TW202022687A - 成像系統設計中之掃描差分干涉對比 - Google Patents

成像系統設計中之掃描差分干涉對比 Download PDF

Info

Publication number
TW202022687A
TW202022687A TW108138339A TW108138339A TW202022687A TW 202022687 A TW202022687 A TW 202022687A TW 108138339 A TW108138339 A TW 108138339A TW 108138339 A TW108138339 A TW 108138339A TW 202022687 A TW202022687 A TW 202022687A
Authority
TW
Taiwan
Prior art keywords
light
polarized light
wollaston
field
mirror
Prior art date
Application number
TW108138339A
Other languages
English (en)
Other versions
TWI797390B (zh
Inventor
雷蒙 朱
安 曾
唐諾 派提波
春聖 黃
布萊特 懷特席德
法布里斯 帕克瑞特
王軒
傳勇 黃
史提夫 蘇
阿那托利 羅曼諾夫斯基
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202022687A publication Critical patent/TW202022687A/zh
Application granted granted Critical
Publication of TWI797390B publication Critical patent/TWI797390B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • G01N2021/8825Separate detection of dark field and bright field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示一種檢測系統,其包含一照明源、一TDI-CCD感測器及一暗場/明場感測器。一偏振器自該光源接收光。在一渥拉斯頓稜鏡處引導來自該偏振器之該光諸如通過一半波板。該TDI-CCD感測器及該暗場/明場感測器之使用提供高空間解析度、高缺陷偵測靈敏度及信雜比以及快速檢測速度。

Description

成像系統設計中之掃描差分干涉對比
本發明係關於用於檢測晶圓之成像系統。
半導體製造產業之演進對良率管理以及特定言之度量衡及檢測系統提出更高要求。臨界尺寸繼續收縮,而產業需要減少用於達成高良率、高價值生產之時間。最小化自偵測到一良率問題至解決該問題之總時間判定一半導體製造商之投資回報率。
製造諸如邏輯及記憶體器件之半導體器件通常包含使用大量製造程序處理一半導體晶圓以形成半導體器件之各種特徵及多個層級。例如,微影係涉及將一圖案自一倍縮光罩轉印至配置於一半導體晶圓上之一光阻劑之一半導體製造程序。半導體製造程序之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。多個半導體器件可以一配置製造於一單一半導體晶圓上,該單一半導體晶圓被分成個別半導體器件。
在半導體製造期間之各個步驟使用檢測程序以偵測晶圓上之缺陷以促進製造程序中之更高良率及因此更高利潤。檢測始終係製造半導體器件(諸如積體電路(IC))之一重要部分。然而,隨著半導體器件之尺寸減小,檢測對於可接受半導體器件之成功製造變得更為重要,此係因為較小缺陷可引起器件失效。例如,隨著半導體器件之尺寸減小,具有減小之大小之缺陷之偵測已變得必要,此係因為甚至相對小缺陷可引起半導體器件中之非所要像差。
然而,隨著設計規則收縮,半導體製造程序可依更接近對程序之效能能力之限制操作。另外,隨著設計規則收縮,較小缺陷可對器件之電參數具有一影響,此驅動更靈敏檢測。隨著設計規則收縮,藉由檢測偵測之潛在良率相關缺陷之群體大幅增長,且藉由檢測偵測之擾亂點缺陷之群體亦大幅增加。因此,可在晶圓上偵測更多缺陷,且校正程序以剔除全部缺陷可係困難且昂貴的。判定哪些缺陷實際上對器件之電參數及良率具有一影響可容許程序控制方法集中於該等缺陷而大體上忽略其他缺陷。此外,在較小設計規則下,在一些情況中,程序引發之失效趨於係系統性的。亦即,程序引發之失效趨於在通常在設計內重複許多次之預定設計型樣下失效。空間系統、電相關缺陷之剔除可對良率具有一影響。
隨著對半導體器件製造程序之公差繼續縮小,對於經改良半導體晶圓檢測工具之要求繼續增加。適用於晶圓檢測之檢測工具之類型包含利用來自一樣本(例如,半導體晶圓)之散射資訊之一暗場(DF)檢測工具及利用來自一樣本之相位資訊之一差分干涉對比(DIC)檢測工具。通常言之,當尋找DF及DIC資訊兩者時,歸因於光學組件、光學佈局及偵測信號之差異及/或不相容性,一給定檢測工具或顯微鏡在DF模式或DIC模式中獨立地操作。雖然可分開運行不同光學佈局以分開偵測DF及DIC信號,但在一移動樣本(例如,生物活細胞)之觀察期間組合兩個分離的信號耗時且有時不可行。在半導體製造產業中,檢測設備能夠快速地定位並分類一或多個缺陷係重要的。因此,在分開的操作中執行DF及DIC檢測降低晶圓檢測程序之價值。
隨著對於一缺陷檢測系統之靈敏度及處理能力要求增加,DIC效能以現有架構接近其極限。DIC可具有不良空間解析度,因此導致一缺陷檢測系統之低缺陷偵測靈敏度。為了增加空間解析度,必須減小檢測表面上之光點大小,從而導致低檢測處理能力。
因此,需要改良之檢測系統及檢測方法。
在一第一實施例中提供一種裝置。該裝置包含:至少一個照明源;一載物台,其經組態以固定一晶圓;一TDI-CCD感測器;一明場/暗場感測器;一場光闌,其在來自該照明源之一光路徑中;一偏振器,其在該光路徑中;一渥拉斯頓(Wollaston)稜鏡,其在該光路徑中;一校正透鏡光學器件,其在該光路徑中;一鏡,其在該光路徑中,該鏡接收來自該渥拉斯頓稜鏡之P偏振光及S偏振光;及一物鏡總成,其在該光路徑中。該偏振器經組態以使P偏振光通過且反射S偏振光。該渥拉斯頓稜鏡形成該P偏振光及該S偏振光。該校正透鏡光學器件、該鏡及該物鏡總成經組態以將該P偏振光及該S偏振光聚焦至該載物台上,其中該P偏振光及該S偏振光在該渥拉斯頓稜鏡之一剪切方向上分離,且其中該P偏振光及該S偏振光在該渥拉斯頓稜鏡處組合。
該偏振器可係一偏振光束分離器立方體。
該場光闌可係一受控可變場光闌。該場光闌之一切向寬度可經組態以隨著掃描半徑變動,藉此在該場光闌之一末端處之該切向寬度大於在該場光闌之一相對末端處之該切向寬度。
該裝置可進一步包含在該光路徑中之將該P偏振光旋轉達45度之一半波板。
該渥拉斯頓稜鏡可以一主軸呈0度定向。
該鏡可係一摺疊鏡。
該照明源可係一寬頻發光二極體。
該裝置可進一步包含在該光路徑中介於該物鏡總成與該鏡之間之一二向色鏡。該二向色鏡可在該暗場/明場感測器處引導該S偏振光。
該裝置可進一步包含在該光路徑中介於該場光闌與該偏振器之間之一準直光學器件總成。
該裝置可經組態以提供一差分干涉對比模式。
在一第二實施例中提供一種方法。該方法包含使用一照明源產生一光束。將該光束自該照明源引導通過一場光闌。將該光束自該場光闌引導通過一偏振器。將該光束自該偏振器引導至一渥拉斯頓稜鏡。將該光束自該渥拉斯頓稜鏡引導至一校正透鏡光學器件。將該光束自該校正透鏡光學器件引導至一鏡。將該光束引導通過一物鏡總成朝向一載物台上之一晶圓。該校正透鏡光學器件、該鏡及該物鏡總成經組態以將來自該渥拉斯頓稜鏡之P偏振光及S偏振光聚焦至該載物台上。在該渥拉斯頓稜鏡之一剪切方向上分離該P偏振光及該S偏振光。使用一二向色鏡將自該載物台上之該晶圓反射之該光束分離成一第一光束及一第二光束。使用一暗場/明場感測器接收該第一光束。在該渥拉斯頓稜鏡處組合該第二光束之該P偏振光及該S偏振光。使用一TDI-CCD感測器接收來自該渥拉斯頓稜鏡之該第二光束。
該偏振器可係該光路徑中之一偏振光束分離器立方體。該偏振光束分離器可經組態以使P偏振光通過且反射S偏振光。
該方法可進一步包含將該光束引導通過將該P偏振光旋轉達45度之一半波板。該半波板可經安置於該偏振器與該渥拉斯頓稜鏡之間。
該場光闌可係一受控可變場光闌。該場光闌之一切向寬度可經組態以隨著掃描半徑變動,藉此在該場光闌之一末端處之該切向寬度大於在該場光闌之一相對末端處之該切向寬度。
該渥拉斯頓稜鏡可以一主軸呈0度定向。
該鏡可係一摺疊鏡。
該照明源可係一寬頻發光二極體。
該方法可經組態以提供一差分干涉對比模式。
該方法可進一步包含使用一準直光學器件總成準直由該場光闌引導之該光束。
相關申請案之交叉參考
本申請案主張2018年10月26日申請且被指定美國申請案第62/751,472號之臨時專利申請案之優先權,該案之揭示內容藉此以引用的方式併入本文中。
雖然將依據特定實施例描述所主張標的物,但其他實施例(包含不提供本文中闡述之全部益處及特徵之實施例)亦在本發明之範疇內。可做出各種結構、邏輯、程序步驟及電子改變而不脫離本發明之範疇。因此,本發明之範疇僅藉由參考隨附發明申請專利範圍定義。
本文中揭示之實施例可提供高空間解析度、高缺陷偵測靈敏度及信雜比(SNR)以及快速檢測速度。可將設計稱為一成像相位對比通道(PCC)。PCC設計另外提供低影像模糊同時維持相對低光預算及良好場延遲均勻性。
本文中揭示之實施例包含藉由在一雙檢測器系統上之光學成像之一DIC設計。成像DIC可使用用於一掃描器系統之一TDI (延時積分)電荷耦合器件(CCD)感測器。DIC設計亦可在一R-Ѳ掃描器系統中實施偏振光學器件及一可變場光闌以光預算增強且影像模糊減少。
在本文中揭示之實施例中,TDI感測器可係一獨立掃描檢測器應用。例如,TDI感測器可用於進行晶圓缺陷檢測之一獨立掃描檢測器應用中。可使用一寬頻LED照明源或其他照明源。
圖1係一檢測系統100之一實施例之一方塊圖。檢測系統100可係具有一TDI-CCD感測器之一成像光學設計中之一DIC架構。針對DIC前導及尾隨光束兩者,將檢測區域成像至TDI感測器上。檢測系統100可係一獨立掃描檢測器系統或作為一雙、多檢測器系統之一子系統。檢測系統100之設計組合偏振性質及分量,使其在光預算敏感應用中有效。在一基於R-Ѳ之掃描器系統中,由於當影像視野(FoV)變得更接近旋轉中心時,影像模糊發生,故一可變場光闌可有效地用於減小與掃描半徑相關聯之FoV且因此,減少成像模糊。
針對一典型雙檢測器系統(諸如一暗場檢測器及一明場檢測器),根據DIC原理之一基於相位對比之缺陷偵測通道(即,PCC)可用於明場檢測器。當使用TDI-CCD感測器時,PCC可調適一成像光學設計且可使用圖1中展示之一般結構。
檢測系統100包含至少一個照明源101及經組態以固定一晶圓103之一載物台102。照明源101可係一寬頻LED。寬頻LED可抑制背景雜訊且提供改良之信雜比。然而,一雷射亦可用於照明源101。例如,可使用具有斑點減少光學器件及/或表面雜訊減少光學器件之一雷射。檢測系統100亦可包含一寬頻LED及雷射兩者、其他類型之光源或光源之其他組合。
檢測系統100亦包含一TDI-CCD感測器115及一暗場/明場感測器113。暗場/明場感測器113可操作為一暗場感測器或一明亮感測器。暗場/明場感測器113可係一PMT、光電二極體或光電二極體陣列或在一非DIC模式中之一CCD成像器。
TDI-CCD感測器115可用於掃描成像器中以提供動態、快速及高品質影像擷取。用於TDI-CCD感測器115中之CCD感測器可提供一延時積分操作模式。TDI-CCD感測器115與一移動影像一起工作,藉此TDI-CCD感測器115之像素與移動影像之「像素」對準並同步。當影像在移動時,TDI-CCD感測器115上之對應像素被向前計時且因而,來自影像像素之光(光子)被持續累積至TDI-CCD感測器115之像素列上直至其等在感測器之末端處被讀出。
TDI-CCD感測器115可用於明場或暗場量測。可使用一成像器或一光點掃描器。在一例項中,一光點掃描器可具有(例如) 4 μm (切向)×100 μm (徑向)之一照明光點與一橢圓形光點。此光點大小可設定系統之一橫向解析度。與光點掃描器一起使用之集光光學器件114可包含一光電倍增管(PMT)以整合來自照明光點之光。在另一例項中,可使用一成像器。成像器可具有比光點掃描器更佳之橫向解析度。相較於光點掃描器之單一偵測器,成像器可具有數百或超過一千列之線偵測器。成像器之線偵測器列可提供小至(例如) 0.65 μm之一像素大小。
一TDI-CCD感測器115具有許多優點。一TDI-CCD感測器115可用於低光影像擷取應用中且可增加來自一傳統CCD感測器之信雜比而不犧牲影像圖框速率。相反地,一TDI-CCD感測器115以一較快圖框速率提供等效影像清晰度,從而使其對於影像掃描器應用有用。
暗場/明場感測器113可在一第一波長下操作。
一場光闌104定位於來自照明源101之一光路徑116中。場光闌104可係一受控可變場光闌。因此,場光闌104之一切向寬度可經組態以隨著掃描半徑變動,藉此在場光闌之一末端處之切向寬度大於在場光闌之一相對末端處之切向寬度。
檢測系統100亦包含在光路徑116中之一偏振器106。在一例項中,偏振器106係一偏振光束分離器立方體。偏振光束分離器立方體經組態以使P偏振光119通過且反射S偏振光120。在另一例項中,偏振器106係具有一偏振器及容許P偏振光沿著光路徑116完全或部分透射且容許S偏振光沿著光路徑完全或部分反射至TDI-CCD感測器115之模組之一光束分離器。
一準直光學器件總成105經安置於光路徑116中介於場光闌104與偏振器106之間。準直光學器件總成105可準直來自場光闌104之光。
一渥拉斯頓稜鏡108經安置於光路徑116中。渥拉斯頓稜鏡108係一偏振光束分離器。渥拉斯頓稜鏡108將光分成具有正交偏振之兩個分開的線性偏振出射光束(例如,P偏振光119及S偏振光120)。因此,入射光包含P偏振光及S偏振光且被分離成P偏振光119及S偏振光120。兩個線性偏振光束以由渥拉斯頓稜鏡108之一剪切設計及其材料性質定義之一小角度(例如,一分離角)遠離彼此傳播。兩個光束將根據兩個直角稜鏡之光軸偏振。在一實施例中,渥拉斯頓稜鏡108接收自晶圓103反射之P偏振光119。在一例項中,渥拉斯頓稜鏡108以一主軸呈0度定向。
檢測系統100亦可使用一半波板107,使得半波板107最小化跨渥拉斯頓稜鏡108上之一光瞳孔徑之延遲不均勻性。半波板107可經安置於光路徑116中,使得其將P偏振光119旋轉達45度。
一校正透鏡光學器件109可經安置於光路徑116中。當使用一暗場時,校正透鏡光學器件109可提供對於PIC之校正。然而,可存在在不同波長下之不同像差。可在檢測系統100中使用兩個波長,諸如在近似266 nm下之UV/DF及在近似365 nm下之PCC。其他波長係可行的。UV/DF可係自(例如)極紫外(EUV)至紅外之單波長或寬波長。PCC波長可類似於UV/DF波長,只要兩個波長光源可由容許具有不同波長群組之兩個光路徑之二向色鏡111分離。
光路徑116中之一鏡110可接收來自渥拉斯頓稜鏡之P偏振光119及S偏振光120。鏡110可係一摺疊鏡或其他類型之鏡。
一物鏡總成112可經安置於光路徑116中。物鏡總成112可包含兩個以上透鏡(例如,11或12個透鏡)且可使用暗場及/或PIC。物鏡總成112可在兩個波長下操作。
校正透鏡光學器件109、鏡110及物鏡總成112經組態以將P偏振光119及S偏振光120聚焦至載物台102上。P偏振光及S偏振光120在渥拉斯頓稜鏡108之一剪切方向上分離。自晶圓103反射之P偏振光119及S偏振光120可在渥拉斯頓稜鏡108處組合。在圖1中,P偏振光119及S偏振光120由虛線繪示。
檢測系統可包含在光路徑116中介於物鏡總成112與鏡110之間之一二向色鏡111。二向色鏡111可在暗場/明場感測器113處引導自晶圓103反射之S偏振光120。暗場/明場感測器113可接收S偏振光120。在一例項中,暗場/明場感測器113接收自晶圓103反射之一第一波長之光。
集光光學器件114可經安置於光路徑116中介於偏振器106與TDI-CCD感測器115之間。集光光學器件114可包含球面正負透鏡、中斷補償光學器件、變焦機構及/或將晶圓103型樣或影像平移至TDI-CCD感測器115之其他組件。在一例項中,集光光學器件114可係在TDI-CCD感測器115上形成聚焦且具有所要放大率之一影像之一鏡筒透鏡。
一處理器117與暗場/明場感測器113及TDI-CCD感測器115電子通信。處理器117亦可以任何適合方式(例如,經由一或多個傳輸媒體,該一或多個傳輸媒體可包含有線及/或無線傳輸媒體)耦合至檢測系統100之組件,使得處理器117可接收輸出。處理器117可經組態以使用輸出執行數個功能。檢測系統100可自處理器117接收指令或其他資訊。處理器117及/或電子資料儲存單元118視情況可與另一晶圓檢測工具、一晶圓度量衡工具或一晶圓檢視工具(未繪示)電子通信以接收額外資訊或發送指令。
本文中描述之處理器117、(若干)其他系統或(若干)其他子系統可係各種系統之部分,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設備、網際網路設備或其他器件。(若干)子系統或(若干)系統亦可包含此項技術中已知之任何適合處理器(諸如一平行處理器)。另外,該(等)子系統或該(等)系統可包含具有高速處理及軟體之一平台(作為一獨立工具或一網路工具)。
處理器117及電子資料儲存單元118可經安置於檢測系統100或另一器件中或以其他方式作為檢測系統100或另一器件之部分。在一實例中,處理器117及電子資料儲存單元118可係一獨立控制單元之部分或在一集中式品質控制單元中。可使用多個處理器117或電子資料儲存單元118。
實務上,處理器117可藉由硬體、軟體及韌體之任何組合實施。又,如本文中描述之其功能可由一個單元執行或在不同組件當中劃分,該等不同組件之各者可繼而藉由硬體、軟體及韌體之任何組合實施。供處理器117實施各種方法及功能之程式碼或指令可儲存於可讀儲存媒體(諸如電子資料儲存單元118中之一記憶體或其他記憶體)中。
若檢測系統100包含一個以上處理器117,則不同子系統可彼此耦合,使得可在子系統之間發送影像、資料、資訊、指令等。例如,一個子系統可藉由可包含此項技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體耦合至(若干)額外子系統。兩個或兩個以上此等子系統亦可藉由一共用電腦可讀儲存媒體(未展示)有效地耦合。
處理器117可經組態以使用檢測系統100之輸出或其他輸出執行數個功能。例如,處理器117可經組態以將輸出發送至一電子資料儲存單元118或另一儲存媒體。可如本文中描述般進一步組態處理器117。
可根據本文中描述之任何實施例組態處理器117。處理器117亦可經組態以使用檢測系統100之輸出或使用來自其他源之影像或資料執行其他功能或額外步驟。
檢測系統100之各種步驟、功能及/或操作及本文中揭示之方法由以下項之一或多者實行:電子電路、邏輯閘、多工器、可程式化邏輯器件、ASIC、類比或數位控制件/開關、微控制器或運算系統。實施諸如本文中描述之方法之方法之程式指令可經由載體媒體傳輸或儲存於載體媒體上。載體媒體可包含一儲存媒體,諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及類似者。一載體媒體可包含一傳輸媒體,諸如一導線、電纜或無線傳輸鏈路。例如,貫穿本發明描述之各種步驟可藉由一單一處理器117或替代地多個處理器117實行。再者,檢測系統100之不同子系統可包含一或多個運算或邏輯系統。因此,上文描述不應被解譯為對本發明之一限制而僅為一圖解。
在一例項中,處理器117與檢測系統100通信。處理器117可經組態以串流化經數位化CCD影像資料、形成並處理影像及/或分離具有缺陷之影像。此可包含尋找相位缺陷或尋找暗場缺陷。
一額外實施例係關於一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一控制器上執行以執行用於使一晶圓成像及/或尋找缺陷之一電腦實施方法,如本文中揭示。特定言之,如圖1中展示,電子資料儲存單元118或其他儲存媒體可含有包含可在處理器117上執行之程式指令之非暫時性電腦可讀媒體。電腦實施方法可包含本文中描述之(若干)任何方法(包含方法100)之(若干)任何步驟。
在檢測系統100之一實施例中,照明源101可係一單波長雷射或具有在自深紫外(DUV)至可見至紅外之範圍中之波長之一LED。來自光源101之光照明場光闌104。場光闌104可係用於一R-Ѳ掃描系統之一受控可變場光闌,從而容許其切向寬度與掃描半徑相關聯地變動。可控制延時積分模糊。
準直光學器件總成105準直光且將其發送至偏振器106,該偏振器106容許P偏振光119通過且容許S偏振光120被反射。一半波板107可用於在P偏振光進入以其主軸呈0度定向之渥拉斯頓稜鏡108之前將P偏振光旋轉達45度。渥拉斯頓稜鏡108將入射光束分離成相等部分之P光束及S光束。透過校正透鏡光學器件109、鏡110及物鏡總成112 (其可經組態用於第一波長成像器且對於PCC波長透明),P光束及S光束可被聚焦至晶圓103之檢測表面上。P光束及S光束在渥拉斯頓稜鏡108之剪切方向上分離。在一例項中,在由偏振器106之P偏振方向定義之0度下,渥拉斯頓稜鏡108可經組態使得剪切間隔係TDI-CCD感測器影像之數個像素。可為了最佳信雜比及空間解析度而在一特定掃描系統或設定中使用多個渥拉斯頓稜鏡108且使其等可由使用者選擇。
在集光路徑上,P反射光束及S反射光束兩者在渥拉斯頓稜鏡108處組合,攜載來自晶圓103上之一缺陷之相對相位差資訊。在偏振器106處產生干涉且將干涉反射至TDI-CCD感測器115。
當物鏡總成112中之物鏡經設計用於第一波長時,校正透鏡光學器件109可經組態以在第二波長下將一高位準之影像清晰度提供給PCC子系統。替代地,若物鏡總成112經組態用於第二檢測器波長,則一校正透鏡光學器件109可經組態用於第一波長。
在一例項中,TDI感測器可係具有一第二波長之一平行檢測器。可添加色散補償光學器件以提供所要成像品質。
併入一TDI感測器之一成像DIC設計亦可用於一旋轉掃描檢測器應用中且可使用最小化徑向方向及切向方向兩者上之TDI影像模糊之一基於半徑之可變光源場光闌。
圖2繪示使用一寬頻LED之照明與使用一雷射之照明之間之一比較。在圖2中,左側影像繪示使用一寬頻LED之照明且右側影像繪示使用一雷射之照明。針對DIC應用,一雷射可提供高光強度位準及波長純度(例如,窄線寬)。然而,雷射之窄線寬可諸如在相對粗糙表面上引起相干性引發之表面雜訊效應。此可使得難以偵測小缺陷或粒子。圖2繪示來自一LED對來自一PCC子系統之一雷射之表面雜訊效應。
參考PCC子系統佈局,圖3及圖4以涵蓋整個TDI-CCD感測器及性質上為延時積分之一CCD感測器之框繪示光學FoV。不同框表示針對S偏振光及P偏振光之FoV,該S偏振光及該P偏振光在渥拉斯頓稜鏡處組合且投射至TDI-CCD上作為一個框。替代地,可看出,TDI-CCD上之一個別像素對應於檢測表面上針對P及S偏振光之兩個像素。可沿著掃描之方向選擇剪切方向,但其可經傾斜(例如,圖3中為45度傾斜)以為了在如圖3中展示之兩個正交軸上之偵測之益處,其可包含最佳化偏振器及半波板定向。在保持至一小像素之DIC入射角以達成一高空間解析度時,檢測系統100可維持一相對大FoV且因此,與一高密度CCD感測器同時檢測一大區域。入射角可係法向入射(即,與晶圓表面103成0度)。公差係依據檢測系統100之設計。FoV係指可在CCD感測器上看見之區域。在一例項中,此可係1000 μm x 100 μm。其他FoV可行且依據光學設計及/或放大率選擇以具有晶圓之較大或較小可觀察區域。像素解析度可與可觀察區域大小(或FoV大小)成比例。在一例項中,此係可採用M×N數目個光電偵測器之一平行DIC系統,其中M及N係CCD感測器像素尺寸。當CCD感測器係用於一掃描系統之一TDI-CCD時,可將光預算降低M倍,其中M係TDI光子整合尺寸。相反地,使用相同量之光,可將CCD圖框速率增加M倍。在此等應用中,傳統CCD感測器用途可由實體上能夠具有之光預算或圖框速率限制。
像素可與一移動物件一起移動。在一實施例中,像素與一移動物件同步。因此,當影像在移動時,影像可保持聚焦。此對於低光應用可係有益的。
圖5繪示影像模糊控制。在圖5中,R係徑向長度且Ѳ係旋轉移動。在一基於R-Ѳ之掃描檢測器系統中,可採用檢測表面之圓形旋轉。一笛卡爾(Cartesian) TDI-CCD感測器之線性空間整合性質招致累積以列來自像素之光子。當掃描半徑變得更小時,影像模糊在掃描曲率超過像素之列時發生。圖5描繪兩個模糊效應,即切向模糊及徑向模糊。
徑向上,歸因於影像運動之旋轉性質,檢測表面上之一像素移動TDI-CCD上之一弧形之軌跡。隨著半徑逐漸減小,弧形之曲率增加至像素與下一列TDI-CCD像素交叉之點,從而導致徑向模糊效應。類似地,在FoV內,當TDI計時徑向同步至TDI-CCD之中間之像素時,下列及上列有效地經歷較短或較長實體像素,從而導致與鄰近相切像素(即,相切模糊)交叉。
可使用模糊控制,此係因為晶圓可在固定至載物台時旋轉。影像可以一弧形移動,且此可引起中心附近之問題。可變狹縫可減少模糊效應,因此其仍對一感測器呈現為一線。可變狹縫中之狹縫可朝向晶圓之中心減小至零或接近零。可變狹縫可與載物台之運動同步。
可變場光闌可用於最小化對徑向影像及切向影像兩者之模糊效應。在圖6及圖7中展示此。可變場光闌(其係圖1中之場光闌104之一實例)經安置於照明源之下游。準直光學器件總成105可用作照明光學器件。使用一馬達且在掃描器之最大掃描半徑處全開(即,全FoV)控制可變場光闌。相對於1/半徑(1/R)線性地減小其寬度。若某一量之模糊係可容忍的,則可變場光闌減小輪廓可在一特定半徑處開始。在此一R-Ѳ掃描系統中,TDI-CCD計時可係半徑相依的。因此,在最佳化VFS輪廓時可考量光預算,使得模糊及光預算全部在可接受位準內。
圖8係偏振光學器件之一實施例之一方塊圖。作為一成本有效及空間節約量測,一PCC設計可調適一偏振器及半波板組合光學設計。如圖8中描繪,偏振器及渥拉斯頓稜鏡對準至其等主軸之0度,而半波板對準至22.5度。此容許偏振器之後之P偏振光相對於渥拉斯頓稜鏡主軸旋轉45度。因此,在渥拉斯頓稜鏡之後產生相等量之P偏振光及S偏振光。在反射路徑上,P偏振光及S偏振光在渥拉斯頓稜鏡處組合且繼續移動另一45度,從而導致偏振器處之S偏振光,該S偏振光接著被反射至TDI-CCD偵測器。此一設計係有成本效益的且亦導致較高光效率。另外,給定PCC設計之掃描性質,此一偏振最佳化設計將渥拉斯頓稜鏡定向於最小數值孔徑(NA)光傳播軸中且因此,可導致跨FoV之最低相位延遲均勻性。
在一例項中,檢測系統在R-Ѳ而非垂直X及Y方向上操作。光束可需要在R方向上對準。一半波板可防止兩個光束分離達45度。因此,偏振器可將光束分離成兩個光束且半波板可將兩個光束對準在一起。可使用一透鏡系統而非一半波板以達成相同結果。
圖9係一方法200之一流程圖。在201處,使用一照明源(諸如一寬頻LED)產生一光束。在202處,將光束自照明源引導通過一場光闌。在203處,使用一準直光學器件總成準直由場光闌引導之光束。場光闌可係一受控可變場光闌。場光闌之一切向寬度經組態以隨著掃描半徑變動,藉此在場光闌之一末端處之切向寬度大於在場光闌之一相對末端處之切向寬度。
在204處,將光束自準直光學器件總成引導通過一偏振器。在205處,將光束自偏振器引導至一渥拉斯頓稜鏡。渥拉斯頓稜鏡可以一主軸呈0度定向。
在206處,將光束自渥拉斯頓稜鏡引導至一校正透鏡光學器件。在207處,將光束自校正透鏡光學器件引導至一鏡(諸如一摺疊鏡)。在208處,將光束引導通過一物鏡總成朝向一載物台上之一晶圓。校正透鏡光學器件、鏡及物鏡總成經組態以將來自渥拉斯頓稜鏡之P偏振光及S偏振光聚焦至載物台上。在渥拉斯頓稜鏡之一剪切方向上分離P偏振光及S偏振光。
在209處,使用一二向色鏡將自載物台上之晶圓反射之光束分離成一第一光束及一第二光束。在209處,使用一二向色鏡將自載物台上之晶圓反射之光束分離成一第一光束及一第二光束。在210處,使用一暗場/明場感測器接收第一光束。在211處,在渥拉斯頓稜鏡處組合第二光束之P偏振光及S偏振光。在212處,使用一TDI-CCD感測器接收來自渥拉斯頓稜鏡之第二光束。
在方法200中,偏振器可係光路徑中之一偏振光束分離器立方體。偏振光束分離器可經組態以使P偏振光通過且反射S偏振光。
方法200可進一步包含將光束引導通過將P偏振光旋轉達45度之一半波板。半波板可經安置於偏振器與渥拉斯頓稜鏡之間。
可如本文中描述般執行方法之各步驟。方法亦可包含可由本文中描述之處理器及/或(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。步驟可由一或多個電腦系統執行,該一或多個電腦系統可根據本文中描述之任何實施例組態。另外,上文描述之方法可由本文中描述之任何系統實施例執行。
雖然已關於一或多個特定實施例描述本發明,但應理解,可進行本發明之其他實施例而不脫離本發明之範疇。因此,將本發明視為僅由隨附發明申請專利範圍及其等之合理解譯限制。
100:檢測系統 101:照明源 102:載物台 103:晶圓 104:場光闌 105:準直光學器件總成 106:偏振器 107:半波板 108:渥拉斯頓稜鏡 109:校正透鏡光學器件 110:鏡 111:二向色鏡 112:物鏡總成 113:暗場/明場感測器 114:集光光學器件 115:延時積分(TDI)-電荷耦合器件(CCD)感測器 116:光路徑 117:處理器 118:電子資料儲存單元 119:P偏振光 120:S偏振光 200:方法 201:步驟 202:步驟 203:步驟 204:步驟 205:步驟 206:步驟 207:步驟 208:步驟 209:步驟 210:步驟 211:步驟 212:步驟
為了更全面理解本發明之性質及目標,應參考結合隨附圖式進行之以下詳細描述,其中: 圖1係根據本發明之一檢測系統之一實施例之一方塊圖; 圖2繪示使用一寬頻發光二極體(LED)之照明與使用一雷射之照明之間之一比較; 圖3及圖4根據本發明之一實施例以涵蓋整個TDI-CCD感測器及性質上為延時積分之一CCD感測器之框繪示光學視野; 圖5繪示根據本發明之影像模糊控制; 圖6係根據本發明之一可變場光闌之一實施例之一方塊圖; 圖7繪示圖6之可變場光闌; 圖8係根據本發明之偏振光學器件之一實施例之一方塊圖;及 圖9係根據本發明之一方法之一流程圖。
100:檢測系統
101:照明源
102:載物台
103:晶圓
104:場光闌
105:準直光學器件總成
106:偏振器
107:半波板
108:渥拉斯頓稜鏡
109:校正透鏡光學器件
110:鏡
111:二向色鏡
112:物鏡總成
113:暗場/明場感測器
114:集光光學器件
115:延時積分(TDI)-電荷耦合器件(CCD)感測器
116:光路徑
117:處理器
118:電子資料儲存單元
119:P偏振光
120:S偏振光

Claims (20)

  1. 一種裝置,其包括: 至少一個照明源; 一載物台,其經組態以固定一晶圓; 一TDI-CCD感測器; 一暗場/明場感測器; 一場光闌,其在來自該照明源之一光路徑中; 一偏振器,其在該光路徑中,其中該偏振器經組態以使P偏振光通過且反射S偏振光; 一渥拉斯頓稜鏡,其在該光路徑中,其中該渥拉斯頓稜鏡形成該P偏振光及該S偏振光; 一校正透鏡光學器件,其在該光路徑中; 一鏡,其在該光路徑中,該鏡接收來自該渥拉斯頓稜鏡之該P偏振光及該S偏振光;及 一物鏡總成,其在該光路徑中,其中該校正透鏡光學器件、該鏡及該物鏡總成經組態以將該P偏振光及該S偏振光聚焦至該載物台上,其中該P偏振光及該S偏振光在該渥拉斯頓稜鏡之一剪切方向上分離,且其中該P偏振光及該S偏振光在該渥拉斯頓稜鏡處組合。
  2. 如請求項1之裝置,其中該偏振器係一偏振光束分離器立方體。
  3. 如請求項1之裝置,其中該場光闌係一受控可變場光闌,其中該場光闌之一切向寬度經組態以隨著掃描半徑變動,藉此在該場光闌之一末端處之該切向寬度大於在該場光闌之一相對末端處之該切向寬度。
  4. 如請求項1之裝置,其進一步包括在該光路徑中之將該P偏振光旋轉達45度之一半波板。
  5. 如請求項1之裝置,其中該渥拉斯頓稜鏡以一主軸呈0度定向。
  6. 如請求項1之裝置,其中該鏡係一摺疊鏡。
  7. 如請求項1之裝置,其中該照明源係一寬頻發光二極體。
  8. 如請求項1之裝置,其進一步包括在該光路徑中介於該物鏡總成與該鏡之間之一二向色鏡。
  9. 如請求項8之裝置,其中該二向色鏡在該暗場/明場感測器處引導該S偏振光。
  10. 如請求項1之裝置,其進一步包括在該光路徑中介於該場光闌與該偏振器之間之一準直光學器件總成。
  11. 如請求項1之裝置,其中該裝置經組態以提供一差分干涉對比模式。
  12. 一種方法,其包括: 使用一照明源產生一光束; 將該光束自該照明源引導通過一場光闌; 將該光束自該場光闌引導通過一偏振器; 將該光束自該偏振器引導至一渥拉斯頓稜鏡; 將該光束自該渥拉斯頓稜鏡引導至一校正透鏡光學器件; 將該光束自該校正透鏡光學器件引導至一鏡; 將該光束引導通過一物鏡總成朝向一載物台上之一晶圓,其中該校正透鏡光學器件、該鏡及該物鏡總成經組態以將來自該渥拉斯頓稜鏡之P偏振光及S偏振光聚焦至該載物台上,其中在該渥拉斯頓稜鏡之一剪切方向上分離該P偏振光及該S偏振光; 使用一二向色鏡將自該載物台上之該晶圓反射之該光束分離成一第一光束及一第二光束; 使用一暗場/明場感測器接收該第一光束; 在該渥拉斯頓稜鏡處組合該第二光束之該P偏振光及該S偏振光;及 使用一TDI-CCD感測器接收來自該渥拉斯頓稜鏡之該第二光束。
  13. 如請求項12之方法,其中該偏振器係該光路徑中之一偏振光束分離器立方體,其中該偏振光束分離器經組態以使P偏振光通過且反射S偏振光。
  14. 如請求項12之方法,其進一步包括將該光束引導通過將該P偏振光旋轉達45度之一半波板,其中該半波板經安置於該偏振器與該渥拉斯頓稜鏡之間。
  15. 如請求項12之方法,其中該場光闌係一受控可變場光闌,其中該場光闌之一切向寬度經組態以隨著掃描半徑變動,藉此在該場光闌之一末端處之該切向寬度大於在該場光闌之一相對末端處之該切向寬度。
  16. 如請求項12之方法,其中該渥拉斯頓稜鏡以一主軸呈0度定向。
  17. 如請求項12之方法,其中該鏡係一摺疊鏡。
  18. 如請求項12之方法,其中該照明源係一寬頻發光二極體。
  19. 如請求項12之裝置,其中該方法經組態以提供一差分干涉對比模式。
  20. 如請求項12之方法,其進一步包括使用一準直光學器件總成準直由該場光闌引導之該光束。
TW108138339A 2018-10-26 2019-10-24 晶圓檢測裝置及用於檢測晶圓之方法 TWI797390B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862751472P 2018-10-26 2018-10-26
US62/751,472 2018-10-26
US16/584,370 US10705026B2 (en) 2018-10-26 2019-09-26 Scanning differential interference contrast in an imaging system design
US16/584,370 2019-09-26

Publications (2)

Publication Number Publication Date
TW202022687A true TW202022687A (zh) 2020-06-16
TWI797390B TWI797390B (zh) 2023-04-01

Family

ID=70328550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138339A TWI797390B (zh) 2018-10-26 2019-10-24 晶圓檢測裝置及用於檢測晶圓之方法

Country Status (8)

Country Link
US (1) US10705026B2 (zh)
JP (1) JP7344225B2 (zh)
KR (1) KR102580562B1 (zh)
CN (1) CN112136037B (zh)
IL (1) IL278807B2 (zh)
SG (1) SG11202010886VA (zh)
TW (1) TWI797390B (zh)
WO (1) WO2020086920A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159285A1 (zh) * 2020-02-12 2021-08-19 深圳华大智造科技股份有限公司 光学成像系统及应用所述光学成像系统的生化物质检测系统
WO2023135681A1 (ja) * 2022-01-12 2023-07-20 株式会社日立ハイテク 表面検査装置
CN115166062B (zh) * 2022-08-22 2024-06-11 天津大学 一种基于差分干涉的全光学超声探测器及探测方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232384A (en) * 1975-09-08 1977-03-11 Fuji Photo Film Co Ltd Densitometer
JPH05232384A (ja) * 1992-02-18 1993-09-10 Olympus Optical Co Ltd 干渉顕微鏡
GB9610471D0 (en) * 1996-05-18 1996-07-24 Univ Nottingham Optical measurement
US6404544B1 (en) * 1999-06-01 2002-06-11 Optical Perspectives Group, Llc Wavelength multiplexed quantitative differential interference contrast microscopy
US6741356B1 (en) * 1999-09-20 2004-05-25 Olympus Corporation Method for detecting physical amount of object and optical apparatus using the same
JP2001242382A (ja) * 1999-12-24 2001-09-07 Olympus Optical Co Ltd 微分干渉光学系
US20050254065A1 (en) 2004-05-12 2005-11-17 Stokowski Stanley E Method and apparatus for detecting surface characteristics on a mask blank
JP5132982B2 (ja) 2007-05-02 2013-01-30 株式会社日立ハイテクノロジーズ パターン欠陥検査装置および方法
US8143600B2 (en) 2008-02-18 2012-03-27 Visiongate, Inc. 3D imaging of live cells with ultraviolet radiation
JP2011525713A (ja) 2008-06-26 2011-09-22 エーエスエムエル ネザーランズ ビー.ブイ. オーバレイ測定装置、リソグラフィ装置、及びそのようなオーバレイ測定装置を用いたデバイス製造方法
JP5171744B2 (ja) 2009-07-01 2013-03-27 株式会社日立ハイテクノロジーズ 欠陥検査方法およびその装置
JP5553635B2 (ja) * 2009-10-23 2014-07-16 キヤノン株式会社 補償光学装置、撮像装置および補償光学方法、撮像方法
JP4716148B1 (ja) 2010-03-30 2011-07-06 レーザーテック株式会社 検査装置並びに欠陥分類方法及び欠陥検出方法
US20110242312A1 (en) * 2010-03-30 2011-10-06 Lasertec Corporation Inspection system and inspection method
CN103852458B (zh) * 2014-02-28 2016-02-03 浙江大学 一种基于宽场受激发射差分的显微方法和装置
US9726615B2 (en) * 2014-07-22 2017-08-08 Kla-Tencor Corporation System and method for simultaneous dark field and phase contrast inspection
US9860466B2 (en) 2015-05-14 2018-01-02 Kla-Tencor Corporation Sensor with electrically controllable aperture for inspection and metrology systems
US11061233B2 (en) * 2015-06-30 2021-07-13 3M Innovative Properties Company Polarizing beam splitter and illuminator including same
WO2018003359A1 (ja) * 2016-07-01 2018-01-04 富士フイルム株式会社 積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および光学センサ
JP6738254B2 (ja) 2016-09-26 2020-08-12 株式会社日立ハイテク 欠陥検出装置及び欠陥観察装置
JP2020503535A (ja) * 2016-12-02 2020-01-30 ルムス エルティーディー. コンパクトなコリメーティング画像プロジェクターを備える光学システム

Also Published As

Publication number Publication date
US20200132608A1 (en) 2020-04-30
KR102580562B1 (ko) 2023-09-19
IL278807A (en) 2021-01-31
IL278807B1 (en) 2023-08-01
CN112136037A (zh) 2020-12-25
IL278807B2 (en) 2023-12-01
JP7344225B2 (ja) 2023-09-13
WO2020086920A1 (en) 2020-04-30
KR20210069730A (ko) 2021-06-11
JP2022503371A (ja) 2022-01-12
SG11202010886VA (en) 2020-11-27
US10705026B2 (en) 2020-07-07
CN112136037B (zh) 2022-03-29
TWI797390B (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
US10488348B2 (en) Wafer inspection
US8755044B2 (en) Large particle detection for multi-spot surface scanning inspection systems
KR102228505B1 (ko) 큰 입자 모니터링 및 레이저 전력 제어를 이용한 표면 결함 검사
TWI797390B (zh) 晶圓檢測裝置及用於檢測晶圓之方法
US20080239290A1 (en) Reticle defect inspection apparatus and reticle defect inspection method
JP6014102B2 (ja) ウエハーを検査するように構成される装置
JP2010536034A5 (zh)
JP7183156B2 (ja) 透明基板上の欠陥部の検査方法および装置並びに入射光の出射方法
TW202203341A (zh) 藉由組合來自多個收集通道之資訊之設計至晶圓影像相關性
CN218956441U (zh) 一种光学检测系统
JP2004163198A (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
US11356594B1 (en) Tilted slit confocal system configured for automated focus detection and tracking
JP5046054B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
US20130250297A1 (en) Inspection apparatus and inspection system
TW202312303A (zh) 通過基於影像投影之修補對設計對準之晶圓對準改良
US20130083318A1 (en) Pattern inspection apparatus and pattern inspection method
TW202125760A (zh) 一維唯一結構之圖案至設計的對齊