TW202014540A - 硬質被膜及硬質被膜被覆構件 - Google Patents

硬質被膜及硬質被膜被覆構件 Download PDF

Info

Publication number
TW202014540A
TW202014540A TW108126772A TW108126772A TW202014540A TW 202014540 A TW202014540 A TW 202014540A TW 108126772 A TW108126772 A TW 108126772A TW 108126772 A TW108126772 A TW 108126772A TW 202014540 A TW202014540 A TW 202014540A
Authority
TW
Taiwan
Prior art keywords
layer
composition
film
nano
hard
Prior art date
Application number
TW108126772A
Other languages
English (en)
Other versions
TWI720563B (zh
Inventor
王媺
Original Assignee
日商Osg股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Osg股份有限公司 filed Critical 日商Osg股份有限公司
Publication of TW202014540A publication Critical patent/TW202014540A/zh
Application granted granted Critical
Publication of TWI720563B publication Critical patent/TWI720563B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明藉由使A層32與2種奈米薄膜交互層38、40分別以預定膜厚交互積層,將可得例如於對鈦合金進行之切削加工中仍顯優異之耐久性等,可獲得優異之耐磨耗性、韌性、潤滑性、及耐熔接性;前述A層32係A組成(AlCrSiα之氮化物)、B組成(AlTiSiβ之氮化物)、及C組成(AlCr(SiC)γ之氮化物)中之1種單一組成層,前述2種奈米薄膜交互層38、40係將A組成、B組成、及C組成之奈米薄膜層(奈米薄膜A層32n、奈米薄膜B層34n、奈米薄膜C層36n)中之2者交互積層而成者。藉此,除鈦合金之外,例如於對碳鋼或不鏽鋼、鑄鐵、合金鋼等各種被削材進行切削加工時,或於高速加工、乾式加工等嚴苛之加工條件下,藉由高韌性可抑制硬質被膜之破裂或剝離,從而實現工具之長壽化。

Description

硬質被膜及硬質被膜被覆構件
本發明係有關於硬質被膜及硬質被膜被覆構件,特別是有關於具優異耐磨耗性、耐熔接性之硬質被膜。
端銑刀、銑具、鑽頭、刨刀、斷屑器等切削工具、成形螺絲攻、軋製工具等非切削工具等之各種加工工具、或要求耐磨耗性之摩擦零件等各種構件,係進行了於超硬合金或高速鋼等母材表面塗布硬質被膜。例如,專利文獻1中已提出有一種AlCrN系/AlTiSiN系多層結構之硬質被膜,專利文獻2中已提出有一種AlCrN系/CrN系多層結構之硬質被膜,專利文獻3中已提出有一種AlCr系/TiSi系多層結構之硬質被膜。該等硬質被膜一般具有優異之耐磨耗性、耐熔接性。 先前技術文獻 專利文獻
專利文獻1:日本專利特開2012-35378號公報 專利文獻2:日本專利特開2014-79834號公報 專利文獻3:日本專利特表2008-534297號公報
發明概要 發明欲解決之課題 然而,如此之硬質被膜中,仍有因被削材之種類或切削速度等加工條件、使用條件等而未必能獲得充分滿足之性能的情況,尚有改良的餘地。例如,已施行習知硬質被膜之切削工具若使用於鈦合金之切削加工中,因鈦合金之黏滯性較高,故有硬質被膜提早剝落或破裂而未能得到充分之工具壽命的情形。
本發明係以以上情事為背景而做成,目的在於提供在對鈦合金之切削加工中仍可得預定之工具壽命等具優異耐磨耗性、耐熔接性之新穎構成的硬質被膜及硬質被膜被覆構件。
用以解決課題之手段 本發明人等以以上情事為背景反覆進行各種實驗、研究後,發現藉由使用由AlCrSiα之氮化物[惟,α為任意添加成分,係選自B、C、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]所構成的A組成、由AlTiSiβ之氮化物[惟,β為任意添加成分,係選自B、C、Cr、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]所構成的B組成、及由AlCr(SiC)γ之氮化物[惟,γ為任意添加成分,係選自B、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]所構成的C組成,並將該等以預定膜厚積層,可得具高韌性之耐久性優異的硬質被膜。本發明即基於如此見解而做成。
第1發明係一種以被覆母材表面之方式附著於母材表面之硬質被膜,其特徵在於:(a)前述硬質被膜係(a-1)單一組成層與(a-2)2種奈米薄膜交互層之(a-3)共3種層交互積層而構成為總膜厚於0.5~20μm範圍內者;前述(a-1)單一組成層係由A組成、B組成、及C組成中之任1個組成所構成;前述(a-2)2種奈米薄膜交互層係以前述A組成及前述B組成、前述A組成及前述C組成、前述B組成及前述C組成之3種組合中任2種組合使各組成的奈米薄膜層交互積層而成;(b)前述A組成係組成式為Ala Crb Sic αd 之氮化物[惟,a、b、c、d各自以原子比計為0.30≦a≦0.85、0.10≦b≦0.65、0.01≦c≦0.45、0≦d≦0.10,且a+b+c+d=1;任意添加成分α係選自B、C、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素];(c)前述B組成係組成式為Ale Tif Sig βh 之氮化物[惟,e、f、g、h各自以原子比計為0.01≦e≦0.85、0.05≦f≦0.90、0.05≦g≦0.45、0≦h≦0.10,且e+f+g+h=1;任意添加成分β係選自B、C、Cr、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素];(d)前述C組成係組成式為Ali Crj (SiC)k γl 之氮化物[惟,i、j、k、l各自以原子比計為0.20≦i≦0.85、0.10≦j≦0.50、0.03≦k≦0.45、0≦l≦0.10,且i+j+k+l=1;任意添加成分γ係選自B、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素];(e)前述單一組成層之膜厚於0.5~1000nm範圍內;(f)構成前述2種奈米薄膜交互層之前述奈米薄膜層的各膜厚均於0.5~500nm範圍內,且前述2種奈米薄膜交互層之各膜厚均於1~1000nm範圍內。
再者,前述C組成之(SiC)意味以稱作碳化矽之化合物形態存在。又,要整體正確地控制各層之膜厚實為不易,故本說明書中之膜厚係平均值,只要平均膜厚滿足前述數值範圍即可,有部分超出數值範圍之區域亦可。
第2發明係基於第1發明之硬質被膜,其中前述單一組成層之膜厚T1與前述2種奈米薄膜交互層之各膜厚T2、T3的比T1/T2、T1/T3均於0.2~10範圍內。
第3發明係基於第1發明或第2發明之硬質被膜,其中交互積層的前述單一組成層及前述2種奈米薄膜交互層之最下部的層直接設於前述母材表面。
第4發明係基於第1發明或第2發明之硬質被膜,其中,(a)前述硬質被膜與前述母材之邊界具有界面層;(b)前述界面層由以下共3種層中之任1層構成:(b-1)單一組成層,其由前述A組成、前述B組成、及前述C組成中之任1個組成所構成;(b-2)奈米薄膜交互層,其係使由前述A組成、前述B組成、及前述C組成中之任2個組成所構成且個別膜厚於0.5~500nm範圍內之2種奈米薄膜層交互積層而成;及(b-3)金屬之氮化物、碳氮化物、或碳化物的層,其由B、Al、Ti、Y、Zr、Hf、V、Nb、Ta、Cr、及W中之1種以上元素所構成;並且,(c)前述界面層之膜厚於5~1000nm範圍內。
第5發明係基於第1發明至第4發明中之任一硬質被膜,(a)前述硬質被膜之最表面具有表面層;(b)前述表面層由單一組成層或奈米薄膜交互層構成,前述單一組成層係由前述A組成、前述B組成、及前述C組成中之任1個組成所構成,前述奈米薄膜交互層係使由前述A組成、前述B組成、及前述C組成中之任2個組成所構成且個別膜厚於0.5~500nm範圍內之2種奈米薄膜層交互積層而成;並且,(c)前述表面層之膜厚於0.5~1000nm範圍內。
第6發明係基於第1發明至第5發明中之任一硬質被膜,其中被膜硬度(HV0.025)於2700~3300(HV)範圍內。 被膜硬度(HV0.025)為依據維克氏硬度試驗法(JIS G0202、Z2244)於硬度符號HV0.025所示條件下測定硬質被膜之HV值(維克氏硬度)所得到的值。
第7發明係一種母材表面之一部分或全部被硬質被膜被覆的硬質被膜被覆構件,前述硬質被膜係第1發明至第6發明中之任一硬質被膜。
第8發明係基於第7發明之硬質被膜被覆構件,前述硬質被膜被覆構件係斷續切削工具,可使其繞著軸心旋轉,且刀刃會隨著旋轉而斷續地進行切削加工。
再者,前述各發明之數值範圍只要各自四捨五入後之值於數值範圍內即可。
發明效果 如此之本發明硬質被膜中,由A組成所構成之單一組成層藉由Al與Cr之比率可得高硬度、抗氧化性、高韌性,由B組成所構成之單一組成層藉由Al與Ti之比率可得高韌性、耐熱性、抗氧化性。由C組成所構成之單一組成層因Si以SiC(碳化矽)之化合物的形態存在,故與氧之結合性低,且SiC為共價鍵,故為高硬度且於1000℃以上之溫度下機械強度也少有下降,並且耐熱性、耐磨耗性、抗氧化性優異。奈米薄膜交互層隨著各奈米薄膜層之組成可得上述特性,且膜厚較單一組成層薄、結晶粒子更小,故為高硬度且耐磨耗性提升,同時因多層結構而使得韌性提高。又,A組成~C組成中任意添加之成分α、β、γ藉由以10at%(原子%)以下之比率添加,可使被膜之結晶粒子微細化,並可利用添加量來控制被膜之粒徑,而可調整各被膜之硬度及抗氧化性、韌性、潤滑性等。並且,藉由具有如此特性之任意1種單一組成層及2種奈米薄膜交互層分別以預定膜厚交互積層,可得耐磨耗性、潤滑性、耐熔接性、及韌性優異之硬質被膜。藉此,例如於切削工具的情況下,對碳鋼或不鏽鋼、鑄鐵、合金鋼、鈦合金等各種被削材進行切削加工時,或於高速加工、乾式加工等嚴苛之加工條件下,藉由高韌性可抑制硬質被膜之破裂或剝離,從而可實現工具之長壽化。
第2發明中,因單一組成層之膜厚T1與2種奈米薄膜交互層之各膜厚T2、T3的比T1/T2、T1/T3均於0.2~10範圍內,故1種單一組成層及2種奈米薄膜交互層分別以具有預定特性之適當膜厚設置,可適當地得到耐磨耗性、耐熔接性等性能。
第3發明為交互積層的1種單一組成層及2種奈米薄膜交互層共3種層之最下部的層直接設於母材表面的情況,相較於在與母材之邊界設置界面層等的情況,更為減少成膜成本。
第4發明為於與母材之邊界設有預定組成、膜厚之界面層的情況,可提高硬質被膜對母材之附著強度。
第5發明為於硬質被膜之最表面設有預定組成、膜厚之表面層的情況,藉由適當地設定該表面層之組成及膜厚,可更加提升耐磨耗性及耐熔接性等預定之被膜性能。
第6發明中,因硬質被膜之被膜硬度(HV0.025)於2700~3300(HV)範圍內,故可均衡地得到耐磨耗性及高韌性,並可抑制破裂及剝離而獲得優異之耐久性。
第7發明係有關於一種硬質被膜被覆構件,藉由設置第1發明至第6發明之硬質被膜,可得到實質上與該等發明相同之作用效果。
第8發明係硬質被膜被覆構件為端銑刀或銑具等斷續切削工具的情況,因刀刃斷續地進行切削加工,在經受重複衝撃負載的同時會容易發熱。因此,適合使用獲得高耐磨耗性及韌性、潤滑性、耐熔接性之本發明硬質被膜。
用以實施發明之形態 本發明適合運用於端銑刀、銑具、螺絲攻、鑽頭等旋轉切削工具以及刨刀等非旋轉式之切削工具、或成形螺絲攻、軋製工具、壓模等非切削工具等各種加工工具表面所設之硬質被膜,亦可運用於軸承構件或半導體裝置等之表面保護膜等要求耐磨耗性及潤滑性、抗氧化性等之加工工具以外的構件表面所設之硬質被膜。亦適用於裝設在各種加工工具上使用之刀刃斷屑器等。硬質被膜被覆工具之工具母材適合使用超硬合金或高速鋼、金屬陶瓷、陶瓷、多結晶鑽石(PCD)、單結晶鑽石、多結晶CBN、單結晶CBN,亦可採用其他工具材料。硬質被膜之形成方法,適合使用電弧離子鍍法或濺鍍法、PLD(Pulse LASER Deposition:脈衝雷射沉積)法等PVD法(物理蒸鍍法)。
本發明硬質被膜適用於例如對鈦合金進行切削加工之切削工具,但因耐磨耗性、潤滑性、耐熔接性、及韌性優異,故亦適用於對碳鋼或不鏽鋼、鑄鐵、合金鋼等其他被削材進行切削加工之切削工具。又,亦可用於在高速加工、乾式加工等嚴苛之加工條件下進行切削加工之切削工具等。
硬質被膜係1種單一組成層與2種奈米薄膜交互層共3種層交互積層而成者;前述1種單一組成層係由A組成、B組成、及C組成中之任1個組成所構成;前述2種奈米薄膜交互層係以A組成及B組成、A組成及C組成、B組成及C組成之3種組合中任2種組合使各組成的奈米薄膜層交互積層而成,該等層之積層順序可適當地設定。1種單一組成層及2種奈米薄膜交互層之共3種層,係以預定之順序積層1周期以上,宜以1周期(3種層)作為單位進行積層,但例如最下部之層與最上部之層相同等情形時,最上部亦可結束在1周期之中途。交互積層有2個組成之奈米薄膜層的奈米薄膜交互層亦相同,宜以1周期(2種奈米薄膜層)作為單位進行積層,但奈米薄膜層之積層數目亦可為奇數。關於硬質被膜之總膜厚,於具有界面層或表面層時,係包含該等界面層或表面層的膜厚。
1種單一組成層之膜厚T1與2種奈米薄膜交互層之膜厚T2、T3的比T1/T2、T1/T3均於0.2~10範圍內為佳,但亦可按超出該數值範圍之比來設定各膜厚T1、T2、T3。硬質被膜視需要可於與母材之間設置界面層。界面層宜為例如由A組成、B組成、及C組成中之任1組成所構成的單一組成層、或使由A組成、B組成、及C組成中之任2個組成所構成之2種奈米薄膜層交互積層而成的奈米薄膜交互層,亦可設置由B、Al、Ti、Y、Zr、Hf、V、Nb、Ta、Cr、及W中之1種以上元素構成之金屬之氮化物、碳氮化物、或碳化物之層作為界面層,亦可設置其他組成之界面層。界面層之膜厚宜於5~1000nm範圍內,亦可設為該數值範圍外之膜厚。
硬質被膜視需要可設置表面層。表面層宜為由A組成、B組成、及C組成中之任1個組成所構成之單一組成層、或使由A組成、B組成、及C組成中之任2個組成所構成之2種奈米薄膜層交互積層而成的奈米薄膜交互層,但亦可設置其他組成之表面層。表面層之膜厚宜於0.5~1000nm範圍內,亦可設為該數值範圍外之膜厚。
若如此之硬質被膜的被膜硬度(HV0.025)低,就不能得到充分之耐磨耗性,反之若過高則容易剝離或破裂,故與有無界面層或表面層無關,例如宜於2700~3300(HV)左右之範圍內。惟因被削材之種類或加工條件、使用條件等,硬質被膜之被膜硬度(HV0.025)亦可小於2700(HV)或超過3300(HV)。
依據本發明人等之見解,本發明硬質被膜藉由1種單一組成層與2種奈米薄膜交互層共3種層交互積層,可較AlCrN基底或AlCrTiN基底之多層被膜更加改善機械特性(硬度)、耐磨耗性、抗氧化性、及剪切強度。又,因具不同彈性特性(彈性模數及硬度)之各層界面所致的晶格錯位阻礙,可達成高硬度。該界面因阻礙能量耗散及龜裂增加之作用,不僅有助於提升被膜硬度,亦有助於提升韌性。另一方面,界面大幅地影響多層被膜之特性,因設有奈米薄膜層之周期為奈米範圍的奈米薄膜交互層,故藉由利用各奈米薄膜層之厚度適當地調整結晶粒子之尺寸及膜密度,可得被膜之機械特性及摩潤學提升效果。
又,奈米尺度之單層、界面、及各奈米薄膜交互層藉由非晶質合金相及結晶相之擴散混合,耐磨耗性及韌性較習知粗粒之多層被膜更為良好。奈米薄膜交互層透過形成粒界錯位及向錯(disclination)緩和內部應力,抑制被膜於斷續切削加工等加工中產生破裂(裂痕)或龜裂。
本發明之硬質被膜藉由生成微細之粒子,被膜表面變得平滑,且表面組織變細密,故耐磨耗性提升。又,因界面之邊界多,透過形成界面之粒界錯位及向錯緩和內部應力,故韌性及硬度提升,可抑制被膜於斷續切削加工等切削加工中之破裂或龜裂的傳播。 實施例
以下,參照圖式詳細地說明本發明之實施例。 圖1係說明端銑刀10的正面圖,該端銑刀10為運用本發明之硬質被膜被覆構件之一例;圖2係自前端側所見之放大底面圖。該端銑刀10係以超硬合金之工具母材12(參照圖3~圖8)作為主體所構成,工具母材12上一體設有柄14及刀部16。刀部16繞著軸心等間隔地設有5片由外周刀18及底刀20所構成之刀刃,藉繞著軸心旋轉驅動,利用該等外周刀18及底刀20斷續地進行切削加工。本實施例之端銑刀10為在外周刀18與底刀20相接之邊角部分設有圓弧的半徑端銑刀。端銑刀10為硬質被膜被覆工具,相當於斷續切削工具。
於刀部16之工具母材12表面,如圖3所示,塗布有硬質被膜30。圖3係放大顯示塗布有硬質被膜30之刀部16表面附近之截面的示意圖,圖1之斜線部表示塗布有硬質被膜30的區域。亦可包含柄14在內地以硬質被膜30被覆端銑刀10全體。
硬質被膜30形成為自表面側積層有A層32、奈米薄膜交互層38、及奈米薄膜交互層40至少1周期以上的多層結構,並於與工具母材12之邊界部分設有界面層44。即,於工具母材12表面上首先設有界面層44,再於該界面層44上依序重複積層奈米薄膜交互層40、奈米薄膜交互層38、及A層32,並於最上部設有A層32。包含界面層44之硬質被膜30的總膜厚Ttotal係於0.5~20μm範圍內適當地設定,A層32之膜厚T1係於0.5~1000nm範圍內適當地設定,奈米薄膜交互層38、40之膜厚T2、T3係分別於1~1000nm範圍內適當地設定。又,各膜厚T1~T3設定成膜厚T1與膜厚T2、T3之比T1/T2、T1/T3均於0.2~10範圍內。
A層32為僅以A組成構成之單一組成層。A組成係組成式為Ala Crb Sic αd 之氮化物[惟,a、b、c、d各自以原子比計為0.30≦a≦0.85、0.10≦b≦0.65、0.01≦c≦0.45、0≦d≦0.10,且a+b+c+d=1;任意添加成分α係選自B、C、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]。圖10所示者係A組成各元素之含量(at%)之具體例,空欄為含量(at%)=0,標有散點之欄位(灰色部分)係對應含量之原子比超出前述組成式之數值範圍。亦即,試驗品7~試驗品50滿足A組成之要件。如此組成之A層32以結晶系統而言具有立方晶岩鹽型結構,具有高硬度且耐磨耗性優異之特徵,且藉由Al與Cr之比率可得高硬度、抗氧化性、高韌性。又,藉由以預定比率添加Si,可提升耐熱性。藉由任意添加成分α以10at%以下之比率添加,可使被膜之結晶粒子微細化,並可利用添加量控制粒徑。又,藉由包含該等元素,潤滑性及抗氧化性提升,且對切削加工時之發熱的高溫強度及高溫韌性提升。藉此,於承受大衝擊性機械負載的切削條件下,可抑制崩碎或缺損等產生。又,高速加工時等之發熱所致的氧化磨耗減少,可均衡地得到耐磨耗性及耐熔接性,即使於高速加工或乾式加工中亦可得到高耐久性。
奈米薄膜交互層38形成為奈米薄膜A層32n與奈米薄膜B層34n交互積層有1周期以上的多層結構,前述奈米薄膜A層32n由與A層32相同之A組成所構成,前述奈米薄膜B層34n由B組成所構成。該實施例中,最下部為奈米薄膜A層32n,最上部為奈米薄膜B層34n,但亦可為最下部為奈米薄膜B層34n而最上部為奈米薄膜A層32n。奈米薄膜A層32n及奈米薄膜B層34n之各膜厚均於0.5~500nm範圍內適當地設定。B組成係組成式為Ale Tif Sig βh 之氮化物[惟,e、f、g、h各自以原子比計為0.01≦e≦0.85、0.05≦f≦0.90、0.05≦g≦0.45、0≦h≦0.10,且e+f+g+h=1;任意添加成分β係選自B、C、Cr、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]。圖11所示者係B組成各元素之含量(at%)之具體例,空欄為含量(at%)=0,標有散點之欄位(灰色部分)係對應含量之原子比超出前述組成式之數值範圍。亦即,試驗品7~試驗品50滿足B組成之要件。如此之B組成藉由Al與Ti之比率可得高韌性、耐熱性、抗氧化性。又,藉由以預定比率添加Si,可提升高溫強度、耐熱性。藉由任意添加成分β以10at%以下之比率添加,將成為高硬度且抗氧化性優異之被膜,且耐磨耗性提升。B組成為立方晶結構,藉由加入任意添加成分β可使結晶粒子微細化,且硬度及耐磨耗性提升。結晶結構較(111)面優先定向於(200)面,(200)面之繞射線積分強度為(111)面之繞射線積分強度的1.5倍以上。
奈米薄膜交互層40係形成為奈米薄膜A層32n與奈米薄膜C層36n交互積層有1周期以上的多層結構,前述奈米薄膜A層32n由與A層32相同之A組成所構成,前述奈米薄膜C層36n由C組成所構成。該實施例中,最下部為奈米薄膜A層32n,最上部為奈米薄膜C層36n,但亦可為最下部為奈米薄膜C層36n而最上部為奈米薄膜A層32n。奈米薄膜A層32n及奈米薄膜C層36n之各膜厚均於0.5~500nm範圍內適當地設定。C組成係組成式為Ali Crj (SiC)k γl 之氮化物[惟,i、j、k、l各自以原子比計為0.20≦i≦0.85、0.10≦j≦0.50、0.03≦k≦0.45、0≦l≦0.10,且i+j+k+l=1;任意添加成分γ係選自B、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]。圖12所示者係C組成各元素之含量(at%)之具體例,空欄為含量(at%)=0,標有散點之欄位(灰色部分)係對應含量之原子比超出前述組成式之數值範圍。亦即,試驗品7~試驗品50滿足C組成之要件。如此之C組成因Si以SiC(碳化矽)之化合物的形態存在,故與氧之結合性低,且SiC為共價鍵,故為高硬度且於1000℃以上之溫度下機械強度也少有下降,滑動性亦佳,因此具有高硬度且耐熱性、抗氧化性、耐磨耗性優異之特徵。又,任意添加成分γ以10at%以下之比率添加,藉此可使結晶粒子微細化,並可利用添加量控制粒徑,而可調整被膜之硬度及韌性、潤滑性。因耐磨耗性及抗氧化性優異,故可減少因高速加工時等之發熱所致的氧化磨耗,可良好地獲得耐磨耗性及耐熔接性,於高速加工或乾式加工下亦可得到高耐久性。
上述奈米薄膜交互層38及40除了對應各奈米薄膜層32n、34n、36n之組成而獲得前述各特性之外,還具有高硬度且耐磨耗性、韌性、及抗氧化性優異之特徵。亦即,奈米薄膜層32n、34n、36n之界面因晶格錯位之阻礙可達成高硬度,且因阻礙能量耗散及龜裂增加之作用而有助於提升韌性。又,由於奈米薄膜層32n、34n、36n之周期於奈米範圍內,故藉由利用各奈米薄膜層32n、34n、36n之厚度適當地調整結晶粒子之尺寸及膜密度,可得被膜之機械特性及摩潤學提升效果。奈米薄膜交互層38、40藉由非晶質合金相及結晶相之擴散混合,耐磨耗性及韌性較習知粗粒之多層被膜更為良好。奈米薄膜交互層38、40透過形成粒界錯位及向錯緩和內部應力,可抑制被膜於斷續切削加工中產生、傳播破裂或龜裂。奈米薄膜交互層38之抗氧化性及潤滑性優異,且硬度(奈米壓痕法硬度)為38~40GPa左右。又,奈米薄膜交互層40為高硬度且抗氧化性優異,並且硬度(奈米壓痕法硬度)為43~45GPa左右。
又,因A層32與2種奈米薄膜交互層38、40交互積層,故藉由適當地設定該等各層32、38、40之硬度,可使內部應力平均。藉此,各層32、38、40之附著強度變高,即使於高硬度材或難削材等之高速加工中,仍可抑制剝離,得到優異之耐崩碎性、耐磨耗性。
前述界面層44於本實施例為僅由與A層32相同之A組成所構成的單一組成層。界面層44之膜厚係於5~1000nm範圍內適當地設定。藉由將如此之界面層44設於與工具母材12之邊界,可提高硬質被膜30對工具母材12之附著強度。
若如此之硬質被膜30的被膜硬度(HV0.025)低,就不能得到充分之耐磨耗性,反之若過高則容易剝離或破裂,本實施例中係設於2700~3300(HV)範圍內。
圖4~圖8係說明設於端銑刀10之刀部16表面之硬質被膜之其他例的圖,均為與圖3對應之截面示意圖,各硬質被膜之總膜厚Ttotal均於0.5~20μm範圍內。圖4之硬質被膜50相較於前述硬質被膜30而言,設有B層34取代A層32,且設有奈米薄膜交互層42取代奈米薄膜交互層40,設有界面層52取代界面層44。B層34之膜厚T1係於0.5~1000nm範圍內適當地設定,奈米薄膜交互層38、42之膜厚T2、T3分別於1~1000nm範圍內適當地設定。又,各膜厚T1~T3設定成膜厚T1與膜厚T2、T3之比T1/T2、T1/T3均於0.2~10範圍內。又,雖B層34之膜厚T1有別於前述A層32之膜厚T1另行設定,但因均為單一組成層且膜厚T1之數值範圍相同,故使用共通之符號T1說明。奈米薄膜交互層38、42之膜厚T2、T3亦相同。
上述B層34為僅由前述B組成所構成之單一組成層,且奈米薄膜交互層42形成為奈米薄膜B層34n及奈米薄膜C層36n交互積層有1周期以上的多層結構。該實施例中,最下部為奈米薄膜B層34n,最上部為奈米薄膜C層36n,但亦可為最下部為奈米薄膜C層36n而最上部為奈米薄膜B層34n。奈米薄膜B層34n及奈米薄膜C層36n之各膜厚均於0.5~500nm範圍內適當地設定。界面層52為僅由前述B組成所構成之單一組成層,界面層52之膜厚係於5~1000nm範圍內適當地設定。上述奈米薄膜交互層42之抗氧化性及潤滑性優異,且硬度(奈米壓痕法硬度)為38~40GPa左右。
圖5之硬質被膜60相較於前述硬質被膜30而言,設有C層36取代A層32,且設有奈米薄膜交互層42取代奈米薄膜交互層38,設有界面層62取代界面層44。C層36之膜厚T1係於0.5~1000nm範圍內適當地設定,奈米薄膜交互層40、42之膜厚T2、T3則分別於1~1000nm範圍內適當地設定。又,各膜厚T1~T3設定成膜厚T1與膜厚T2、T3之比T1/T2、T1/T3均於0.2~10範圍內。上述C層36為僅由前述C組成構成之單一組成層,界面層62為奈米薄膜A層32n、奈米薄膜B層34n、及奈米薄膜C層36n中之任2種交互積層而成的奈米薄膜交互層。界面層62之膜厚係於5~1000nm範圍內適當地設定,構成界面層62之奈米薄膜A層32n、奈米薄膜B層34n、及奈米薄膜C層36n中之2種奈米薄膜層之膜厚均於0.5~500nm範圍內適當地設定。
圖6之硬質被膜70相較於前述硬質被膜30而言,A層32、奈米薄膜交互層38、40的積層順序相異,係於奈米薄膜交互層40與奈米薄膜交互層38之間設有A層32,且奈米薄膜交互層40設於最表面。又,設有由奈米薄膜交互層所構成之前述界面層62取代A組成之界面層44。另,亦可為於奈米薄膜交互層38與奈米薄膜交互層40之間設有A層32,且奈米薄膜交互層38設於最表面等,交互積層之3種層32、38、40的積層順序可適當地設定。其他硬質被膜50、60亦同。又,亦可適當地設定A層32、B層34、C層36中之1種與奈米薄膜交互層38、40、42中之2種的組合,例如,亦可組合A層32與奈米薄膜交互層38及42進行積層,或組合A層32與奈米薄膜交互層40及42進行積層。
圖7之硬質被膜80相較於前述硬質被膜30而言為省略界面層44的情況。
圖8之硬質被膜90相較於前述硬質被膜30而言,係於最表面設置表面層92,且設有與A組成、B組成、C組成互異的界面層94。作為表面層92,係設置例如A層32、B層34、C層36這類由A組成、B組成、或C組成所構成的單一組成層,抑或設置與前述界面層62同樣是奈米薄膜A層32n、奈米薄膜B層34n、及奈米薄膜C層36n中之任2種分別以0.5~500nm之膜厚交互積層而成的奈米薄膜交互層。表面層92之膜厚係於0.5~1000nm範圍內適當地設定。界面層94以由B、Al、Ti、Y、Zr、Hf、V、Nb、Ta、Cr、及W中之1種以上元素構成的金屬之氮化物、碳氮化物、或碳化物所構成,界面層94之膜厚係於5~1000nm範圍內適當地設定。
又,雖省略圖示,但更可以其他態樣構成硬質被膜。例如,前述硬質被膜30、50、60、70、80、90均為1種單一組成層(A層32、B層34、C層36之任1層)與奈米薄膜交互層38、40、42中之任2種共3種層按預定順序以1周期為單位積層而成,但例如將硬質被膜30中最上部之A層32省略等,最上部於1周期之中途結束也是可以。換言之,無表面層之硬質被膜30、50、60、70、80中,亦可將其最上部之最表面層視為有別於交互積層之3種層的表面層。交互積層2種奈米薄膜層(奈米薄膜A層32n、奈米薄膜B層34n、奈米薄膜C層36n之任2層)而成之奈米薄膜交互層38、40、42,亦可例如為奈米薄膜交互層38由奈米薄膜A層32n開始並以奈米薄膜A層32n結束等,合計之層數為奇數。又,亦可採用僅以C組成構成之單一組成層的界面層取代界面層44、52、62、94。
圖13及圖14係具體地說明試驗品1~試驗品50之硬質被膜之被膜結構的圖,單一組成層欄位之A層、B層、C層相當於前述A層32、B層34、C層36。又,奈米薄膜交互層欄位之A層、B層、C層相當於前述奈米薄膜A層32n、奈米薄膜B層34n、奈米薄膜C層36n;交互層(AB)、交互層(AC)、交互層(BC)相當於前述奈米薄膜交互層38、40、42。又,界面層為前述界面層44、52、62、94中之任一者。單一組成層之A層~C層、奈米薄膜交互層之交互層(AB)、交互層(AC)、交互層(BC)之積層對數及膜厚的欄位之各橫槓「-」表示不具該等層之意。又,圖13及圖14之各試驗品1~試驗品50均不具表面層。圖13中標有散點之欄位(灰色部分)係未滿足本實施例(本發明之請求項1)之膜厚要件之意,試驗品1~試驗品6為比較品,試驗品7~試驗品50為本發明品。
圖9係說明電弧離子鍍裝置100的概略構成圖(示意圖),該裝置係於對工具母材12塗布前述硬質被膜30、50、60、70、80、90或圖13、圖14記載之試驗品1~50之硬質被膜(以下,未特別區分的情況僅稱作硬質被膜30等)之際使用。電弧離子鍍裝置100係藉由屬PVD法之一種之電弧離子鍍法於工具母材12表面塗布前述硬質被膜30等者,其可藉由切換蒸發源(靶材)或反應氣體來以預定膜厚連續形成組成互異之複數種層。以硬質被膜30為例,於工具母材12表面設置界面層44後,交互地重複積層奈米薄膜交互層40、38、及A層32即可。圖9相當於自上方觀看電弧離子鍍裝置100的俯視圖。
電弧離子鍍裝置100具有:轉盤154,其保持複數工作件、即應塗布硬質被膜30等之工具母材12,且可繞著略垂直之旋轉中心S旋轉驅動;偏壓電源156,其對工具母材12施加負偏壓;腔室158,其作為將工具母材12等收納於內部之處理容器;反應氣體供應裝置160,其將預定之反應氣體供應至腔室158內;排氣裝置162,其藉由真空泵等排出腔室158內之氣體以進行減壓;第1電弧電源164;第2電弧電源166;第3電弧電源168;第4電弧電源170等。轉盤154形成為以前述旋轉中心S作為中心之圓盤狀,工具母材12以與旋轉中心S略平行之姿勢於該轉盤154之外周部分配置複數個。使工具母材12繞著軸心自轉,同時還可藉由轉盤154使其繞著旋轉中心S公轉。反應氣體供應裝置160於塗布A層32、B層34、C層36等之氮化物之際,供應氮氣至腔室158內。腔室158內藉由排氣裝置162做成例如2~10Pa左右之真空狀態,並藉由未圖示之加熱器等加熱至例如300~600℃左右之蒸鍍處理溫度。
第1電弧電源164、第2電弧電源166、第3電弧電源168、第4電弧電源170均以由蒸鍍材料所構成之第1蒸發源172、第2蒸發源176、第3蒸發源180、第4蒸發源184作為陰極,並於與陽極174、178、182、186之間選擇性地通過預定之電弧電流,使其電弧放電,藉此選擇性地使蒸發材料自該等第1蒸發源172、第2蒸發源176、第3蒸發源180、第4蒸發源184蒸發,已蒸發之蒸發材料會成為正離子,蒸鍍於施加有負(-)之偏電壓的工具母材12。亦即,蒸發源172、176、180、184分別由前述A組成、B組成、C組成之任一合金所構成,剩下一個蒸發源做成例如膜厚較厚之組成的合金,可有效率地塗布。亦可配合A組成、B組成、及C組成之組成數量令蒸發源為3個。
並且,藉由適當地切換前述電弧電源164、166、168、170來依序塗布預定組成之層,可得預定被膜結構之前述硬質被膜30等。各層之膜厚可藉由轉盤154之旋轉速度及電弧電源164、166、168、170之通電時間等調整。於組成互異之複數層的邊界部分亦可形成混有2種組成之混合層。
接著,針對工具母材12為超硬合金且直徑為16mm、5片刀之與前述端銑刀10相同的半徑端銑刀,準備設有圖10~圖14所示被膜結構之硬質被膜的試驗品1~試驗品50,說明進行該硬質被膜之性能試驗後的結果。圖15係顯示試驗結果之圖,被膜硬度係依據維克氏硬度試驗法(JIS G0202、Z2244)於硬度記號HV0.025所示條件下測定硬質被膜之HV值(維克氏硬度)所得到的值。又,依據以下切削試驗條件使用試驗品1~試驗品50分別進行切削加工的情況下,測定外周刀18之刀腹面摩耗寬度及切削距離,判定被膜性能(耐久性)。具體而言,在隨時中斷切削加工下測定刀腹面摩耗寬度,測定刀腹面摩耗寬度達0.2mm以上時之切削距離。並且,將切削距離為20m以上標為合格「○」,小於20m標為不合格「×」。刀腹面摩耗寬度使用股份有限公司Nikon製之測定顯微鏡(MM-400/LM)利用目視觀察測定。 《切削試驗條件》 .被削材:鈦合金 .切削速度V:70m/min .旋轉速度n:1400min-1 .進給速度:f=0.09mm/t、F=630mm/min .加工型態:側面切削 .軸向吃刀量ap:28.8mm .徑向吃刀量ae:3.2mm
由圖15可知,關於被膜硬度(HV0.025),本發明品之試驗品7~試驗品50均為2700~3300(HV)範圍內,可期待優異之耐磨耗性及耐衝擊性(對斷續切削所致之破裂或剝離的強度),相對於此,比較品之試驗品1~試驗品6為1900~2300(HV)左右。關於切削距離,本發明品之試驗品7~試驗品50均可進行20m以上切削加工,可得優異之耐久性。相對於此,比較品之試驗品1~試驗品6之切削距離均小於20m。
如此,依據本實施例之端銑刀10之硬質被膜30等,藉由A層32、B層34、及C層36中之任1種單一組成層與奈米薄膜交互層38、40及42中之任2種奈米薄膜交互層共3種層分別以預定膜厚交互積層,將可獲得即使於例如對鈦合金之切削加工下仍顯優異之耐久性等,可得優異之耐磨耗性、韌性、潤滑性、及耐熔接性。藉此,除了鈦合金以外,例如於對碳鋼、不鏽鋼、鑄鐵、合金鋼等各種被削材進行切削加工時,或於高速加工、乾式加工等嚴苛之加工條件下,藉由高韌性可抑制硬質被膜30等之破裂或剝離,從而可實現工具之長壽化。
又,上述1種單一組成層之膜厚T1與2種奈米薄膜交互層之各膜厚T2、T3的比T1/T2、T1/T3均於0.2~10範圍內,故1種單一組成層及2種奈米薄膜交互層可各自以具有預定特性之適當膜厚設置,可適當地得到耐磨耗性、耐熔接性等性能。
又,因硬質被膜30等之被膜硬度(HV0.025)於2700~3300(HV)範圍內,故可均衡地得到耐磨耗性及高韌性,並可抑制破裂或剝離而得到優異之耐久性。
又,因圖7之硬質被膜80不具界面層,故可降低成膜成本,可便宜地製造具硬質被膜80之端銑刀10。另一方面,硬質被膜30、50、60、70、90及試驗品7~試驗品50因具有預定組成、膜厚之界面層,故可提高硬質被膜30等對工具母材12的附著強度。
又,因圖8之硬質被膜90具有預定組成、膜厚之表面層92,藉由適當地設定該表面層92之組成及膜厚,可更加提升耐磨耗性及耐熔接性等預定之被膜性能。
又,端銑刀10為外周刀18及底刀20可斷續地進行切削加工之斷續切削工具,該等外周刀18及底刀20在被施加重複衝撃負載的同時會容易發熱,但藉由設置具高耐磨耗性及韌性、潤滑性、耐熔接性之硬質被膜30等,可圖工具之長壽化。
以上,依據圖式詳細地說明本發明之實施例,但該等均僅為一實施形態,本發明可以基於習於此藝者之知識施加各種變更、改良後之態樣實施。
10:端銑刀(硬質被膜被覆構件、斷續切削工具) 12:工具母材(母材) 14:柄 16:刀部 18:外周刀(刀刃) 20:底刀(刀刃) 30,50,60,70,80,90:硬質被膜 32:A層(單一組成層) 32n:奈米薄膜A層(奈米薄膜層) 34:B層(單一組成層) 34n:奈米薄膜B層(奈米薄膜層) 36:C層(單一組成層) 36n:奈米薄膜C層(奈米薄膜層) 38,40,42:奈米薄膜交互層 44,52,62,94:界面層 92:表面層 100:電弧離子鍍裝置 154:轉盤 156:偏壓電源 158:腔室 160:反應氣體供應裝置 162:排氣裝置 164:第1電弧電源 166:第2電弧電源 168:第3電弧電源 170:第4電弧電源 172:第1蒸發源 174,178,182,186:陽極 176:第2蒸發源 180:第3蒸發源 184:第4蒸發源 S:旋轉中心 Ttotal:總膜厚 T1:單一組成層之膜厚 T2,T3:奈米薄膜交互層之膜厚
圖1係顯示運用本發明之端銑刀之一例的正面圖。 圖2係自前端側觀看圖1端銑刀的放大底面圖。 圖3係說明設於圖1端銑刀之硬質被膜之被膜結構的示意圖。 圖4係說明設於圖1端銑刀之硬質被膜之被膜結構其他例的示意圖。 圖5係說明設於圖1端銑刀之硬質被膜之被膜結構又一其他例的示意圖。 圖6係說明設於圖1端銑刀之硬質被膜之被膜結構又一其他例的示意圖。 圖7係說明設於圖1端銑刀之硬質被膜之被膜結構又一其他例的示意圖。 圖8係說明設於圖1端銑刀之硬質被膜之被膜結構又一其他例的示意圖。 圖9係說明電弧離子鍍裝置的概略圖,該電弧離子鍍裝置係用以將圖3~圖8之硬質被膜成膜於工具母材上之物理蒸鍍裝置之一例。 圖10所示者係構成用於切削加工試驗之試驗品1~試驗品50之硬質被膜的A組成之構成元素種類及含有比率。 圖11所示者係構成試驗品1~試驗品50之硬質被膜的B組成之構成元素種類及含有比率。 圖12所示者係構成試驗品1~試驗品50之硬質被膜的C組成之構成元素種類及含有比率。 圖13係說明試驗品1~試驗品25之硬質被膜之被膜結構的圖。 圖14係說明試驗品26~試驗品50之硬質被膜之被膜結構的圖。 圖15所示者係試驗品1~試驗品50之硬質被膜之被膜硬度、進行切削加工試驗後測定之切削距離、及判定結果。
12:工具母材(母材)
30:硬質被膜
32:A層(單一組成層)
32n:奈米薄膜A層(奈米薄膜層)
34n:奈米薄膜B層(奈米薄膜層)
36n:奈米薄膜C層(奈米薄膜層)
38,40:奈米薄膜交互層
44:界面層
Ttotal:總膜厚
T1:單一組成層之膜厚
T2,T3:奈米薄膜交互層之膜厚

Claims (8)

  1. 一種硬質被膜,係以被覆母材表面之方式附著於母材表面,該硬質被膜之特徵在於: 前述硬質被膜係單一組成層與2種奈米薄膜交互層共3種層交互積層而構成為總膜厚於0.5~20μm範圍內者; 前述單一組成層係由A組成、B組成、及C組成中之任1個組成所構成; 前述2種奈米薄膜交互層係以前述A組成及前述B組成、前述A組成及前述C組成、前述B組成及前述C組成之3種組合中任2種組合使各組成之奈米薄膜層交互積層而成; 前述A組成係組成式為Ala Crb Sic αd 之氮化物[惟,a、b、c、d各自以原子比計為0.30≦a≦0.85、0.10≦b≦0.65、0.01≦c≦0.45、0≦d≦0.10,且a+b+c+d=1;任意添加成分α係選自B、C、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]; 前述B組成係組成式為Ale Tif Sig βh 之氮化物[惟,e、f、g、h各自以原子比計為0.01≦e≦0.85、0.05≦f≦0.90、0.05≦g≦0.45、0≦h≦0.10,且e+f+g+h=1;任意添加成分β係選自B、C、Cr、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]; 前述C組成係組成式為Ali Crj (SiC)k γl 之氮化物[惟,i、j、k、l各自以原子比計為0.20≦i≦0.85、0.10≦j≦0.50、0.03≦k≦0.45、0≦l≦0.10,且i+j+k+l=1;任意添加成分γ係選自B、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、及W之1種以上元素]; 前述單一組成層之膜厚於0.5~1000nm範圍內; 構成前述2種奈米薄膜交互層之前述奈米薄膜層的各膜厚均於0.5~500nm範圍內,且前述2種奈米薄膜交互層之各膜厚均於1~1000nm範圍內。
  2. 如請求項1之硬質被膜,其中前述單一組成層之膜厚T1與前述2種奈米薄膜交互層之各膜厚T2、T3的比T1/T2、T1/T3均於0.2~10範圍內。
  3. 如請求項1或2之硬質被膜,其中交互積層的前述單一組成層及前述2種奈米薄膜交互層之最下部的層直接設於前述母材表面。
  4. 如請求項1或2之硬質被膜,其中前述硬質被膜與前述母材之邊界具有界面層; 前述界面層由以下共3種層中之任1層構成:單一組成層,其由前述A組成、前述B組成、及前述C組成中之任1個組成所構成;奈米薄膜交互層,其係使由前述A組成、前述B組成、及前述C組成中之任2個組成所構成且個別膜厚於0.5~500nm範圍內之2種奈米薄膜層交互積層而成;及金屬之氮化物、碳氮化物、或碳化物的層,其由B、Al、Ti、Y、Zr、Hf、V、Nb、Ta、Cr、及W中之1種以上元素所構成; 並且,前述界面層之膜厚於5~1000nm範圍內。
  5. 如請求項1至4中任1項之硬質被膜,前述硬質被膜之最表面具有表面層; 前述表面層由單一組成層或奈米薄膜交互層構成,前述單一組成層係由前述A組成、前述B組成、及前述C組成中之任1個組成所構成,前述奈米薄膜交互層係使由前述A組成、前述B組成、及前述C組成中之任2個組成所構成且個別膜厚於0.5~500nm範圍內之2種奈米薄膜層交互積層而成; 並且,前述表面層之膜厚於0.5~1000nm範圍內。
  6. 如請求項1至5中任1項之硬質被膜,其中被膜硬度(HV0.025)於2700~3300(HV)範圍內。
  7. 一種硬質被膜被覆構件,係母材表面之一部分或全部被硬質被膜被覆者,前述硬質被膜係如請求項1至6中任1項之硬質被膜。
  8. 如請求項7之硬質被膜被覆構件,前述硬質被膜被覆構件係斷續切削工具,可使其繞著軸心旋轉,且刀刃會隨著旋轉而斷續地進行切削加工。
TW108126772A 2018-08-01 2019-07-29 硬質被膜及硬質被膜被覆構件 TWI720563B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2018/028941 2018-08-01
PCT/JP2018/028941 WO2020026392A1 (ja) 2018-08-01 2018-08-01 硬質被膜および硬質被膜被覆部材

Publications (2)

Publication Number Publication Date
TW202014540A true TW202014540A (zh) 2020-04-16
TWI720563B TWI720563B (zh) 2021-03-01

Family

ID=69231572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126772A TWI720563B (zh) 2018-08-01 2019-07-29 硬質被膜及硬質被膜被覆構件

Country Status (7)

Country Link
US (1) US11447873B2 (zh)
JP (1) JP7140834B2 (zh)
KR (1) KR102519788B1 (zh)
CN (1) CN112543818B (zh)
DE (1) DE112018007874T5 (zh)
TW (1) TWI720563B (zh)
WO (1) WO2020026392A1 (zh)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017423A (ja) * 1998-07-06 2000-01-18 Osg Corp 高靱性硬質積層皮膜被覆工具
CA2285460A1 (en) 1998-02-04 1999-08-12 Osg Corporation Hard multilayer coated tool having increased toughness
JP3934136B2 (ja) * 2004-11-11 2007-06-20 日立ツール株式会社 硬質皮膜被覆部材及びその被覆方法
US7348074B2 (en) 2005-04-01 2008-03-25 Oc Oerlikon Balzers Ag Multilayer hard coating for tools
JP4678589B2 (ja) * 2005-07-29 2011-04-27 三菱マテリアル株式会社 合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具
JP2008173756A (ja) * 2007-01-22 2008-07-31 Mitsubishi Materials Corp 耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5234926B2 (ja) 2008-04-24 2013-07-10 株式会社神戸製鋼所 硬質皮膜および硬質皮膜形成用ターゲット
JP5333311B2 (ja) * 2010-03-26 2013-11-06 ソニー株式会社 不揮発性記憶装置
JP2011235393A (ja) * 2010-05-11 2011-11-24 Mitsubishi Materials Corp 表面被覆切削工具
JP5459506B2 (ja) 2010-08-09 2014-04-02 三菱マテリアル株式会社 表面被覆切削工具
EP2636764B1 (en) * 2012-03-07 2014-07-09 Seco Tools Ab Nanolaminated coated cutting tool
US9274156B2 (en) * 2012-08-24 2016-03-01 GM Global Technology Operations LLC Antenna mast detection methods and systems
JP2014055320A (ja) * 2012-09-12 2014-03-27 Kennametal Inc 多層被膜処理耐摩耗部材およびその製作方法
JP6015922B2 (ja) 2012-10-16 2016-10-26 三菱マテリアル株式会社 表面被覆切削工具
CN105518178B (zh) * 2013-09-09 2018-06-29 韩国冶金株式会社 切削工具用硬涂膜
JP6577037B2 (ja) * 2015-09-04 2019-09-18 オーエスジー株式会社 硬質被膜および硬質被膜被覆部材
JP2017143090A (ja) * 2016-02-08 2017-08-17 Tdk株式会社 半導体磁器組成物およびptcサーミスタ
JP2017226018A (ja) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 切削工具
BR112019008376A2 (pt) * 2016-10-25 2019-07-09 Osg Corp revestimento rígido e elemento revestido com o mesmo

Also Published As

Publication number Publication date
US11447873B2 (en) 2022-09-20
TWI720563B (zh) 2021-03-01
CN112543818B (zh) 2023-03-03
KR20210025642A (ko) 2021-03-09
CN112543818A (zh) 2021-03-23
US20210164110A1 (en) 2021-06-03
WO2020026392A1 (ja) 2020-02-06
JP7140834B2 (ja) 2022-09-21
JPWO2020026392A1 (ja) 2021-08-05
KR102519788B1 (ko) 2023-04-10
DE112018007874T5 (de) 2021-04-22

Similar Documents

Publication Publication Date Title
JP2011224715A (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
TWI702996B (zh) 硬質被膜及硬質被膜被覆構件
JP5440345B2 (ja) 表面被覆切削工具
JP2012097304A (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
JP5429693B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5440353B2 (ja) 表面被覆切削工具
TWI720562B (zh) 硬質被膜及硬質被膜被覆構件
JP5440346B2 (ja) 表面被覆切削工具
TWI720561B (zh) 硬質被膜及硬質被膜被覆構件
TWI720563B (zh) 硬質被膜及硬質被膜被覆構件
JP5454787B2 (ja) 表面被覆切削工具
JP2011224688A (ja) 表面被覆切削工具
JP5459618B2 (ja) 表面被覆切削工具
JP5440352B2 (ja) 表面被覆切削工具
JP5440350B2 (ja) 表面被覆切削工具
JP5454788B2 (ja) 表面被覆切削工具
JP5499861B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具