TW202022946A - 熱處理方法 - Google Patents
熱處理方法 Download PDFInfo
- Publication number
- TW202022946A TW202022946A TW108115888A TW108115888A TW202022946A TW 202022946 A TW202022946 A TW 202022946A TW 108115888 A TW108115888 A TW 108115888A TW 108115888 A TW108115888 A TW 108115888A TW 202022946 A TW202022946 A TW 202022946A
- Authority
- TW
- Taiwan
- Prior art keywords
- gan substrate
- heat treatment
- mounting plate
- flash
- chamber
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims description 20
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 127
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 27
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims description 37
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 239000011358 absorbing material Substances 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 abstract description 76
- 150000002367 halogens Chemical class 0.000 abstract description 76
- 239000007789 gas Substances 0.000 description 51
- 238000012546 transfer Methods 0.000 description 47
- 230000007246 mechanism Effects 0.000 description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 238000012545 processing Methods 0.000 description 21
- 239000002019 doping agent Substances 0.000 description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 19
- 239000012298 atmosphere Substances 0.000 description 18
- 239000010453 quartz Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 230000005855 radiation Effects 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 229910052724 xenon Inorganic materials 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- -1 gallium nitride compound Chemical class 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
本發明提供一種可藉由閃光照射將氮化鎵之基板加熱而使其升溫之熱處理方法。
於由碳化矽形成之載置板91之上表面中央部形成設置凹部93。於載置板91之凹部93載置氮化鎵之GaN基板W。於藉由來自鹵素燈之光照射而將GaN基板W預加熱時,自鹵素燈出射之光被載置板91吸收。藉由來自升溫後之載置板91之熱傳導而將GaN基板W間接地預加熱。藉由預加熱而升溫後之GaN基板W能夠吸收自閃光燈FL放射之閃光。藉此,可藉由閃光照射將GaN基板W加熱而使其升溫。
Description
本發明係關於一種藉由對氮化鎵(GaN)之基板照射光而將該基板加熱之熱處理方法。
於半導體器件之製造製程中,以極短時間將半導體晶圓加熱之閃光燈退火(FLA)受到注目。閃光燈退火係藉由使用氙氣閃光燈(以下,於簡稱為「閃光燈」時係指氙氣閃光燈)對半導體晶圓之表面照射閃光,而僅使半導體晶圓之表面以極短時間(數毫秒以下)升溫之熱處理技術。
另一方面,氮化鎵系化合物作為發出藍色之光之發光元件受到注目,並且由於絕緣破壞電場較高且能隙較大,故而作為用於電力轉換之功率器件之基幹材料亦受到期待。於專利文獻1中,揭示有藉由對氮化鎵系化合物之層注入p型摻雜劑,並對該層照射紅外光而將p型摻雜劑活化製造氮化鎵系化合物半導體之方法。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利特開2004-128189號公報
[發明所欲解決之問題]
為了使氮化鎵中之p型摻雜劑活化,必須將氮化鎵加熱至1400℃以上之高溫。又,已知有若將氮化鎵以高溫長時間(幾分鐘以上)加熱,則氮相對容易地脫離。因此,為了獲得良好之活化率,必須對注入有p型摻雜劑之氮化鎵進行高溫且短時間之加熱處理。將照射時間極短且具有較強之能量之閃光照射之閃光燈退火適合於此種需求。
然而,氮化鎵於可見光至近紅外線之波長區域中為透明,幾乎不吸收光。因此,即便照射具有較強之能量之閃光,氮化鎵亦幾乎不吸收該閃光,故而難以使氮化鎵加熱而升溫。
本發明係鑒於上述問題而完成者,且目的在於提供一種可藉由閃光照射而使氮化鎵之基板加熱而升溫之熱處理方法。
[解決問題之技術手段]
為了解決上述問題,技術方案1之發明係一種熱處理方法,其係藉由對氮化鎵之基板照射光而將該基板加熱者,且其特徵在於具備:載置步驟,其將上述基板載置於由吸光材料形成之載置板;預加熱步驟,其利用來自藉由自連續點等燈對上述載置板照射光而升溫之上述載置板之熱傳導來將上述基板預加熱;及閃光加熱步驟,其自閃光燈對在上述預加熱步驟中升溫之上述基板照射閃光而加熱。
又,技術方案2之發明如技術方案1之發明之熱處理方法,其特徵在於,上述載置板由碳化矽形成。
又,技術方案3之發明如技術方案1或技術方案2之發明之熱處理方法,其特徵在於,於形成設置於上述載置板之凹部載置上述基板。
又,技術方案4之發明如技術方案1之發明之熱處理方法,其特徵在於,進而具備將於上述載置板載置有上述基板之積層體搬入至腔室內之步驟。
[發明之效果]
根據技術方案1至技術方案4之發明,由於將氮化鎵之基板載置於由吸光材料形成之載置板,利用來自藉由自連續點等燈對載置板照射光而升溫之載置板之熱傳導來將基板預加熱,故而升溫後之氮化鎵之基板能夠吸收閃光,可藉由閃光照射而使氮化鎵之基板加熱且升溫。
以下,一面參照圖式一面對本發明之實施形態詳細地進行說明。
首先,對用以實施本發明之熱處理方法之熱處理裝置進行說明。圖1係表示實施本發明之熱處理方法時所使用之熱處理裝置1之構成的縱剖視圖。圖1之熱處理裝置1係藉由對氮化鎵之基板(GaN基板)W進行閃光照射而將該GaN基板W加熱之閃光燈退火裝置。再者,於圖1及以後之各圖中,為了容易理解,而根據需要將各部之尺寸或數量誇張或簡化地描繪。
熱處理裝置1具備:腔室6,其收容GaN基板W;閃光加熱部5,其內置複數個閃光燈FL;及鹵素加熱部4,其內置複數個鹵素燈HL。於腔室6之上側設置有閃光加熱部5,並且於下側設置有鹵素加熱部4。又,熱處理裝置1於腔室6之內部具備:保持部7,其將GaN基板W保持為水平姿勢;及移載機構10,其於保持部7與裝置外部之間進行GaN基板W之交接。進而,熱處理裝置1具備對鹵素加熱部4、閃光加熱部5及設置於腔室6之各動作機構進行控制而執行GaN基板W之熱處理之控制部3。
腔室6於筒狀之腔室側部61之上下裝設石英製之腔室窗而構成。腔室側部61具有上下開口之大致筒形狀,於上側開口裝設上側腔室窗63而封閉,於下側開口裝設下側腔室窗64而封閉。構成腔室6之頂部之上側腔室窗63係由石英形成之圓板形狀構件,且作為使自閃光加熱部5出射之閃光透過至腔室6內之石英窗發揮功能。又,構成腔室6之底部之下側腔室窗64亦係由石英形成之圓板形狀構件,且作為使來自鹵素加熱部4之光透過至腔室6內之石英窗發揮功能。
又,於腔室側部61之內側之壁面之上部裝設有反射環68,於下部裝設有反射環69。反射環68、69均形成為圓環狀。上側之反射環68係藉由自腔室側部61之上側嵌入而裝設。另一方面,下側之反射環69係藉由自腔室側部61之下側嵌入並利用省略圖示之螺釘固定而裝設。即,反射環68、69均自由裝卸地裝設於腔室側部61。將腔室6之內側空間,即由上側腔室窗63、下側腔室窗64、腔室側部61及反射環68、69包圍之空間規定為熱處理空間65。
藉由於腔室側部61裝設反射環68、69,而於腔室6之內壁面形成凹部62。即,形成由腔室側部61之內壁面中未裝設反射環68、69之中央部分、反射環68之下端面、及反射環69之上端面包圍之凹部62。凹部62沿著水平方向呈圓環狀地形成於腔室6之內壁面,且圍繞保持GaN基板W之保持部7。腔室側部61及反射環68、69由強度與耐熱性優異之金屬材料(例如不鏽鋼)形成。
又,於腔室側部61形成設置有用以相對於腔室6進行GaN基板W之搬入及搬出之搬送開口部(爐口)66。搬送開口部66能夠利用閘閥185開閉。搬送開口部66與凹部62之外周面連通連接。因此,當閘閥185將搬送開口部66打開時,可自搬送開口部66通過凹部62將GaN基板W搬入至熱處理空間65以及自熱處理空間65將GaN基板W搬出。又,若閘閥185將搬送開口部66關閉,則腔室6內之熱處理空間65成為密閉空間。
進而,於腔室側部61穿設有貫通孔61a。於腔室側部61之外壁面之設置有貫通孔61a之部位安裝有放射溫度計20。貫通孔61a係用以將自保持於下述基座74之載置板91之下表面放射之紅外光引導至放射溫度計20之圓筒狀之孔。貫通孔61a係以其貫通方向之軸與基座74之主面相交之方式,相對於水平方向傾斜地設置。於貫通孔61a之面向熱處理空間65之側之端部,裝設有使放射溫度計20能夠測定之波長區域之紅外光透過之包括氟化鋇材料之透明窗21。
又,於腔室6之內壁上部形成設置有將處理氣體供給至熱處理空間65之氣體供給孔81。氣體供給孔81形成設置於較凹部62更靠上側位置,亦可設置於反射環68。氣體供給孔81經由呈圓環狀地形成於腔室6之側壁內部之緩衝空間82而與氣體供給管83連通連接。氣體供給管83連接於處理氣體供給源85。又,於氣體供給管83之路徑中途介插有閥84。若閥84打開,則自處理氣體供給源85對緩衝空間82輸送處理氣體。流入至緩衝空間82之處理氣體以於流體阻力較氣體供給孔81小之緩衝空間82內擴展之方式流動並自氣體供給孔81向熱處理空間65內供給。作為處理氣體,例如可使用氨氣(NH3
)、或作為氫氣(H2
)與氮氣(N2
)之混合氣體之組成氣體。又,處理氣體供給源85亦可將作為惰性氣體之氮氣供給至熱處理空間65。
另一方面,於腔室6之內壁下部形成設置有將熱處理空間65內之氣體排氣之氣體排氣孔86。氣體排氣孔86形成設置於較凹部62更靠下側位置,亦可設置於反射環69。氣體排氣孔86經由呈圓環狀地形成於腔室6之側壁內部之緩衝空間87而與氣體排氣管88連通連接。氣體排氣管88連接於排氣部190。又,於氣體排氣管88之路徑中途介插有閥89。若將閥89打開,則熱處理空間65之氣體自氣體排氣孔86經過緩衝空間87向氣體排氣管88排出。再者,氣體供給孔81及氣體排氣孔86可沿著腔室6之圓周方向設置複數個,亦可呈狹縫狀。又,處理氣體供給源85及排氣部190可為設置於熱處理裝置1之機構,亦可為供熱處理裝置1設置之工場之實體。
又,於搬送開口部66之前端亦連接有將熱處理空間65內之氣體排出之氣體排氣管191。氣體排氣管191經由閥192而連接於排氣部190。藉由將閥192打開,經由搬送開口部66而將腔室6內之氣體排氣。
圖2係表示保持部7之整體外觀之立體圖。保持部7具備基台環71、連結部72及基座74而構成。基台環71、連結部72及基座74均由石英形成。即,保持部7之整體由石英形成。
基台環71係自圓環形狀使一部分缺失而成之圓弧形狀之石英構件。該缺失部分係為了防止下述移載機構10之移載臂11與基台環71干涉而設置。基台環71藉由載置於凹部62之底面,而由腔室6之壁面支持(參照圖1)。於基台環71之上表面,沿著其圓環形狀之圓周方向豎立設置有複數個連結部72(於本實施形態中為4個)。連結部72亦係石英構件,藉由熔接而固接於基台環71。
基座74由設置於基台環71之4個連結部72支持。圖3係基座74之俯視圖。又,圖4係基座74之剖視圖。基座74具備保持板75、導環76及複數個基板支持銷77。保持板75係由石英形成之大致圓形之平板狀構件。保持板75之直徑較GaN基板W之直徑大。即,保持板75具有大於GaN基板W之平面尺寸。
於保持板75之上表面周緣部設置有導環76。導環76係具有大於載置GaN基板W之載置板91(參照圖9)之直徑之內徑之圓環形狀之構件。例如,於載置板91之直徑之為300 mm之情形時,導環76之內徑為320 mm。導環76之內周設為自保持板75朝向上方變寬之錐面。導環76由與保持板75相同之石英形成。導環76可熔接於保持板75之上表面,亦可利用另外加工之銷等而固定於保持板75。或者,亦可將保持板75與導環76加工為一體之構件。
將保持板75之上表面中較導環76更靠內側之區域設為保持載置GaN基板W之載置板91之平面狀之保持面75a。於保持板75之保持面75a,豎立設置有複數個基板支持銷77。於本實施形態中,沿著與保持面75a之外周圓(導環76之內周圓)為同心圓之圓周上,每隔30°地豎立設置有共計12個基板支持銷77。配置有12個基板支持銷77之圓之直徑(對向之基板支持銷77間之距離)小於載置板91之直徑,若載置板91之直徑為300 mm,則為270 mm~280 mm(於本實施形態中為270 mm)。各基板支持銷77由石英形成。複數個基板支持銷77可藉由熔接設置於保持板75之上表面,亦可與保持板75一體地加工。
返回至圖2,豎立設置於基台環71之4個連結部72與基座74之保持板75之周緣部藉由熔接而固接。即,基座74與基台環71利用連結部72而固定地連結。藉由此種保持部7之基台環71由腔室6之壁面支持,而將保持部7裝設於腔室6。於將保持部7裝設於腔室6之狀態下,基座74之保持板75成為水平姿勢(法線與鉛直方向一致之姿勢)。即,保持板75之保持面75a成為水平面。
載置GaN基板W之載置板91以水平姿勢載置並保持於裝設於腔室6之保持部7之基座74之上。此時,載置板91由豎立設置於保持板75上之12個基板支持銷77支持並保持於基座74。更嚴密而言,12個基板支持銷77之上端部接觸於載置板91之下表面而支持該載置板91。由於12個基板支持銷77之高度(自基板支持銷77之上端至保持板75之保持面75a為止之距離)均勻,故而可利用12個基板支持銷77將載置板91以水平姿勢支持。
又,載置板91被複數個基板支持銷77自保持板75之保持面75a隔開特定間隔地支持。導環76之厚度較基板支持銷77之高度大。因此,由複數個基板支持銷77支持之載置板91之水平方向之位置偏移藉由導環76而得到防止。
又,如圖2及圖3所示,於基座74之保持板75,上下貫通地形成有開口部78。開口部78係為了放射溫度計20接收自載置板91之下表面放射之放射光(紅外光)而設置。即,放射溫度計20經由開口部78及裝設於腔室側部61之貫通孔61a之透明窗21而接收自載置板91之下表面放射之光並測定該載置板91之溫度。進而,於基座74之保持板75,穿設有供下述移載機構10之頂起銷12貫通以交接積層體92(參照圖9)之4個貫通孔79。
圖5係移載機構10之俯視圖。又,圖6係移載機構10之側視圖。移載機構10具備2根移載臂11。移載臂11設為如沿著大致圓環狀之凹部62般之圓弧形狀。於各移載臂11豎立設置有2根頂起銷12。移載臂11及頂起銷12由石英形成。各移載臂11利用水平移動機構13能夠旋動。水平移動機構13使一對移載臂11於相對於保持部7進行積層體92之移載之移載動作位置(圖5之實線位置)、與和保持於保持部7之載置板91俯視時不重疊之退避位置(圖5之兩點鏈線位置)之間水平移動。作為水平移動機構13,可係利用個別之馬達使各移載臂11分別旋動之機構,亦可係使用連桿機構利用1個馬達使一對移載臂11連動地旋動之機構。
又,一對移載臂11利用升降機構14而與水平移動機構13一起升降移動。若升降機構14使一對移載臂11於移載動作位置上升,則共計4根頂起銷12通過穿設於基座74之貫通孔79(參照圖2、3),頂起銷12之上端自基座74之上表面突出。另一方面,若升降機構14使一對移載臂11於移載動作位置下降而將頂起銷12自貫通孔79拔出,並且水平移動機構13使一對移載臂11以打開之方式移動,則各移載臂11移動至退避位置。一對移載臂11之退避位置為保持部7之基台環71之正上方。由於基台環71載置於凹部62之底面,故而移載臂11之退避位置成為凹部62之內側。再者,於移載機構10之設置有驅動部(水平移動機構13及升降機構14)之部位之附近亦設置有省略圖示之排氣機構,而構成為將移載機構10之驅動部周邊之氣氛排出至腔室6之外部。
返回至圖1,設置於腔室6之上方之閃光加熱部5係於殼體51之內側具備包含複數根(於本實施形態中為30根)氙氣閃光燈FL之光源、及以覆蓋該光源之上方之方式設置之反射器52而構成。又,於閃光加熱部5之殼體51之底部裝設有燈光放射窗53。構成閃光加熱部5之底部之燈光放射窗53係由石英形成之板狀之石英窗。藉由將閃光加熱部5設置於腔室6之上方,而燈光放射窗53與上側腔室窗63相對向。閃光燈FL自腔室6之上方經由燈光放射窗53及上側腔室窗63而對熱處理空間65照射閃光。
複數個閃光燈FL係分別具有長條之圓筒形狀之棒狀燈,且以各自之長度方向沿著保持於保持部7之GaN基板W之主面(即沿著水平方向)相互平行之方式呈平面狀排列。因此,藉由閃光燈FL之排列而形成之平面亦為水平面。排列複數個閃光燈FL之區域大於GaN基板W之平面尺寸。
氙氣閃光燈FL具備:棒狀之玻璃管(放電管),其於其內部封入氙氣且於其兩端部配設有連接於電容器之陽極及陰極;以及觸發電極,其附設於該玻璃管之外周面上。由於氙氣為電絕緣體,故而即使於電容器中蓄積有電荷,於通常狀態下亦不會向玻璃管內流通電。然而,於對觸發電極施加高電壓而將絕緣破壞之情形時,蓄積於電容器中之電瞬間流動至玻璃管內,藉由此時之氙原子或分子之激發而發出光。於此種氙氣閃光燈FL中,由於將預先蓄積於電容器中之靜電能量轉換為0.1毫秒至100毫秒之極短之光脈衝,故而與如鹵素燈HL般連續點亮之光源相比具有可照射極強之光之特徵。即,閃光燈FL係以未達1秒之極短時間瞬間發光之脈衝發光燈。再者,閃光燈FL之發光時間可根據對閃光燈FL進行電力供給之燈電源之線圈常數進行調整。
又,反射器52以於複數個閃光燈FL之上方覆蓋其等整體之方式設置。反射器52之基本功能係將自複數個閃光燈FL出射之閃光反射至熱處理空間65側。反射器52由鋁合金板形成,其表面(面向閃光燈FL之一側之面)藉由噴砂處理而實施粗面化加工。
設置於腔室6之下方之鹵素加熱部4於殼體41之內側內置有複數根(於本實施形態中為40根)鹵素燈HL。鹵素加熱部4利用複數個鹵素燈HL自腔室6之下方經由下側腔室窗64對熱處理空間65進行光照射而將GaN基板W加熱。
圖7係表示複數個鹵素燈HL之配置之俯視圖。40根鹵素燈HL分為上下2層而配置。於接近保持部7之上層配設有20根鹵素燈HL,並且於較上層遠離保持部7之下層亦配設有20根鹵素燈HL。各鹵素燈HL係具有長條之圓筒形狀之棒狀燈。上層、下層均係20根鹵素燈HL以各自之長度方向沿著保持於保持部7之GaN基板W之主面(即沿著水平方向)相互平行之方式排列。因此,由鹵素燈HL之排列形成之平面於上層、下層均為水平面。
又,如圖7所示,上層、下層均係較與保持於保持部7之載置板91之中央部對向之區域,與周緣部對向之區域中之鹵素燈HL之配設密度更高。即,上下層均係與燈排列之中央部相比,周緣部之鹵素燈HL之配設間距更短。因此,能對藉由來自鹵素加熱部4之光照射進行加熱時溫度容易下降之載置板91之周緣部進行更多光量之照射。
又,包含上層之鹵素燈HL之燈群與包含下層之鹵素燈HL之燈群以呈格子狀交叉之方式排列。即,以配置於上層之20根鹵素燈HL之長度方向與配置於下層之20根鹵素燈HL之長度方向相互正交之方式配設有共計40根鹵素燈HL。
鹵素燈HL係藉由對配設於玻璃管內部之燈絲通電使燈絲白熾化而發光之燈絲方式之光源。於玻璃管之內部,封入有將鹵素元素(碘、溴等)微量導入至氮氣或氬氣等惰性氣體中所得之氣體。藉由導入鹵素元素,能夠抑制燈絲之折損,並且將燈絲之溫度設定為高溫。因此,鹵素燈HL具有與通常之白熾燈泡相比壽命較長且能夠連續地照射較強之光之特性。即,鹵素燈HL係至少1秒以上連續地發光之連續點亮燈。又,鹵素燈HL由於為棒狀燈,故而壽命較長,且藉由將鹵素燈HL沿著水平方向配置而對上方之載置板91之放射效率變得優異。
又,於鹵素加熱部4之殼體41內,亦於2層鹵素燈HL之下側設置有反射器43(圖1)。反射器43使自複數個鹵素燈HL出射之光反射至熱處理空間65側。
控制部3對設置於熱處理裝置1之上述各種動作機構進行控制。作為控制部3之硬件之構成與普通電腦相同。即,控制部3具備作為進行各種運算處理之電路之CPU(Central Processing Unit,中央處理單元)、作為記憶基本程式之讀出專用之記憶體之ROM(Read Only Memory,唯讀記憶體)、作為記憶各種資訊之自由讀寫之記憶體之RAM(Random Access Memory,隨機存取記憶體)及預先記憶控制用軟體或資料等之磁碟。藉由控制部3之CPU執行特定之處理程式而進行熱處理裝置1中之處理。
除了上述構成以外,熱處理裝置1亦具備各種冷卻用之構造,以防止於GaN基板W之熱處理時因自鹵素燈HL及閃光燈FL產生之熱能所引起之鹵素加熱部4、閃光加熱部5及腔室6之過度之溫度上升。例如,於腔室6之壁體設置有水冷管(省略圖示)。又,鹵素加熱部4及閃光加熱部5設為於內部形成氣體流而進行排熱之空氣冷卻構造。又,亦對上側腔室窗63與燈光放射窗53之間隙供給空氣,而將閃光加熱部5及上側腔室窗63冷卻。
其次,對本發明之GaN基板W之熱處理方法進行說明。圖8係表示本發明之熱處理方法之順序之流程圖。成為處理對象之GaN基板W係直徑約50 mm(2英吋)之圓板形狀之氮化鎵晶圓,若與典型性的矽之半導體晶圓(直徑300 mm)相比較則明顯小。又,於本發明之熱處理之前,對成為處理對象之GaN基板W,使用公知之離子注入法注入作為p型摻雜劑之鎂(Mg)。p型摻雜劑之注入係使用與熱處理裝置1不同之離子注入裝置來進行。又,p型摻雜劑之注入條件(摻雜量、注入能量等)並不特別限定,可設為適當之值。
直徑約50 mm之小徑之GaN基板W由於難以直接由熱處理裝置1處理,故而載置於由吸光材料形成之載置板91(步驟S1)。圖9係表示將GaN基板W載置於載置板91之狀態之圖。載置板91係直徑300 mm之圓板形狀之構件。載置板91由碳化矽(SiC)形成。碳化矽係相對於自鹵素燈HL照射之光及自閃光燈FL照射之閃光具有較高之吸收率之吸光材料。
於載置板91之上表面中央部形成設置有直徑約70 mm之圓形之凹部93。GaN基板W以嵌入至凹部93之方式載置於載置板91。由於GaN基板W之直徑為約50 mm,故而會於被載置之GaN基板W之端緣部與凹部93之端緣部之間形成約10 mm之間隙。藉由於凹部93內載置GaN基板W,可防止GaN基板W之位置偏移。而且,對載置於載置板91之狀態之GaN基板W利用熱處理裝置1進行熱處理。以下,對熱處理裝置1中之GaN基板W之熱處理進行說明。以下將說明之熱處理裝置1之處理順序係藉由控制部3控制熱處理裝置1之各動作機構而進行。
首先,將於碳化矽之載置板91載置有GaN基板W之積層體92搬入至熱處理裝置1之腔室6內(步驟S2)。具體而言,將閘閥185打開且將搬送開口部66打開,藉由裝置外部之搬送機器人經由搬送開口部66而將積層體92搬入至腔室6內之熱處理空間65。此時,亦可將閥84打開對腔室6內供給氮氣,使氮氣自搬送開口部66流出而使伴隨GaN基板W之搬入之外部氣氛之捲入抑制為最小限。
藉由搬送機器人搬入之積層體92於保持部7之正上方位置進出並停止。而且,藉由移載機構10之一對移載臂11自退避位置向移載動作位置水平移動且上升,頂起銷12通過貫通孔79自基座74之保持板75之上表面突出接收載置有GaN基板W之載置板91。此時,頂起銷12上升至較支持銷77之上端更靠上方為止。
於將積層體92載置於頂起銷12之後,搬送機器人自熱處理空間65退出,藉由閘閥185而將搬送開口部66關閉。而且,藉由一對移載臂11下降,積層體92自移載機構10交接至保持部7之基座74且以水平姿勢自下方被保持。積層體92藉由豎立設置於保持板75上之複數個支持銷77支持並保持於基座74。又,以注入有p型摻雜劑之GaN基板W之表面朝向上表面而積層體92保持於保持部7。於藉由複數個支持銷77支持之載置板91之背面(與載置GaN基板W之面相反側之面)與保持板75之保持面75a之間形成特定之間隔。下降至基座74之下方為止之一對移載臂11藉由水平移動機構13退避至退避位置,即凹部62之內側。
又,於藉由閘閥185將搬送開口部66關閉將熱處理空間65設為密閉空間之後,於腔室6內形成氨氣氣氛。具體而言,將閥84打開自處理氣體供給源85對熱處理空間65供給氨氣(NH3
)作為處理氣體。氨氣包含作為元素之氮及氫。又,將閥89打開自氣體排氣孔86將腔室6內之氣體排氣。藉此,自腔室6內之熱處理空間65之上部供給之處理氣體向下方流動而自熱處理空間65之下部排氣,將腔室6內置換為氨氣氣氛。形成於腔室6內之氨氣氣氛中之氨氣之濃度可設為適當之值,例如亦可為100%。再者,為了提高置換效率,亦可將腔室6內暫時減壓至未達大氣壓之後對腔室6內供給氨氣。
於在腔室6內形成氨氣氣氛之後,將鹵素加熱部4之40根鹵素燈HL一齊點亮開始預加熱(輔助加熱)(步驟S3)。自鹵素燈HL出射之鹵素光透過由石英形成之下側腔室窗64及基座74而照射至載置有GaN基板W之載置板91之下表面。載置板91由碳化矽形成,故而將自鹵素燈HL出射之光良好地吸收而升溫。而且,藉由來自升溫後之載置板91之熱傳導而將GaN基板W預加熱。再者,移載機構10之移載臂11退避至凹部62之內側,故而不會成為利用鹵素燈HL之加熱之障礙。
此處,於假設不使用載置板91,藉由來自鹵素燈HL之光照射而將GaN基板W直接加熱之情形時,難以使GaN基板W升溫。圖10係表示氮化鎵之吸收率之分光分佈之圖。如該圖所示,氮化鎵係於波長未達400 nm之紫外線之波長區域中具有較高之吸收率,但是於波長400 nm~760 nm之可見光及較其更長之波長之紅外線之波長區域中吸收率幾乎為0。即,氮化鎵幾乎不吸收可見光線及紅外線。鹵素燈HL之放射分光分佈主要為紅外線區域,GaN基板W幾乎不吸收自鹵素燈HL出射之光。因此,即便將自鹵素燈HL出射之光直接照射至GaN基板W而GaN基板W亦幾乎不升溫。
因此,於本實施形態中,於將GaN基板W載置於碳化矽之載置板91之狀態下自鹵素燈HL進行光照射。碳化矽相對於自鹵素燈HL照射之光具有較高之吸收率,載置板91將自鹵素燈HL出射之光良好地吸收而升溫。而且,藉由來自升溫後之載置板91之熱傳導將GaN基板W預加熱而使其升溫。即,GaN基板W將載置板91作為媒介藉由來自鹵素燈HL之光照射而間接地被預加熱。
於利用鹵素燈HL進行預加熱時,載置GaN基板W之載置板91之溫度藉由放射溫度計20而測定。即,放射溫度計20通過透明窗21接收自保持於基座74之載置板91之下表面經由開口部78而放射之紅外光且測定升溫中之載置板91之溫度。所測定出之載置板91之溫度傳遞至控制部3。控制部3一面監視藉由來自鹵素燈HL之光照射而升溫之載置板91之溫度是否到達至目標溫度T1,一面控制鹵素燈HL之輸出。即,控制部3基於利用放射溫度計20之測定值,以載置板91之溫度成為目標溫度T1之方式反饋控制鹵素燈HL之輸出。目標溫度T1為900℃以上1000℃以下。
於載置板91之溫度到達至目標溫度T1之後,控制部3以將載置板91之溫度維持該目標溫度T1之方式調整鹵素燈HL之輸出。具體而言,於藉由放射溫度計20而測定之載置板91之溫度到達至目標溫度T1之時間點控制部3調整鹵素燈HL之輸出,將載置板91之溫度大致維持為目標溫度T1。藉由利用來自鹵素燈HL之光照射而將載置板91維持為目標溫度T1,利用來自載置板91之熱傳導而將GaN基板W均勻地預加熱。
於載置板91之溫度到達至目標溫度T1之後經過特定時間之時間點自閃光加熱部5之閃光燈FL對GaN基板W之表面進行閃光照射(步驟S4)。此時,自閃光燈FL放射之閃光之一部分直接朝向腔室6內,另一部分暫時藉由反射器52反射後朝向腔室6內,藉由該等閃光之照射而進行GaN基板W之閃光加熱。
閃光燈FL之放射分光分佈係紫外線區域至近紅外線區域,如圖10所示,係氮化鎵之吸收率大致為0之波長區域。因此,常溫之氮化鎵亦幾乎不吸收自閃光燈FL放射之閃光。然而,於藉由步驟S3中之預加熱而升溫之GaN基板W中,氮化鎵中之自由載子(電子或電洞)增大,該自由載子吸收閃光。因此,藉由預加熱而升溫之GaN基板W吸收自閃光燈FL放射之閃光,而將GaN基板W之表面閃光加熱。
又,閃光加熱由於藉由來自閃光燈FL之閃光(flashlight)照射來進行,故而可使GaN基板W之表面溫度以短時間上升。即,自閃光燈FL照射之閃光係將預先蓄積於電容器中之靜電能量轉換為極短之光脈衝、照射時間為大約0.1毫秒以上且100毫秒以下之極短且強烈之閃光。而且,藉由來自閃光燈FL之閃光照射而注入有p型摻雜劑之GaN基板W之表面溫度瞬間地升溫至處理溫度T2為止之後,急速降溫。處理溫度T2較上述目標溫度T1更高,為1400℃以上。藉由將GaN基板W之表面瞬間地加熱至處理溫度T2為止,而將所注入之p型摻雜劑活化。再者,摻雜劑之活化所需要之時間極短,故而即便為短時間之閃光加熱亦使摻雜劑之活化充分。
已知有若將氮化鎵加熱至高溫,則氮相對容易地脫離。於本實施形態中,由於藉由將照射時間極短之閃光照射至GaN基板W而將GaN基板W之表面自目標溫度T1閃光加熱至處理溫度T2為止,故而GaN基板W成為高溫之時間較短,可將此種氮之脫離抑制為最小限。又,即便氮稍微脫離,亦由於在氨氣氣氛中(即,包含氮之氣氛中)將GaN基板W自目標溫度T1閃光加熱至處理溫度T2為止,故而可一面自氣氛中補充脫離之氮一面進行加熱處理。
又,於本實施形態中,由於在氨氣氣氛中(即,包含氫之氣氛中)將GaN基板W閃光加熱,故而可對GaN中一面供給氫一面進行加熱處理。藉此,可使注入至GaN基板W之p型摻雜劑以高效率活化。
進而,於本實施形態中,藉由閃光加熱而將GaN基板W之表面加熱至1400℃以上之高溫。藉此,於摻雜劑注入時產生之GaN基板W之結晶之缺陷恢復,藉此亦可提高p型摻雜劑之活化效率。
於藉由閃光加熱而將p型摻雜劑活化之後,將腔室6內之氣氛置換為惰性氣體之氣氛。具體而言,將閥84閉止,並且將閥89打開而將腔室6內之氨氣氣氛排出並將腔室6內減壓至未達大氣壓之後,將閥84打開而對腔室6內供給氮氣。藉此,腔室6內自氨氣氣氛置換為作為惰性氣體之氮氣之氣氛。
然後,藉由將鹵素燈HL亦熄滅,而GaN基板W及載置板91急速地降溫。降溫中之載置板91之溫度藉由放射溫度計20來測定,其測定結果傳遞至控制部3。控制部3根據放射溫度計20之測定結果監視載置板91之溫度是否降溫至特定溫度為止。而且,於載置板91之溫度降溫至特定以下為止之後,藉由移載機構10之一對移載臂11再次自退避位置向移載動作位置水平移動且上升,而頂起銷12自基座74之上表面突出並自基座74接收積層體92。繼而,將藉由閘閥185而關閉之搬送開口部66打開,將載置於頂起銷12上之積層體92藉由裝置外部之搬送機器人而搬出(步驟S5)。然後,自搬出至熱處理裝置1之外部之積層體92之載置板91卸除GaN基板W而GaN基板W之熱處理完成(步驟S6)。
於本實施形態中,於在與典型性的矽之半導體晶圓相同之大小之直徑300 mm之碳化矽之載置板91載置GaN基板W之狀態下進行利用熱處理裝置1之熱處理。GaN基板W幾乎不吸收自鹵素燈HL出射之光,但碳化矽之載置板91將鹵素燈HL之光良好地吸收並升溫。而且,藉由來自升溫後之載置板91之熱傳導,而將不吸收鹵素燈HL之光之GaN基板W間接地預加熱。藉由預加熱而升溫之GaN基板W能夠吸收自閃光燈FL放射之閃光。藉此,可藉由閃光照射將GaN基板W加熱而使其升溫,而將GaN基板W之表面閃光加熱將p型摻雜劑活化。
又,由於載置板91之尺寸與典型性的矽之半導體晶圓為相同程度,故而藉由將GaN基板W載置於載置板91設為積層體92,可利用處理矽之半導體晶圓之熱處理裝置1進行小徑之GaN基板W之熱處理。如此,直徑300 mm之碳化矽之載置板91兼備將自鹵素燈HL照射之光轉換為熱傳遞至GaN基板W之功能、及將小徑之GaN基板W利用熱處理裝置1處理之功能。
以上,對本發明之實施形態進行了說明,但本發明只要不脫離其主旨則能夠於上述實施形態以外進行各種變更。例如,於上述實施形態中,將於載置板91載置有GaN基板W之積層體92搬入至腔室6內,但亦可代替其,將碳化矽之載置板設置於腔室6內,於其載置GaN基板W。例如,亦可由碳化矽形成保持部7之基座74,於其上載置GaN基板W。即便如此,亦可藉由來自吸收鹵素燈HL之光而升溫之碳化矽之載置板之熱傳導而將GaN基板W預加熱。
又,於上述實施形態中,進行了將注入至GaN基板W之摻雜劑活化之加熱處理,但亦可代替其,例如利用熱處理裝置1進行形成於GaN基板W之膜之成膜後熱處理(PDA:Post Deposition Anneal,後沈積退火)。即便於進行成膜後熱處理之情形時,亦可藉由於碳化矽之載置板載置GaN基板W進行熱處理,而藉由來自吸收鹵素燈HL之光而升溫之碳化矽之載置板之熱傳導來將GaN基板W預加熱。
又,GaN基板W之尺寸並不限定於直徑約50 mm,例如亦可為直徑約100 mm(4英吋)。
又,載置板91之材質並不限定為碳化矽,只要為吸光材料即可,例如亦可為矽(Si)。但是,由於在進行p型摻雜劑之活化時於閃光加熱時將GaN基板W加熱至1400℃以上之高溫,故而存在於矽(熔點1414℃)之載置板91中熔融之擔憂。因此,於進行p型摻雜劑之活化時,較佳為載置板91由碳化矽(熔點2730℃)形成。另一方面,若為成膜後熱處理,則於閃光加熱時GaN基板W並不升溫至那麼高溫,故而無熔融之擔憂,可使用矽之載置板91。
又,於上述實施形態中,於氨氣氣氛中進行了GaN基板W之閃光加熱,但亦可代替其,於作為氫氣與氮氣之混合氣體之組成氣體之氣氛中照射閃光進行GaN基板W之閃光加熱。即便如此,亦可獲得與於氨氣氣氛中將GaN基板W閃光加熱相同之效果。
又,於上述實施形態中,閃光加熱部5具備30根閃光燈FL,但並不限定於此,閃光燈FL之根數可設為任意之數量。又,閃光燈FL並不限定於氙氣閃光燈,亦可為氪氣閃光燈。又,鹵素加熱部4所具備之鹵素燈HL之根數亦並不限定為40根,可設為任意之數量。
又,於上述實施形態中,使用燈絲方式之鹵素燈HL作為1秒以上連續發光之連續點亮燈進行GaN基板W之預加熱,但並不限定於此,亦可代替鹵素燈HL使用放電型之電弧燈(例如,氙氣電弧燈)作為連續點亮燈進行預加熱。於該情形時,藉由來自吸收來自電弧燈之光而升溫之載置板91之熱傳導來將GaN基板W預加熱。
1:熱處理裝置
3:控制部
4:鹵素加熱部
5:閃光加熱部
6:腔室
7:保持部
10:移載機構
11:移載臂
12:頂起銷
13:水平移動機構
14:升降機構
41:殼體
43:反射器
51:殼體
52:反射器
53:燈光放射窗
61:腔室側部
62:凹部
63:上側腔室窗
64:下側腔室窗
65:熱處理空間
66:搬送開口部
68:反射環
69:反射環
71:基台環
72:連結部
74:基座
75:保持板
75a:保持面
76:導環
77:基板支持銷
78:開口部
79:貫通孔
81:氣體供給孔
82:緩衝空間
83:氣體供給管
84:閥
85:處理氣體供給源
86:氣體排氣孔
87:緩衝空間
88:氣體排氣管
89:閥
91:載置板
92:積層體
93:凹部
185:閘閥
190:排氣部
191:氣體排氣管
192:閥
FL:閃光燈
HL:鹵素燈
W:GaN基板
圖1係表示實施本發明之熱處理方法時所使用之熱處理裝置之構成的縱剖視圖。
圖2係表示保持部之整體外觀之立體圖。
圖3係基座之俯視圖。
圖4係基座之剖視圖。
圖5係移載機構之俯視圖。
圖6係移載機構之側視圖。
圖7係表示複數個鹵素燈之配置之俯視圖。
圖8係表示本發明之熱處理方法之順序之流程圖。
圖9係表示將GaN基板載置於載置板之狀態之圖。
圖10係表示氮化鎵之吸收率之分光分佈之圖。
91:載置板
92:積層體
93:凹部
W:GaN基板
Claims (4)
- 一種熱處理方法,其特徵在於,其係藉由對氮化鎵之基板照射光而將該基板加熱者,且具備: 載置步驟,其係將上述基板載置於由吸光材料形成之載置板; 預加熱步驟,其係利用來自藉由自連續點等燈對上述載置板照射光而升溫之上述載置板之熱傳導將上述基板預加熱;及 閃光加熱步驟,其係對在上述預加熱步驟中升溫後之上述基板自閃光燈照射閃光而進行加熱。
- 如請求項1之熱處理方法,其中 上述載置板由碳化矽形成。
- 如請求項1或2之熱處理方法,其中 於形成設置於上述載置板之凹部載置上述基板。
- 如請求項1之熱處理方法,其進而具備如下步驟: 將於上述載置板載置有上述基板之積層體搬入至腔室內。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-159365 | 2018-08-28 | ||
JP2018159365A JP7303615B2 (ja) | 2018-08-28 | 2018-08-28 | 熱処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202022946A true TW202022946A (zh) | 2020-06-16 |
TWI728352B TWI728352B (zh) | 2021-05-21 |
Family
ID=69644118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108115888A TWI728352B (zh) | 2018-08-28 | 2019-05-08 | 熱處理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7303615B2 (zh) |
TW (1) | TWI728352B (zh) |
WO (1) | WO2020044775A1 (zh) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2771811B2 (ja) * | 1988-02-02 | 1998-07-02 | 富士通株式会社 | 半導体製造装置 |
JP2001345313A (ja) | 2000-05-31 | 2001-12-14 | Ebara Corp | 基板処理装置 |
JP3929939B2 (ja) | 2003-06-25 | 2007-06-13 | 株式会社東芝 | 処理装置、製造装置、処理方法及び電子装置の製造方法 |
JP2005150608A (ja) | 2003-11-19 | 2005-06-09 | Seiko Epson Corp | ガラス基板の光処理方法およびデバイス |
JP2010225645A (ja) | 2009-03-19 | 2010-10-07 | Dainippon Screen Mfg Co Ltd | 熱処理装置 |
JP5543123B2 (ja) * | 2009-03-30 | 2014-07-09 | 大日本スクリーン製造株式会社 | 熱処理用サセプタおよび熱処理装置 |
KR20130023069A (ko) | 2011-08-24 | 2013-03-07 | 울트라테크 인크. | GaN LED 및 이것의 고속 열 어닐링 방법 |
JP2014212285A (ja) | 2013-04-22 | 2014-11-13 | 株式会社クラレ | 結晶性膜の製造方法、結晶性膜、積層体、および発光装置 |
JP6185398B2 (ja) * | 2014-01-31 | 2017-08-23 | 東京エレクトロン株式会社 | 窒化ガリウム系結晶の成長方法及び熱処理装置 |
JP6560550B2 (ja) * | 2015-07-06 | 2019-08-14 | 株式会社Screenホールディングス | 熱処理方法および熱処理装置 |
JP6539568B2 (ja) * | 2015-11-04 | 2019-07-03 | 株式会社Screenホールディングス | 熱処理方法および熱処理装置 |
-
2018
- 2018-08-28 JP JP2018159365A patent/JP7303615B2/ja active Active
-
2019
- 2019-05-08 TW TW108115888A patent/TWI728352B/zh active
- 2019-07-02 WO PCT/JP2019/026235 patent/WO2020044775A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
TWI728352B (zh) | 2021-05-21 |
JP7303615B2 (ja) | 2023-07-05 |
JP2020035823A (ja) | 2020-03-05 |
WO2020044775A1 (ja) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI625791B (zh) | 熱處理裝置及熱處理方法 | |
TWI699834B (zh) | 熱處理裝置及熱處理方法 | |
TW201923905A (zh) | 熱處理方法 | |
TWI712089B (zh) | 熱處理方法 | |
TWI712088B (zh) | 熱處理裝置 | |
TWI638389B (zh) | 熱處理用承載器及熱處理裝置 | |
TWI652739B (zh) | 熱處理裝置 | |
CN107818926B (zh) | 热处理装置 | |
CN111656489A (zh) | 热处理方法及热处理装置 | |
TW201812833A (zh) | 熱處理方法 | |
JP7032947B2 (ja) | 熱処理方法 | |
WO2019181048A1 (ja) | 熱処理方法および熱処理装置 | |
TWI642107B (zh) | 熱處理方法 | |
JP2020174092A (ja) | 熱処理方法および熱処理装置 | |
TWI728352B (zh) | 熱處理方法 | |
JP2019149521A (ja) | 熱処理方法 | |
TW202228209A (zh) | 熱處理裝置及熱處理方法 | |
TWI703638B (zh) | 熱處理裝置 | |
TWI732238B (zh) | P型氮化鎵系半導體之製造方法及熱處理方法 | |
TW202030802A (zh) | 熱處理方法及熱處理裝置 | |
TWI706447B (zh) | 熱處理裝置 | |
TWI699449B (zh) | 閘極絕緣膜之形成方法及熱處理方法 | |
JP7377653B2 (ja) | 熱処理方法および熱処理装置 | |
JP2022166682A (ja) | 熱処理方法 | |
JP2022079227A (ja) | 熱処理方法 |