡以及多束粒子顯微鏡的典型應用係3D樣本的結構分析,尤其是逆向工程。為了對3D樣本進行結構分析,可以將成像過程與減層過程進行組合。然後逐層完成對3D樣本的成像。藉由對整個層堆疊體成像而獲得的數據允許重建3D樣本的3D數據集。然而,當在成像中需要高解析度時,要達到例如奈米量級的體素(voxel)大小,則必須收集和處理大量數據。這導致非常長的處理時間。特別是當逐層成像過程和破壞性減層技術組合時,該等長的處理時間係重建速度的瓶頸。在此,重要的是,在不可逆轉地破壞一個特定層之前,驗證針對該層收集的數據。因此,減少間接的圖像處理時間以使得可以在下一個減層步驟之前對數據進行驗證係一個挑戰。
US 2015/0348749 A1揭露了一種多束粒子顯微鏡及其操作方法,其中處理了大量數據。
因此,本發明的目的是提供一種包括對3D樣本逐層成像的多束粒子顯微鏡的更快速系統以及一種對應方法和電腦程式產品。它們應特別適合於3D樣本的逆向工程,尤其適合於積體電路的逆向工程。
該目的藉由獨立申請專利範圍解決。從屬申請專利範圍涉及有利的實施方式。
根據本發明的第一方面,本發明涉及一種系統,該系統包括:
用於對3D樣本逐層成像的多束粒子顯微鏡;以及
具有多層級架構的電腦系統;
該多束粒子顯微鏡包括:
- 多束源,該多束源被配置用於產生具有多個第一粒子束的第一陣 列;
- 第一粒子光學器件,該第一粒子光學器件被配置用於將該第一粒子束引導到物體上,使得該第一粒子束入射在該物體上的形成第二陣列的入射位置處;
- 包括多個檢測區域的一個檢測器、或各自具有至少一個檢測區域的多個檢測器,該等檢測區域被佈置成第三陣列,該一個或多個檢測器包括多個換能器,換能器被指派給每個檢測區域並且被配置用於產生表示入射在該檢測區域上的粒子強度的電信號,該多個檢測區域和所指派的多個換能器分別形成多個檢測通道,該等檢測通道被指派給多個檢測通道組;
- 第二粒子光學器件,該第二粒子光學器件被配置用於將從該第二陣列中的入射位置發射的第二粒子束引導至該第三陣列的檢測區域,使得每個第二粒子束入射到佈置在該第三陣列中的至少一個檢測區域上;以及
- 用於控制該多束粒子顯微鏡的控制電腦系統;該具有多層級架構的電腦系統包括:
- 第一層級,該第一層級包括用於處理數據的多個第一處理系統;以及
- 第二層級,該第二層級包括用於處理數據的多個第二處理系統;
- 其中,該多個第一處理系統中的每個處理系統被配置用於僅從所指派的檢測通道組接收檢測信號,並且其中,該第一層級的該多個第一處理系統被配置用於在該多個第一處理系統中的不同處理系統之間基本上或完全不進行任何數據交換的情況下進行數據處理;以及
- 其中,該第二層級的該多個第二處理系統被配置用於從該第一層級的該多個第一處理系統中的至少一個第一處理系統接收數據、並且被配置用於進行數據處理,該數據處理包括在該第二層級的不同處理系統 之間尤其對最近獲取的數據進行的數據交換。
較佳的是,該第二粒子光學器件被配置成使得彼此不同的第二粒子束入射在彼此不同的檢測區域上。替代性地,這種要求僅可以部分地被滿足。因此,用於提供快速系統的關鍵要素在於提供包括上述特徵的具有多層級架構的電腦系統。當電腦系統包括若干個處理系統時,數據處理可以並行化以實現總體處理的加速。然而,通常還有必要在不同處理系統之間交換數據,而這種數據交換顯著地減小總體處理速度。因此,應盡可能減少不同處理系統之間的數據交換。如果不能避免所述數據交換,則應組織不同處理系統之間的數據交換,以使總體處理速度受到的影響盡可能小。根據本發明,這藉由多層級架構來實現,其中,基本上或完全避免第一層級中的處理系統之間的數據交換,並且其中,允許第二層級中的不同處理系統之間的數據交換。
根據本發明,該第一層級的該多個第一處理系統被配置用於在該多個第一處理系統中的不同處理系統之間基本上或完全不進行任何數據交換的情況下進行數據處理。這意味著,與所處理的總數據速率相比,不同處理系統之間的數據交換小。較佳的是,數據交換小於所處理的總數據速率的10%。更較佳的是,數據交換小於總數據速率的5%或小於其1%。
較佳的是,該第一層級的該多個第一處理系統及/或該第二層級的該多個第二處理系統被配置用於執行即時數據處理。較佳的是,即時數據處理意指數據處理快到不需要中間將數據存儲在非易失性記憶體中。因此,數據處理基本上與圖像獲取過程一樣快或甚至更快。
用於操作多束粒子顯微鏡的帶電粒子可以是例如電子、正電子、μ介子、離子或其他帶電粒子。所揭露的系統尤其適合於對3D樣本成像、尤其逐層成像,但是還有利的是使用本創造性系統來對2D樣本成像。
根據本發明,如何定義不同的檢測通道以及如何處理相應檢測通道的數據係重要的方面。該多個檢測區域和所指派的多個換能器分別 形成多個檢測通道。換言之,在簡單的場景中,用單一粒子束對表面進行成像創建了關於一個檢測通道的數據。但是,在更複雜的場景中,還可能的是,用單一粒子束進行成像來生成關於若干個檢測通道的數據。繼續針對簡單的場景,用m個第一粒子束(其中,m表示自然數)對樣本成像來生成關於至少m個檢測通道的數據。用一個單一粒子束經由一個檢測通道收集到的數據遞送關於所謂的單一視場(sFOV)的數據。由該多個第一粒子束創建的數據表示所謂的多視場(mFOV)的數據。然後,藉由一方面的第二束陣列與另一方面的3D樣本之間的相對運動,創建了多個mFOV,它們最終可以表示3D樣本的完整層的數據集。根據本發明,該多個檢測通道被指派給多個檢測通道組,其中,相應檢測通道組的數據由同一處理系統處理。較佳的是,一組包括多於一個檢測通道。然而,還可能的是,一個檢測通道組包括僅一個檢測通道。根據較佳的實施方式,一組包括八個檢測通道。可能的是,每個組包括相同數量的檢測通道;然而不同的組包括不同數量的檢測通道也是可能的。
根據本發明,在第一層級中在不同處理系統之間基本上或完全不進行任何數據交換並且因此基本上或完全不存在源自不同檢測通道的數據的任何交換的情況下,進行數據處理。相應的圖像處理需要例如:長條圖分析及/或長條圖校正;檢測曝光過度及/或曝光不足的圖像;計算圖像清晰度(例如藉由傅立葉轉換或邊緣檢測);計算信噪比(SNR)及/或計算對比度與雜訊比(CNR),例如藉由離散小波變換(DWT);局部特徵及/或偽像檢測,例如漿粒或劃痕;用於拼接的圖像特徵檢測,用以組合若干個sFOV而形成mFOV;圖像失真校正,例如藉由樣條插值;無損或失真數據壓縮,例如jpeg2000;輪廓檢測。上文列出的圖像處理可以針對每個檢測通道單獨進行;不需要來自另一個檢測通道的資訊或輸入。因此,在此,可以執行高度並行化的且極其快速的圖像處理而基本上或完全不存在源自不同檢測通道的數據的任何數據交換。
根據本發明,第二層級中的數據的處理係包括第二層級的不同處理系統之間(尤其對最近獲取的數據)的數據交換的數據處理。較佳的是,這意味著為了成功進行這種類型的圖像處理,需要第二層級的不同處理系統之間的數據交換及/或源自不同通道的數據的數據交換。較佳的是,源自不同檢測通道的數據的必要數據交換包括源自相鄰檢測通道(或更確切地說,在相鄰sFOV之間)的數據的交換,但是數據交換包括源自彼此不相鄰的不同檢測通道的數據的數據交換也是可能的。層級2中的數據處理、尤其是即時數據處理包括例如以下中的一種或多種數據處理:
- sFOV之間的拼接及/或mFOV之間的拼接;拼接可以基於例如特徵檢測及/或相位相關;
- 陰影化及/或混合;
- 一個層內具有高週期性的3D樣本的高級拼接,例如藉由許多sFOV及/或mFOV上的長程相位相關。
- 層內的亮度校正;
- 層內的特徵及/或偽像檢測,例如缺陷;
- 輪廓檢測、尤其層內的輪廓檢測,及/或輪廓校正、尤其層內的輪廓校正;
- 例如與位置及/或長條圖及/或其他參數相關的關鍵績效指標(KPI)的計算,該等指標例如指示最新的數據集在最近獲取的數據集中的匹配程度;
- 本地數據庫比較。
第二層級中在不同處理系統之間交換的及/或源自不同檢測通道的數據較佳的是表示圖像數據本身及/或圖像的中繼數據,尤其是sFOV及/或mFOV的中繼數據。不同的檢測通道及/或處理系統之間的數據交換較佳的是包括對最近獲取的數據的相應數據交換。較佳的是,該最近獲取的數據係已經針對當前被成像的相應層獲取的數據。換言之,根據較佳的實 施方式,第二層級內的數據交換涉及特定層內的數據。一個層的數據展示層數據集。
根據本發明的較佳的實施方式,該具有多層級架構的電腦系統進一步包括第三層級,該第三層級具有用於處理數據的多個第三處理系統,其中,該第三層級的該多個第三處理系統被配置用於從該第二層級的該多個第二處理系統中的至少一個第二處理系統接收數據、並且被配置用於進行數據處理,該數據處理包括在該第三層級的不同處理系統之間較佳的是對所有現有數據進行的數據交換。較佳的是,該數據處理係即時數據處理。較佳的是,第三層級內的數據交換包括屬於不同層的層數據集的數據交換。因此,第三層級中的數據交換複雜度通常高於第二層級中。然而,較佳的是,第三層級中的數據交換量低於第二層級中的數據交換量並且因此低於其網路負載。
根據較佳的實施方式,第三層級中的數據處理、較佳的是即時數據處理包括以下中的一種或多種類型的數據處理:
- 層之間的拼接及/或圖像位置校正;
- 層之間的陰影化及/或混合;
- 全域亮度校正,從而在整個3D數據集中校正亮度;
- 全域特徵及/或偽像檢測,例如呈3D形式;
- 輪廓檢測、尤其全域輪廓檢測,及/或輪廓校正、尤其全域輪廓校正,及/或渲染準備;
- 例如與位置及/或長條圖及/或其他參數相關的關鍵績效指標(KPI)的計算,該等指標指示最新的數據集在整個數據集中的匹配程度;
- 整個3D數據集或其各個部分的視覺化、較佳的是波形圖視覺化;及/或
- 生成報告文件。
根據本發明的較佳的實施方式,處理系統包括中央處理單元(CPU)、圖形處理單元(GPU)、現場可程式設計閘陣列(FPGA)、及/或數位訊號處理器(DSP)或其任意組合。該處理系統可以是第一層級、第二層級或第三層級或另一個層級的處理系統。
根據本發明的另一個較佳的實施方式,該處理系統包括多處理單元。較佳的是,該多處理單元包括多個CPU及/或多個GPU。
根據另一個較佳的實施方式,該第一層級的多個第一處理系統中的至少一個處理系統被配置用於從多個換能器接收電信號、並且被配置用於針對多個檢測通道進行圖像處理、尤其即時圖像處理,其中,所述多個檢測通道的數據被存儲在該至少一個處理系統的同一記憶體、尤其同一RAM中。較佳的是,該記憶體係快速主記憶體、並且可由第一層級的該至少一個處理系統的一個或多個處理器定址。這種架構也有助於總體圖像處理的加速。
根據本發明的較佳的實施方式,該多個檢測通道被指派給多個檢測通道組,其中,相應檢測通道組的數據由同一處理系統處理,並且將檢測通道指派給相應檢測通道組被配置用於基於拓撲設計考慮因素、在圖像處理期間將不同處理系統之間的數據交換最小化。根據這個實施方式,該等檢測通道不是僅基於構造便利性和空間考慮因素進行分組,而且基於拓撲考慮因素進行分組,該等拓撲考慮因素將不同處理系統之間的數據交換最小化並且因此優化數據處理速度。根據較佳的實施方式,將不同的檢測通道指派給同一處理系統,例如指派給根據先前技術的圖像獲取系統。然後,將哪些檢測通道分組在一起係重要的。要重複的是,處理速度的決定性參數係由於不同處理系統之間的數據交換所產生的網路負載。因此,根據較佳的實施方式,藉由將特定的檢測通道最佳地指派給由一個處理系統處理的特定檢測通道組,可以消除多餘的網路負載。另外,如果需要源自不同檢測通道的數據交換,則如果可以在同一處理系統內、較佳的 是在預設情況下在一個圖像處理系統的同一RAM中進行此數據交換,這要快得多。下面將給出在加速總體圖像處理方面的拓撲優化的其他實例。
根據本發明的另一個較佳的實施方式,該第一層級、該第二層級、及/或該第三層級的實現及/或分佈係至少部分地虛擬的。替代性地,該第一層級、該第二層級、及/或該第三層級的實現及/或分佈係至少部分地真實的。當然,一個或多個層級的實現也可以是完全真實的。
較佳的是,該具有多層級架構的電腦系統被配置用於執行流水線操作。這允許進一步加速圖像處理。
根據本發明的較佳的實施方式,該第一層級被配置用於向該多束粒子顯微鏡的控制電腦系統發送反饋信號。發送若干個反饋信號也是可能的。該一個或多個反饋信號可以例如觸發多束粒子顯微鏡的某個操作。替代性地,該一個或多個反饋信號可以表示用於在其他層級中進行以後的數據檢查的標記。
根據另一個較佳的實施方式,該第二層級被配置用於向該多束粒子顯微鏡的控制電腦系統及/或該第一層級發送反饋信號。再一次,該一個或多個反饋信號可以引起多束粒子顯微鏡的特定操作,及/或該至少一個反饋信號可以設定用於進行以後的數據檢查的標記。根據這個實施方式,可以改善數據準確度。
根據另一個較佳的實施方式,被發送至該控制電腦系統的反饋信號引起該多束粒子顯微鏡對該3D樣本的層的至少一部分的立即重新成像。在允許將3D樣本的成像與3D樣本的破壞性減層相組合的系統中,引起立即重新成像的反饋信號特別重要。如果層數據集中的數據準確度不具有所需的品質,則必須避免在3D樣本的相應層獲得具有所需足夠品質的另一個數據集之前破壞該相應層。因此,引起對該3D樣本層的至少一部分的立即重新成像的反饋信號對於創建3D數據集至關重要,其中該3D數據集的所有部分都具有所需的數據準確度。
根據本發明的另一個較佳的實施方式,該第三層級被配置用於向該多束粒子顯微鏡的控制電腦系統及/或該第二層級發送至少一個反饋信號。源自第三層級的反饋信號可以引起不同的觸發動作。然而,對特定層的重新成像較佳的是不被該反饋信號觸發,因為在第三層級內處理的數據較佳的是涉及3D數據集的若干個層、尤其已經被破壞的層。
根據本發明的較佳的實施方式,所要求保護的系統進一步包括用於將3D樣本減層的減層單元。較佳的是,該減層單元藉由離子束銑削來操作。然而,該減層單元還可以應用其他減層方法。較佳的是,將3D樣本減層包括將3D樣本破壞性減層。因此,較佳的是,必須在將表面減層以創建下一個待成像層之前對3D樣本的層準確地成像。根據替代性實施方式,該減層單元根據非破壞性減層方法來操作。
根據本發明的第二方面,本發明涉及一種尤其用如上所述的系統來對3D樣本逐層成像之方法,該方法包括以下步驟:
a.將3D樣本減層;由此創建該3D樣本的待成像層;
b.用多束帶電粒子顯微鏡來對該3D樣本的該層成像,由此獲得層數據集;
c.即時檢驗該層數據集的有效性;以及
在有效性為肯定的情況下重複進行步驟a.至c.。
根據本發明之方法係極快速且安全的,特別是在應用如上文關於本發明第一方面所述的、包括用於對3D樣本成像的多束粒子顯微鏡和具有多層級架構的電腦系統的系統的情況下。另外,檢驗層數據集的有效性保證了僅在已經獲得的層數據集顯示所需的數據準確度時,才進行3D樣本的進一步減層。較佳的是,檢驗層數據集的有效性係基於由第一層級及/或第二層級發送給控制電腦系統或更高層次的層級的一個或多個反饋信號。對於決定是否可以將當前層減層以創建下一層時,第三層級的反饋信號通常不是較佳的。然而,該系統的以及操作該系統的替代方案都是可能 的。
即時檢驗層數據集的有效性意味著檢驗有效性係快速進行的並且不會顯著減慢整個減層過程。較佳的是,檢驗有效性花費的時間少於數據獲取/對樣本成像所需時間的10%。更較佳的是,檢驗有效性所花費的時間少於數據獲取/對樣本成像所需時間的5%或少於其1%。替代性地,即時檢驗有效性可以被定義為在少於5分鐘內、更較佳的是在少於3分鐘或少於1分鐘內檢驗有效性。根據替代性實施方式,即時檢驗層數據集的有效性包括即時圖像處理,其中,在上文關於系統電腦架構定義了即時成像。
根據本發明的較佳的實施方式,在無效情況下,在執行下一個減層步驟之前,檢驗層數據集的有效性觸發對該3D樣本的當前層的立即重新成像。這避免在獲得具有所需有效性/準確度的層數據集之前破壞層。
根據另一個較佳的實施方式,在執行下一個減層步驟之前,檢驗該層數據集的有效性觸發該3D樣本的重新減層。例如可能的是,實際的減層沒有足夠準確地執行,這使得以所需的準確度對相應層進行成像變得複雜。在這種情況下,重新減層較佳的是包括改善當前的減層,從而可以將具有所需品質的實體層呈現給多束粒子顯微鏡。典型地,與減層相比,在重新減層時去除樣本的較薄層,使得在重新減層之後,可以將仍顯示與原始層相同結構的實體層呈現給多束粒子顯微鏡。因此,在重新減層期間要被去除的層的厚度至多為典型地在減層過程期間要被去除的層的厚度的50%、更較佳的是小於典型地在減層過程期間要被去除的層的厚度的20%、或甚至小於其10%。替代性地,3D樣本的重新減層可以包括在以下意義上對3D樣本的完全減層:必須重新減層完全相同類型的另一3D樣本。
根據本發明的另一個較佳的實施方式,在無效情況下,在執行下一個減層步驟之前,檢驗該層數據集的有效性觸發對該多束粒子顯微鏡的重新校準。在此,重新校準確保未來成像操作以所需的準確度進行。 不一定係必須重新收集已經收集的數據集的情況。然而,這也可以做到。
根據本發明的另一個較佳的實施方式,檢驗層數據集的有效性觸發了設定用於以後檢查的標記。以後檢查可以是自動的以後檢查或手動的以後檢查或其組合。
根據本發明的第三方面,本發明涉及一種電腦程式產品,其具有用於執行上述方法的程式碼。該程式碼可以包括若干個部分,並且可以用任何合適的程式語言程式設計。
只要不發生技術上的矛盾,可以將本發明的所描述的實施方式彼此組合。
1:粒子束系統
3:初級電子束
5:位置
7:物體
9:電子束
10:控制電腦系統
100:物鏡系統
101:物平面
102:物鏡
103:陣列
200:檢測系統
205:投影透鏡
209:探測器
211:檢測平面
213:位置
217:陣列
241:光檢測器
245:信號線
300:束髮生裝置
301:電子源
303:準直透鏡
305:多孔裝置
307:場鏡
309:發散電子束
311:束
313:多孔板
315:開口
317:中心
319:陣列
323:焦點
325:平面
400:束開關
5001~500n:處理系統
507:幀捕獲器
520:使用者介面
530:存儲裝置
601至610:附圖標記
I1、I2、I3、I4:部分
P1、P2、P3、P4:距離
D:直徑
參考附圖,將更全面地理解本發明。由此示出了:
圖1為多束帶電粒子系統的實施方式之略圖;
圖2為根據第一實施方式的系統之略圖,該系統包括用於對3D樣本逐層成像的多束粒子顯微鏡和具有多層級架構的電腦系統;
圖3顯示根據一個實施方式的反饋回路的實現方式之略圖;
圖4顯示根據本發明第二實施方式的系統之略圖,該系統包括用於對3D樣本逐層成像的多束粒子顯微鏡和具有多層級架構的電腦系統;
圖5顯示檢測通道分組之略圖;
圖6顯示具有91個單視場(sFOV)的多視場(mFOV)之略圖;
圖7顯示在一個mFOV內的經優化檢測通道組之略圖;以及
圖8顯示mFOV之間的經優化檢測通道組之略圖。
圖1係採用多個粒子束的粒子束系統1之略圖。粒子束系統1產生多個粒子束,該等粒子束入射到要檢查的物體上,以便使電子從物體發出並隨後對電子進行檢測。粒子束系統1係掃描電子顯微鏡類型(SEM),其採用多個初級電子束3,該等初級電子束入射在物體7的表面上的位置5處,在該等位置處它們產成多個電子束斑。要檢查的物體7可以是任何期望的種類,例如包括半導體晶圓、生物樣本或材料樣本以及小型化元件等的佈置。物體7的表面被佈置在物鏡系統100的物鏡102的物平面101中。
圖1的放大部分I1示出了物平面101之俯視圖,在平面101中形成有入射位置5的規則矩形陣列103。圖1中的入射位置的數量為25,並且它們形成5×5陣列103。入射位置的數量25係出於簡化表示的原因而選擇的小數目。實際上,舉例來說,束及/或入射位置的數量可以被選擇為大得多:20×30、100×100等。
在所呈現的實施方式中,入射位置5的陣列103係基本規則的矩形陣列,其中在相鄰入射位置之間具有恒定的距離P1。距離P1的示例性值為1微米、10微米和40微米。然而,陣列103也可以具有其他對稱性,例如六邊形對稱性。
在物平面101中形成的束斑的直徑可以是較小的。直徑的值的實例係1奈米、5奈米、100奈米和200奈米。用於形成束斑的粒子束3藉由物鏡系統100聚焦。
入射到物體上的粒子產生從物體7的表面發出的電子。從物體7的表面發出的電子藉由物鏡102形成電子束9。檢查系統1提供電子束路徑11以用於將多個電子束9提供到檢測系統200。檢測系統200包括具有投影透鏡205的電子光學器件,該投影透鏡用於將電子束9引導到電子多探測器209上。
圖1中的部分I2示出了平面211之俯視圖,其中各個檢測 區域平鋪,電子束9入射到該等檢測區域上的某些位置213。入射位置213位於陣列217中,彼此之間具有規則距離P2。距離P2的示例性值係10微米、100微米和200微米。
該等初級電子束3產生於束髮生裝置300中,該束髮生裝置包括至少一個電子源301、至少一個準直透鏡303、多孔裝置305和場鏡307。電子源301產生發散電子束309,發散電子束藉由準直透鏡303變準直,以便形成照射多孔裝置305的束311。
圖1中的部分I3示出了多孔裝置305之俯視圖。多孔裝置305包括多孔板313,該多孔板中形成有多個開口或孔315。開口315的中心317佈置成陣列319,該陣列對應於由物平面101中的束斑5形成的陣列103。孔315的中心317彼此之間的距離P3可以具有例如5微米、100微米和200微米的值。孔315的直徑D小於孔的中心的距離P3。直徑D的示例性值為0.2×P3、0.4×P3和0.8×P3。
照射束311的電子穿透孔315並形成電子束3。入射到板313上的照射束311的電子被該板捕獲,並且不會有助於形成電子束3。
由於施加的靜電場,多孔裝置305以這樣的方式使電子束3聚焦,使得束焦點323形成在平面325中。替代性地,束焦點323可以是虛擬焦點。例如,焦點323的直徑可以是10奈米、100奈米和1微米。場鏡307和物鏡102提供第一成像粒子光學器件,用於將焦點在其中形成的平面325成像到物平面101上,從而形成物體7表面上的入射位置5或束斑的陣列103。物鏡102和投影透鏡205提供用於將物平面101成像到檢測平面211上的第二成像粒子光學器件。因此,物鏡102係既係第一粒子光學器件的一部分又係第二粒子光學器件的一部分的透鏡,而場鏡307僅屬於第一粒子光學器件,投射透鏡205僅屬於第二粒子光學器件。
束開關400被佈置在多孔裝置305與物鏡系統100之間的第一粒子光學器件的束路徑中。束開關400也是第二粒子光學器件的在物鏡 系統100與檢測系統200之間的束路徑中的部分。
可以從國際專利申請WO 2005/024881,WO 2007/028595,WO 2007/028596和WO 2007/060017以及申請號為DE 10 2013 016 113.4和DE 10 2013 014 976.2的德國專利申請中獲得關於這類多束檢測系統和其中採用的部件(例如,粒子源、多孔板、以及透鏡)的其他資訊,該等專利申請的公開內容以其全部內容藉由援引併入在本申請中。
所描繪的多束粒子顯微鏡1可以由控制電腦系統10控制。控制電腦系統10可以包括一個或多個電腦及/或零件。控制電腦系統1還可以連接至根據本發明的具有多層級架構的電腦系統,該電腦系統包括例如圖像獲取系統(未示出)。
圖2係一種系統的略圖,該系統包括用於對3D樣本逐層成像的多束粒子顯微鏡1和具有多層級架構的電腦系統。多束粒子顯微鏡1可以是關於圖1所描述的類型。然而,它還可以為不同的類型。在所描繪的實例中,該具有多層級架構的電腦系統包括由控制器(未示出)控制的三個不同的層級。藉由測量對多束粒子顯微鏡1生成的數據首先進入層級1。隨後,在層級1中被處理的數據的至少一部分在層級2中被進一步處理。隨後,在層級2中被處理的數據至少部分地被發送至層級3並且被進一步處理。在層級1、層級2、和層級3中執行的數據處理的序列指示了數據流程。然而,這明確地未排除:在層級1、層級2和層級3中的數據處理對不同的數據同時進行。可經由使用者介面520訪問在層級3中被處理的數據。
更詳細地,來自多個檢測通道的數據進入層級1中。層級1包括四個處理系統5001、5002、5003和5004。然而,層級1中的四個處理系統的數量僅是實例。較佳的是,第一層級中的處理系統的數量較大,可以為例如7個、8個、10個、15個、20個、50個、100或甚至更多個處理系統。然而,在所描繪的實例中,檢測通道的數量為四個,並且因此第一層級中的處理系統的數量也為四個。這四個檢測通道由從多束粒子顯微鏡1 開始並進入第一層級中的該多個處理系統5001、5002、5003和5004的箭頭指示。處理系統5001、5002、5003和5004各自僅處理一個檢測通道的數據。在此,在這個簡單的示意性示出的實施方式中,檢測通道組也包括僅一個檢測通道。在層級1中在處理源自不同檢測通道的數據的不同處理系統之間,不存在或僅存在非常少的數據交換。
層級2包括四個處理系統5005、5006、5007和5008,這四個處理系統接收來自第一層級的處理系統5001、5002、5003和5004的數據。然而,對於第一層級的處理系統5001、5002、5003和5004與第二層級的處理系統5005、5006、5007和5008之間的數據連接不存在固定的指派。這由已經在層級2的框處結束的箭頭指示。在所示的實例中,每個層級中的處理系統的數量為四個,這個數量係相等的。然而,情況並不一定如此。較佳的是,第二層級中的處理系統的數量小於第一層級中的處理系統的數量。這係由於在層級2中執行的數據處理量與必須在層級1中執行的數據處理量相比所致。稍後將詳細解釋。在層級2中,執行即時數據處理,包括不同的處理系統5005、5006、5007和5008之間的數據交換。在層級2中執行的這種數據交換還包括不同的檢測通道之間的數據交換。較佳的是,在第二層級中的不同處理系統5005、5006、5007和5008之間的(還可以包括源自不同檢測通道的數據的)這種數據交換係對最近獲取的數據(較佳的是與特定層有關的數據)執行。較佳的是,利用在層級1和層級2中執行的圖像處理,可以處理與特定層有關的所有數據。
該具有多層級架構的電腦系統的第三層級包括用於處理數據的多個第三處理系統5009、50010和50011。層級3接收來自層級2的數據。較佳的是,從一個層級到下一個層級的數據流程從層級1到層級3減少。在層級3內,處理系統5009、50010和50011可以彼此交換數據。因此,在層級3中,源自不同檢測通道的數據可以/被交換。另外,這不僅適用於與特定單層有關的數據,而且還適用於與多層有關的數據、尤其與所 有層有關的數據。較佳的是,允許對所收集的3D數據集的所有現有數據進行數據交換。
由不同處理系統之間的數據交換產生的網路負載量從層級1到層級3逐漸增加。處理速度的降低至少部分地是由於這種增加的數據交換所導致的。在所示的實施方式中,在第一層級中執行最快的數據處理,其中不同的通道之間沒有或幾乎沒有數據交換。然後,在層級2中,允許不同處理系統之間的及/或在一個層內的源自不同檢測通道的數據的相對簡單的數據交換。最後,在層級3中,執行不同處理系統之間的及/或源自不同檢測通道的數據的以及屬於不同層的數據的較大數據交換。處理速度的降低還可能由於從層級1到層級3的增大的計算負擔(例如這可能是更複雜的計算的結果)導致。因此,這種三層級架構反映了在對3D樣本逐層成像時的基本方面。然而,還可以在執行特定圖像處理的多層級架構中包括第四層級、第五層級等。
原則上,處理系統5001至50011可以是任何類型,該類型對於不同的處理系統5001至50011可以是相同的、部分相同的、或完全不同的。較佳的是,處理系統5001至50011包括中央處理單元(CPU)、圖形處理單元(GPU)、現場可程式設計閘陣列(FPGA)、及/或數位訊號處理器(DSP)或其任意組合。該第一層級、該第二層級、該第三層級、及/或任何其他層級的實現及/或分佈可以是至少部分地虛擬的。替代性地或另外,該具有多層級架構的電腦系統可以被配置用於執行流水線操作。特別地,每個層級可以細分為多個子層級,較佳的是用於實現流水線操作。
圖3係展示了根據本發明的另一個實施方式的反饋回路的實現方式之略圖。反饋信號在圖3下半部分中用箭頭指示。基本上,來自每個層級(在此:層級1、層級2和層級3)的反饋信號可以發送到較高層次的下一層級和多束粒子顯微鏡1。因此,層級1可以將反饋信號僅遞送回到多束粒子顯微鏡1。層級2可以將反饋信號遞送回到層級1或/和多束粒 子顯微鏡1。層級3可以將反饋信號遞送至層級2和多束粒子顯微鏡1。
反饋信號在圖3下半部分中用箭頭指示。
從層級1遞送回到多束粒子顯微鏡1的反饋可以解決以下一個或多個議題:
- 需要重新調整單束或所有束的亮度及/或對比度。
- 需要焦點及/或污點的重新調整。
- 成像對比度不足。
- 輪廓及/或偽像檢測有錯誤。
相應地,可以藉由層級1的反饋信號來觸發以下動作:根據較佳的實施方式,可以觸發圖像的立即重拍。例如,較佳的是在載物台仍處於圖像數據產生標記信號時的當前位置時立即重拍圖像。由於載物台必須再次移動,並且此外必須找到正確的重拍位置,因此在稍後的時間點重拍比較耗時。還可能的是,標記一個或多個圖像,以用於在層級2或/和層級3中以後檢查。如果圖像中存在太多偽像,則應考慮重新減層及/或自動進行重新減層。如果數據不能很好地適應背景,例如,如果檢測到不良的拼接結果,則反饋信號可以指示需要重新校準多束粒子顯微鏡1。
層級2可以將反饋發送至層級1及/或多束粒子顯微鏡1。例如,反饋可以涉及關於以下一個或多個方面的資訊:
- 必須重新調整單束、若干束或所有束的亮度及/或對比度。
- 需要焦點及/或污點的重新調整。
如果反饋信號觸發了動作,則該等動作可以包括以下中的一項或多項:
- 立即重拍一個或多個圖像;
- 標記區域以用於在層級3中或經由使用者檢查進行以後檢查;
- 標記一個或多個圖像以用於在層級3中以後檢查;
- 由於存在太多偽像,應考慮重新減層;
- 數據在數據背景及/或數據庫中匹配度不好-標記給使用者;
- 拼接有錯誤-重新校準多束粒子顯微鏡1,
- 輪廓檢測有錯誤-重新校準多束粒子顯微鏡及/或改變減層參數;
- 減層偽像可見-重新減層及/或改變減層參數。
層級3可以將反饋發送至層級2及/或多束粒子顯微鏡1。可能的觸發動作包括以下中的一項或多項:
- 圖像位置校正需要重新調整;
- 標記一個或多個圖像以用於使用者進行以後檢查;
- 太多偽像,應考慮重新減層;
- 數據在數據背景/數據庫中匹配度不好-標記給使用者;
- 3D拼接錯誤,重新校準多束粒子顯微鏡1;
- 輪廓檢測及/或渲染錯誤-重新校準多束粒子顯微鏡1及/或改變減層參數;
- 減層偽像可見-重新減層及/或改變減層參數。
其他反饋信號及/或觸發動作也是可能的。
層級1、層級2和層級3及其相應的處理系統由控制器CTRL控制。該控制器控制數據處理操作,尤其是在層級1、層級2及/或層級3中執行的數據校正。特別地,可以單獨開啟和關閉數據校正。代替提供單獨的控制器,可以將用於層級1、層級2或/和層級3的控制功能集成到另一電腦或處理系統、例如層級1的處理系統中。替代性地,控制功能可以集成在用於控制多束粒子顯微鏡1的控制電腦系統10中(參見圖4)。
圖4係系統的實施方式的略圖,該系統包括多束粒子顯微鏡1以及具有包括三個層級的多層級架構的電腦系統。圖4所描繪的實施方式係本發明的已經關於圖2(多層級架構)和圖3(反饋信號)描繪和描述的該等方面的組合。另外,圖4展示了整個系統中的網路負載/數據流程的量。該數據量在圖4中由箭頭的粗細指示。粗箭頭指示大數據量,細箭頭指示 較小數據量。為了完整性,還示出了用於最終處理的數據的存儲裝置530。
從多束粒子顯微鏡1遞送至層級1的處理系統5001至5007的數據的量巨大。在層級1中,在不同處理系統及/或檢測通道之間無數據交換的情況下執行數據的並行處理。在層級1中被處理的大多數數據直接進入存儲裝置530中。用於寫入存儲裝置530中的數據速率可以達到百億位元組每秒或更大。該存儲裝置530中的數據量相應地是巨大的:它可以是幾十拍位元組的數量級。
層級1的一部分數據被發送至層級2及其處理系統5008至50011。在此,在不同的處理系統5008至50011之間執行數據交換,包括源自不同檢測通道的數據交換。然後,再次,在層級2中被處理的部分數據直接進入存儲裝置530中。其餘部分的數據被遞送至具有三個處理系統50012至50014的層級3。在此,不同處理系統之間的數據交換被允許並且還包括源自不同檢測通道的數據的處理、以及屬於描繪3D樣本的3D數據集的不同層的層數據集之間的數據交換。在層級3中進行處理後,剩餘數據進入存儲裝置530中。使用者介面520可訪問存儲裝置530,並且可以進一步調查該數據。
另外,在圖4中描繪了反饋回路,該反饋回路返回至上一層級及/或直接返回至多束粒子顯微鏡1,在此更確切地返回至用於控制多束粒子顯微鏡1的控制電腦系統10。還可能的是,控制電腦系統10設置在距多束粒子顯微鏡1一定距離處,及/或它可以包含在用於在層級1、層級2、和層級3中執行的圖像處理的硬體中。同樣,必須記住,層級1、層級2、和層級3的實現也可以是至少部分地虛擬的。
圖5示出了展示檢測通道分組的略圖。在此,層級1的每個處理系統5001至500n分別從多個檢測通道接收數據。在所示的實例中,八個檢測通道被分組在一起,並分別為1個處理系統5001至500n遞送輸入。為了完整性,還示意性地示出了檢測通道的數據的來源:多束粒子顯 微鏡1的檢測系統200可以包括粒子檢測器以及光檢測器。通常將來自粒子檢測器的信號轉換成光,然後用每個檢測通道的相應光檢測器來檢測光。圖5指示被指派給檢測區域的相應光檢測器241。光檢測器241可以例如由雪崩光電二極體(APD)來實施。光檢測器241經由連接至幀捕獲器507的信號線245來發射電信號。幀捕獲器507藉由將檢測到的粒子強度轉換為圖像的灰度值並將它們指派給圖像中的位置來分別生成圖像資訊。圖像資訊係二維的,並且可以以逐列或逐行的方式存儲在線性數據存儲裝置中,以便隨後可定址。檢測到的每個圖像的圖像資訊從幀捕獲器507傳輸到處理系統5001和500n、並在那裡被直接寫入主記憶體中。光檢測器241和幀捕獲器507提供了換能器的實例。換能器被指派給每個檢測區域,並且被配置用於生成表示入射在檢測區域上的粒子強度的電信號。包括其他種類換能器的其他檢測系統也是可能的,例如,包括其中形成有電子/電洞對的屏障層的檢測器。
因此,層級1的該多個處理系統5001和500n提供了圖像記錄電腦系統。在所描繪的實例中,連接至第一層級中的每個處理系統5001和500n的幀捕獲器507的數量使得由該多個幀捕獲器507生成的圖像數據可以由處理系統5001和500n即時處理。在所描繪的示例性實施方式中,多達八個幀捕獲器507連接至一個處理系統500。每個處理系統5001和500n具有快速記憶體,其中存儲了由幀捕獲器507生成的圖像數據以進行進一步處理。較佳的是,圖像處理器5001和500n包括多處理單元,並且1個處理系統5001和500n中的所有多處理單元可以定址相應處理系統5001和500n內的主記憶體。同一處理系統內的圖像處理非常快,並且即使有必要在不同的檢測通道之間交換數據,如果表示各個檢測通道的數據被存儲在同一記憶體中、尤其在處理系統500的同一RAM中,則這種交換也可以同樣快速地進行。因此,如何將不同的檢測通道分組在一起以及如何將它們指派給特定處理系統500會影響可能的處理速度。根據本發明,當多層級 架構被實現為至少部分地虛擬時,這一發現特別重要。這意味著,硬體處理系統500可以同時展示層級1的一部分和層級2的一部分。常見的圖像處理系統中的數據處理可以在虛擬層級架構中進行;而且,為了優化處理速度,將檢測通道物理地指派給硬體處理系統很重要。將藉由參見圖6至圖8來進一步解釋將通道分組在一起的概念。
圖6係展示了具有91個單視場(sFOV)的多視場(mFOV)的簡單略圖。原則上,該等sFOV的標號係隨意的。在所描繪的實例中,中央sFOV被編號為1。圍繞這個1號中央sFOV,示出了具有另六個sFOV 2至7的外殼。下一個外殼包含sFOV 8至19等。總體而言,示出了具有91個sFOV的六邊形結構,從而得到一個mFOV。
圖7係展示了在具有91個sFOV的一個mFOV內的經優化檢測通道分組的略圖。不同的檢測通道組用不同的字母編號。在具有91個sFOV的當前實例中,描繪了12個組A至L。每個檢測通道組的數據由層級1及/或層級2中的同一處理系統500處理。將檢測通道指派給相應檢測通道組A至L被配置用於基於拓撲設計考慮因素,在圖像處理期間將不同圖像處理系統之間的數據交換減少。較佳的是,用於優化分組的規則如下:
- 將多視場mFOV中的檢測器進行分組,使得在一個處理系統/獲取系統500內進行兩個或更多個檢測通道之間的盡可能多的數據傳輸。
- 在任何兩個處理系統/圖像獲取系統500之間進行不同檢測通道之間盡可能少的數據傳輸。
- 拓撲優化:使「面積」(這係一個處理器/圖像獲取系統500上的檢測器的數量)與「周長」(這係在不同處理系統/圖像獲取系統500上具有相鄰檢測器的檢測器的數量)之比盡可能大。
如果第一層級及/或第二層級中的一個處理系統500可以處理多達8個檢測通道,則圖7中描繪的分組係好的實例。也存在其他解決方案。
考慮3D樣本的完整層的圖像係由多個mFOV建立的,因此較佳的是也考慮其他拓撲設計考慮因素。例如,一個重要方面係,必須將不同mFOV的檢測通道配對以進行數據交換,例如進行層內的拼接程序。配對可以基於拓撲設計考慮因素來實現,以減少不同處理系統之間的數據交換,並且因此減少網路負載,從而得到較快的總體圖像處理速度。
在圖8中描繪了用於此類場景的較佳的解決方案。圖8係展示了mFOV的檢測通道組的略圖。展示了四個mFOV 1至4,並且示出了載物台移動時sFOV的相鄰關係。在mFOV1與mFOV2之間的邊界處,mFOV1的檢測通道組L在最外位置上具有三個檢測通道,每個檢測通道面向的檢測通道都屬於mFOV2上的檢測通道組J。這種分組由框601指示。類似地,mFOV1的屬於檢測通道組F的兩個檢測通道面向的兩個檢測通道屬於mFOV2上的檢測通道組I,如框602指示。另外,屬於位於mFOV3邊界處的mFOV1上的檢測通道組H的三個檢測通道面向的三個檢測通道屬於mFOV3上的檢測通道組L,如框610指示。屬於mFOV1的檢測通道組I的三個檢測通道面向的三個檢測通道屬於mFOV3上的檢測通道組K,如框609指示。附圖標記603至608還指示了用於示出不同mFOV之間的檢測通道組的配對的框。因此,可以藉由使包含屬於最多一個或兩個不同檢測通道組的相鄰檢測通道對的框盡可能大,來減少不同處理系統之間的數據交換。
在所描繪的實例中與91個sFOV配對時,唯一更複雜的區域係在區域608周圍。在此,在mFOV4中,檢測通道70和71(使用圖6所示的編號)屬於不同的檢測通道組D和K。而且,在相鄰的mFOV1上,檢測通道83和84兩者都屬於檢測通道組G。
1:粒子束系統
5001~500n:處理系統
520:使用者介面

Claims (19)

  1. 一種系統,包括:
    用於對3D樣本成像的多束粒子顯微鏡;以及
    具有多層級架構的電腦系統;
    該多束粒子顯微鏡包括:
    多束源,該多束源被配置用於產生具有多個第一粒子束的第一陣列;
    第一粒子光學器件,該第一粒子光學器件被配置用於將該第一粒子束引導到物體上,使得該第一粒子束入射在該物體的形成第二陣列的入射位置處;
    包括多個檢測區域的一個檢測器、或各自具有至少一個檢測區域的多個檢測器,該等檢測區域被佈置成第三陣列,該一個或多個檢測器包括多個換能器,換能器被指派給每個檢測區域並且被配置用於產生表示入射在該檢測區域上的粒子強度的電信號,該多個檢測區域和所指派的多個換能器分別形成多個檢測通道,該等檢測通道被指派給多個檢測通道組;
    第二粒子光學器件,該第二粒子光學器件被配置用於將從該第二陣列中的入射位置發射的第二粒子束引導至該第三陣列的檢測區域,使得每個第二粒子束入射到佈置在該第三陣列中的至少一個檢測區域上;以及
    用於控制該多束粒子顯微鏡的控制電腦系統;
    該具有多層級架構的電腦系統包括:
    第一層級,該第一層級包括用於處理數據的多個第一處理系統;以及
    第二層級,該第二層級包括用於處理數據的多個第二處理系統;
    其中,該多個第一處理系統中的每個處理系統被配置用於僅從所指派的檢測通道組接收檢測信號,並且其中,該第一層級的該多個第一處理系統被配置用於在該多個第一處理系統中的不同處理系統之間基本上或完全不進行任何數據交換的情況下進行數據處理;並且
    其中,該第二層級的該多個第二處理系統被配置用於從該第一層級的該多個第一處理系統中的至少一個第一處理系統接收數據、並且被配置用於進行數據處理,該數據處理包括在該第二層級的不同處理系統之間尤其對最近獲取的數據進行數據交換。
  2. 如申請專利範圍第1項所述之系統,
    其中,該具有多層級架構的電腦系統進一步包括第三層級,該第三層級具有用於處理數據的多個第三處理系統;
    其中,該第三層級的該多個第三處理系統被配置用於從該第二層級的該多個第二處理系統中的至少一個第二處理系統接收數據、並且被配置用於進行數據處理,該數據處理包括在該第三層級的不同處理系統之間尤其對所有現有數據的數據交換。
  3. 如前述申請專利範圍中任一項所述之系統,其中,處理系統包括中央處理單元(CPU)、全域處理單元(GPU)、現場可程式設計閘陣列(FPGA)、及/或數位訊號處理器(DSP)或其任意組合。
  4. 如前述申請專利範圍中任一項所述之系統,其中,處理系統包括多處理單元。
  5. 如前述申請專利範圍中任一項所述之系統,其中,該第一層級的該多 個第一處理系統中的至少一個處理系統被配置用於從多個換能器接收電信號、並且被配置用於針對多個檢測通道進行圖像處理,其中,所述多個檢測通道的數據被存儲在該至少一個處理系統的同一記憶體、尤其同一RAM中。
  6. 如前述申請專利範圍中任一項所述之系統,
    其中,將檢測通道指派給相應檢測通道組被配置用於基於拓撲設計考慮因素,在圖像處理期間將不同處理系統之間的數據交換最小化。
  7. 如申請專利範圍第2至6項中任一項所述之系統,其中,該第一層級、該第二層級、及/或該第三層級的實現及/或分佈係至少部分地虛擬的。
  8. 如前述申請專利範圍中任一項所述之系統,其中,該具有多層級架構的電腦系統被配置用於執行流水線操作。
  9. 如前述申請專利範圍中任一項所述之系統,其中,該第一層級被配置用於向該多束粒子顯微鏡的控制電腦系統發送反饋信號。
  10. 如前述申請專利範圍中任一項所述之系統,其中,該第二層級被配置用於向該多束粒子顯微鏡的控制電腦系統及/或該第一層級發送反饋信號。
  11. 如申請專利範圍第9至10項中任一項所述之系統,其中,被發送至該控制電腦系統的反饋信號引起該多束粒子顯微鏡對該3D樣本的層的至少一部分的立即重新成像。
  12. 如申請專利範圍第2至11項中任一項所述之系統,其中,該第三層級被配置用於向該多束粒子顯微鏡的控制電腦系統及/或該第二層級發送反饋信號。
  13. 如前述申請專利範圍中任一項所述之系統,進一步包括:用於將該3D樣本減層的減層單元。
  14. 一種尤其用如系統申請專利範圍第1至13項中任一項所述之系統來對3D樣本逐層成像之方法,該方法包括:
    a.將3D樣本減層;由此創建該3D樣本的待成像層;
    b.用多束粒子顯微鏡來對該3D樣本的該層成像,由此獲得層數據集;
    c.即時檢驗該層數據集的有效性;以及
    在有效性為肯定的情況下重複進行步驟a.至c.。
  15. 如申請專利範圍第14項所述之方法,其中,在無效情況下,在執行下一個減層步驟之前,檢驗該層數據集的有效性觸發對該3D樣本的當前層的立即重新成像。
  16. 如申請專利範圍第14至15項中任一項所述之方法,其中,在執行下一個減層步驟之前,檢驗該層數據集的有效性觸發該3D樣本的重新減層。
  17. 如申請專利範圍第14至16項中任一項所述之方法,其中,在無效情況下,在執行下一個減層步驟之前,檢驗該層數據集的有效性觸發對該多束粒子顯微鏡的重新校準。
  18. 如申請專利範圍第14至17項中任一項所述之方法,其中,檢驗該層數據集的有效性觸發了設定用於以後檢查的標記。
  19. 一種電腦程式產品,具有用於執行如申請專利範圍第14至18項中任一項所述之方法之程式碼。
TW108146249A 2019-01-24 2019-12-17 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品 TWI743626B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019000470 2019-01-24
DE102019000470.1 2019-01-24

Publications (2)

Publication Number Publication Date
TW202029265A true TW202029265A (zh) 2020-08-01
TWI743626B TWI743626B (zh) 2021-10-21

Family

ID=69232815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146249A TWI743626B (zh) 2019-01-24 2019-12-17 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品

Country Status (7)

Country Link
US (2) US11935721B2 (zh)
EP (1) EP3915131A2 (zh)
JP (1) JP7498719B2 (zh)
KR (1) KR20210118445A (zh)
CN (1) CN113424292A (zh)
TW (1) TWI743626B (zh)
WO (1) WO2020151904A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202172B4 (de) 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zur teilchenoptischen Untersuchung eines Objekts
DE102018202428B3 (de) 2018-02-16 2019-05-09 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenmikroskop
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
CN112055886A (zh) 2018-02-27 2020-12-08 卡尔蔡司MultiSEM有限责任公司 带电粒子多束系统及方法
US10811215B2 (en) 2018-05-21 2020-10-20 Carl Zeiss Multisem Gmbh Charged particle beam system
DE102018007455B4 (de) 2018-09-21 2020-07-09 Carl Zeiss Multisem Gmbh Verfahren zum Detektorabgleich bei der Abbildung von Objekten mittels eines Mehrstrahl-Teilchenmikroskops, System sowie Computerprogrammprodukt
DE102018007652B4 (de) 2018-09-27 2021-03-25 Carl Zeiss Multisem Gmbh Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE102018124044B3 (de) 2018-09-28 2020-02-06 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenstrahlmikroskops und Vielstrahl-Teilchenstrahlsystem
CN111477530B (zh) 2019-01-24 2023-05-05 卡尔蔡司MultiSEM有限责任公司 利用多束粒子显微镜对3d样本成像的方法
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
DE102021200799B3 (de) 2021-01-29 2022-03-31 Carl Zeiss Multisem Gmbh Verfahren mit verbesserter Fokuseinstellung unter Berücksichtigung eines Bildebenenkipps in einem Vielzahl-Teilchenstrahlmikroskop
KR20240042652A (ko) 2021-08-10 2024-04-02 칼 짜이스 멀티셈 게엠베하 증가한 집속 파워를 갖는 멀티-빔 생성 유닛
WO2023143858A1 (en) 2022-01-25 2023-08-03 Carl Zeiss Multisem Gmbh Multiple charged particle beam system with a mirror mode of operation, method for operating a multi-beam charged particle microscope system with a mirror mode of operation and associated computer program product
WO2024008329A1 (en) 2022-07-07 2024-01-11 Carl Zeiss Multisem Gmbh Multi-beam charged particle microscope design with mirror for field curvature correction
US20240128051A1 (en) 2022-10-14 2024-04-18 Carl Zeiss Multisem Gmbh Multi-beam charged particle beam system with anisotropic filtering for improved image contrast
WO2024125816A1 (en) 2022-12-16 2024-06-20 Carl Zeiss Multisem Gmbh Multi-beam charged particle microscope design with detection system for fast charge compensation

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119178A (en) 1976-03-31 1977-10-06 Toshiba Corp Electron beam exposure device
CA1100237A (en) 1977-03-23 1981-04-28 Roger F.W. Pease Multiple electron beam exposure system
US4200794A (en) 1978-11-08 1980-04-29 Control Data Corporation Micro lens array and micro deflector assembly for fly's eye electron beam tubes using silicon components and techniques of fabrication and assembly
US4338548A (en) 1980-01-30 1982-07-06 Control Data Corporation Unipotential lens assembly for charged particle beam tubes and method for applying correction potentials thereto
JPS59184524A (ja) 1983-04-04 1984-10-19 Nippon Telegr & Teleph Corp <Ntt> 電子ビ−ム露光装置
JPS6042825A (ja) 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> 荷電ビ−ム露光装置
JPS60105229A (ja) 1983-11-14 1985-06-10 Nippon Telegr & Teleph Corp <Ntt> 荷電ビ−ム露光装置
JPH0789530B2 (ja) 1985-05-17 1995-09-27 日本電信電話株式会社 荷電ビ−ム露光装置
US4742234A (en) 1985-09-27 1988-05-03 American Telephone And Telegraph Company, At&T Bell Laboratories Charged-particle-beam lithography
JP2523931B2 (ja) 1990-04-16 1996-08-14 富士通株式会社 ブランキングアパ―チャアレ―の製造方法
EP0794552B1 (en) 1996-03-04 2007-11-14 Canon Kabushiki Kaisha Electron beam exposure apparatus and method, and device manufacturing method
US5892224A (en) * 1996-05-13 1999-04-06 Nikon Corporation Apparatus and methods for inspecting wafers and masks using multiple charged-particle beams
JP3796317B2 (ja) 1996-06-12 2006-07-12 キヤノン株式会社 電子ビーム露光方法及びそれを用いたデバイス製造方法
JP3927620B2 (ja) 1996-06-12 2007-06-13 キヤノン株式会社 電子ビーム露光方法及びそれを用いたデバイス製造方法
JP3728015B2 (ja) 1996-06-12 2005-12-21 キヤノン株式会社 電子ビーム露光システム及びそれを用いたデバイス製造方法
US5981954A (en) 1997-01-16 1999-11-09 Canon Kabushiki Kaisha Electron beam exposure apparatus
US6107636A (en) 1997-02-07 2000-08-22 Canon Kabushiki Kaisha Electron beam exposure apparatus and its control method
JP3787417B2 (ja) 1997-06-11 2006-06-21 キヤノン株式会社 電子ビーム露光方法及び電子ビーム露光装置
US6333508B1 (en) 1999-10-07 2001-12-25 Lucent Technologies, Inc. Illumination system for electron beam lithography tool
JP3763446B2 (ja) 1999-10-18 2006-04-05 キヤノン株式会社 静電レンズ、電子ビーム描画装置、荷電ビーム応用装置、および、デバイス製造方法
JP2001284230A (ja) 2000-03-31 2001-10-12 Canon Inc 電子光学系アレイ、これを用いた荷電粒子線露光装置ならびにデバイス製造方法
JP4585661B2 (ja) 2000-03-31 2010-11-24 キヤノン株式会社 電子光学系アレイ、荷電粒子線露光装置およびデバイス製造方法
JP4947841B2 (ja) 2000-03-31 2012-06-06 キヤノン株式会社 荷電粒子線露光装置
US6787780B2 (en) 2000-04-04 2004-09-07 Advantest Corporation Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a semiconductor device
EP1150327B1 (en) 2000-04-27 2018-02-14 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi beam charged particle device
WO2002001596A1 (en) 2000-06-27 2002-01-03 Ebara Corporation Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
KR100885940B1 (ko) 2000-06-27 2009-02-26 가부시키가이샤 에바라 세이사꾸쇼 하전입자선에 의한 검사장치 및 그 검사장치를 사용한장치제조방법
JP4741115B2 (ja) 2000-08-14 2011-08-03 イーリス エルエルシー リソグラフィ投影装置およびデバイス製造方法
JPWO2002056332A1 (ja) 2001-01-10 2004-05-20 株式会社荏原製作所 電子線による検査装置、検査方法、及びその検査装置を用いたデバイス製造方法
JP4246401B2 (ja) 2001-01-18 2009-04-02 株式会社アドバンテスト 電子ビーム露光装置及び電子ビーム偏向装置
JP4647820B2 (ja) 2001-04-23 2011-03-09 キヤノン株式会社 荷電粒子線描画装置、および、デバイスの製造方法
JP4756776B2 (ja) 2001-05-25 2011-08-24 キヤノン株式会社 荷電粒子線露光装置、荷電粒子線露光方法およびデバイス製造方法
DE10127217B4 (de) 2001-06-05 2005-09-15 Infineon Technologies Ag Verfahren zur Herstellung lagegenauer großflächiger Membranmasken
DE10138882B4 (de) 2001-08-08 2005-09-08 Infineon Technologies Ag Großflächige Membranmaske und Verfahren zu ihrer Herstellung
US6818911B2 (en) 2002-04-10 2004-11-16 Canon Kabushiki Kaisha Array structure and method of manufacturing the same, charged particle beam exposure apparatus, and device manufacturing method
JP4220209B2 (ja) 2002-09-27 2009-02-04 株式会社アドバンテスト 電子ビーム露光装置、偏向装置、及び電子ビーム露光方法
JP4025613B2 (ja) 2002-09-27 2007-12-26 株式会社アドバンテスト 電子ビーム露光装置、電子ビーム露光装置校正方法、及び半導体素子製造方法
US6953938B2 (en) 2002-10-03 2005-10-11 Canon Kabushiki Kaisha Deflector, method of manufacturing deflector, and charged particle beam exposure apparatus
US7015467B2 (en) 2002-10-10 2006-03-21 Applied Materials, Inc. Generating electrons with an activated photocathode
KR101119890B1 (ko) 2002-10-30 2012-03-13 마퍼 리쏘그라피 아이피 비.브이. 전자 빔 노출 시스템
JP2004282038A (ja) 2003-02-28 2004-10-07 Canon Inc 偏向器、偏向器を製造する方法、偏向器を適用した荷電粒子線露光装置
CN1759465B (zh) 2003-03-10 2010-06-16 迈普尔平版印刷Ip有限公司 用于产生多个小波束的装置
JP4459568B2 (ja) 2003-08-06 2010-04-28 キヤノン株式会社 マルチ荷電ビームレンズおよびそれを用いた荷電ビーム露光装置
CN101103417B (zh) 2003-09-05 2012-06-27 卡尔蔡司Smt有限责任公司 粒子光学系统和排布结构,以及用于其的粒子光学组件
GB2408383B (en) 2003-10-28 2006-05-10 Ims Nanofabrication Gmbh Pattern-definition device for maskless particle-beam exposure apparatus
WO2005074002A2 (en) 2004-01-29 2005-08-11 Applied Materials Israel, Ltd. Focusing system and method for a charged particle imaging system
US7326901B2 (en) 2004-04-15 2008-02-05 Applied Materials, Israel, Ltd. High throughput multi beam system and method
US7420164B2 (en) 2004-05-26 2008-09-02 Ebara Corporation Objective lens, electron beam system and method of inspecting defect
US7375326B2 (en) 2004-06-21 2008-05-20 Applied Materials, Israel, Ltd. Method and system for focusing a charged particle beam
US7285779B2 (en) 2004-06-21 2007-10-23 Applied Materials Israel, Ltd. Methods of scanning an object that includes multiple regions of interest using an array of scanning beams
US7468507B2 (en) 2005-01-26 2008-12-23 Applied Materials, Israel, Ltd. Optical spot grid array scanning system
US20090212213A1 (en) 2005-03-03 2009-08-27 Ebara Corporation Projection electron beam apparatus and defect inspection system using the apparatus
TW200700717A (en) 2005-03-22 2007-01-01 Ebara Corp Electron beam device
DE602006020899D1 (de) 2005-09-06 2011-05-05 Applied Materials Israel Ltd Teilchenoptische Anordnung mit teilchenoptischer Komponente
ATE464647T1 (de) 2005-11-28 2010-04-15 Zeiss Carl Smt Ag Teilchenoptische komponente
US7504622B2 (en) 2006-04-03 2009-03-17 Applied Materials, Israel, Ltd. High throughput multi beam detection system and method
US8134135B2 (en) 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
US9153413B2 (en) 2007-02-22 2015-10-06 Applied Materials Israel, Ltd. Multi-beam scanning electron beam device and methods of using the same
JP5292412B2 (ja) 2009-01-15 2013-09-18 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
US8552373B2 (en) * 2009-05-27 2013-10-08 Hitachi High-Technologies Corporation Charged particle beam device and sample observation method
CN103069536B (zh) 2010-04-09 2016-04-06 卡尔蔡司Smt有限责任公司 带电粒子探测系统和多小波束检查系统
DE102010026169B4 (de) 2010-07-06 2014-09-04 Carl Zeiss Microscopy Gmbh Partikelstrahlsystem
US8440969B2 (en) * 2010-08-02 2013-05-14 Omniprobe, Inc. Method and apparatus for acquiring simultaneous and overlapping optical and charged particle beam images
WO2012041464A1 (en) 2010-09-28 2012-04-05 Applied Materials Israel Ltd. Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
JP5683227B2 (ja) 2010-11-19 2015-03-11 キヤノン株式会社 電子ビーム描画装置、およびそれを用いた物品の製造方法
CN103688333B (zh) 2011-02-18 2016-10-19 应用材料以色列公司 聚焦带电粒子成像系统
JP2012195097A (ja) 2011-03-15 2012-10-11 Canon Inc 荷電粒子線レンズおよびそれを用いた露光装置
US8362425B2 (en) 2011-03-23 2013-01-29 Kla-Tencor Corporation Multiple-beam system for high-speed electron-beam inspection
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
US9702983B2 (en) 2011-05-03 2017-07-11 Applied Materials Israel, Ltd. Multi-spot collection optics
US9633819B2 (en) * 2011-05-13 2017-04-25 Fibics Incorporated Microscopy imaging method and system
JP5822535B2 (ja) 2011-05-16 2015-11-24 キヤノン株式会社 描画装置、および、物品の製造方法
JP2013004216A (ja) 2011-06-14 2013-01-07 Canon Inc 荷電粒子線レンズ
GB2494118A (en) 2011-08-28 2013-03-06 Applied Materials Israel Ltd Test object for testing an array of beams
JP5886663B2 (ja) * 2012-03-21 2016-03-16 株式会社日立ハイテクノロジーズ 電子線応用装置およびレンズアレイ
JP2013239667A (ja) 2012-05-17 2013-11-28 Canon Inc 荷電粒子線静電レンズにおける電極とその製造方法、荷電粒子線静電レンズ、及び荷電粒子線露光装置
JP2014007261A (ja) 2012-06-22 2014-01-16 Canon Inc 静電偏向器、描画装置およびデバイスの製造方法
JP2014007013A (ja) 2012-06-22 2014-01-16 Canon Inc 静電レンズアレイ、マルチ荷電粒子光学系、及びフォーカス調整方法
DE102012017950A1 (de) * 2012-09-11 2014-03-13 Carl Zeiss Microscopy Gmbh Partikelstrahlmikroskop zur Erzeugung von Materialbestandteilen
GB201308436D0 (en) * 2013-05-10 2013-06-19 Oxford Instr Nanotechnology Tools Ltd Metrology for preparation of thin samples
JP2014229481A (ja) 2013-05-22 2014-12-08 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP2014235883A (ja) * 2013-06-03 2014-12-15 三星電子株式会社Samsung Electronics Co.,Ltd. 電子線装置
EP2881972B1 (en) * 2013-08-09 2017-03-22 Carl Zeiss Microscopy Ltd. Method and data analysis system for semi-automated particle analysis using a charged particle beam
DE102013014976A1 (de) 2013-09-09 2015-03-12 Carl Zeiss Microscopy Gmbh Teilchenoptisches System
DE102013016113B4 (de) 2013-09-26 2018-11-29 Carl Zeiss Microscopy Gmbh Verfahren zum Detektieren von Elektronen, Elektronendetektor und Inspektionssystem
GB2519511A (en) 2013-09-27 2015-04-29 Zeiss Carl Microscopy Gmbh Particle optical system having a liner tube and/or compensating coils
US9263233B2 (en) 2013-09-29 2016-02-16 Carl Zeiss Microscopy Gmbh Charged particle multi-beam inspection system and method of operating the same
WO2015043769A1 (en) 2013-09-30 2015-04-02 Carl Zeiss Microscopy Gmbh Charged particle beam system and method of operating the same
GB2521819A (en) 2013-11-22 2015-07-08 Zeiss Carl Microscopy Gmbh Particle optical arrangement for a charged particle optical system
NL2012780B1 (en) 2014-05-08 2016-02-23 Univ Delft Tech Apparatus and method for inspecting a sample using a plurality of charged particle beams.
US9218940B1 (en) * 2014-05-30 2015-12-22 Fei Company Method and apparatus for slice and view sample imaging
DE102014008083B9 (de) 2014-05-30 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem
DE102014008105B4 (de) 2014-05-30 2021-11-11 Carl Zeiss Multisem Gmbh Mehrstrahl-Teilchenmikroskop
DE102014008383B9 (de) 2014-06-06 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zum Betreiben einer Teilchenoptik
US10410828B2 (en) * 2014-12-22 2019-09-10 Carl Zeiss Microscopy, Llc Charged particle beam system and methods
DE102015202172B4 (de) 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zur teilchenoptischen Untersuchung eines Objekts
US9691588B2 (en) 2015-03-10 2017-06-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
US9607805B2 (en) 2015-05-12 2017-03-28 Hermes Microvision Inc. Apparatus of plural charged-particle beams
US9922799B2 (en) 2015-07-21 2018-03-20 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
KR102651558B1 (ko) 2015-07-22 2024-03-26 에이에스엠엘 네델란즈 비.브이. 복수의 하전 입자 빔을 이용하는 장치
US10325753B2 (en) * 2015-09-23 2019-06-18 Kla Tencor Corporation Method and system for focus adjustment of a multi-beam scanning electron microscopy system
DE102015013698B9 (de) * 2015-10-22 2017-12-21 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenmikroskops
EP3384279A4 (en) 2015-11-30 2019-10-09 Hermes Microvision Inc. APPARATUS HAVING MULTIPLE CHARGED PARTICLE BEAMS
US10062541B2 (en) 2016-01-27 2018-08-28 Hermes Microvision Inc. Apparatus of plural charged-particle beams
KR102581991B1 (ko) 2016-12-30 2023-09-22 에이에스엠엘 네델란즈 비.브이. 다수의 하전 입자 빔을 사용하는 장치
KR20190113934A (ko) * 2017-02-07 2019-10-08 에이에스엠엘 네델란즈 비.브이. 하전 입자 검출 방법 및 장치
JP7108618B2 (ja) 2017-03-20 2022-07-28 カール ツァイス マルチセム ゲーエムベーハー 荷電粒子ビームシステムおよび方法
DE102018202428B3 (de) 2018-02-16 2019-05-09 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenmikroskop
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
CN112055886A (zh) 2018-02-27 2020-12-08 卡尔蔡司MultiSEM有限责任公司 带电粒子多束系统及方法
US10811215B2 (en) 2018-05-21 2020-10-20 Carl Zeiss Multisem Gmbh Charged particle beam system
JP7030663B2 (ja) 2018-09-12 2022-03-07 株式会社東芝 半導体装置及び荷電粒子線露光装置
DE102018007455B4 (de) 2018-09-21 2020-07-09 Carl Zeiss Multisem Gmbh Verfahren zum Detektorabgleich bei der Abbildung von Objekten mittels eines Mehrstrahl-Teilchenmikroskops, System sowie Computerprogrammprodukt
DE102018007652B4 (de) 2018-09-27 2021-03-25 Carl Zeiss Multisem Gmbh Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE102018124044B3 (de) 2018-09-28 2020-02-06 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenstrahlmikroskops und Vielstrahl-Teilchenstrahlsystem
DE102018124219A1 (de) 2018-10-01 2020-04-02 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem und Verfahren zum Betreiben eines solchen
DE102018133703B4 (de) 2018-12-29 2020-08-06 Carl Zeiss Multisem Gmbh Vorrichtung zur Erzeugung einer Vielzahl von Teilchenstrahlen und Vielstrahl-Teilchenstrahlsysteme
CN111477530B (zh) 2019-01-24 2023-05-05 卡尔蔡司MultiSEM有限责任公司 利用多束粒子显微镜对3d样本成像的方法
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
US10741355B1 (en) 2019-02-04 2020-08-11 Carl Zeiss Multisem Gmbh Multi-beam charged particle system
DE102019004124B4 (de) 2019-06-13 2024-03-21 Carl Zeiss Multisem Gmbh Teilchenstrahl-System zur azimutalen Ablenkung von Einzel-Teilchenstrahlen sowie seine Verwendung und Verfahren zur Azimut-Korrektur bei einem Teilchenstrahl-System
DE102019005364B3 (de) 2019-07-31 2020-10-08 Carl Zeiss Multisem Gmbh System-Kombination eines Teilchenstrahlsystem und eines lichtoptischen Systems mit kollinearer Strahlführung sowie Verwendung der System-Kombination

Also Published As

Publication number Publication date
JP2022517848A (ja) 2022-03-10
JP7498719B2 (ja) 2024-06-12
EP3915131A2 (en) 2021-12-01
WO2020151904A2 (en) 2020-07-30
CN113424292A (zh) 2021-09-21
KR20210118445A (ko) 2021-09-30
TWI743626B (zh) 2021-10-21
US20240212977A1 (en) 2024-06-27
US20210343499A1 (en) 2021-11-04
WO2020151904A3 (en) 2020-09-03
US11935721B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
TWI743626B (zh) 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
CN111477530B (zh) 利用多束粒子显微镜对3d样本成像的方法
KR20200063982A (ko) 전자 빔 화상 취득 장치 및 전자 빔 화상 취득 방법
US11894214B2 (en) Detection and correction of system responses in real-time
JP6313010B2 (ja) 回折環計測装置
JP2008084643A (ja) 電子顕微鏡及び立体観察方法
US9959639B2 (en) Method of ptychographic imaging
US11209737B1 (en) Performance optimized scanning sequence for eBeam metrology and inspection
JP6362782B2 (ja) X線ナノラジオグラフィ及びナノトモグラフィの方法及び装置
US10755892B2 (en) Reflection-mode electron-beam inspection using ptychographic imaging
TW202232391A (zh) 基於機器學習之用於產生晶圓檢測之合成缺陷影像之系統及方法
TW202333181A (zh) 用於永久磁鐵陣列之雜散場之減輕的屏蔽策略