TW201919690A - 具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法 - Google Patents

具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法 Download PDF

Info

Publication number
TW201919690A
TW201919690A TW107124600A TW107124600A TW201919690A TW 201919690 A TW201919690 A TW 201919690A TW 107124600 A TW107124600 A TW 107124600A TW 107124600 A TW107124600 A TW 107124600A TW 201919690 A TW201919690 A TW 201919690A
Authority
TW
Taiwan
Prior art keywords
antigen
ipv
type
immunogenic composition
hib
Prior art date
Application number
TW107124600A
Other languages
English (en)
Other versions
TWI786153B (zh
Inventor
拉凱許 庫瑪
英德吉 夏瑪
西陀樂 楊卡翠
多達帕 曼諾哈
希特尤提 夏瑪
Original Assignee
印度商印度血清研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 印度商印度血清研究公司 filed Critical 印度商印度血清研究公司
Publication of TW201919690A publication Critical patent/TW201919690A/zh
Application granted granted Critical
Publication of TWI786153B publication Critical patent/TWI786153B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0018Combination vaccines based on acellular diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/05Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32634Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

一種免疫原性組成物,其包含白喉類毒素(Diphtheriatoxoid)(D)抗原、破傷風類毒素(tetanustoxoid)(T)抗原、B型肝炎表面抗原(HBsAg)、去活化之全細胞百日咳博德特氏菌(B. pertussis)(wP)抗原、與載體蛋白軛合之B型流感嗜血桿菌(Haemophilus influenzaetype B)(Hib)莢膜糖、去活化之脊髓灰質炎(Polio)病毒(IPV)抗原和另外之一或多種抗原,及製備彼之方法。一種全液體組合疫苗,其顯示改善之免疫原性、降低之反應原性及改善之安定性。改善之甲醛去活化方法、個別吸附在磷酸鋁佐劑上之白喉類毒素(D)抗原、破傷風類毒素(T)抗原和B型肝炎(HepB)表面抗原之改善的吸附輪廓、最小總鋁含量(Al3+)和作為防腐劑之2-苯氧基乙醇(2-PE)的優化濃度。

Description

具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法
本發明關於生物技術之領域,更具體地說,本發明關於包含一組抗原/免疫原之組合疫苗組成物及其製備方法。本發明進一步關於組合疫苗製造領域中之改善的方法。
可提供針對多種疾病之免疫原性的組合疫苗總是優於單價疫苗,因為其減少給予注射之次數、減少與多次肌肉內注射相關之併發症、降低投予及生產成本、減低存貨成本,降低延遲或錯失疫苗接種之風險並藉由減少分別接種疫苗之次數來改善患者之依從性。再者,組合疫苗之全液體製劑具有明顯優於那些需要重構者之優點。與非全液體疫苗相比較,全液體疫苗之平均製備時間被發現幾乎為非全液體疫苗之一半。在相同研究中,幾乎所有醫護人員(97.6%)均陳述他們更願意在其日常行醫中使用全液體疫苗。(參考:Soubeyrand B, et al; Assessment of
preparation time with fully-liquid versus non-fully liquid paediatric hexavalent vaccines. A time and motion study; Vaccine 2015; 33:3976-82)。
目前已知且可取得之組合疫苗可能不含用於在易感人群中在一次注射中取得用於多種疾病之所需安全性、效力及免疫原性水準之為適當免疫原形式之適當抗原的適當配製劑。僅使用一些額外抗原創建之不同疫苗組合的數量相當可觀。經由在DTwP或DTaP添加1至4種其他抗原組分(例如HIB(冷凍乾燥或液體)、HBV、IPV、HAV)可產生44種可能之不同疫苗組合。若考慮來自不同製造商之個別組分,則該數量將增加到數千。由於每一個別之新組合之疫苗(考慮根據來源組分中的差異)必須個別研發以證明安全性、安定性、相容性及效力,所有這些疫苗之研發成為具有挑戰性之任務。

組合疫苗之抗原:
白喉 及破傷風抗原
白喉及破傷風為分別由白喉棒桿菌
(Cornyebacterium Diphtheriae)及破傷風梭菌(Clostridium tetani)引起之急性感染。在該二種情況中均由這些細菌之強外毒素造成臨床疾病。提供針對這些細菌之保護作用的疫苗含有經過化學修飾之該等毒素,因此該等毒素不再具有毒性但仍具有抗原性。藉由在含有牛萃取物之培養基中培養白喉棒桿菌及破傷風梭菌來產生白喉及破傷風毒素。使用包括熱、UV、福馬林/甲醛、戊二醛、乙醯亞乙基亞胺,等之後續處理來將毒素去活化以製造類毒素[白喉類毒素(D)及破傷風類毒素(T)]。關於牛海綿狀腦病(spongiform encephalopathy)(BSE)、傳染性海綿狀腦病(TSE)、賈庫氏病(Creutzfeldt-Jakob disease)(CJD和變異性CJD疾病)之關注可能來自於在含有牛萃取物之生長培養基中使用的動物組分會透過疫苗傳播。(參考:WHO Guidelines on Transmissible Spongiform Encephalopathies in relation to Biological and Pharmaceutical Products; 2003 & EMEA/CPMP/BWP/819/01;2001年4月24日)。

百日咳抗原
在1940年代引入由經化學及熱去活化之百日咳博德特氏菌生物所組成之全細胞疫苗造成由百日咳博德特氏菌引起之百日咳發病率急劇下降。
全細胞DTP疫苗通常與幾種局部不良事件(例如注射部位之紅斑、腫脹和疼痛)、發燒及其他輕微之全身性事件(例如嗜睡、煩躁和厭食)有關(參考:Cody CL, Baraff LJ, Cherry JD, Marcy SM, Manclarck CR; The nature and rate of adverse reactions associated with DTP and DT immunization in infants and children. Paediatrics 1981; 68:650-60)&(參考:Long SS, DeForest A, Pennridge Pediatric Associates, et al. Longitudinal study of adverse reactions followingDiphtheria -tetanus -pertussis vaccine in infancy. Paediatrics 1990; 85:294-302)。在接受全細胞DTP疫苗之兒童中,較嚴重之全身性事件(例如抽搐{有或無發熱}和低滲低反應發作)的發生率較低(比例為投予1,750個劑量發生一個案例)(參考:Cody CL, Baraff LJ, Cherry JD, Marcy SM, Manclarck CR; The nature and rate of adverse reactions associated with DTP and DT immunization in infants and children. Paediatrics 1981; 68:650-60)。急性腦病甚至更少發生(比例為投予100萬個劑量發生0-10.5個案例)。專家們的確同意全細胞百日咳疫苗在一些罕見病例中導致持久之腦損傷。(參考:Institute of Medicine; DPT vaccine and chronic nervous system dysfunction, a new analysis; Washington D.C., National Academy Press, 1994)。
一些報告援引全細胞百日咳疫苗接種、反應原性和嚴重副作用之間的關係導致疫苗接受度下降及隨之而來的流行病(Miller, D.L., Ross, E.M., Alderslade, R., Bellman, M.H., and Brawson, N.S.B.(1981)。Pertussis immunization and serious acute neurological illness in children: Brit Med. J. 282: 1595-1599)。
與不良反應相關之全細胞百日咳(wP)為它們在全世界持續使用之障礙,因此基於wP之組合疫苗逐漸被工業化世界中之基於無細胞百日咳之組合疫苗所取代。最近,已研發出定義組分百日咳疫苗。先前已報導所有基於液體六價無細胞百日咳之疫苗(DTaP IPV PRP-T-HBsAg)(EP1028750)。
Infanrix®Hexa(GSK)為目前全球唯一市售之含有沙克(Salk)IPV的六價兒童組合疫苗。該產品(DTaP3-IPV-HBV//Hib)係將五價產品之預填充注射器與在單獨之小瓶中之凍乾的Hib抗原PRP-T軛合物(其係在使用前以其餘疫苗重建)共同包裝在一起出售。
第二種六價疫苗,Hexyon®(亦稱為
Hexacima®和Hexaxim®)為來自賽諾菲巴斯德(Sanofi Pasteur)之全液體六價疫苗;但其亦具有aP。該疫苗很可能成為歐洲及全球私人市場之目標。另一正由Merck及賽諾菲巴斯德聯合研發之六價疫苗(亦具有aP)目前正進行第Ⅲ期臨床研究。
Bharat Biotech國際公司正在研發一種七價組合疫苗,其係由下列群組所組成:DT、無細胞百日咳、沙賓(Sabin)IPV(第1型:40 DU、第2型:8 DU、第3型:32 DU)、單株去活化之輪狀病毒(G9株,即,116E株)、與TT共軛結合之b型嗜血桿菌PRP軛合物及重組B型肝炎疫苗。
然而,現在對無細胞百日咳(aP)疫苗之長期有效性己浮現擔憂,特別是在發展中國家的環境中。最近的報告表明青少年對百日咳之免疫力下降且此為6個月以下嬰兒在完全接種疫苗之前病例增加的原因。在嬰兒期以aP免疫化之8至12歲兒童的疫苗效力估計為24%。在澳洲進行之一項觀察性研究亦證明在嬰兒期給予aP疫苗之青少年中病例比率高於給予wP疫苗者(相對風險為3.3,95%置信區間2.4-4.5)。
從成本觀點來看,由於製造差異和特許使用費,aP抗原之成本根據歷史事實超過wP抗原10到30倍,因此對發展中國家構成經濟負擔。因此,基於wP之六價疫苗的成本更適合供資源匱乏之國家的公共部門使用。
因為成本和對aP疫苗之長期有效性浮現的擔憂(特別是在發展中國家的環境中),因此,在意圖供發展中國家使用之六價疫苗中使用全細胞百日咳(wP)已經變得很重要。與最佳之全細胞百日咳(wP)疫苗相比較,aP疫苗在大規模免疫計劃中並非同樣有效(Vickerset al . 2006; Cherry 2012)。
最近對在高度免疫化之群體中之疫情爆發的研究顯示aP疫苗之保護期太短(Kleinet al. 2012; Misegadeset al. 2012),導致年齡較大之兒童及青少年之免疫力下降且該年齡組之病例對應增加(Skowronskiet al. 2002; Kleinet al. 2012)。此與wP疫苗形成對比,該wP疫苗對十幾歲之青少年提供很好的保護(Kleinet al. 2012)。由於這些缺點,在1990年代改用aP疫苗之國家中現在有一個世代之兒童不僅在對抗百日咳方面受到的保護較少,而且他們對加強劑之反應可能亦較差,因為最初引發兒童免疫反應之疫苗可能會決定他們對之後的免疫接種加強劑之免疫反應(Poddaet al. 1995; Mascartet al. 2007;Sheridanet al. 2012;Liko, Robison and Cieslak 2013;Smitset al. 2013)。
促成wP之反應原性的最重要因素之一為該來自細菌外膜之內毒素脂寡糖(LOS)之存在。
將wP疫苗中之毒素去活化可藉由各種方法完成,但在最終產品中不應檢測到活性之熱不安定毒素。許多製造商施行之用於將wP毒素去活化的全細胞百日咳(wP)團塊處理方法係使用熱處理/福馬林。一些報導提出使用硫柳汞將wP去活化。然而,使用硫柳汞會導致IPV之抗原性喪失(Vaccine 1994 Volume 12 No. 9 851-856. Deleterious effect of thimerosal on the potency of inactivated poliovirus vaccine),因此在含有IPV之組合疫苗的情況中,可能需要呈現在與含有硫柳汞之wP分開的小瓶中以隨著時間的推移保留其效力或改變該來源百日咳團塊之去活化。一些抗原(即,活性PT)亦可作為免疫反應修飾劑,且在不同疫苗之間已觀察到對各種抗原之免疫反應中的顯著差異(WHO,1993)。
根據玻管內或體內試驗所使用者,化學萃取LOS導致內毒素含量明顯降低(20%)且與內毒素相關之毒性顯著下降(高達97%)。LOS萃取不影響該產品之完整性,更重要的是,不會影響低DTP之效力及/或安定性。再者,抗體及T細胞反應中幾乎未觀察到任何差異。(參考:Waldely Oliveira Dias et. al; An improved whole cell pertussis vaccine with reduced content of endotoxin; Human Vaccines & Immunotherapeutics 9:2, 339-348; February 2012)。

B 型肝炎抗原
肝炎病毒有多種病毒株。B型肝炎為由B型肝炎病毒(HepB)引起之疾病,其感染人的肝臟並引起稱為肝炎之炎症。針對該疾病之疫苗含有病毒外套蛋白、B型肝炎表面抗原(HBsAg)其中一者。現在已有用於大規模免疫化之疫苗,例如由墨克(Merck)提供之產品Recombivax HB®和Comvax®、由Glaxo SmithKlin生物製藥提供之Engerix-B®和Pediarix®。與HepB單抗原疫苗相比較,具有B型肝炎組分之組合疫苗與較高之完成率及順應性結果有關。(參考:Kurosky. et. al; Effect of Combination Vaccines on Hepatitis B Vaccine Compliance in Children in the United States;The Pediatric Infectious Disease Journal. 36(7):e189-e196, JUL 2017)。 一些參考文獻提出將B型肝炎表面抗原與其他抗原一起吸附在磷酸鋁上。B型肝炎組分基本上應不含硫柳汞(製備不含硫柳汞之HBsAg的方法先前已發表於EP1307473中)。Hexavac®為一種組合疫苗,由於該B型肝炎組分之免疫原性較低因而退出市場。因此,需要包含具有足夠或增強之免疫原性的B型肝炎抗原的組合疫苗組成物。

流感嗜血桿菌 (Haemophilus influenzae)(Hib) 抗原
流感嗜血桿菌為革蘭氏陰性球桿菌,其為上呼吸道菌群之正常部分。B型流感嗜血桿菌(Hib b)為幼兒腦膜炎侵襲性血源性感染的主要原因和生命最初2年內腦膜炎的主要原因。加拿大在1987年開始使用多醣疫苗[多核糖核糖醇磷酸酯(PRP)]進行針對流感嗜血桿菌之免疫接種。Hib之多核糖基核糖醇磷酸酯(PRP)膠囊為該生物體之主要毒力因子。抗PRP抗體為血清殺菌活性之主要貢獻者且抗體水準增加與侵襲性疾病之風險降低有關。PRP為T細胞無關抗原,因此其特徵在於a)在小於18個月大之嬰兒和兒童中誘導較差之抗體反應,b)相較於使用T細胞依賴性抗原時所見到之抗體反應為可變化的且為定量上較小之反應,c)產生較高比例之免疫球蛋白M(IgM),及d)無法誘導加強劑反應。
僅基於PRP組分之最初疫苗證明在嬰兒中無效。進一步的努力係針對PRP結合型疫苗,其中該PRP與稱為載體蛋白之蛋白質(諸如腦膜炎奈瑟氏球菌之外膜蛋白、白喉類毒素、破傷風類毒素及CRM 197)軛合。在組合疫苗中包含Hib-軛合物組分與Hib免疫原性降低有關。此外,Hib-軛合物在水性介質中不安定且無法以此種形式長期儲存。因此,B型流感嗜血桿菌(Hib)之PRP多醣經常配製成乾燥之固體,該乾燥之固體在遞送時以其他抗原之液體配製劑重構。例如,在Infanrix®hexa(WO99/48525)中。

脊髓灰質炎抗原
可取用不同種類之疫苗:
• 由Albert Sabin博士於1961年研發之活的減毒(經減弱的)口服脊髓灰質炎疫苗(OPV)。包含沙賓(Sabin)病毒株之OPV係經由口服給予。
• 由Jonas Salk博士於1955年研發之去活化(經滅殺)的脊髓灰質炎疫苗(IPV)。包含沙克(Salk)病毒株之IPV係以注射劑形式給予。
• 最近,已研發用於注射之沙賓去活化之脊髓灰質炎病毒(其係經由以福馬林將沙賓病毒株脊髓灰質炎病毒去活化來製備)且亦已經可以商品形式取得。
減毒之活脊髓灰質炎疫苗(OPV)及去活化之脊髓灰質炎疫苗(IPV)在全世界均可有效控制脊髓灰質炎疾病。該脊髓灰質炎疫苗可包含沙克或沙賓病毒株。
Jonas Salk博士在1955年成功將野生型脊髓灰質炎病毒去活化,從而使其可為注射型配製劑,並將其命名為沙克病毒株,該沙克病毒株包括已用於對抗脊髓灰質炎疾病之疫苗中的Mahoney第1型、MEF第2型及Saukett第3型。該沙賓病毒株包括沙賓1及沙賓2病毒株。目前可接受之脊髓灰質炎疫苗的標準劑量含有40 D抗原單位之去活化之第1型脊髓灰質炎病毒(Mahoney)、8 D抗原單位之去活化之第2型脊髓灰質炎病毒(MEF-1)及32 D抗原單位之去活化之第3型脊髓灰質炎病毒(Saukett),例如Infanrix-hexa®(WO99/48525)。
IPV目前可以無佐劑之獨立配製劑形式或以各種組合形式提供,包括DT-IPV(具有白喉和破傷風類毒素)及六價-IPV疫苗(另外具有百日咳、B型肝炎和B型流感嗜血桿菌),例如Infanrix®hexa(WO99/48525)。
然而,與OPV相比較時,IPV之總生產成本明顯較高。這主要是因為需要:(i)每一劑量更多病毒;(ii)額外之下游處理(即,濃縮、純化和去活化)及相關之QC測試;(iii)在下游處理損失抗原或恢復不良;及(iv)污染。到目前為止,在低收入和中等收入國家中財政挑戰一直是IPV創新及執行的主要缺陷。
在根除脊髓灰質炎病毒後未來全球對IPV之需求可能會從目前每年8000萬個劑量增加到4.5億個劑量。因此,可能需要“拉長”IPV供應之方法。在習知疫苗之供應不足以滿足全球需求或在習知疫苗之製造成本阻止該疫苗在開發中國家以負擔得起之價格出售的情況下,使用較低之IPV抗原劑量來提供對抗感染之保護作用的降低劑量之有效疫苗配製劑是令人渴望的。此外,與現有之市售配製劑相比較,接觸較低劑量之IPV可能更安全。因此,需要評估以更實惠之價格提供IPV的各種策略。因此,包含降低劑量之IPV的組合疫苗使其更便宜且易於投予。
在大流行之情況下,使用佐劑之流感疫苗可允許減少劑量、增加疫苗之可用性及降低疫苗之成本。因此,據推測,添加佐劑之IPV疫苗配製劑將降低成本且亦增加全球可用之IPV劑量的數量。
此外,鋁鹽被認為是安全的且已用於含有IPV之組合疫苗中,其具有最低之研發障礙且製造成本不高。然而,尚不了解鋁佐劑可允許顯著減少劑量。

治療抗原
其他可被包含在組合疫苗中之抗原為流感嗜血桿菌(a、c、d、e、f血清型和未經包囊之病毒株)、肝炎(A、C、D、E、F和G病毒株)、腦膜炎A、B或C、流感、肺炎球菌、鏈球菌、炭疽桿菌(Anthrax)、登革熱(Dengue)、瘧疾(Malaria)、麻疹(Measles)、腮腺炎(Mumps)、德國麻疹(Rubella)、BCG、日本腦炎、輪狀病毒(Rotavirus)、天花、黃熱病、傷寒、帶狀皰疹(Singles)、水痘病毒(Varicella virus),等。
組合疫苗中使用之抗原的範圍及類型取決於欲使用之目標群組年齡,諸如嬰兒、幼兒、兒童、青少年和成人。最早之已知能夠預防來自百日咳博德特氏菌、破傷風梭菌、白喉棒桿菌及可選擇地,去活化之脊髓灰質炎病毒(IPV)及/或B型肝炎病毒及/或B型流感嗜血桿菌感染之組合疫苗可從(參見,例如WO 93/24148、WO97/00697、WO2000/030678、WO2008/028956、US 6013264和
WO2005089794)得知。
同時,多劑量疫苗注射必須使用防腐劑以避免被微生物污染。在由聯合國等出口到較低度開發之國家的組合疫苗產品方面,考慮到將使用該疫苗之國家的環境、配發方法、費用,等,含有防腐劑之多劑量疫苗為較佳者。用於疫苗產品中之防腐劑的實例可包含硫柳汞、2-PE、苯酚、甲醛且該防腐劑之常規劑量為本技藝所已知。
本發明者已發現組合疫苗組成物中之抗原的免疫原性、反應原性、安定性和正確形式之維持係取決於該組成物之配製方式,包括製造個別抗原之方法、添加抗原之順序、對某些抗原使用特定量之特定佐劑、抗原單獨吸附或聯合吸附在佐劑上、抗原吸附在佐劑上之程度、總明礬含量、所使用之防腐劑的濃度和類型、各種參數的使用(包括攪拌、溫度和pH值)。
揭示一種顯示出改善之免疫原性和降低之反應原性的液體、安定之組合疫苗組成物及其製備方法。
本發明關於由下列群組所組成之組合疫苗組成物:
a) 使用半合成之培養基產生經高度純化之白喉類毒素(D)和破傷風類毒素(T)且隨後將它們解毒。
b) 使用熱去活化和化學去活化之組合製備去活化之全細胞百日咳博德特氏菌(wP)組分,為特殊比例之特定百日咳博德特氏菌株可導致反應原性降低及效力增加。
c) 與載體蛋白(CP)軛合之B型流感嗜血桿菌(Hib)莢膜多醣抗原(PRP)。
d) 利用改善之甲醛去活化方法製備之標準劑量或劑量減少之沙克或沙賓(去活化之脊髓灰質炎病毒)IPV且該沙克或沙賓IPV可進一步吸附在氫氧化鋁上。
e) 最佳之抗原吸附輪廓,從而使B型肝炎(HepB)表面抗原個別吸附在磷酸鋁佐劑上,D和T抗原個別吸附在磷酸鋁佐劑上,藉此導致免疫原性提高。
f) 最低明礬含量,藉此確保反應原性降低。
g) 最佳濃度之作為防腐劑的2-苯氧基乙醇(2-PE)。

目的
本發明之一些目的(本文中至少一個實施態樣能滿足該目的)如下:
本發明的一個目的為改善先前技藝之一或多個問題或至少提供有用之替代方案。
本發明之另一目的為提供液體、安定、反應原性較低且免疫原性較高之組合疫苗組成物/配製劑,該組合疫苗組成物/配製劑適合用於預防和治療一種以上之疾病狀態且符合每一該免疫原性組分之血清保護標準。
本發明還有另一目的係提供用於製造該等組合疫苗之組成物/配製劑之方法。
本發明之其他目的及優點將可從下文中之描述更加明顯且下文中之描述並不意圖限制本發明之範圍。

詳細說明
根據本發明之第一實施態樣,該組合疫苗組成物包含選自下列群組之抗原/免疫原群組(但不限於此)且另外包含以鋁為底質之佐劑及防腐劑:白喉類毒素(D)、破傷風類毒素(T)、全細胞百日咳博德特氏菌(wP)、B型流感嗜血桿菌(Hib)PRP-CP軛合物、B型肝炎(HepB)、去活化之脊髓灰質炎病毒(IPV)。
根據本發明之第二實施態樣,該組合疫苗組成物可進一步包含一或多種選自由下列所組成之群組的抗原(但不限於此):分別為流感嗜血桿菌(a、c、d、e、f血清型和未經包囊之菌株)、肝炎(A、C、D、E、F和G病毒株)、腦膜炎A、B、C、Y、W-135或X、流感、金黃色葡萄球菌、傷寒沙門氏菌抗原、無細胞百日咳抗原、經改質之腺苷酸環化酶、瘧疾抗原(RTS、S)、肺炎球菌、鏈球菌、炭疽桿菌、登革熱、瘧疾、麻疹、腮腺炎、德國麻疹、BCG、人類乳頭狀瘤(papilloma)病毒、日本腦炎、登革熱、玆卡(Zika)、伊波拉(Ebola)、基孔肯雅熱(Chikungunya)、輪狀病毒、天花、黃熱病、黃病毒、帶狀皰疹、水痘病毒抗原。根據本發明之第三實施態樣,該組合疫苗組成物中所使用之IPV病毒株係由選自第1型、第2型和第3型之群組的去活化之沙賓病毒株或選自Mahoney第1型、MEF第2型和Saukett第3型之群組的去活化之沙克病毒株所組成。
於第三實施態樣的態樣之一,脊髓灰質炎病毒可藉由下述方法生長:
• 使用CCL81-VERO(猴腎)細胞株作為宿主細胞以用於生長脊髓灰質炎病毒,即,沙賓及沙克病毒株。
• 以所需之脊髓灰質炎病毒株感染宿主細胞並培育72小時後,匯集含有該病毒及細胞碎片之培養基並收集在單一容器中。
• 使用100 KDa匣將濾液進行切向流過濾;使用磷酸鹽緩衝液進行滲濾並使用陰離子交換色層分析法純化。
• 在投予患者之前,必須使用適當之去活化方法將病毒去活化。
然而,本發明者意外地發現在,D-抗原在甲醛去活化後之損失百分比高可能是由於磷酸鹽緩衝液的存在意外地引起不欲有之脊髓灰質炎病毒顆粒聚集。
因此,本發明之一重要態樣包含改善之福馬林去活化方法,該福馬林去活化方法包含下列步驟:
a) 將純化之病毒匯集庫在pH 7至7.5,(30至50 mM)之範圍內進行緩衝液交換,從磷酸鹽緩衝液換成Tris緩衝液,
b) 將含有甘胺酸(5 gm/l)之M-199培養基加入上述混合物中,
c) 加入0.025%甲醛並隨後混合,
d) 隨後將該混合物在37℃下培育5至13天,同時在磁力攪拌器上持續攪拌病毒塊,
e) 在第7天將該培育後之混合物在中間TFF系統(100 KDa,0.1 m2 )中處理並在去活化後進行最終過濾,
f) 隨後將該過濾之塊狀物儲存在2至8℃,
g) 進行D-Ag ELISA以測定D-Ag單位。
根據本發明之第四實施態樣,用於該組合疫苗組成物中之IPV病毒株包含選自第1型、第2型和第3型之群組的去活化之沙賓病毒株或選自Mahoney第1型、MEF第2型和Saukett第3型之群組的去活化之沙克病毒株的減低劑量。
根據本發明之第五實施態樣,該IPV(沙賓&沙克病毒株)未吸附在任何佐劑上(例如與其他組分(若存在時)混合之前)。
根據本發明之第六實施態樣,該IPV(沙賓&沙克病毒株)組分可能吸附在選自下列群組之佐劑上:鋁鹽(Al3+ ),諸如氫氧化鋁(Al(OH)3 )或磷酸鋁(AlPO4 )、明礬、磷酸鈣、MPLA、3D-MPL、QS21、含CpG之寡脫氧核苷酸佐劑、脂質體或水包油乳劑或彼等之組合(例如與其他組分(若存在時)混合之前或之後)。若吸附時,一或多種IPV組分可分別吸附或以混合物之形式一起吸附在氫氧化鋁上。
該IPV(沙賓&沙克病毒株)組分可藉由下列步驟吸附在鋁鹽上:
• 採取所需體積之經高壓滅菌的Al(OH)3 以使50 ml容器中之最終明礬(Al+++)濃度介於0.1至0.8 mg/劑量之間
• 加入具有經調整之D-Ag單位的IPV團塊並以稀釋劑(10x M-199 + 0.5%甘胺酸)補足體積,
• 調節該最終配製劑之pH值並獲得pH在6至6.8之間的最終配製劑。
於第六實施態樣的態樣之一,經福馬林去活化之IPV可吸附在明礬(Al3+ )上,該明礬(Al3+ )之濃度係選自下列群組:0.1 mg/劑量、0.2 mg/劑量、0.3 mg/劑量、0.4 mg/劑量、0.5 mg/劑量、0.6 mg/劑量、0.7 mg/劑量和0.8 mg/劑量、較佳為每一血清型0.1 mg/劑量至1.25 mg/劑量,且係在選自下列群組之pH值下:6.2、6.3、6.4、6.5、6.6、6.7和6.8,較佳為6.5。
再於第六實施態樣之另一態樣中,在Tris之存在下,D-抗原在福馬林去活化後之回收百分比可為50%、60%、70%或80%,而氫氧化鋁吸附後之吸附百分比可為70%至80%、80%至90%、或90%至99%、或95%至99%。
根據本發明之第七實施態樣,分別從白喉棒桿菌和破傷風梭菌取得白喉毒素(外毒素)和破傷風毒素(外毒素),且隨後使用合適之去活化方法解毒。使用凝膠過濾色層分析法將由此取得之白喉類毒素(D)和破傷風類毒素(T)進一步純化。將由此取得之純化的DT進一步用於組合疫苗配製劑。
根據第七實施態樣的態樣之一,白喉毒素係由生長在半合成培養基中之白喉棒狀桿菌所產生,該半合成之培養基係由最佳濃度之下列成分以任一下列組合組成:
組合1:
酪蛋白水解產物、麥芽糖一水合物、冰醋酸、乳酸鈉、硫酸鎂、β-丙胺酸、庚二酸、菸酸、硫酸銅、硫酸鋅、氯化錳、L-胱胺酸、氯化鈣二水合物、正磷酸二氫鉀、磷酸氫二鉀、硫酸亞鐵及WFI。
組合2:
酪蛋白水解產物、麥芽糖一水合物、冰醋酸、乳酸鈉、硫酸鎂、β-丙胺酸、庚二酸、菸酸、氯化錳、L-胱胺酸、氯化鈣二水合物、正磷酸二氫鉀、磷酸氫二鉀、硫酸亞鐵及WFI。
組合3:
酪蛋白水解產物、麥芽糖一水合物、冰醋酸、乳酸鈉、β-丙胺酸、庚二酸、菸酸、硫酸銅、硫酸鋅、氯化錳、L-胱胺酸、氯化鈣二水合物、正磷酸二氫鉀、磷酸氫二鉀及WFI。
組合4:
酵母萃取物、麥芽糖一水合物、冰醋酸、乳酸鈉、硫酸鎂、β-丙胺酸、庚二酸、菸酸、硫酸銅、硫酸鋅、氯化錳、L-胱胺酸、氯化鈣二水合物、正磷酸二氫鉀、磷酸氫二鉀、硫酸亞鐵及WFI。
根據第七實施態樣之第二態樣,破傷風毒素係由生長在半合成培養基中之破傷風梭菌產生,該半合成之培養基係由最佳濃度之下列成分以任一下列組合組成:
組合1:
酪蛋白分解物、氯化鈣、磷酸氫二鉀、無水葡萄糖、氯化鈉、硫酸鎂、核黃素、鹽酸硫胺素、鹽酸吡哆醇、泛酸鈣、菸酸、L-胱胺酸、氯化鐵、維生素B12溶液、生物素、濃HCl、NaOH、無水乙醇及WFI。
組合2:
酪蛋白分解物、氯化鈣、β-丙胺酸、磷酸氫二鉀、無水葡萄糖、氯化鈉、硫酸鎂、硫酸亞鐵、核黃素、鹽酸硫胺素、鹽酸吡哆醇、泛酸鈣、菸酸、L-胱胺酸、氯化鐵、維生素B12溶液、生物素、濃HCl、NaOH、無水乙醇及WFI。
組合3:
酪蛋白分解物、氯化鈣、磷酸氫二鉀、無水葡萄糖、氯化鈉、硫酸鋅、核黃素、鹽酸硫胺素、鹽酸吡哆醇、泛酸鈣、菸酸、L-胱胺酸、氯化鐵、維生素B12溶液、生物素、濃HCl、NaOH、無水乙醇及WFI。
組合4:
酪蛋白分解物、氯化鈣、磷酸氫二鉀、無水葡萄糖、氯化鈉、硫酸鎂、氯化錳、核黃素、鹽酸硫胺素、鹽酸吡哆醇、泛酸鈣、菸酸、L-胱胺酸、氯化鐵、維生素B12溶液、生物素、濃HCl、NaOH、無水乙醇及WFI。
於第七實施態樣之另一態樣中,使用下列去活化方法之一或彼等之組合將白喉和破傷風毒素解毒:熱、UV、福馬林/甲醛、乙醯基乙烯亞胺,等。
根據本發明之第八實施態樣,用於該組合疫苗組成物之肝炎(Hep)抗原包含源自B型肝炎病毒株表面之Hep抗原(HBsAg)。
於第九實施態樣的態樣之一中,HBsAg可藉由下列方法其中一者製備:
• 藉由純化來自慢性B型肝炎帶原者之血漿的特殊抗原形式,因為在HBV感染期間在肝臟中合成大量之HBsAg並釋入血流中
• 藉由重組DNA方法表現該蛋白質。
根據本發明之第九實施態樣,將白喉類毒素(D)、破傷風類毒素(T)及B型肝炎表面抗原(HBsAg)個別吸附在選自下列群組之佐劑上:鋁鹽(Al3+ ),諸如氫氧化鋁(Al(OH)3 )或磷酸鋁(AlPO4 )、明礬、磷酸鈣、MPLA、3D-MPL、QS21、含CpG之寡脫氧核苷酸佐劑、脂質體或水包油乳劑或彼等之組合。
更佳地,白喉類毒素(D)、破傷風類毒素(T)及B型肝炎表面抗原(HBsAg)係個別吸附在磷酸鋁上。
於第九實施態樣的態樣之一中,該吸附在磷酸鋁上之白喉類毒素(D)抗原之吸附百分比至少為50%。
於第九實施態樣之另一態樣中,該吸附在磷酸鋁上之破傷風類毒素(T)抗原之吸附百分比至少為40%。
再於第九實施態樣之另一態樣中,該吸附在磷酸鋁上之B型肝炎表面抗原(HBsAg)之吸附百分比至少為70%。
根據本發明之第十實施態樣,用於本發明之組合疫苗的Hib抗原係源自Hib b菌株760705之莢膜多醣。
根據第十實施態樣之一態樣,該Hib b PRP抗原係與選自由下列所組成之群組之載體蛋白(但不限於此)軛合:CRM197、白喉類毒素、腦膜炎奈瑟氏球菌外膜複合物、破傷風類毒素之片段C、百日咳類毒素、流感嗜血桿菌之蛋白質D、大腸桿菌LT、大腸桿菌ST及來自綠膿桿菌之外毒素A、外膜複合物c(OMPC)、孔蛋白、運鐵蛋白結合蛋白、肺炎球菌溶血素(pneumolysin)、肺炎球菌表面蛋白A(PspA)、肺炎球菌表面黏附素A(PsaA)、肺炎球菌PhtD、肺炎球菌表面蛋白BVH-3和BVH-11、炭疽芽孢桿菌之保護性抗原(PA)和炭疽芽孢桿菌之解毒水腫因子(EF)及致死因子(LF)、卵白蛋白、匙孔血藍蛋白(KLH)、人血清白蛋白、牛血清白蛋白(BSA)和結核菌素之純化的蛋白衍生物(PPD)、合成肽、熱休克蛋白、百日咳蛋白、細胞因子、淋巴因子、激素、生長因子、包含多個人CD4+T細胞抗原決定部位之人造蛋白(諸如N19)(該人CD4+T細胞抗原決定部位係來自由各種病原體衍生之抗原)、攝鐵蛋白、來自艱難梭菌之毒素A或B和無乳鏈球菌蛋白。
更佳地,該Hib b PRP藉由CNBr化學、還原性胺化化學、氰化化學或任何其他已經揭示於Kniskern et al.,“Conjugation: design, chemistry, and analysis”中、Ellis et al., Development and clinical uses of Haemophilus b conjugate vaccines. New York: Marcel Dekker, 1994: 37-69中之化學與破傷風類毒素(TT)軛合。
根據第十實施態樣之第二態樣,該載體蛋白同時以游離形式和軛合形式存在於本發明之組成物中,較佳地,該未經軛合之形式在組成物中整體不超過載體蛋白總量之20%且更佳為少於5%(按重量計)。
根據第十實施態樣之第三態樣,該Hib抗原基本上不吸附在任何佐劑上。
根據第十實施態樣之第四態樣,該Hib抗原可能不會被刻意或意圖吸附在任何佐劑上。
根據本發明之第十一實施態樣,較佳地,用於本發明之組合疫苗組成物中的全細胞百日咳(wP)抗原製劑係從以特定比例混合之百日咳博德特氏菌菌株134、509、25525和6229製造且隨後利用缺乏硫柳汞之改善的去活化方法進行去活化,因此可導致反應原性降低及效力增加,且可吸附或不吸附在以鋁為底質之佐劑上。
根據第十一實施態樣之一態樣,較佳地,本發明之組合疫苗組成物中使用之全細胞百日咳(wP)抗原製劑係從以1:1:0.25:0.25之比例混合的百日咳博德特氏菌菌株134、509、25525和6229製造。
根據第十一實施態樣之第二態樣,該組合疫苗組成物中使用之全細胞百日咳(wP)抗原製劑係使用包括下列之一或多種去活化處理來去活化:熱、UV、福馬林/甲醛、乙醯基乙烯亞胺,等。
更佳地,組合疫苗組成物中使用之全細胞百日咳(wP)抗原製劑係使用熱和化學處理之組合去活化。更佳地,在甲醛之存在下,在56±2℃下加熱10至15分鐘去活化,其中wP團塊保持不結塊且易於均質化,從而導致反應原性降低並產生維持較長期間之較佳wP效力。
根據第十一實施態樣之第三態樣,組合疫苗組成物中所使用之全細胞百日咳(wP)抗原製劑可能或可能不吸附在以鋁為底質之佐劑上,諸如氫氧化鋁、磷酸鋁或彼等之組合(例如與其他組分(若存在)混合之前或之後)。若吸附時,一或多種wP菌株(即,134、509、25525和6229)可單獨吸附或以混合物之形式一起吸附。
根據本發明之第十二實施態樣,白喉類毒素(D)之量係在1至40 Lf之範圍內;破傷風類毒素(T)之量係在4至25 Lf之範圍內;wP之量係在4至30 IOU/0.5 ml之範圍內;B型流感嗜血桿菌PRP-TT軛合物之量係在1至20 μg之PRP成分/0.5 ml之範圍內;HBsAg抗原之量係在1至20 μg/0.5 ml之範圍內;包括第1型、第2型和第3型之沙賓 IPV,其中第1型之含量為1至50 DU/0.5 ml,第2型含量為1至20 DU/0.5 ml且第3型之含量為1至50 DU/0.5 ml,在最終組合疫苗組成物/配製劑中另外包含以鋁為底質之佐劑和防腐劑。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約25 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約20 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約4 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約2 Lf。
更佳地,在最終組合疫苗組成物中之wP之量為約16 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約14 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約12 IOU/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約13 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約10 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約8 μg PRP成分/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約15 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約10 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約8 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之包抬第1型、第2型和第3型病毒株之沙賓去活化的脊髓灰質炎疫苗(sIPV)之存在量分別為每0.5 ml約40 DU、8 DU和32 DU。
根據本發明之第十三實施態樣,在最終組合疫苗組成物/配製劑中之白喉類毒素(D)之量為1至40 Lf;破傷風類毒素(T)之量為4至25 Lf;wP之量為4至30 IOU/0.5 ml;B型流感嗜血桿菌PRP-TT軛合物之量係在1至20 μg PRP成分/0.5 ml之範圍內;HBsAg抗原之量係在1至20 μg/0.5 ml之範圍內;包括Mahoney第1型、MEF第2型和Saukett第3型病毒株之沙克去活化的脊髓灰質炎病毒(IPV),其中Mahoney第1型之含量為1至50 DU/0.5 ml,MEF第2型之含量為1至20 DU/0.5 ml且Saukett第3型之含量為1至50 DU/0.5 ml,另外還包含以鋁為底質之佐劑及防腐劑。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約25 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約20 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約4 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約2 Lf。
更佳地,在最終組合疫苗組成物中之wP之量為約16 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約14 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約12 IOU/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約13 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約10 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約8 μg PRP成分/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約15 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約10 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約8 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之包括Mahoney第1型、MEF第2型和Saukett第3型之沙克去活化的脊髓灰質炎疫苗之存在量分別為每0.5 ml約40 DU、8 DU和32 DU。
根據本發明之第十四實施態樣,在最終組合疫苗組成物/配製劑中之白喉類毒素之量係在1至40 Lf之範圍內;破傷風類毒素之量係在4至25 Lf之範圍內;wP之量係在4至30 IOU/0.5 ml之範圍內;B型流感嗜血桿菌PRP-TT軛合物之量係在1至20 μg PRP成分/0.5 ml之範圍內;Hep抗原之量係在1至20 μg/0.5 ml之範圍內;用於組合疫苗組成物中之減低劑量之包括第1型、第2型和第3型的沙賓去活化之脊髓灰質炎疫苗(sIPV),其中第1型之含量為2.5至10 DU/0.5 ml,第2型之含量為5至20 DU/0.5 ml且第3型之含量為1至20 DU/0.5 ml,另外還包含以鋁為底質之佐劑和防腐劑。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約25 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約20 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約4 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約2 Lf。
更佳地,在最終組合疫苗組成物中之wP之量為約16 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約14 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約12 IOU/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約13 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約10 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約8 μg PRP成分/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約15 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約10 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約8 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之包括第1型、第2型和第3型病毒株之沙賓去活化的脊髓灰質炎疫苗(sIPV)之存在量分別為每0.5 ml約5 DU、16 DU和10 DU。
根據本發明之第十五實施態樣,在最終組合疫苗組成物/配製劑中之白喉類毒素之量係在1至40 Lf之範圍內;破傷風類毒素之量係在4至25 Lf之範圍內;wP之量係在4至30 IOU/0.5 ml之範圍內;B型流感嗜血桿菌PRP-TT軛合物之量係在1至20 μg PRP成分/0.5 ml之範圍內;Hep抗原之量係在1至20 μg/0.5 ml之範圍內;減低劑量之包括Mahoney第1型、MEF第2型和Saukett第3型之沙克去活化的脊髓灰質炎疫苗,其中Mahoney第1型之含量為5至15 DU/0.5 ml,MEF第2型之含量為1至18 DU/0.5 ml且Saukett第3型之含量為5至15 DU/0.5 ml,另外還含有以鋁為底質之佐劑和防腐劑。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約25 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約20 Lf。
更佳地,在最終組合疫苗組成物中之白喉類毒素(D)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約10 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約4 Lf。
更佳地,在最終組合疫苗組成物中之破傷風類毒素(T)之量為約2 Lf。
更佳地,在最終組合疫苗組成物中之wP之量為約16 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約14 IOU/0.5 ml。
更佳地,在最終組合疫苗組成物中之wP之量為約12 IOU/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約13 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約10 μg PRP成分/0.5 ml。
更佳地,B型流感嗜血桿菌PRP-TT軛合物之量為約8 μg PRP成分/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約15 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約10 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之HBsAg抗原之量為約8 μg/0.5 ml。
更佳地,在最終組合疫苗組成物中之包括Mahoney第1型、MEF第2型和Saukett第3型病毒株之減低劑量之沙克去活化的脊髓灰質炎疫苗之存在量分別為每0.5 ml約10 DU、2 DU和10 DU。
根據本發明之第十六實施態樣,該最終組合疫苗組成物之一或多種抗原可能基本上未吸附在任何佐劑上。
根據本發明之第十七實施態樣,該組成物包含一或多種選自下列群組之佐劑:鋁鹽(Al3+ ),諸如氫氧化鋁(Al(OH)3 )或磷酸鋁(AlPO4 )、明礬、磷酸鈣、MPLA、3D-MPL、QS21、含CpG之寡脫氧核苷酸佐劑、脂質體或水包油乳劑。
更佳地,該組成物包含磷酸鋁(AlPO4 )作為佐劑。
於第十七實施態樣之一態樣中,該最終配製劑之抗原可原位吸附在磷酸鋁凝膠或現成可用之磷酸鋁凝膠或彼等之組合上。
於第十七實施態樣的較佳態樣之一中,本發明之組成物之佐劑含量可為2.5 mg/0.5 ml或更少,具體地說,佐劑之含量為1.5 mg/0.5 ml至0.1 mg/0.5 ml。
再於第十七實施態樣之另一較佳態樣中,該最終組合疫苗組成物/配製劑中之鋁含量(Al3+ )可能不多於1.25 mg/0.5 ml,較佳為1 mg/0.5 ml且最佳為0.1 mg/0.5 ml至0.63 mg/0.5 ml。
根據本發明之第十八實施態樣,該組合疫苗組成物/配製劑可包含選自由下列所組成之群組的防腐劑:2-苯氧基乙醇、苯扎氯銨(Phemerol)、苯酚、硫柳汞、甲醛、對羥基苯甲酸甲酯及對羥基苯甲酸丙酯、或苯甲醇或彼等之組合。更佳地,該組合疫苗組成物/配製劑可包含2-苯氧基乙醇(2-POE)作為防腐劑。
根據本發明之另一態樣,本發明之組合疫苗中之2-苯氧基乙醇的量可能較佳為不超過3.5 mg/0.5 ml;更佳為3.0 mg/0.5 ml;且最佳為2.5 mg/0.5 ml。
根據本發明之第十九實施態樣,本發明之組合疫苗組成物/配製劑可含有選自由下列所組成之群組的醫藥上可接受之賦形劑:糖和多元醇、表面活性劑、聚合物、鹽、胺基酸、pH修改劑(調節該疫苗組成物之pH)等。欲使用之糖和多元醇之實例可包括蔗糖、海藻糖、乳糖、麥芽糖、半乳糖、甘露糖醇、山梨糖醇、甘油,等。表面活性劑之實例可包括非離子性表面活性劑,諸如聚山梨醇酯20、聚山梨醇酯80,等。該聚合物之實例可包括葡聚醣、羧甲基纖維素、透明質酸、環糊精,等。該鹽之實例可包括NaCl、MgCl2、KCl、CaCl2,等。該胺基酸之實例可包括精胺酸、甘胺酸、組胺酸,等。pH修改劑之實例可包括氫氧化鈉、鹽酸,等。
根據本發明之第二十實施態樣,該組合疫苗可為凍乾的或液體配製劑,較佳為液體配製劑。
根據本發明之第二十一實施態樣,該組合疫苗可在2至8℃下保持安定12至36個月;在25℃下安定2至6個月;在37℃下安定1至4週,而最終pH係在pH 6.0至pH 7.0之範圍內;更佳為在pH 6.2至pH 6.8之範圍內;最佳為在pH 6.3至pH 6.7之範圍內。
根據本發明之第二十二實施態樣,本申請者發現當藉由下文中揭示之考慮的方法製造疫苗時可獲得具有改善之免疫原性及降低之反應原性之安定的多價疫苗:i)製造個別抗原之方法,ii)添加該抗原之次序;iii)對特定抗原使用特定量之特定佐劑,iv)將抗原單獨吸附或聯合吸附在佐劑上,v)抗原吸附在佐劑上之程度,vi)使用最小明礬濃度,vii)使用最佳之防腐劑濃度和類型,及viii)使用各種參數,包括攪拌、溫度和pH。

用於 SIIPL 組合疫苗中之菌株的生物來源:
白喉類毒素:
白喉棒桿菌 PW8 CN2000菌株係由印度喜馬偕爾邦(Himachal Pradesh)Kasauli國家管制局中央研究所(C.R.I.)在1973從聯合王國倫敦Wellcome研究實驗室以凍乾形式獲得。將該菌株復原並進一步在Kasauli C.R.I.凍乾,Master Seed批號-白喉棒桿菌CN2000 A1(C. diphtheriae CN2000 A1)。

破傷風類毒素:
破傷風梭菌Harvard菌株第49205號係由Kasauli國家管制局C.R.I.從The Rijks Institute Voor de Volksgezondheid(荷蘭)以凍乾形式獲得。

百日咳:
在SIIPL製造之百日咳疫苗體涉及使用四種百日咳博德特氏菌菌株,即菌株134、509、6229和25525。菌株134和509之主要種菌最初係透過印度喜馬偕爾邦Kasauli國家管制局中央研究所從荷蘭Rijks研究所取得。菌株6229和25525之主要種菌最初來自英格蘭Lister研究所。

B 型肝炎:
Rhein Biotech(德國)構建含有HBsAg表面抗原基因之重組Hansenulapolymorpha菌株。Rhein Biotech亦製造主要細胞集合庫(Master Cell Bank)(MCB Hansenulapolymorpha K3/8-1菌株ADW,12/94)並對該集合庫進行所有表徵測試。

B 流感嗜血桿菌
用於產生細胞受質之來源生物為B型流感嗜血桿菌,菌株760705。該菌株最初是在1976年11月從2歲2個月大之男嬰(14-8-74出生)中分離出來。該菌株在阿姆斯特丹大學學術醫學中心(AMC)進行三次傳代,再儲存在 -70℃。將該菌株被轉移至SIIPL作為SIIPL與荷蘭疫苗研究所(荷蘭NVI)合作之一部分。

IPV
脊髓灰質炎病毒之菌株和來源如下。
脊髓灰質炎病毒第 1 型:
菌株:Mahoney
來源:J.沙克博士(Pitman&Moore公司)
脊髓灰質炎病毒第 2 型:
菌株:MEF1
來源:哥本哈根Statens血清研究所
脊髓灰質炎病毒第 3 型:
菌株:Saukett
來源:哥本哈根Statens血清研究所
本專利說明書全文中,字詞“包含”(“comprise”,或變體,諸如“comprises”或“comprising”)將被理解為暗示包括所述之元素、整數或步驟、或元素、整數或步驟群組,但不排除任何其他元素、整數或步驟,或元素、整數或步驟群組。
使用詞語“至少”或“至少一”係表明使用一或多種元素或成分或量,因為在本發明之實施態樣中該用法可達成一或多個所需目的或結果。雖然已經描述本發明之某些實施態樣,但這些實施態樣僅用於示例且不意圖限制本發明之範圍。在審查本揭示內容後,本技藝之技術熟習人士可在本發明之範圍內對本發明之配製劑進行變化或修飾。該等變化或修飾完全在本發明之精神內。
給予之各種物理參數、尺寸和數量之數值僅是近似值,且預計高於指定給該物理參數、尺寸和數量之數值的值落入本發明之範圍內,除非本專利說明書中另外聲明相反的規範。
雖然本文已相當強調較佳實施態樣之具體特性,可理解的是在較佳之實施態樣中可添加許多額外特性和進行許多改變,而不脫離本發明之原理。本技藝之技術熟習人士可從本揭示內容清楚明白本發明之較佳實施態樣中的這些和其他變化,由此可清楚地理解前文描述之內容僅用於解釋本發明而非用於限制。

優點
上文描述之本發明內容具有若干技術上之進步和優點,包括,但不限於實現包含D、T、wP、HBsAg、Hib PRP-TT軛合物及IPV之組合疫苗組成物和其製備方法。當與其他組合疫苗組成物比較時,本發明提供下列優點:
1. 全液體組合疫苗
2. 改善之免疫原性
3. 降低之反應原性
4. 在12個月的時間內,在測試之2-8℃和室溫下安定性改善。
5. 使用不含傳染性海綿狀腦病(TSE)或牛海綿狀腦病(BSE)之半合成培養基產生高度純化之白喉類毒素(D)及破傷風類毒素(T)。
6. 全細胞百日咳博德特氏菌(wP)抗原包含比例為1:1:0.25:0.25之百日咳博德特氏菌菌株134、509、25525和6229,從而改善針對百日咳博德特氏菌之效力和免疫原性。
7. 使用加熱和甲醛去活化組合使全細胞百日咳博德特氏菌(wP)組分去活化的改善方法。該方法沒有硫柳汞且去活化之全細胞百日咳抗原保持非結塊且呈均質,從而導致反應原性降低且在較長之期間內提供較佳功效。
8. 在全部B型流感嗜血桿菌PRP-TT軛合物體中之游離PRP低(低於7%)。
9. 個別吸附在磷酸鋁佐劑上之白喉類毒素抗原(D)、破傷風類毒素(T)抗原及B型肝炎(HepB)表面抗原的吸附輪廓改善,從而改善效力及免疫原性。
10. 最低總明礬含量(Al3+ ),從而確保反應原性降低。
11. 優化濃度之作為防腐劑的2-苯氧基乙醇(2-PE)。
本文中包括下列實施例以證明本發明之較佳實施態樣。本技藝之技術熟習人士應理解在依循本發明者所發現之代表性技術的實施例中所揭示之組成物和技術在實行本發明時可充分作用,因此可被認為構成實踐本發明之較佳模式。然而,鑑於本發明,本技藝之技術熟習人士應理解在不脫離本發明之精神及範圍的情況下可對所揭示之具體實施態樣進行許多改變且仍然獲得相同或相似之結果。

實施例 1

實施例 2
本實施例簡短說明各種組合疫苗組成物:
3 :組合疫苗組成物 1

4 :組合疫苗組成物 2



5 :組合疫苗組成物 3

6 :組合疫苗組成物 4



7 :組合疫苗組成物 5

8 :組合疫苗組成物 6



9 :組合疫苗組成物 7

該疫苗可含有在製造過程中使用之微量的戊二醛、甲醛、新黴素、鏈黴素及多黏菌素B。

實施例 3
B型流感嗜血桿菌軛合物團塊之製造方法
藉由下文簡要描述之方法的53個步驟之協助來呈現製造B型流感嗜血桿菌軛合物團塊之方法步驟的廣泛考慮:

步驟 1 :接種物第 I 階段搖瓶 (S1)
使用工作種子批次(Working Seed Lot)小瓶來接種該含有經0.22 μm過濾之種子培養基的接種物階段搖瓶。使用工作體積為25mL之可拋棄式PETG 125mL燒瓶。此階段係在具有受控制之攪動(200±50rpm)和溫度(36±2℃)之培養箱搖動器中進行。達到適當之細菌生長後(OD590 ≥1.0),將培養物轉移至描述於步驟2中之下一接種物階段(S2階段)。以製程中控制之方式進行革蘭氏染色以確保培養物純度(革蘭氏陰性球桿菌)。

步驟 2 :接種物第 階段搖瓶 (S2)
S2接種物階段係由其工作體積為800mL之2 L fernbach燒瓶(S2A和S2B)組成。S2A燒瓶係用於OD590 測量,直到OD590 在可接受之標準內,而S2B燒瓶係用於S3階段之接種。二個燒瓶均被分配與S1接種物階段相同批次之經過濾滅菌的培養基。使用S1階段燒瓶來接種該二個階段Ⅱ搖瓶。此階段係在具有受控制之攪動(200±50rpm)和溫度(36±2℃)之培養箱搖動器中進行。達到合適之細菌生長後(OD590 ≥1.0),將該培養物轉移至描述於步驟3中之下一接種物階段(S3階段)。以製程中控制之方式來進行革蘭氏染色以確保培養物純度(革蘭氏陰性球桿菌)。

步驟 3 :接種物第 階段醱酵罐:
S3接種物階段係由其工作體積為35L之120L醱酵罐組成。該醱酵罐被分配與先前接種物階段相同之培養基批次。使用S2階段燒瓶來接種該接種物醱酵罐。生長係在接種物醱酵罐中之溫度(36±2℃)、DO(10%設定點)、攪動(300-600 rpm)、通風(1-5 LPM)及背壓(0.2巴)下進行。達到合適之細菌生長後(OD590 ≥1.0),將培養物轉移至步驟4中描述之下一個生產階段(S4階段)。以製程中控制之方式進行革蘭氏染色以確保培養物純度(革蘭氏陰性球桿菌)。

步驟 4 1200 L 規模生產醱酵:
該1200 L生產醱酵罐之工作體積為800 L。該醱酵罐被分配基礎培養基批次並在原位進行蒸汽滅菌。隨後,添加通過0.22 μm過濾器之各種培養基補充劑。該醱酵罐中係接種從步驟3獲得之S3階段培養物。醱酵係在受控制之溶解的氧(20% -設定點)、溫度(36±2℃)、pH值(7.1-7.4)、攪動(40-400rpm)、通氣(50-300LPM)及背壓(0.2巴)下進行。在醱酵過程中添加二種獨立之營養素摻加物。藉由測量OD590 (OD590 ≥3.5)監測生長且在達到靜止期後認為醱酵完成。在生長和靜止期之期間,該多醣產物係分泌並累積在培養肉湯中。以製程中控制之方式來進行革蘭氏染色以確保培養物純度(革蘭氏陰性球桿菌)。

步驟 5 :福馬林處理:
此步驟中藉由使用化學劑(福馬林)來達成減少生物負載。加入0.1%福馬林並將醱酵之肉湯在37℃下培育不少於2小時。在福馬林處理後,將容器快速冷卻至<15℃。添加福馬林被驗證可減少生物負載。此可藉由培養期後之培養盤驗證。生物負載減少之肉湯已準備好依步驟6中之描述收穫。

步驟 6 :連續離心收穫:
使用連續離心作為初級收穫步驟。進行該步驟以將含有多醣之粗製肉湯與去活化之生物質分開。使用連續離心以將> 90%之生物質移除(藉由OD590 降低測量)。離心係在約15000 g下,液體流速為200-500 L/h操作。依步驟7中之描述進一步處理離心之上清液。

步驟 7 50 LP 深層過濾:
將離心之上清液通過50 LP深層過濾器以除去粗物質(諸如細胞碎片)。該步驟允許產品通過該濾液並依步驟8中之描述與另外之深層過濾器排成一線。

步驟 8 90 LP 深層過濾:
將該來自50 LP深層過濾器之濾液進一步通過90 LP深層過濾器(標稱0.22 μm級別)以進一步去除可能未被先前之深層過濾器保留的任何不溶性物質。該步驟確保該濾液基本上不含細胞碎片且可以穩固地通過0.22 μm過濾器。隨後之過濾步驟描述於步驟9中。

步驟 9 10 0.22 μm 過濾:
將該來自90 LP深層過濾器之濾液進一步通過0.22 μm過濾器並將濾液收集在維持槽中。

步驟 11 12 100 kD 濃度和滲濾:
進行此步驟以除去培養基組分和小分子量雜質。此外,進行濃縮以減少該工作體積。選擇截留100 kD分子量,因為Hib多醣(PRP)之分子量≥500 kD。將肉湯濃縮至約10倍,隨後使用0.01M PBS緩衝液(pH7.2)滲透過濾不少於5倍體積。保留液中之所得產物稱為“粗PRP”並依步驟13中之描述進一步處理。該濃縮之肉湯通過轉移端口經由0.22 μm過濾器轉移至DSP區以確保沒有細菌被帶至DSP區。

步驟 13 CTAB 沉澱:
CTAB(十六烷基三甲基溴化銨)為用於沉澱多醣之陽離子洗滌劑。CTAB係由親水區和疏水部分,及沉澱之蛋白質、核酸和多醣組成。在1%CTAB濃度下將從步驟12獲得之粗PRP沉澱並培育>2小時。收穫CTAB顆粒係描述於步驟14中。

步驟 14 15 16 CTAB 小丸離心、收集和儲存:
在SEZ-3、FF中,使用連續離心機在15000rpm將CTAB離心沉澱。收穫該CTAB沉澱小丸、稱重、分成等分並儲存在≤-20℃下以供進一步處理。此為第一加工過程保持步驟。

步驟 17 18 CTAB 糊狀物解凍和溶解:
將冷凍之CTAB糊狀物解凍達到室溫。將解凍之小丸溶解在5.85% NaCl溶液中。在攪拌槽中進行溶解並將該多醣產物溶解在水相中。該槽中含有一些來自沉澱之蛋白質和核酸之未溶解之物質。依步驟19中之描述進一步處理該懸浮液。

步驟 19 :離心:
將從步驟18取得之物質在2至8℃,5000至6500rpm離心20至30分鐘以除去該未溶解物質。收集該離心之上清液並依步驟20中之描述進一步處理。

步驟 20 72% 乙醇沉澱:
使用72%乙醇來沉澱PRP。使用96%乙醇相對於步驟19中獲得之上清液來產生終濃度72%乙醇。該沉澱係在2至8℃下進行一整夜。依步驟21中之描述收穫所得之沉澱物。

步驟 21 22 :離心和沉澱小丸溶解:
藉由在2至8℃,5000至6500rpm離心20至30分鐘來收集72%乙醇沉澱物。將所產生之小丸溶解在W.F.I.中直至獲得視覺清晰度。該溶解之小丸的後續處理描述於步驟23中。

步驟 23 DOC 32% 乙醇沉澱:
將6%酯酸鈉和1%脫氧膽酸鈉(DOC)加入從步驟22獲得之物質。使用96%乙醇來產生最終濃度32%乙醇。DOC和32%乙醇會驅使蛋白質雜質沉澱,同時使多醣處於液相。該沉澱係在2至8℃進行一整夜(不少於8小時)。

步驟 24 :離心:
將從步驟23獲得之物質在2至8℃,5000至6500rpm離心20至30分鐘以除去沉澱物。收集離心上清液並依步驟25中之描述進一步處理。

步驟 25 :深度和碳過濾:
在步驟24中獲得之上清液溶液含有可溶性PRP,將該上清液進行深層過濾,然後進行碳過濾以除去核酸和有色物質。藉由在260nm處間歇測量吸光度(A260 )來監測核酸之移除。達到目標A260 之後,將溶液通過0.22 μm過濾器過濾並依步驟26中之描述進一步處理該過濾之溶液。

步驟 26 64% 乙醇沉澱:
將在步驟25中獲得之過濾物質進一步以96%乙醇沉澱,最終濃度為64%乙醇。該沉澱係在2至8℃下進行一整夜。藉由離心收穫所產生之沉澱物並依步驟27中之描述進一步處理。

步驟 27 :收集沉澱小丸並溶解:
將該上清液傾析並丟棄以收集該沉澱小丸。將沉澱小丸在室溫下溶解在W.F.I.中。

步驟 28 300 kD 濃縮和滲濾:
使用300 kD NMWCO膜將溶解之沉澱小丸溶液濃縮。使用W.F.I.將其進一步進行滲濾不少於(NLT)8X。依步驟29之描述將所產生之保留物進一步處理。

步驟 29 30 0.22 μm 過濾和儲存純化之 PRP
將300 kD UF保留物通過0.22 μm過濾器作為澄清步驟以將生物負載最小化。將所產生之純化的PRP分成等分並儲存在≤-20℃直到依步驟31中之描述進一步使用。將純化之PRP樣品送去進行QC分析。

步驟 31 :解凍和匯集:
基於軛合物批次大小將從步驟30獲得之適當量的天然多醣解凍。分析該匯集之物質的PRP含量,這對依步驟32之描述進一步處理是必要的。

步驟 32 100 kD 濃度:
該匯集之純化的多醣需要具有最低濃度(8-12 mg/mL)以供進一步處理。若該匯集之多醣濃度低於目標,則經由使用100 kD UF NMWCO膜濃縮該匯集之多醣溶液。濃縮後抽取樣品以確保達到進行後續步驟(步驟33)所需之最小濃度。

步驟 33 :鹼性解聚化:
將從步驟32獲得之濃縮多醣(等於74 g/110 g)在溫和之鹼性條件下使用碳酸鹽-碳酸氫鹽緩衝液解聚。達到目標多醣大小後,依步驟34中之描述活化該解聚之多醣。

步驟 34 :多醣活化:
使用溴化氰活化在步驟33中獲得之解聚的多醣。該活化作用係在氮氣環境下進行。溴化氰為劇毒化學品,在處理此化學品時會採取適當之措施。

步驟 35 :連接子連接:
將新鮮製備之己二酸二醯肼(ADH)溶液在6至10分鐘內加入從步驟34獲得之反應混合物中。令該反應在2至10℃下進行不少於16小時。ADH連接子之作用係提供多醣在軛合反應所需之胺基。

步驟 36 :濃縮和滲濾:
將從步驟35獲得之反應混合物濃縮並使用10 kD NMWCO UF膜,以磷酸鹽緩衝鹽水(PBS)按體積進行滲濾以除去游離ADH。在HPLC上監測ADH之移除並持續滲濾直至游離ADH之水準達到低於5%。將所得之保留物以不少於5X MES-NaCl緩衝液進一步滲濾。將其進一步濃縮以取得不少於20 mg/mL之濃度。將該濃縮之經加工的PRP保持在2至8℃直到依步驟37中之描述進一步使用。

步驟 37 38 0.22 μm 過濾和儲存經加工之 PRP
將來自步驟36之保留物通過0.22 μm過濾器,此係作為澄清步驟。此亦確保在該過程之期間生物負載水準受到控制,該過程係在C級區域中進行。收集過濾之活化的多醣、採樣、分成等分並儲存在2至8℃下直至進一步處理。從該經加工之多醣匯集庫中抽取樣品以供分析,包括分析PRP分子大小(kD)、PRP含量和PRP活化程度。依步驟40中之描述進一步處理該經加工之PRP。

步驟 39 TT 10 kD 濃縮和滲濾:
軛合反應需要二種組分,即,加工之多醣和載體蛋白(TT)。將載體蛋白濃縮並使用10 kD UF NMWCO膜以MES-NaCl緩衝液進行滲濾。然後使用相同的膜將該經滲濾之載體蛋白進一步濃縮至不少於20 mg/mL。

步驟 40 :軛合作用:
軛合反應需要二種組分,即,加工之多醣和載體蛋白(TT)。該經活化之多醣組分係從步驟38獲得。該載體蛋白係從步驟39獲得。將該二種組分在EDC之存在和攪拌下,以PRP:TT = 1:1(w/w)之比例,以適當量混合。在HPLC上監測該軛合反應並持續至蛋白質轉化≥85%(基於游離蛋白質轉化為軛合物)。

步驟 41 :淬滅反應:
在軛合反應已進行到其轉化之可接受標準(步驟40)後,藉由淬滅終止該反應。使用磷酸鹽EDTA緩衝液淬滅該軛合反應。接著依步驟42中之描述進行該軛合反應。

步驟 42 30 SP 0.22 微米過濾:
將從步驟41獲得之軛合物通過30SP過濾器過濾,再通過0.22 μm過濾。此確保移除任何大型之聚集體。依步驟43中之描述處理該過濾之軛合物。

步驟 43 300 kD 超濾和滲濾:
使用300 kD UF NMWCO膜,以0.05%鹽水將從步驟42獲得之軛合反應混合物進行滲濾。進行滲濾以除去軛合試劑和未反應之TT。依步驟44中之描述進一步處理所產生之保留物。

步驟 44 45 0.22 μm 過濾和儲存粗軛合物
將來自步驟43之保留物通過0.22 μm過濾器,此係作為澄清步驟。此亦確保在該過程期間該生物負載水準受到控制,該過程係在C級區域中進行。收集該過濾之粗軛合物,採樣並儲存於2至8℃直到進一步處理。依步驟46中之描述進一步處理該粗軛合物。

步驟 46 :稀釋粗軛合物:
以W.F.I.稀釋來自步驟45之粗軛合物至目標濃度4±1 mg/mL,若需要時,依步驟47中之描述藉由沉澱步驟進一步處理。

步驟 47 :硫酸銨沉澱:
使用硫酸銨(50% w/v儲存溶液)進一步處理該稀釋之軛合反應混合物以除去游離PRP。在低於15℃,攪拌下進行該沉澱步驟。沉澱步驟驅使該軛合物在沉澱物中,並將游離PRP留在上清液中。加入硫酸銨後,在不攪拌的情況下將所產生之懸浮液儲存在低於15℃之溫度下不少於12小時。

步驟 48 :收集和溶解沉澱小丸:
將從步驟47獲得之懸浮液在~7000 g,2至8℃下離心40±10分鐘。藉由傾析丟棄上清液並將獲得之沉澱小丸溶解在Tris-鹽水中。

步驟 49 300 kD 滲濾:
將來自步驟48之所得溶液通過30 SP深層過濾器過濾,並使用300 kD NMWCO膜,以20 mM Tris-鹽水進行滲濾。

步驟 50 GPC 色層分析純化:
將來自步驟49之所得溶液加載在含有Toyopearl HW-65F 羥基化甲基丙烯酸聚合物小珠凝膠之約70 L GPC柱上以進行尺寸排阻色層分析。加工之軛合物(硫酸銨之後)使用GPC色層分析可降低所得物質中之游離PRP水準。以20 mM Tris 0.9% NaCl洗提該柱,並基於A280 收集餾分。將基於相關於游離PRP、比例和分子大小之接受標準的合適餾分匯集並將該匯集物依步驟51中之描述進一步處理。

步驟 51 300 kD 滲濾:
使用300 kD UF NMWCO膜,以20 mM Tris將所產生之來自步驟50的匯集之軛合物洗提液進行滲濾。以該保留物之體積為目標,從而使其中之PRP含量為約1 mg/mL。

步驟 52 53 0.22 μm 過濾:
將從步驟51獲得之軛合物團塊在A級環境下通過0.22 μm過濾器過濾以確保無菌。該0.22 μm過濾器經完整性測試。將來該自過濾之軛合物團塊之樣品送去Q.C.進行完整分析。該過濾之軛合物被標記為“無菌Hib軛合物團塊”並儲存在2至8℃下。軛合物團塊將在2-8℃下儲存至多3個月,之後若未使用可將其儲存在-70℃下至多共長達1年。
獲得之 Hib PRP-TT 軛合物抗原之品質特徵 如下:
PRP含量(μg/0.5 ml):8.1
比例(PRP:TT):0.5
游離PRP(%):4.8%
PMW(kD):983
平均MW(kD):752

實施例 4
全細胞百日咳 (wP) 抗原之去活化方法:
在進行各種實驗後進行去活化方法優化,包括在甲醛之存在下在56℃下去活化10分鐘、在甲醛之存在下在56℃下去活化15分鐘,在hymine之存在下在56℃下去活化10分鐘、在hymine之存在下在56℃下去活化15分鐘和僅在56℃加熱30分鐘。使用這些方法在效力上未觀察到有顯著差異。在這些方法中,選擇在甲醛之存在下在56℃下去活化10分鐘,因為與上述其他方法相比較,使用該方法所產生之百日咳細胞質量更均勻。
製造去活化之 wP 抗原的 方法包含下列步驟:
a). 在甲醛之存在下,將百日咳博德特氏菌菌株134在56℃下去活化10至15分鐘
b). 在甲醛之存在下,將百日咳博德特氏菌菌株509在56℃下去活化10至15分鐘
c). 在甲醛之存在下,將百日咳博德特氏菌菌株25525和6229在56℃下去活化10至15分鐘
c). 在甲醛之存在下,將百日咳博德特氏菌菌株6229在56℃下去活化10至15分鐘
d). 隨後以1:1:0.25:0.25之比例混合去活化之百日咳博德特氏菌菌株134、509、25525和6229。
e). 可選擇地吸附在以鋁為底質之佐劑上。
該方法沒有硫柳汞且去活化之全細胞百日咳抗原保持非結塊且呈均質,從而導致反應原性降低且在較長之期間內提供較佳之效力。

實施例 5 :製造去活化之脊髓灰質炎病毒 (IPV) 方法
脊髓灰質炎病毒可藉由下述方法生長:
• 使用CCL81-VERO(猴腎)細胞株作為宿主細胞以用於生長脊髓灰質炎病毒,即,沙賓和沙克病毒株。
• 以所欲之脊髓灰質炎病毒株感染宿主細胞並培育72小時後,匯集含有該病毒和細胞碎片之培養基並收集在單一容器中。
• 使用100 KDa匣將濾液進行切向流過濾;使用磷酸鹽緩衝液進行滲濾並使用陰離子交換色層分析純化。
• 在投予患者之前,必須使用適當之去活化方法將病毒去活化。
包含下列步驟之福馬林去活化法:
a) 將純化之病毒匯集庫進行緩衝液交換從磷酸鹽緩衝液交換成Tris緩衝液(在30至50 mM之範圍),pH係在7至7.5,
b) 將含有甘胺酸(5 gm/l)之M-199培養基加入上述混合物中,
c) 加入0.025%甲醛,然後混合,
d) 隨後將該混合物在37℃下培育5至13天,同時在磁力攪拌器上持續攪拌病毒團塊,
e) 在第7天令培育後之混合物接受中間TFF系統(100 KDa,0.1m2 )處理並在去活化後進行最終過濾,
f) 隨後將該過濾之團塊儲存在2至8℃,
g) 進行D-Ag ELISA以測定D-Ag單位

實施例 6
本實施例簡單說明製造包含 D T wP HBsAg Hib PRP-TT 軛合物和 IPV 之組合疫苗組成物的 方法:
1. 組分I之配製程序:
a). 將磷酸鋁轉移至容器/器皿中
b). 添加白喉類毒素
c). 以醋酸/氫氧化鈉調整pH為4.5至5.5
d). 等待安定化
e). 以氫氧化鈉/碳酸鈉調整pH為5.5至6.5
f). 等待安定化
2. 組分Ⅱ之配製程序:
a). 將磷酸鋁轉移至容器/器皿中
b). 添加破傷風類毒素
c). 以醋酸/氫氧化鈉調整pH為4.5至5.5
d). 等待安定化
e). 以氫氧化鈉/碳酸鈉調整pH為5.5至6.5
f). 等待安定化
3. 組分Ⅲ之配製程序:
a). 將磷酸鋁轉移至容器/器皿中
b). 添加B型肝炎表面抗原
c). 以醋酸/氫氧化鈉調整pH為4.5至5.5
d). 等待安定化
e). 以氫氧化鈉/碳酸鈉調整pH為5.5至6.5
f). 等待安定化
4. 將組分I混合在組分Ⅱ中並在室溫下攪拌。
5. 將去活化之wP抗原加入上述之混合物中,再在室溫下攪拌。
6. 在室溫下將組分Ⅲ加入步驟5中獲得之混合物。
7. 在6至16℃下將Hib PRP軛合物加入在步驟6中獲得之混合物。
8. 在6至16℃下將IPV抗原加入在步驟6中獲得之混合物。
9. 在6至16℃下將2-苯氧基乙醇加入在步驟7中獲得之混合物。
10. 檢查pH值,若需要,以氫氧化鈉/碳酸鈉將pH值從6.0調節至7.0。
11. 將NaCl加入在步驟10中獲得之混合物,然後攪拌3小時。

實施例 7
六價疫苗毒性研究
使用DTwP-HepB-IPV-Hib疫苗,依循符合計劃表‘Y’之研究計劃和WHO對非臨床評估疫苗之指導原則並根據OECD良好實驗室實行原則進行下列毒性研究。
1. 藉由皮下途徑在 Sprague Dawley 大鼠中進行單劑量毒性研究
在治療開始時將共20隻雄性和20隻雌性5至6週齡之大鼠隨機分成4組。每組由5隻雄性和5隻雌性大鼠組成。透過皮下途徑投予即用型安慰劑、佐劑、DTwP-HepB-IPV-Hib單劑量疫苗和多劑量疫苗。在給藥後觀察大鼠14天。
2. 藉由肌肉內途徑在 Sprague Dawley 大鼠中進行重複劑量毒性研究
將共100隻雄性和100隻雌性大鼠隨機分配到主要和恢復組。在第1、29、57和85天藉由深度肌肉內注射緩慢注射即用型安慰劑對照組、佐劑對照組、DTwP-HepB-IPV-Hib單劑量疫苗和多劑量疫苗。恢復組中之動物未接受治療並觀察28天。
3. 藉由皮下途徑在紐西蘭白兔中進行單劑量毒性研究
將共16隻雄兔和16隻雌兔隨機分成4組。透過皮下途徑對各對應組之每隻動物投予即用型安慰劑、佐劑、DTwP-HepB-IPV-Hib單劑量疫苗和多劑量疫苗。投予兔子單一皮下劑量並觀察15天。
4. 藉由肌肉內途徑在紐西蘭白兔中進行重複劑量毒性研究
將共40隻雄兔和40隻雌兔隨機分配到主要和恢復組。在第1、29、57和85天藉由深度肌肉內注射緩慢地注射即用型安慰劑對照組、佐劑對照組及不同劑量之單劑量和多劑量DTwP-HepB-IPV-Hib疫苗。恢復組中之動物未接受任何治療並觀察28天。
根據結果可歸結出當在所使用之測試條件下藉由皮下或肌肉內途徑投予單一之人劑量(0.5mL)時,單劑量和多劑量六價疫苗[白喉、破傷風、百日咳(全細胞)、B型肝炎、脊髓灰質炎(經去活化的)及B型流感嗜血桿菌軛合疫苗(吸附的)]不會在Sprague-Dawley大鼠和紐西蘭白兔中產生任何全身性不良作用。在投予使用鋁佐劑之疫苗的毒性研究中,疫苗處理組被預期可觀察到局部注射部位發炎反應和發現免疫反應且可經常觀察到。因此,最高劑量為0.5 mL/動物(1個人劑量)之測試項目“DTwP-HepB-IPV-Hib疫苗”被認為在所使用之測試條件和劑量下“無觀察到之不良反應水準”(NOAEL)。

實施例 8
10 此表提供SIIPL組合疫苗和Easy Six(Panacea)之間個別抗原之吸附百分比、效力、游離PRP含量之比較:
D = 白喉類毒素抗原
T = 破傷風類毒素抗原
wP = 全細胞百日咳抗原
HBsAg =B 型肝炎表面抗原
IPV = 去活化之脊髓灰質炎病毒抗原
吸附 (%)= 抗原在鋁鹽 (Al3+ ) 上之吸附百分比

Claims (35)

  1. 一種免疫原性組成物,其包含: (i) 白喉(diphtheria)類毒素(D); (ii) 破傷風(tetanus)類毒素(T); (iii) 去活化之全細胞百日咳(pertussis)抗原(wP); (iv) B型肝炎病毒表面抗原(HBsAg); (v) 與載體蛋白軛合之B型流感嗜血桿菌(Haemophilus influenzae)(Hib)莢膜糖; (vi) 去活化之脊髓灰質炎(polio)病毒(IPV)抗原; (vii) 佐劑; (viii) 防腐劑;和 (ix) 稀釋介質或緩衝劑; 其中該組成物為全液體組合疫苗,其顯示改善之免疫原性、降低之反應原性及在2至8℃和室溫下改善之安定性。
  2. 如申請專利範圍第1項之免疫原性組成物,其中該組成物進一步包含一或多種選自下列群組之抗原:流感嗜血桿菌(a、c、d、e、f血清型和未經包囊之菌株)、肝炎(A、C、D、E、F和G菌株)、輪狀病毒(rotavirus)、腦膜炎奈瑟氏球菌(Neisseria meningitidis )A抗原、腦膜炎奈瑟氏球菌C抗原、腦膜炎奈瑟氏球菌W-135抗原、腦膜炎奈瑟氏球菌Y抗原、腦膜炎奈瑟氏球菌X抗原、肺炎鏈球菌(Streptococcus pneumoniae )抗原、腦膜炎奈瑟氏球菌B抗原、金黃色葡萄球菌(Staphylococcus aureus )抗原、炭疽桿菌(Anthrax)、BCG、人類乳頭狀瘤(papilloma)病毒、傷寒沙門氏菌(Salmonella typhi )抗原、無細胞百日咳抗原、經改質之腺苷酸環化酶、瘧疾(Malaria)抗原(RTS、S)、麻疹(Measles)、腮腺炎(Mumps)、德國麻疹(Rubella)、黃病毒抗原、登革熱(Dengue)、玆卡(Zika)、伊波拉(Ebola)、基孔肯雅熱(Chikungunya)、日本腦炎和腹瀉抗原。
  3. 如申請專利範圍第2項之免疫原性組成物,其中該無細胞百日咳抗原包含一或多種選自下列群組之抗原:經改質之腺苷酸環化酶、百日咳類毒素(PT)、絲狀紅血球凝集素(FHA)、百日咳桿菌黏附素(Pertactin)(P69或PRN)或菌毛蛋白(Fimbrial protein)(FIM 1、2和3)。
  4. 如申請專利範圍第1項之免疫原性組成物,其中該組成物包含一或多種選自下列群組之佐劑:鋁鹽(Al3+ ),諸如氫氧化鋁(Al(OH)3 )或磷酸鋁(AlPO4 )、明礬、磷酸鈣、MPLA、3D-MPL、QS21、含CpG之寡脫氧核苷酸佐劑、脂質體或水包油乳劑。
  5. 如申請專利範圍第4項之免疫原性組成物,其中該組成物包含磷酸鋁(AlPO4 )作為佐劑。
  6. 如申請專利範圍第1至5項中任一項之免疫原性組成物,其中該組成物包含之總鋁含量(Al3+ )為0.1 mg/0.5 ml至0.6 mg/0.5 ml。
  7. 如申請專利範圍第1項之免疫原性組成物,其中該去活化之全細胞百日咳抗原(wP)為百日咳博德特氏菌菌株134、509、25525和6229。
  8. 如申請專利範圍第1項之免疫原性組成物,其中該IPV抗原係選自包含沙克(Salk)菌株Mahoney第1型、MEF第2型或Saukett第3型之群組或選自包含沙賓(Sabin)菌株第1型、第2型或第3型之群組。
  9. 如申請專利範圍第8項之免疫原性組成物,其中該IPV抗原係吸附在鋁鹽上,該鋁鹽之Al3+ 濃度係介於0.1 mg/0.5 ml至1.25 mg/0.5 ml之間且其吸附百分比為至少70%。
  10. 如申請專利範圍第9項之免疫原性組成物,其中該IPV抗原係吸附在鋁鹽上,該鋁鹽之Al3+ 濃度係介於0.1 mg/0.5 ml至0.6 mg/0.5 ml之間且其吸附百分比為至少90%。
  11. 如申請專利範圍第1項之免疫原性組成物,其中該D抗原係吸附在鋁鹽上,該鋁鹽之吸附百分比為至少50%。
  12. 如申請專利範圍第1項之免疫原性組成物,其中該T抗原係吸附在鋁鹽上,該鋁鹽之吸附百分比為至少40%。
  13. 如申請專利範圍第1項之免疫原性組成物,其中該HBsAg抗原係吸附在鋁鹽上,該鋁鹽之吸附百分比為至少70%。
  14. 如申請專利範圍第1項之免疫原性組成物,其中該Hib抗原為Hib磷酸多核糖基核糖醇(PRP)多醣,該Hib磷酸多核糖基多核糖醇(PRP)多醣係經使用氰基化軛合化學或還原性胺化軛合化學與載體蛋白軛合,其中該氰基化試劑係選自下列群組:溴化氰、四氟硼酸1-氰基-4-二甲胺基吡啶鎓(CDAP)、四氟硼酸1-氰基-4-吡咯啶基吡啶鎓(CPPT)、1-氰基咪唑(即1-Cl)、1-氰基苯並三唑(1-CBT)或2-氰基噠嗪-3(2H)酮(2-CPO);且該載體蛋白係選自包含下列之群組:CRM197、白喉類毒素、腦膜炎奈瑟氏球菌外膜複合物、破傷風類毒素之片段C、百日咳類毒素、流感嗜血桿菌之蛋白質D、大腸桿菌LT、大腸桿菌ST、來自綠膿桿菌之外毒素A、外膜複合物c(OMPC)、孔蛋白、運鐵蛋白結合蛋白、肺炎球菌溶血素(pneumolysin)、肺炎球菌表面蛋白A(PspA)、肺炎球菌表面黏附素A(PsaA)、肺炎球菌PhtD、肺炎球菌表面蛋白BVH-3和BVH-11、炭疽芽孢桿菌之保護性抗原(PA)和炭疽芽孢桿菌之解毒水腫因子(EF)和致死因子(LF)、卵白蛋白、匙孔血藍蛋白(KLH)、人血清白蛋白、牛血清白蛋白(BSA)和純化的結核菌素之蛋白衍生物(PPD)、合成肽、熱休克蛋白、百日咳蛋白、細胞因子、淋巴因子、激素、生長因子、包含多個由各種病原體衍生之抗原的人CD4+T細胞抗原決定部位之人造蛋白(諸如N19)、攝鐵蛋白、來自艱難梭菌之毒素A或B和具有或不具有連接子之無乳鏈球菌蛋白。
  15. 如申請專利範圍第1項之免疫原性組成物,其中該Hib抗原實質上未吸附在任何佐劑上。
  16. 如申請專利範圍第1項之免疫原性組成物,其中該組成物包含選自下列群組之防腐劑:2-苯氧基乙醇、苯扎氯銨(Phemerol)、苯酚、硫柳汞、甲醛、對羥基苯甲酸甲酯和對羥基苯甲酸丙酯、或苯甲醇、或彼等之組合。
  17. 如申請專利範圍第16項之免疫原性組成物,其中該組成物包含2-苯氧乙醇作為防腐劑。
  18. 如申請專利範圍第1項之免疫原性組成物,其中該組成物不含防腐劑。
  19. 如申請專利範圍第1項之免疫原性組成物,其中該組成物包含選自下列群組之緩衝劑:氯化鈉、磷酸鹽緩衝鹽水。
  20. 如申請專利範圍第19項之免疫原性組成物,其中該組成物包含氯化鈉作為稀釋介質或緩衝劑。
  21. 如申請專利範圍第1項之免疫原性組成物,其中該組成物進一步包含醫藥上可接受之轉運蛋白、賦形劑、結合劑、載體、等張劑、乳化劑或保濕劑。
  22. 如申請專利範圍第20項之免疫原性組成物,其中該組成物包含選自下列群組之醫藥上可接受之賦形劑:糖和多元醇、表面活性劑、聚合物、鹽、胺基酸、pH調節劑。
  23. 如申請專利範圍第1至22項中任一項之免疫原性組成物,其中該組成物包含含量約10 Lf/0.5 ml至25 Lf/0.5 ml之D抗原;含量約2 Lf/0.5 ml至10 Lf/0.5 ml之T抗原;含量約12 IOU/0.5 ml至16 IOU/0.5 ml之wP抗原;含量約7 μg/0.5 ml至15 μg/0.5 ml之HBsAg;含量約7 μg/0.5 ml至13 μg/0.5 ml之Hib抗原;含量分別約1-50 DU/0.5 ml之第1型沙克IPV抗原、約1-20 DU/0.5 ml之第2型沙克IPV抗原或約1-50 DU/0.5 ml之第3型沙克IPV抗原;含量約0.1 mg/0.5 ml至2.5 mg/0.5 ml之磷酸鋁;含量約1 mg/0.5 ml至6 mg/0.5 ml之2-苯氧基乙醇;含量約0.5%至1.5%之氯化鈉。
  24. 如申請專利範圍第1至23項中任一項之免疫原性組成物,其中該組成物包含含量約10 Lf/0.5 ml至25 Lf/0.5 ml之D抗原;含量約2 Lf/0.5 ml至10 Lf/0.5 ml之T抗原;含量約12 IOU/0.5 ml至16 IOU/0.5 ml之wP抗原;含量約7 μg/0.5 ml至15 μg/0.5 ml之HBsAg;含量約7 μg/0.5 ml至13 μg/0.5 ml之Hib抗原;含量分別約1-50 DU/0.5 ml之第1型沙賓IPV抗原、約1-20 DU/0.5 ml之第2型沙賓IPV抗原或約1-50 DU/0.5 ml之第3型沙賓IPV抗原;含量約0.1 mg/0.5 ml至2.5 mg/0.5 ml之磷酸鋁;含量約1 mg/0.5 ml至6 mg/0.5 ml之2-苯氧基乙醇;含量約0.5%至1.5%之氯化鈉。
  25. 如申請專利範圍第1至24項中任一項之免疫原性組成物,其中該組成物包含含量約10 Lf/0.5 ml之D抗原;含量約2 Lf/0.5 ml之T抗原;含量約12 IOU/0.5 ml之wP抗原;含量約8 μg/0.5 ml之HBsAg;含量約8 μg/0.5 ml之Hib抗原;含量分別約40 DU/0.5 ml之第1型沙克IPV抗原、約8 DU/0.5 ml之第2型沙克IPV抗原或約32 DU/0.5 ml之第3型沙克IPV抗原;含量約1.25 mg/0.5 ml之磷酸鋁;含量約2.5 mg/0.5 ml之2-苯氧基乙醇;含量約0.9%之氯化鈉。
  26. 如申請專利範圍第1至25項中任一項之免疫原性組成物,其中該組成物包含含量約20 Lf/0.5 ml之D抗原;含量約4 Lf/0.5 ml之T抗原;含量約14 IOU/0.5 ml之wP抗原;含量約15 μg/0.5 ml之HBsAg;含量約10 μg/0.5 ml之Hib抗原;含量分別約40 DU/0.5 ml之第1型沙克IPV抗原、約8 DU/0.5 ml之第2型沙克IPV抗原或約32 DU/0.5 ml之第3型沙克IPV抗原;含量約1.25 mg/0.5 ml之磷酸鋁;含量約2.5 mg/0.5 ml之2-苯氧基乙醇;含量約0.9%之氯化鈉。
  27. 如申請專利範圍第1至26項中任一項之免疫原性組成物,其中該組成物包含含量約25 Lf/0.5 ml之D抗原;含量約10 Lf/0.5 ml之T抗原;含量約16 IOU/0.5 ml之wP抗原;含量約15 μg/0.5 ml之HBsAg;含量約13 μg/0.5 ml之Hib抗原;含量分別約40 DU/0.5 ml之第1型沙克IPV抗原、約8 DU/0.5 ml之第2型沙克IPV抗原或約32 DU/0.5 ml之第3型沙克IPV抗原;含量約1.25 mg/0.5 ml之磷酸鋁;含量約2.5 mg/0.5 ml之2-苯氧基乙醇;含量約0.9%之氯化鈉。
  28. 一種製造全液體組合疫苗組成物之方法,該全液體組合疫苗組成物顯示改善之免疫原性、降低之反應原性及改善之安定性且包含: (i) 白喉類毒素(D); (ii) 破傷風類毒素(T); (iii) 去活化之全細胞百日咳抗原(wP); (iv) B型肝炎病毒表面抗原(HBsAg); (v) 與載體蛋白軛合之B型流感嗜血桿菌(Hib)莢膜糖;和 (vi) 去活化之脊髓灰質炎病毒(IPV)抗原; 該方法包含下列步驟: a). 在混合器皿/容器中添加生理鹽水 b). 添加包含白喉類毒素之組分I c). 添加包含破傷風類毒素之組分Ⅱ d). 添加去活化之全細胞百日咳抗原 e). 添加包含B型肝炎表面抗原之組分Ⅲ f). 添加Hib抗原 g). 添加IPV抗原 h). 添加2-苯氧基乙醇 i). 以氫氧化鈉/碳酸鈉調整pH為6.0至7.0 j). 添加生理鹽水以補足體積。
  29. 如申請專利範圍第28項之方法,其中該組分I之製備包含下列步驟: a). 將磷酸鋁轉移至器皿/容器中 b). 添加白喉類毒素 c). 以醋酸/氫氧化鈉調整pH為4.5至5.5 d). 安定化 e). 以氫氧化鈉/碳酸鈉調整pH為5.5至6.5 f). 安定化。
  30. 如申請專利範圍第28項之方法,其中該組分Ⅱ之製備包含下列步驟: a). 將磷酸鋁轉移至器皿/容器中 b). 添加白喉類毒素 c). 以醋酸/氫氧化鈉調整pH為4.5至5.5 d). 安定化 e). 以氫氧化鈉/碳酸鈉調整pH為5.5至6.5 f). 安定化。
  31. 如申請專利範圍第28項之方法,其中該組分Ⅲ之製備包含下列步驟: a). 將磷酸鋁轉移至器皿/容器中 b). 添加B型肝炎表面抗原 c). 以醋酸/氫氧化鈉調整pH為4.5至5.5 d). 安定化 e). 以氫氧化鈉/碳酸鈉調整pH為5.8至6.8 f). 安定化。
  32. 如申請專利範圍第28項之方法,其中該去活化之全細胞百日咳抗原之製備包含下列步驟: a). 在甲醛之存在下使百日咳博德特氏菌菌株134在56℃下去活化10-15分鐘 b). 在甲醛之存在下使百日咳博德特氏菌菌株509在56℃下去活化10-15分鐘 c). 在甲醛之存在下使百日咳博德特氏菌菌株25525和6229在56℃下去活化10-15分鐘 c). 在甲醛之存在下使百日咳博德特氏菌菌株6229在56℃下去活化10-15分鐘 d). 隨後將去活化之百日咳博德特氏菌菌株134、509、25525和6229以1:1:0.25:0.25之比例混合 e). 可選擇地吸附在以鋁為底質之佐劑上 其中該方法缺乏硫柳汞且去活化之全細胞百日咳抗原保持不結塊且呈均質,從而導致反應原性降低及持續更久之較佳功效。
  33. 如申請專利範圍第28項之方法,其中該Hib抗原之製備包含下列步驟: a). 使B型流感嗜血桿菌醱酵 b). 在0.1% 甲醛之存在下且在37℃下去活化2小時 c). 純化Hib磷酸多核糖基核糖醇(PRP)多醣 d). 在己二酸二醯肼(ADH)連接子之存在下使用溴化氰氰基化軛合化學使步驟c)之純化產物與破傷風類毒素(TT)軛合 e). 純化步驟d)之軛合物 f). 較佳地通過0.22 μm過濾器過濾純化之軛合物 其中在全部純化之Hib大量軛合物中該游離PRP之百分比不超過5%。
  34. 一種全液體組合疫苗組成物,其顯示基本上如本說明書之實施例所描述之改善之免疫原性、降低之反應原性和改善之安定性。
  35. 一種製造全液體組合疫苗組成物之方法,該全液體組合疫苗組成物顯示基本上如本說明書之實施例所描述之改善之免疫原性、降低之反應原性和改善之安定性。
TW107124600A 2017-07-18 2018-07-17 具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法 TWI786153B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201721025513 2017-07-18
IN201721025513 2017-07-18

Publications (2)

Publication Number Publication Date
TW201919690A true TW201919690A (zh) 2019-06-01
TWI786153B TWI786153B (zh) 2022-12-11

Family

ID=63556364

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124600A TWI786153B (zh) 2017-07-18 2018-07-17 具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法

Country Status (20)

Country Link
US (1) US11179453B2 (zh)
EP (1) EP3655024A1 (zh)
JP (1) JP7404226B2 (zh)
KR (1) KR102657910B1 (zh)
CN (1) CN111032078A (zh)
AU (1) AU2018302767A1 (zh)
BR (1) BR112020000999A2 (zh)
CA (1) CA3070039A1 (zh)
CO (1) CO2020001765A2 (zh)
EA (1) EA202090316A1 (zh)
GE (1) GEP20227386B (zh)
JO (1) JOP20180069B1 (zh)
MX (1) MX2020000441A (zh)
PE (1) PE20201443A1 (zh)
PH (1) PH12020500133A1 (zh)
SG (1) SG11202000224SA (zh)
TW (1) TWI786153B (zh)
UY (1) UY37811A (zh)
WO (1) WO2019016654A1 (zh)
ZA (1) ZA202000889B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007016403A (es) * 2005-06-27 2008-03-07 Glaxosmithkline Biolog Sa Composicion inmunogenica.
ES2595094T3 (es) 2006-03-10 2016-12-27 Institut Pasteur De Lille Cepas de Bordetella vivas, atenuadas, como vacuna de dosis única contra la tos ferina
CN102448490B (zh) 2009-04-28 2015-05-13 国家健康与医学研究院 用于预防或治疗过敏原引起的气道疾病的疫苗
SG11202003333WA (en) * 2017-10-18 2020-05-28 Pasteur Institut Bordetella strains expressing serotype 3 fimbriae
JOP20190242A1 (ar) * 2018-10-12 2020-04-12 Serum Institute Of India Pvt Ltd تركيبة لقاح توليفي تشمل فيروس شلل الأطفال ذو جرعة مخفّضة خاملة التنشيط وطريقة لتحضيرها
WO2020165920A1 (en) * 2019-02-12 2020-08-20 Biological E Limited Multivalent vaccine composition
CN112138155B (zh) * 2019-06-28 2022-04-12 怡道生物科技(苏州)有限公司 一种复合佐剂系统及制备该佐剂的方法
JOP20200214A1 (ar) 2019-09-03 2021-03-03 Serum Institute Of India Pvt Ltd تركيبات مولدة للمناعة ضد الأمراض المعوية وطرق لتحضيرها
EP3988289A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988290A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method for manufacturing a spectacle lens
EP3988288A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
KR20220076405A (ko) * 2020-11-30 2022-06-08 주식회사 엘지화학 알루미늄 부형제를 이용하여 다가 혼합백신 내 백일해 균 유래 엔도톡신 제거 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2118963T3 (es) 1992-05-23 1998-10-01 Smithkline Beecham Biolog Vacunas combinadas, que contienen antigeno de superficie de la hepatitis b y otros antigenos.
CN1146444C (zh) * 1995-06-23 2004-04-21 史密斯克莱·比奇曼生物公司 含有吸附于磷酸铝上的多糖偶联抗原的疫苗组合物
DE69735191T2 (de) 1997-09-15 2006-10-05 Sanofi Pasteur Msd Verfahren zur Herstellung multivalenter Impfstoffe
GB9806456D0 (en) 1998-03-25 1998-05-27 Smithkline Beecham Biolog Vaccine composition
EP1004314A1 (fr) 1998-11-26 2000-05-31 Pasteur Merieux MSD Vaccin T.d. Polio rappel pour une population vaccinée ou sensibilisée
UA79735C2 (uk) 2000-08-10 2007-07-25 Глаксосмітклайн Байолоджікалз С.А. Очищення антигенів вірусу гепатиту b (hbv) для використання у вакцинах
GB0313916D0 (en) * 2003-06-16 2003-07-23 Glaxosmithkline Biolog Sa Vaccine composition
GB0405787D0 (en) 2004-03-15 2004-04-21 Chiron Srl Low dose vaccines
GB0616226D0 (en) * 2006-08-15 2006-09-27 Novartis Ag Processes
PL2097102T3 (pl) 2006-09-07 2012-10-31 Glaxosmithkline Biologicals Sa Szczepionka skojarzona o zmniejszonej ilości antygenu wirusa polio
PE20100366A1 (es) * 2008-10-24 2010-05-21 Panacea Biotec Ltd Novedosas composiciones de vacuna con tos ferina acelular asi como el metodo para su elaboracion
PE20100365A1 (es) * 2008-10-24 2010-05-21 Panacea Biotec Ltd Novedosas vacunas de combinacion con tos ferina de celulas enteras y metodo para su elaboracion
RU2705163C2 (ru) 2011-01-05 2019-11-05 Бхарат Байотек Интернэшнл Лимитед Комбинированная семивалентная вакцина
AU2014304545A1 (en) * 2013-08-05 2016-02-25 Glaxosmithkline Biologicals S.A. Combination immunogenic compositions
MA42317B2 (fr) 2015-09-16 2021-11-30 Lg Chemical Ltd Composition de vaccin combinée pour administration multiple

Also Published As

Publication number Publication date
JOP20180069A1 (ar) 2019-01-18
KR102657910B1 (ko) 2024-04-18
KR20200042470A (ko) 2020-04-23
EA202090316A1 (ru) 2020-12-08
SG11202000224SA (en) 2020-02-27
CN111032078A (zh) 2020-04-17
JP7404226B2 (ja) 2023-12-25
US11179453B2 (en) 2021-11-23
JP2020527571A (ja) 2020-09-10
WO2019016654A1 (en) 2019-01-24
CO2020001765A2 (es) 2020-05-29
JOP20180069B1 (ar) 2022-09-15
MX2020000441A (es) 2020-08-17
ZA202000889B (en) 2021-06-30
GEP20227386B (en) 2022-06-10
BR112020000999A2 (pt) 2020-07-14
US20200206331A1 (en) 2020-07-02
PE20201443A1 (es) 2020-12-10
PH12020500133A1 (en) 2021-02-08
UY37811A (es) 2019-01-02
AU2018302767A1 (en) 2020-03-05
CA3070039A1 (en) 2019-01-24
EP3655024A1 (en) 2020-05-27
TWI786153B (zh) 2022-12-11

Similar Documents

Publication Publication Date Title
TWI786153B (zh) 具有改善之安定性、增強之免疫原性及降低之反應原性的免疫原性組成物和其製備方法
US8551451B2 (en) Combination vaccine with acellular pertussis
RU2442825C2 (ru) Иммуногенные композиции, способы получения таких композиций и плазмида, включенная в такие композиции
JP7478144B2 (ja) 低減用量の不活化ポリオウイルスを含む混合ワクチン組成物およびそれを調製するための方法
US20110195087A1 (en) Combination vaccine with whole cell pertussis
KR102607295B1 (ko) 다가 백신 조성물
EA043311B1 (ru) Композиция комбинированной вакцины, содержащая уменьшенную дозу инактивированного полиовируса, и способ её получения
US11793869B2 (en) Methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof
US20240197863A1 (en) Liquid six combined vaccine composition
TW202038995A (zh) 多價疫苗組合物
EA043682B1 (ru) Комбинированная вакцина и способ её производства (варианты)
OA20569A (en) Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof.