TW202002489A - 整流器電路、使用整流器電路的切換功率轉換器及其相關方法 - Google Patents

整流器電路、使用整流器電路的切換功率轉換器及其相關方法 Download PDF

Info

Publication number
TW202002489A
TW202002489A TW108116130A TW108116130A TW202002489A TW 202002489 A TW202002489 A TW 202002489A TW 108116130 A TW108116130 A TW 108116130A TW 108116130 A TW108116130 A TW 108116130A TW 202002489 A TW202002489 A TW 202002489A
Authority
TW
Taiwan
Prior art keywords
fet
coupled
gate
voltage
circuit
Prior art date
Application number
TW108116130A
Other languages
English (en)
Inventor
尚恩 保羅 安娜 喬瑟夫 艾格蒙
喬涵 卡密耶 朱利亞 詹森斯
Original Assignee
美商半導體組件工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商半導體組件工業公司 filed Critical 美商半導體組件工業公司
Publication of TW202002489A publication Critical patent/TW202002489A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

整流器電路、使用該整流器電路的切換功率轉換器及相關方法。至少一些實例實施例係包括以下的電路:一陽極端子;一陰極端子;一場效電晶體(FET),其界定一汲極、源極、以及閘極,該源極耦接至該陽極端子,並且該汲極耦接至該陰極端子;一二極體,其具有陽極及陰極,該陽極耦接至該陰極端子;一自舉電容器,其經耦接在該二極體的該陰極與該陽極端子之間;一FET控制器,其耦接至該FET的該閘極以及在該二極體與該自舉電容器之間的一節點;該FET控制器經組態以當該電路變為順向偏壓時使該FET導通,並且該FET控制器經組態以在當該電路被加逆向偏壓的時間週期期間使該FET不導通。

Description

整流器電路、使用整流器電路的切換功率轉換器及其相關方法
本專利申請涉及整流器電路的技術領域,具體來說可用作二極體置換裝置的整流器電路。
切換功率轉換器使用與電感(例如,獨立電感器、或變壓器的一繞組)相關聯的一整流器電路,以從一直流(DC)源產生一更高電壓(升壓轉換器)或一更低電壓(降壓轉換器)。在早期的功率轉換器、及甚至現今在較低效率功率轉換器中,整流器電路係用作一整流器的一二極體。一二極體的順向導通模式中的壓降可以相對高(例如,0.7至1.0伏或更大),從而使得功率轉換器的整體效率為低。功率轉換器設計者可嘗試藉由使用一肖特基二極體作為整流器電路來提高效率,但即使使用肖特基二極體,功率轉換器的整體效率可能不會達到90%。
當需要較高的效率時,功率轉換器設計者可以用一獨立場效電晶體(FET)與一單獨驅動器積體電路取代二極體,從而產生具有同步整流的一功率轉換器。集成一獨立的FET與單獨驅動器的使用會增加物料清單(BOM)上組件的數量以及成本,並且還會增加其上安裝有各種組件之下方電路板的複雜性。
各種實例實施例係涉及一整流器電路的方法與系統。至少一些實例實施例包括一種電路,其包含:一陽極端子;一陰極端子;一場效電晶體(FET),其界定一汲極、一源極、以及一閘極,該源極經耦接至該陽極端子,並且該汲極經耦接至該陰極端子;一二極體,其具有一陽極及一陰極,該陽極經耦接至該陰極端子;一自舉電容器,其經耦接在該二極體的該陰極與該陽極端子之間;以及一FET控制器,其耦接至該FET的該閘極、該自舉電容器、及該二極體的該陰極。該FET控制器經組態以當該電路變為順向偏壓時使該FET導通,並且該FET控制器經組態以當該電路被加逆向偏壓的時間週期期間使該FET不導通。
該實例電路的該FET控制器可進一步組態以將電流從該自舉電容器驅動至該閘極以使該FET導通,並且在該電路變成經逆向偏壓之前將該閘極直接耦接至該源極。該實例電路的該FET控制器可進一步組態以在該順向偏壓週期期間,預測一緊接隨後逆向偏壓的時序,並且組態以基於預測之該時序斷開該FET。該FET控制器可進一步包含一時序電路,該時序電路係可調整的並且產生一時序信號,以及該FET控制器可經組態以將該時序電路調整為施加至該陽極端子與該陰極端子上之一信號的一頻率。該FET控制器可進一步組態以基於該時序信號的判定來預測時序。
該實例電路的該FET控制器可進一步包含一閘極驅動器電路,該閘極驅動器電路組態以將該FET上的壓降控制至一設定點電壓。該FET控制器可進一步組態以當該FET上的壓降低於一預定電壓時在一順向偏壓循環的一結束處使該FET不導通,並且在一些情況下設定點電壓與該預定電壓相等。
該實例電路的該FET控制器可進一步組態以監測該FET的該閘極與該源極上的一電壓,並且進一步組態以當該閘極與該源極上的該電壓下降低於一預定臨限時使該FET不導通。
又其他實例實施例為包含下列之方法:當一經封裝半導體裝置被加逆向偏壓並且該經封裝半導體裝置的一場效電晶體(FET)不導通時,儲存一自舉電容器上的能量;當該經封裝半導體裝置變成經順向偏壓時,將來自該自舉電容器的能量耦接至該FET的一閘極以使該FET導通;然後在該經封裝半導體裝置變成經逆向偏壓之前,使該FET不導通。
在實例方法中將來自該自舉電容器的能量耦接可進一步包含將該FET上的電壓控制至一設定點電壓。控制該FET上的壓降可進一步包含驅動該閘極以產生該FET的一源極至汲極電阻大於如果該FET以其最高額定閘極至源極電壓驅動時的一源極至汲極電阻。使該FET不導通可進一步包含當該FET上的壓降低於一預定電壓時在一順向偏壓循環的一結束處使該FET不導通,並且在一些情況下設定點電壓與該預定電壓相等。
在實例方法中使該FET不導通可進一步包含在該經封裝半導體裝置係順向偏壓的一時間週期期間:感測到順向偏壓在減弱;以及在該經封裝半導體裝置順向偏壓的時間週期的結束之前,將該FET的該閘極短路至該源極,以使該FET不導通。
在實例方法中使該FET不導通可進一步包含:監測跨該FET的該閘極與該源極的一電壓;以及當該FET的該閘極與一源極上的該電壓下降低於一預定臨限時使該FET不導通。
該實例方法可以進一步包含,在一順向偏壓週期期間,預測一緊接隨後逆向偏壓的時序,並且基於預測之該時序使該FET不導通。預測時序可進一步包含產生一時序信號,該時序信號具有預測一順向偏壓週期之一結束的一特徵,並且使該FET不導通可進一步包含回應於該時序信號的一特徵使該FET不導通,並且在一些情況下調整該時序信號。
該實例方法可進一步包含:在複數個順向偏壓與逆向偏壓的起始循環中,避免使該FET導通與不導通;以及在避免期間,調整一時序信號以具有在該複數個順向偏壓與逆向偏壓的起始循環中預測從順向偏壓至逆向偏壓的一轉變的一特徵。
又其他實例實施例包括包含下列的一切換功率轉換器:一電感器,其界定一第一引線與一第二引線,該第一引線組態以耦接至一電壓源;一電控開關,其在一第一側上經耦接至該電感器的該第二引線,並且經組態以在一第二側上經耦接至該電壓源的一返回或共同端;一驅動器控制器,其經耦接至該電控開關,並且經組態以週期性地使該電控開關導通;以及一整流器電路。該整流器電路可進一步包含:一陽極端子,其耦接至該電感器;一陰極端子,其經組態以耦接至一負載;一場效電晶體(FET),其界定一汲極、一源極、以及一閘極,該源極經耦接至該陽極端子,並且該汲極經耦接至該陰極端子;一二極體,其具有一陽極及一陰極,該陽極經耦接至該陰極端子;一自舉電容器,其經耦接在該二極體的該陰極與該陽極端子之間;一FET控制器,其耦接至該FET的該閘極、該自舉電容器、及該二極體的該陰極。該FET控制器可經組態以當該整流器電路變成經順向偏壓時使該FET導通,並且該FET控制器組態以當該整流器電路被加逆向偏壓的時間週期期間使該FET不導通。
下列討論係關於本發明的各種實施例。雖然此等實施例中之一或多者可係較佳的,所揭示的實施例不應理解為或以其他方式用作限制包括申請專利範圍的本揭露之範疇。此外,所屬技術領域中具有通常知識者將了解下列描述具有廣泛應用,且任何實施例的討論僅意欲作為該實施例的例示而非意欲暗示包括申請專利範圍之本揭露的範疇受到該實施例的限制。
各種實例實施例係涉及可用作為一二極體置換裝置的一整流器電路的方法與系統。具體來說,實例實施例關於一種兩接腳或兩端子裝置,其可具有與用於放置在電路板上的一二極體相同的形狀因子,但具有比包括肖特基二極體的任何商業上可得二極體明顯更低的順向壓降。更具體地,實例實施例係涉及僅具有兩個端子的一封裝的積體電路(IC)裝置,但內部包含一FET與一FET控制器,當封裝的IC裝置係順向偏壓時使FET導通,並且在封裝的IC裝置被加逆向偏壓時使FET不導通。當封裝的IC被加逆向偏壓時,封裝的IC係藉由在時間週期期間充電一自舉電容器來自供電。在一些實例系統中,封裝的IC實施可調整的一時序電路並產生一時序信號,並且該封裝的IC基於時序電路預測性地使FET不導通以確保沒有逆向電流流過裝置。說明書首先回到一實例切換功率轉換器電路來引導讀者。
圖1顯示根據至少一些實施例的一切換功率轉換器。特別是,該切換功率轉換器100包含指定為電壓源VDC 的一直流(DC)電壓源。電壓源VDC 耦接至電感器102的第一引線,並且在切換FET 104的實例形式中,電感器的第二引線耦接至一電控開關的汲極。切換FET 104的源極耦接至接地。切換FET 104的閘極耦接至一FET驅動器106。FET驅動器106將一切換信號驅動至切換FET 104的閘極,該切換信號可具有100千赫(kHz)或更大的頻率。因此,FET驅動器106與切換FET 104循環地將開關節點108耦接至接地以產生流過電感器102的電流。
整流器110具有耦接至開關節點108的陽極端子112,並且整流器110具有耦接至負載116的陰極端子114,負載示例性地顯示為三個發光二極體(LED),其中第三個LED的陰極耦接至接地。當切換FET 104導通時,整流器110阻擋整流器110與負載116之間的逆向電流(例如,來自一平滑電容器(未特別示出),或來自系統的寄生電容)。當切換FET導通時,電流建立在電感器102中,電感器102周圍的電場和磁場也是如此。當切換FET 104隨後為不導通時,崩潰場將電流驅動通過開關節點108至整流器110,其順向偏壓整流器110並因此向負載116提供電流。一旦電感器102周圍的場部分地崩潰(對於連續電流模式)或完全崩潰(對於非連續電流模式),切換FET 104再次變成導通並且該循環重復。
因此,當整流器110上的電壓順向偏壓時(即,陽極端子112處的電壓係高於陰極端子114處的電壓),整流器110導通電流。相反,當整流器110上的電壓逆向偏壓時(即,陽極端子112處的電壓係低於陰極端子114處的電壓),整流器110阻止電流從陰極端子114流到陽極端子112。如整流器110內的符號所暗示的,整流器110執行一二極體功能。然而,在二極體的順向導通模式中的壓降可相對高(例如,600至1000毫伏(mV)或更高)。具有一順向壓降200至450 mV的肖特基二極體更佳,但即使當使用肖特基二極體時,切換功率轉換器100的整體效率可能無法達到90%。
圖2以一混合示意圖與方塊圖形式顯示根據至少一些實施例的整流器110。具體來說,根據實例實施例的整流器110包括FET 200。FET 200界定源極202、閘極204、與汲極206。源極202耦接至該陽極端子112。汲極206耦接至陰極端子114。整流器110進一步包含自舉電容器208,其具有耦接至陽極端子112的第一引線210與耦接至功率節點214的第二引線212。實例整流器110進一步包含界定陽極引線218與陰極引線220的二極體216。陽極引線218耦接至陰極端子114,並且陰極引線220耦接至功率節點214。因此,自舉電容器208係在二極體216的陰極引線220與陽極端子112之間耦接。
實例整流器110進一步包含FET控制器222。FET控制器222界定閘極輸出224、功率輸入226、陽極感測輸入228、與陰極感測輸入230。功率輸入226係耦接至功率節點214。陽極感測輸入228係耦接至陽極端子112。陰極感測輸入230耦接至陰極端子114。在實例系統中,FET控制器222具有一單個功率輸入226,其耦接至功率節點214;然而,在其他實施例中,FET控制器222具有用於連接至自舉電容器208與二極體216的陰極引線220的一單獨輸入(例如,功率節點將駐留在FET控制器222內)。
根據實例實施例,整流器110係一封裝的積體電路(IC),其使封裝大小與尺吋被設計成且構造成用於傳統二極體的一直接置換組件。更具體地講,圖2中的各種組件周圍的虛線顯示實例整流器110係一封裝的IC或經封裝半導體裝置(例如,包裝在封裝材料中的半導體晶粒),在一些情況下僅具有兩個端子。封裝類型可採取任何合適的形式,諸如任何具有兩個作為引線或端子的電線(例如,DO-41)的「二極體外形(diode outline)」(DO)封裝、任何種類的「電晶體外形(transistor outline)」(TO)封裝(例如,TO-220)、任何種類的「小外形」封裝(例如,SO8)、以及任何合適的通孔或表面安裝封裝系統(例如,「decawatt」封裝(DPAK))。本說明書現在轉向至實例整流器110的操作,從裝置如何導出操作功率開始。
再次參照圖2,同樣實例整流器110包括自舉電容器208與二極體216。在所示的實例系統中,自舉電容器208與二極體216係與FET控制器222不同的組件;然而,在其他實例系統中,二極體216可完全地或部分地集成在FET控制器222的半導體晶粒上。因此,二極體216的功能可以以一板上調節器、電流限制器、或電控開關的形式實施,該電控開關將陰極端子114耦接至電容器208的正端子。在整流器110逆向偏壓的週期期間(即,陰極端子114上的電壓高於陽極端子112上的電壓),電流流過二極體216(或任何類型的導通裝置,例如電流源、電壓調節器、或開關),並且對自舉電容器208充電。陳述略有不同,當經封裝半導體裝置被加逆向偏壓並且FET 200不導通時,實例整流器110將能量儲存在自舉電容器208上。相反,在整流器110係順向偏壓的時間週期期間(即,陰極端子114上的電壓係低於陽極端子112上的電壓),二極體216(或任何類型的更精密的開關)阻擋電流從自舉電容器208流出,並且在這時間週期期間,FET控制器222從自舉電容器208導出操作功率。陳述略有不同,實例整流器110對儲存在自舉電容器208上的能量進行操作,當經封裝半導體裝置被加逆向偏壓並且FET 200不導通時儲存能量。FET控制器222可操作儲存在自舉電容器208上之能量的時間量係取決於許多因素,諸如施加在整流器110上的信號頻率、自舉電容器208的電容、FET控制器222的能量使用、以及FET 200係導通時的閘極204漏電流,僅舉幾個例子。根據一些實施例,整流器110可以是在與切換功率轉換器相關聯的頻率下(例如,100khz或更高)操作之任何二極體的一直接置換。實例整流器110並非旨在為以零頻率(即,DC)或低頻(例如,60 Hz與更低)操作之二極體的一直接置換。討論的平衡假定施加在整流器110上之信號的操作頻率、以及自舉電容器208的電容與FET控制器222的能量消耗係使得FET控制器222在整流器110順向偏壓的整個時間週期期間具有足夠的能量來操作FET控制器222。
實例FET控制器222係組態以該整流器110變成經順向偏壓時使FET200導通,並且FET控制器222係組態以當該整流器110被加逆向偏壓的時間週期期間使FET200不導通。使FET 200導通涉及將來自自舉電容器208的能量耦接至FET 200的閘極204,並且當經封裝半導體裝置變為順向偏壓時,實例FET控制器200將能量耦接至閘極204。然而,為了確保沒有逆向電流流過整流器110,實例FET控制器222在當整流器110變成經逆向偏壓之前使FET 200不導通。在當整流器110變成經逆向偏壓之前使FET 200不導通係基於至少兩個操作考慮因素。第一,使FET 200不導通需要一有限的時間量(例如,將電流從閘極204洩流到源極202的時間量)。因此,使FET 200不導通的流程在逆向偏壓條件之前開始,以確保沒有逆向電流從陰極端子114流至陽極端子112。第二,實例整流器110的優點之一為整流器上的順向壓降顯著低於一獨立二極體(例如,在一些情況下,順向壓降可為100 mV或更小);然而,在接近順向偏壓循環的結束時,通過整流器110的電流可能會顯著下降,從而使FET200不導通,並依賴FET200之固有本體二極體來承載剩餘相對較小的順向電流,因為剩餘本體二極體導通的持續時間短,所以不會顯著影響整流器110的效率。
就使FET 200導通而言,在實例實施例中,FET控制器222藉由陽極感應輸入228與陰極感測輸入230監測FET 200的壓降。當整流器110上電壓與電流在一順向偏壓循環的開始處上升時,FET控制器222感測順向偏壓條件,然後藉由閘極輸出224驅動FET 200的閘極204。因此,在順向偏壓循環開始時的一小時間週期處,流過整流器110的電流係由FET 200的固有本體二極體承載。然而,再次仰賴FET 200的固有本體二極體來承載起始電流,直到FET控制器222可使FET 200導通而不會顯著影響在整個順向偏壓循環上所考慮的整流器110的效率。在順向偏壓循環期間,FET控制器222繼續監測FET 200上的壓降(並且如下文更詳細地討論,將FET 200上的壓降控制至一設定點電壓)。當FET 200上的電壓下降低於一預定值(例如,非零和正)時,FET控制器222使FET 200不導通。此後,FET控制器222在逆向偏壓循環期間監測整流器110上的壓降,並且一旦整流器110在下一個順向偏壓循環開始處再次變成經順向偏壓,則流程重覆。本說明書現在回到更詳細地討論FET控制器222,以及若干可選的操作特徵。
圖3顯示根據至少一些實施例之一FET控制器222的一方塊圖。具體來說,圖3顯示具有閘極輸出224、功率輸入226、陽極感測輸入228、與陰極感測輸入230的FET控制器222。FET控制器222的各種電路與組件係藉由功率輸入226的方式供電,但沒有顯示功率的內部連接,以免使圖形過度複雜化。
在內部,實例FET控制器222包含一閘極驅動器電路300。閘極驅動器電路300界定一設定點輸入302與一反饋輸入304。該設定點輸入302接收指示在順向偏壓循環期間FET 200(圖2)上的一期望或設定點壓降的一電壓或電流。在實例系統中,施加至設定點輸入302的設定點電壓係藉由一實例電壓源306(例如,在一些情況下100 mV)形成。即,電壓源306的電壓被添加至陰極感測輸入230上的電壓。因此,在當整流器110(圖2)係順向偏壓的至少一部分時間週期期間,閘極驅動器電路300主動地將FET 200上的壓降控制為設定點電壓。換句話講,閘極驅動器電路300實施控制迴路,其用於均衡設定點輸入302與反饋輸入304處的電壓。在一些情況下,閘極驅動器電路300實施僅比例控制(例如,具有預定和固定増益的放大器)。在其他情況下,特別是對於操作範圍下端的整流器110的操作頻率(例如,大約100kHz),閘極驅動器電路300還可包括比例積分(PI)或甚至比例積分微分(PID)控制。在實例系統中,閘極驅動器電路300控制設定點電壓(即,FET 200上的壓降)大於如果FET 200以最大額定閘極至源極電壓驅動而可達到的壓降。略微不同的是,閘極驅動器電路300係組態以驅動閘極輸出224(因此FET 200的閘極204(圖2))而產生大於如果FET200以最高或最大額定閘極至源極電壓驅動時之源極至汲極電阻的源極至汲極電阻。
因此,在順向偏壓循環期間控制FET 200(圖2)上的壓降的實例操作方案因此使得閘極驅動器電路300在一些實施例中也在順向偏壓循環接近結束時單獨負責使FET 200不導通。即,在實例實施例中,當FET上的壓下降低於一預定電壓時,閘極驅動器電路300使FET 200不導通。在圖3的實例情況中,預定電壓係由電壓源306產生的設定點電壓。更具體地說,隨著順向偏壓循環係逐漸減弱並且流過整流器110(圖2)的電流逐漸減弱,電壓也開始下降。當FET 200上的壓下降低於設定點電壓(例如,正且非零)時,閘極驅動器電路300在當整流器110順向偏壓的時間週期的結束之前關閉FET 200。
在一些實例系統中,閘極驅動器電路300可單獨負責使FET 200(圖2)不導通。然而,在其他實例系統中,其他電路與裝置可以參與來確保FET 200在整流器110(圖2)逆向偏壓的時間週期期間不導通。為了達成此目的,實例FET控制器222進一步包含比較器308,其界定反相輸入310、非反相輸入312、及比較器輸出314。反相輸入310係耦接至陰極感測輸入230。非反相輸入312係耦接至陽極感測輸入228。因此,比較器308係組態以當陽極感測輸入228具有一比陰極感測輸入230更高的電壓(即,整流器110順向偏壓)時產生一確立信號。比較器輸出314係耦接(透過邏輯AND閘316,下文將更詳細討論)至一壓控開關318。實例壓控開關318界定第一連接320、第二連接322、及控制輸入324。第一連接320係耦接至陽極感測輸入228。第二連接322係耦接至閘極輸出224(且因此,FET 200的閘極204)。控制輸入324係耦接至比較器輸出314(藉由邏輯AND閘316的方式,儘管在其他實例系統中,比較器輸出314可以直接耦接至控制輸入324)。根據至少一些實施例,壓控開關318係常閉式開關以使得如果在自舉電容器208(圖2)中儲存的能量不足以給FET控制器222供電,則FET 200的閘極204(圖2)短路至源極202(圖2)並且因此整流器110僅基於FET 200的固有本體二極體操作。壓控開關可採取滿足各種功能的任何合適的形式(例如,FET)。
在整流器110(圖2)順向偏壓的時間週期期間,比較器308在比較器輸出314上產生一確立信號,這使得壓控開關318斷開,從而使閘極驅動器電路300能夠主動地將FET 200(圖2)上的壓降控制到設定點電壓。然而,當閘極驅動器電路300在順向偏壓循環結束時尚未使FET 200完全不導通的情況下,比較器308解除確立比較器輸出314上的信號,其關閉壓控開關318,將FET 200的源極短路至FET 200的閘極,以確保FET 200不導通。
在更進一步的實施例中,FET控制器222係設計與構造成使得在順向偏壓週期期間,FET控制器222預測緊接隨後逆向偏壓循環的時序(例如,預測逆向偏壓循環何時將開始,並且基於預測使得FET 200(圖2)不導通(並且在逆向偏壓條件之前))。具體來說,實例FET控制器222可進一步包含時序電路326與延遲比較電路328。延遲比較電路328界定第一輸入330、第二輸入332與比較輸出334。第一輸入330係耦接至比較器輸出314。第二輸入332係耦接至時序電路326的一時序信號輸出336。比較輸出334係耦接至時序電路326。延遲比較電路328分析時序信號輸出336上的一時訓信號的解除確立(指示時序電路326的預測)與比較器輸出314上的信號的解除確立(指示整流器110的逆向偏壓)之間的時序差。延遲比較電路328在比較輸出334上驅動一調整信號。在進一步解釋時序電路326之後,將在下文更詳細地討論整體時序與調整信號。
時序電路326界定時序信號輸出336、一調整輸入338與一時序啓動輸入340。調整輸入338係耦接至比較輸出334,並且時序啓動輸入340係耦接至比較器輸出314。實例FET控制器222進一步包含上面提到的邏輯AND閘316。邏輯AND閘316界定第一閘極輸入342、第二閘極輸入344、與一閘極輸出346。在該實例系統中,閘極輸入342耦接至時序信號輸出336(並且因此至時序信號)。閘極輸入344耦接至比較器輸出314。閘極輸出346耦接至壓控開關318的控制輸入324。
時序電路326在時序信號輸出336上產生並驅動一時序信號。更具體地,在整流器110(圖2)順向偏壓的時間週期期間,時序電路326藉由改變時序信號的一特徵來預測整流器110的一緊接隨後逆向偏壓的時序。在該實例系統中,在整流器110變成經順向偏壓之後即確立時序信號輸出336上的時序信號(例如,當比較器輸出314確立時確立時序信號輸出336)。時序電路326將時序信號輸出336上的時序信號保持確立一時間週期,該時間週期係整流器110的順向偏壓循環的一預期時間長度或持續時間減去一預定時間長度(例如,一非零保護帶)。
在操作中,當整流器110(圖2)變成經順向偏壓時,比較器輸出314變成確立的並且時序信號輸出336上的時序信號變成確立的。當確立邏輯AND閘316的閘極輸入342與閘極輸入344兩者,閘極輸出346變成確立的並且壓控開關318斷開。當壓控開關318斷開,閘極驅動器電路300主動地將FET 200(圖2)上的壓降控制為設定點電壓。在接近順向偏壓循環結束時,時序信號輸出336上的時序信號變成未確立的,使得閘極輸出346變成未確立的並且因此閉合壓控開關318。在某一時間點之後,整流器110被加逆向偏壓,從而使比較器輸出314也變成未確立的。延遲比較電路328分析時序信號輸出336的解除確立與比較器輸出314的解除確立之間的時序。如果解除確立之間的時間長度長於預定臨限(例如,長於一期望的保護帶),則延遲比較電路328藉由驅動比較輸出334的一變化信號來調整後續順向偏壓條件的時序信號。變化信號可以採用任何合適的形式,諸如表示當應被確立下一個時序信號時的一時間長度的一類比信號、表示縮短或延長下一個時序信號的時間長度的一命令的一布爾信號(Boolean signal)、或類似者。
在預測緊接隨後或即將出現的逆向偏壓條件之時序的實例實施例中,準確預測可以從一冷啟動開始進行若干順向與逆向偏壓循環。因此,根據至少一些實施例,FET控制器222(例如,時序電路326)可以被設計與構造成使得FET控制器222最初抑制使FET導通與不導通之複數個順向偏壓與逆向偏壓的起始循環(例如,10個順向偏壓循環、100個順向偏壓循環)。在抑制期間,FET控制器222(再次,例如,時序電路326)可調整時序信號以具有一特徵(例如,介於一確立為高與非確立狀態之間的下降邊緣),來預測從順向偏壓到逆向偏壓的轉變,如上文所述。在圖3的實例情況下,時序電路326起始將避免確立時序信號,而是監測時序開始輸入340的狀態(特別是確立與解除確立之間的時序),並且基於該監測設定一起始時序。此後,FET控制器222將正常運作,而延遲比較電路328提供調整信號至時序電路326。
根據關於預測緊接隨後逆向偏壓循環的時序的敘述,實例整流器110(圖2)在切換FET 104(圖1)的切換頻率保持相對恆定的情況下工作良好,諸如LED照明電路(例如,汽車車頭燈驅動電路)。然而,實例整流器110還可以在其中頻率相對於切換FET 104的切換頻率(更確切地說,切換時間)不頻繁地改變的情況下以及在切換FET 104的切換頻率有規律地改變(例如,旅遊功率轉換器)的情況下工作。在其中切換FET 104的切換頻率有規律地改變的情況下,可省略或禁用預測態樣,並且使FET 200(圖2)不導通將可由閘極驅動器電路300、比較器308、與壓控開關318(省略邏輯AND閘316)的組合來控制。
圖4顯示根據至少一些實施例之一時序電路326的一電路圖。具體來說,圖4的時序電路326實施上面討論的一些功能,但沒有實現所有的功能(例如,避免使FET 200(圖2)導通達複數個起始循環)。然而,受益於本揭露,所屬技術領域中具有通常知識者可以設計具有所述任何功能的一FET控制器222(圖2)。實例時序電路326包含比較器400,其包括反相輸入402、非反相輸入404、與比較器輸出406,在該比較器輸出上實例時序信號係驅動至時序信號輸出336。耦接至非反相輸入404的電路產生一可調整參考電壓,並且耦接至反相輸入402的電路係在每個順向偏壓循環開始處重置的一斜坡信號。
產生可調整參考電壓的電路可採用任何合適的形式,但在圖4的實例中,可調整參考電壓由第一受控電流源408、第二受控電流源410、與電容器412產生。具體來說,電容器412具有耦接至非反相輸入404的一第一引線與耦接至接地的一第二引線。第一受控電流源408在一側上耦接至一電力軌,並且在第二側上耦接至非反相輸入404。第二受控電流源410耦接在非反相輸入404的一側上。由受控電流源408與410產生的電流係藉由調整輸入338來控制。由受控電流源408與410產生的電流可起始地經調整以產生至電容器412的一淨電流。當產生一合適的電壓並將其儲存在電容器412上時(例如,保持在時序信號輸出336上的一電壓被確立一時間週期係整流器110的一順向偏壓循環的一預期的時間長度或持續時間減去一預定的時間長度),可藉由使受控電流源408與410產生相同或接近相同的電流來保持電壓。例如,第二受控電流源410驅動一第一電流,並且第一受控電流源408驅動一第二電流,第二電流源高於來自電容器412的一漏電流量,使得電容器412上的電壓保持恆定。在實例系統中,當需要更長的時序信號時,調整兩個受控電流源408和410以提高電壓。以及當時序信號需要較短時,調整兩個受控電流源408和410以降低電容器412上的電壓。
仍然參見圖4,耦接至反相輸入402的電路係在每個順向偏壓循環開始處重置的一斜坡信號。具體來說,斜坡信號由一電流源414產生,雖未描繪該電流源為可調整的,但在替代實施例中可以為可調整的。電流源414係耦接在功率軌的一側上,並且藉由電控開關418的方式耦接在比較器400的反相輸入402的第二側上。該電路進一步包含電容器416,其具有耦接至接地的一個引線、以及耦接至反相輸入402(以及因此至電流源414)的一第二引線。與電容器416並聯耦接的是電控開關420。實例電控開關418係一常開開關,而實例電控開關420係一常閉開關。開關418與420係藉由時序啓動輸入340上的信號一致地操作,該信號在每個順向偏壓循環的開始處係藉由比較器308(圖3)確立。
因此,考慮實例時序電路326已經操作至少幾個循環,使得電容器412上的參考電壓為非零並且相對接近一極限電壓(對於切換FET 104的一固定頻率)(圖1))。在整流器110上的逆向偏壓期間時期(圖2),時序啓動輸入340被解除確立,因此電控制開關420閉合並導通。因此,非反相輸入404係在一更高的電壓並且時序信號輸出336被確立(儘管FET 200(圖2)基於邏輯AND閘316(圖3)的操作而仍然不導通)。一旦整流器110變成經順向偏壓,則確立時序啓動輸入340。電控開關420斷開,電控開關418閉合,並且電壓開始在電容器416上建立。在一些時間點之後,電容器416上的電壓超過保持在電容器412上的參考電壓,並且比較器400改變狀態,解除確立時序信號輸出336。一旦時序信號輸出336被撤銷確立時,則FET 200不導通(藉由邏輯AND閘316與壓控開關318的操作)。儘管電壓持續在電容器416上建立,但是不可能進一步改變狀態。在一些時間點之後(例如,由保護帶表示的一時間週期),整流器110變為逆向偏壓,時序啓動輸入340被解除確立,電控開關418斷開,且電控開關420閉合(放電電容器416)。流程在下一個順向偏壓循環重新開始。
如果延遲比較電路328檢測一時序問題(例如,相對於逆向偏壓條件,時序信號過早地確立,或者相對於逆向偏壓條件,時序信號太遲解除確立),則延遲比較電路328可如所需來調整保持在電容器412上的參考電壓。
短暫地返回圖2。在一些實例系統中,FET控制器222與FET 200可經構造成並駐留在相同的半導體基板上。因此,包含組合FET控制器222與FET 200的基板與一單獨的(多個)自舉電容器208及單獨的二極體216組合成一經封裝半導體裝置(由圖2中的虛線近似)。在其他情況下(例如,FET 200的更高電流額定),FET控制器222與FET 200可以是組合成一多晶片模組(連同自舉電容器208與二極體216)的單獨組件,以形成一經封裝半導體裝置。在又一情況下,自舉電容器208、二極體216或兩者均可與FET控制器222建構在基板上。雖然在一些情況下整流器110的封裝意味著是二極體的一直接置換部件,但在其他情況下,封裝可採用任何合適的形式(例如,SO8)。
也可基於閘極至源極的電壓而使FET 200不導通。該特徵的目的是偵測流過FET 200的一零交叉電流。在圖1的切換功率轉換器100的整流階段期間,電流下降。因此,在預定的FET導通時間期間存在達到零電流的風險,這種情況對於控制器的導通時間是異步且隨機的。一種用以偵測電流零交叉的可能實施方案係監測閘極至源極電壓(由閘極驅動器電路300調節)。當Vgs低於一預定臨限時,其意味著電流過低,並且閘極可能被斷開。值得注意的是當電流低時,效率不受固有FET本體二極體的導通影響。此外,VGS 檢測係可選的,因為當電流消極地流動或消失時,VDS 將自然地下降,導致一VDS 偵測。
圖5顯示根據至少一些實施例之一方法的一流程圖。具體來說,該方法開始(方塊500)並且包含:當一經封裝半導體裝置被加逆向偏壓並且該經封裝半導體裝置的一FET不導通時,儲存能量在一自舉電容器上(方塊502);當該經封裝半導體裝置變成經順向偏壓時,將來自該自舉電容器的能量耦接至該FET的一閘極以使該FET導通(方塊504);然後在該經封裝半導體裝置變成經逆向偏壓之前,使該FET不導通(方塊506)。此後,該方法結束(方塊508),可能在切換FET 104(圖1)的下一個切換循環重新開始。
附圖中的許多電連接係示出為不具有居間裝置的直接耦接,但在上文描述中未明確指明為如此。然而,此段落將作為在申請專利範圍中提及任何電連接為附圖中不具有居間裝置的電連接之「直接耦接」之前置基礎(例如,電容器416的上部引線與反相輸入402)。
上述討論係意欲說明本發明的原理及各種實施例。一旦完全理解上述的揭露,許多變化與修改對於所屬技術領域中具有通常知識者來說將變得明顯。自舉電容器208可經實施為一簡單電容器、一組串聯電容器(出於安全原因)或作為任何主要電容式能量儲存器,包括優化系統中的整體能量流或調節向控制器提供的實際電壓的切換電容器技術。其意圖係下列申請專利範圍係解釋成涵蓋所有此類變更與修改。
100‧‧‧切換功率轉換器 102‧‧‧電感器 104‧‧‧切換FET 106‧‧‧FET驅動器 108‧‧‧開關節點 110‧‧‧整流器 112‧‧‧陽極端子 114‧‧‧陰極端子 116‧‧‧負載 200‧‧‧場效電晶體(FET) 202‧‧‧源極 204‧‧‧閘極 206‧‧‧汲極 208‧‧‧自舉電容器 210‧‧‧第一引線 212‧‧‧第二引線 214‧‧‧功率節點 216‧‧‧二極體 218‧‧‧陽極引線 220‧‧‧陰極引線 222‧‧‧FET控制器 224‧‧‧閘極輸出 226‧‧‧功率輸入 228‧‧‧陽極感測輸入 230‧‧‧陰極感測輸入 300‧‧‧閘極驅動器電路 302‧‧‧設定點輸入 304‧‧‧反饋輸入 306‧‧‧電壓源 308‧‧‧比較器 310‧‧‧反相輸入 312‧‧‧非反相輸入 314‧‧‧比較器輸出 316‧‧‧邏輯AND閘 318‧‧‧壓控開關 320‧‧‧第一連接 322‧‧‧第二連接 324‧‧‧控制輸入 326‧‧‧時序電路 328‧‧‧延遲比較電路 330‧‧‧第一輸入 332‧‧‧第二輸入 334‧‧‧比較輸出 336‧‧‧時序信號輸出 338‧‧‧調整輸入 340‧‧‧時序啓動輸入 342‧‧‧第一閘極輸入 344‧‧‧第二閘極輸入 346‧‧‧閘極輸出 400‧‧‧比較器 402‧‧‧反相輸入 404‧‧‧非反相輸入 406‧‧‧比較器輸出 408‧‧‧第一受控電流源 410‧‧‧第二受控電流源 412‧‧‧電容器 414‧‧‧電流源 416‧‧‧電容器 418‧‧‧電控開關 420‧‧‧電控開關 500、502、504、506、508‧‧‧方塊
為了詳細描述實例實施例,現將參考隨附圖式,其中: 圖1顯示根據至少一些實施例的一切換功率轉換器; 圖2以一混合示意圖與方塊圖形式顯示根據至少一些實施例的一整流器; 圖3顯示根據至少一些實施例之一FET控制器的一方塊圖; 圖4顯示根據至少一些實施例之一時序電路的一電路圖;及 圖5顯示根據至少一些實施例之一方法的一流程圖。 定義
各種用語係用以指涉特定的系統組件。不同的公司可使用不同名稱指涉一組件,本文件不打算區別名稱不同但功能無不同的組件。在下列討論及申請專利範圍中,用語「包括(including)」及「包含(comprising)」係以開放方式使用,且因此應理解為意指「包括,但不限於…(including, but not limited to…)」。同樣地,用語「耦接(couple或couples)」係意欲意指間接連接或直接連接。因此,若一第一裝置耦接至一第二裝置,則該連接可係通過直接連接或通過經由其他裝置及連接的間接連接。
「順向偏壓(Forward bias)」與「順向偏壓的(forward biased)」應指介於一裝置的一陽極端子與一陰極端子之間的一正電壓。
「逆向偏壓(Reverse bias)」與「逆向偏壓的(reverse biased)」應指介於一裝置的一陽極端子與一陰極端子之間的一負電壓。
「控制器」應指組態以讀取信號並回應於此類信號而採取行動的一基板上個別電路組件、建構在一基板上的一特定應用積體電路(ASIC)、建構在一基板上的一微控制器(具有控制軟體儲存其上)、或其組合。
關於一基板上的電性裝置,用語「輸入(input)」及「輸出(output)」係指至電性裝置的電性連接,且不應理解為需要動作的動詞。例如,控制器可具有閘極輸出與一或多個感測輸入。
110‧‧‧整流器
112‧‧‧陽極端子
114‧‧‧陰極端子
200‧‧‧場效電晶體(FET)
202‧‧‧源極
204‧‧‧閘極
206‧‧‧汲極
208‧‧‧自舉電容器
210‧‧‧第一引線
212‧‧‧第二引線
214‧‧‧功率節點
216‧‧‧二極體
218‧‧‧陽極引線
220‧‧‧陰極引線
222‧‧‧FET控制器
224‧‧‧閘極輸出
226‧‧‧功率輸入
228‧‧‧陽極感測輸入
230‧‧‧陰極感測輸入

Claims (11)

  1. 一種電路,其包含: 一陽極端子; 一陰極端子; 一場效電晶體(field effect transistor, FET),其界定一汲極、一源極、以及一閘極,該源極經耦接至該陽極端子,並且該汲極經耦接至該陰極端子; 一二極體,其具有一陽極及一陰極,該陽極經耦接至該陰極端子; 一自舉電容器,其經耦接在該二極體的該陰極與該陽極端子之間; 一FET控制器,其經耦接至該FET的該閘極、該自舉電容器、及該二極體的該陰極; 該FET控制器經組態以當該電路變為順向偏壓時使該FET導通,並且該FET控制器經組態以在當該電路被加逆向偏壓的時間週期期間使該FET不導通。
  2. 如請求項1之電路,其中該FET控制器經進一步組態以將電流從該自舉電容器驅動至該閘極以使該FET導通,並且在該電路變為逆向偏壓之前將該閘極直接耦接至該源極。
  3. 如請求項1之電路,其中該FET控制器經進一步組態以在順向偏壓週期期間,預測一緊接隨後逆向偏壓的時序,並且經組態以基於預測之該時序斷開該FET。
  4. 如請求項1之電路,其中該FET控制器進一步包含一閘極驅動器電路,該閘極驅動器電路經組態以將該FET上的一壓降控制至一設定點電壓。
  5. 如請求項1之電路,其中該FET控制器經進一步組態以監測該FET的該閘極與該源極上的一電壓,並且經進一步組態以當該閘極與該源極上的該電壓下降低於一預定臨限時使該FET不導通。
  6. 一種方法,其包含: 當一經封裝半導體裝置被加逆向偏壓並且該經封裝半導體裝置的一場效電晶體(FET)不導通時,儲存能量在一自舉電容器上; 當該經封裝半導體裝置變成經順向偏壓時,將來自該自舉電容器的能量耦接至該FET的一閘極以使該FET導通;且然後 在當該經封裝半導體裝置變成經逆向偏壓之前,使該FET不導通。
  7. 如請求項6之方法,其中耦接來自該自舉電容器的能量進一步包含將該FET上的壓降控制至一設定點電壓。
  8. 如請求項6之方法,其中使該FET不導通進一步包含在當該經封裝半導體裝置係順向偏壓的時間週期期間: 感測該順向偏壓在減弱;及 在當該經封裝半導體裝置係順向偏壓的該時間週期的結束之前,將該FET的該閘極短路至該源極,以使該FET不導通。
  9. 如請求項6之方法,其中使該FET不導通進一步包含: 監測跨該FET的該閘極與該源極的一電壓;及 當該FET的該閘極與一源極上的該電壓下降低於一預定臨限時使該FET不導通。
  10. 如請求項6之方法,其進一步包含,在一順向偏壓週期期間,預測一緊接隨後逆向偏壓的時序,並且基於預測之該時序使該FET不導通。
  11. 一種切換功率轉換器,其包含: 一電感器,其界定一第一引線與一第二引線,該第一引線經組態以耦接至一電壓源; 一電控開關,其在一第一側上經耦接至該電感器的該第二引線,並且經組態以在一第二側上經耦接至該電壓源的一返回或共同端; 一驅動器控制器,其經耦接至該電控開關,並且經組態以週期性地使該電控開關導通;及 一整流器電路,其包含: 一陽極端子,其經耦接至該電感器; 一陰極端子,其經組態以耦接至一負載; 一場效電晶體(FET),其界定一汲極、一源極、以及一閘極,該源極經耦接至該陽極端子,並且該汲極經耦接至該陰極端子; 一二極體,其具有一陽極及一陰極,該陽極經耦接至該陰極端子; 一自舉電容器,其經耦接在該二極體的該陰極與該陽極端子之間; 一FET控制器,其經耦接至該FET的該閘極、該自舉電容器、及該二極體的該陰極; 該FET控制器經組態以當該整流器電路變成經順向偏壓時使該FET導通,並且該FET控制器經組態以在當該整流器電路被加逆向偏壓的時間週期期間使該FET不導通。
TW108116130A 2018-06-22 2019-05-10 整流器電路、使用整流器電路的切換功率轉換器及其相關方法 TW202002489A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/015,464 US10756616B2 (en) 2018-06-22 2018-06-22 Methods and systems of a rectifier circuit
US16/015,464 2018-06-22

Publications (1)

Publication Number Publication Date
TW202002489A true TW202002489A (zh) 2020-01-01

Family

ID=68805922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116130A TW202002489A (zh) 2018-06-22 2019-05-10 整流器電路、使用整流器電路的切換功率轉換器及其相關方法

Country Status (4)

Country Link
US (1) US10756616B2 (zh)
CN (1) CN110635794B (zh)
DE (1) DE102019003644A1 (zh)
TW (1) TW202002489A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822546B (zh) * 2022-06-01 2023-11-11 立錡科技股份有限公司 切換電容式電壓轉換電路及切換電容轉換器控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807886B (zh) * 2021-06-28 2023-07-01 碇基半導體股份有限公司 控制主要元件開關的轉換電路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153453A (en) * 1991-08-16 1992-10-06 International Business Machines Corp. High voltage majority carrier rectifier
US5568373A (en) * 1994-07-28 1996-10-22 Small; Kenneth T. Tolerant power converter
WO2004040761A1 (en) * 2002-10-29 2004-05-13 Koninklijke Philips Electronics N.V. Bi-directional double nmos switch
US7265525B2 (en) 2005-03-31 2007-09-04 Virginia Tech Intellectual Properties, Inc. Self-driven scheme for synchronous rectifier having no body diode
US8232830B2 (en) * 2007-02-02 2012-07-31 Mitsubishi Electric Corporation Rectifier with less conduction loss than a diode
JP4833101B2 (ja) * 2007-02-02 2011-12-07 三菱電機株式会社 整流装置
CN102549647B (zh) * 2009-08-17 2014-12-17 珀因特泰克公司 能够控制恒定发光二极管的电流的发光二极管驱动电路
US8913409B2 (en) 2010-02-12 2014-12-16 City University Of Hong Kong Self-driven AC-DC synchronous rectifier for power applications
US8536808B2 (en) * 2011-11-23 2013-09-17 Tower Semiconductor Ltd. CMOS bootstrap circuit for DC/DC buck converter using low voltage CMOS diode
US8892914B2 (en) * 2011-12-08 2014-11-18 Active-Semi, Inc. Programmable fault protect for processor controlled high-side and low-side drivers
US9225243B2 (en) * 2011-12-28 2015-12-29 Osram Gmbh Converter device
CN104137651B (zh) * 2012-01-20 2018-01-09 奥斯兰姆施尔凡尼亚公司 具有均匀led亮度的照明系统
JP5576894B2 (ja) * 2012-03-24 2014-08-20 株式会社東芝 Fet駆動回路およびfetモジュール
US8558586B1 (en) * 2012-08-30 2013-10-15 Infineon Technologies Ag Circuit arrangement for driving transistors in bridge circuits
US9013898B2 (en) * 2012-09-21 2015-04-21 Semiconductor Components Industries, Llc Synchronous rectifier controller, power converter using same, and method therefor
JP6037971B2 (ja) * 2013-08-09 2016-12-07 三菱電機株式会社 降圧チョッパ回路
US20160049876A1 (en) * 2014-08-12 2016-02-18 Alpha And Omega Semiconductor Incorporated Single package synchronous rectifier
US9985626B2 (en) * 2015-01-30 2018-05-29 Navitas Semiconductor, Inc. Bidirectional GaN switch with built-in bias supply and integrated gate drivers
US9716439B2 (en) * 2015-01-30 2017-07-25 Infineon Technologies Austria Ag Self supply for synchronous rectifiers
CN104953859B (zh) * 2015-07-06 2019-03-22 安徽省东科半导体有限公司 一种同步二极管
JP6789780B2 (ja) * 2016-11-28 2020-11-25 株式会社 日立パワーデバイス 整流器およびそれを用いたオルタネータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822546B (zh) * 2022-06-01 2023-11-11 立錡科技股份有限公司 切換電容式電壓轉換電路及切換電容轉換器控制方法

Also Published As

Publication number Publication date
DE102019003644A1 (de) 2019-12-24
US20190393768A1 (en) 2019-12-26
CN110635794B (zh) 2024-06-21
CN110635794A (zh) 2019-12-31
US10756616B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
US9030177B2 (en) Switched-mode power supply having an adaptive on-time function and controlling output with a ripple control method
KR100716859B1 (ko) 발광 다이오드 구동용 반도체 회로, 및 그것을 구비한 발광다이오드 구동 장치
JP4481879B2 (ja) スイッチング電源装置
JP5330962B2 (ja) Dc−dcコンバータ
EP2745368B1 (en) Start-up circuit
TWI584693B (zh) Dimming device
JP2013078111A (ja) ドライブ回路
TWI657718B (zh) 調光裝置
TW202002489A (zh) 整流器電路、使用整流器電路的切換功率轉換器及其相關方法
US9780690B2 (en) Resonant decoupled auxiliary supply for a switched-mode power supply controller
JP5220235B2 (ja) 電源装置及び照明器具
JP5228567B2 (ja) 昇圧型dc−dcコンバータ
TWI631875B (zh) 調光裝置之保護電路及調光裝置
US9125266B2 (en) LED driver operating in boundary condition mode
JP5220234B2 (ja) 電源装置及び照明器具
TWI629866B (zh) 一種用於具有自調節電源的功率變換器的系統和方法
CN111225478B (zh) 开关组件保护电路
JP5220233B2 (ja) 電源装置及び照明器具
US20130106384A1 (en) Voltage converting circuit
JP3798289B2 (ja) スイッチング電源回路
TWM485439U (zh) 電源供應系統及其線性控制模組
JP7511182B2 (ja) 点灯装置
CN105165121B (zh) 用于led的操作电路和用于控制led的方法
JP2012119520A (ja) 発光ダイオード駆動回路
EP2822358B1 (en) Electric driver circuit for driving a light-emitting diode and method thereof