TW201843904A - 神經網路、蓄電系統、車輛及電子裝置 - Google Patents

神經網路、蓄電系統、車輛及電子裝置 Download PDF

Info

Publication number
TW201843904A
TW201843904A TW107114571A TW107114571A TW201843904A TW 201843904 A TW201843904 A TW 201843904A TW 107114571 A TW107114571 A TW 107114571A TW 107114571 A TW107114571 A TW 107114571A TW 201843904 A TW201843904 A TW 201843904A
Authority
TW
Taiwan
Prior art keywords
battery
insulator
transistor
layer
circuit
Prior art date
Application number
TW107114571A
Other languages
English (en)
Other versions
TWI793120B (zh
Inventor
栗城和貴
田島亮太
豊高耕平
宍戸英明
伊佐敏行
Original Assignee
日商半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源硏究所股份有限公司 filed Critical 日商半導體能源硏究所股份有限公司
Publication of TW201843904A publication Critical patent/TW201843904A/zh
Application granted granted Critical
Publication of TWI793120B publication Critical patent/TWI793120B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Neurology (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明的一個實施方式的目的是提供一種具有優良特性的蓄電系統、安全性高的蓄電系統、劣化小的蓄電系統或者具有優良特性的蓄電池。本發明的一個實施方式是一種蓄電系統,該蓄電系統包括神經網路及蓄電池,其中,神經網路包括輸入層、輸出層及輸入層與輸出層之間的一個或多個隱藏層,指定的隱藏層以指定的權係數連接到前一個隱藏層或輸入層,指定的隱藏層以指定的權係數連接到下一個隱藏層或輸出層,在蓄電池中,蓄電池的電壓與取得電壓的時刻作為一個資料組被測量,對輸入層輸入在不同時刻測量的資料組,並且,根據從輸出層輸出的信號改變蓄電池的工作條件。

Description

神經網路、蓄電系統、車輛及電子裝置
本發明的一個實施方式係關於一種蓄電池及使用蓄電池的蓄電系統。另外,本發明的一個實施方式係關於一種使用蓄電池的車輛。另外,本發明的一個實施方式係關於一種使用蓄電池的電子裝置。
另外,本發明的一個實施方式係關於一種半導體裝置。
另外,本發明的一個實施方式係關於一種神經網路及使用神經網路的蓄電系統。另外,本發明的一個實施方式係關於一種使用神經網路的車輛。另外,本發明的一個實施方式係關於一種使用神經網路的電子裝置。另外,本發明的一個實施方式係關於一種使用神經網路的控制系統。
注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。顯示裝置、發光裝置、記憶體裝置、電光裝置、蓄電裝置、半導體電路及電子裝置有時包含半導體裝置。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的技術領域係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。
近年來,對人工神經網路(以下,將其稱為神經網路)等的機器學習技術的開發得到迅速發展。
專利文獻1公開了使用神經網路進行蓄電池的剩餘電容的運算的例子。
另外,近年來,將通道形成區中包含氧化物半導體或金屬氧化物的電晶體(氧化物半導體(Oxide Semiconductor)電晶體,以下將其稱為OS電晶體)受到關注。OS電晶體的關態電流(off-state current)極小。已提出了利用該特性的使用OS電晶體的應用程式。例如,專利文獻2公開了在神經網路的學習中使用OS電晶體的例子。
[專利文獻1]美國專利申請公開第2006/0181245號公報
[專利文獻2]日本專利申請公開第2016-219011號公報
本發明的一個實施方式的目的之一是提供一種具有優良特性的蓄電系統。另外,本發明的一個實施方式的目的之一是提供一種安全性高的蓄電系統。另外,本發明的一個實施方式的目的之一是提供一種劣化小的蓄電系統。
另外,本發明的一個實施方式的目的之一是提供一種具有優良特性的蓄電池。另外,本發明的一個實施方式的目的之一是提供一種安全性高的蓄電池。另外,本發明的一個實施方式的目的之一是提供一種劣化小的蓄電池。另外,本發明的一個實施方式的目的之一是提供一種安裝有具有優良特性的蓄電系統的電子裝置。另外,本發明的一個實施方式的目的之一是提供一種安裝有具有優良特性的蓄電系統的車輛。另外,本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。
注意,多個目的的記載不妨礙彼此的目的的存在。此外,本發明的一個實施方式並不需要實現所有上述目的。上述列舉的目的以外的目的可從說明書、圖式、申請專利範圍等的記載自然得知,而有可能成為本發明的一個實施方式的目的。
本發明的一個實施方式是一種蓄電系統,該蓄電系統包括神經網路及蓄電池,其中,神經網路包括輸入層、輸出層及輸入層與輸出層之間的一個或多個隱藏層,指定的隱藏層以指定的權係數連接到前一個隱藏層或輸入層,指定的隱藏層以指定的權係數連接到下一個隱藏層或輸出層,在蓄電池中,蓄電池的電壓與取得該電壓的時刻作為一個資料組被測量,對輸入層供應在不同時刻測定的資料組,並且,根據從輸出層輸出的信號改變 蓄電池的工作條件。
在上述結構中,較佳為在進行蓄電池的充電期間測量在蓄電池中被測量的資料組,並且在從輸出層輸出第一信號的情況下,停止蓄電池的工作。另外,在上述結構中,較佳為在進行蓄電池的充電期間測量在蓄電池中被測量的資料組,在從輸出層輸出第一信號的情況下,停止蓄電池的充電,並且在從輸出層輸出第二信號的情況下,繼續進行充電。
另外,本發明的一個實施方式是一種蓄電系統,該蓄電系統包括神經網路及n個蓄電池(n為2以上的整數),其中,神經網路包括輸入層、輸出層及輸入層與輸出層之間的一個或多個隱藏層,指定的隱藏層以指定的權係數連接到前一個隱藏層或輸入層,指定的隱藏層以指定的權係數連接到下一個隱藏層或輸出層,n個蓄電池中的第一至第(n-1)蓄電池串聯電連接,對輸入層供應在各第一至第(n-1)蓄電池中測量的資料組,在各第一至第(n-1)蓄電池中測量的電壓與取得該電壓的時刻作為資料組被測量,並且根據從輸出層輸出的信號停止第一蓄電池的工作,將第一蓄電池置換成第n蓄電池,並將第n蓄電池串聯電連接到第二至第(n-1)蓄電池。
在上述結構中,較佳為神經網路包括第一電路,第一電路進行積和運算,第一電路包括第一電晶體、電容器及第二電晶體,第一電晶體的源極和汲極中的一個電連接到電容器的一個電極及第二電晶體的閘極,第一電晶體的通道形成區包含金屬氧化物,金屬氧化物包含銦及元素M,元素M為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個,並且第一電晶體的源極和汲極中的一個保持 對應於類比資料的電位。
在上述結構中,較佳為第二電晶體的通道形成區包含矽。另外,在上述結構中,較佳為第二電晶體的通道形成區包含第二金屬氧化物,第二金屬氧化物包含銦及元素M2,元素M2為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個。
另外,本發明的一個實施方式是一種蓄電系統,該蓄電系統包括蓄電池及第一電路,其中,測量蓄電池的電壓和取得該電壓的時刻作為一個資料組,在進行蓄電池的充電期間測量在蓄電池中測量的資料組,在不同時刻測量的資料組輸入到第一電路,並且,第一電路根據資料組改變蓄電池的工作條件。
另外,本發明的一個實施方式是包括上述蓄電系統中的任一個的車輛。
另外,本發明的一個實施方式是包括上述蓄電系統中的任一個的電子裝置。
另外,本發明的一個實施方式是一種神經網路,該神經網路包括輸入層、輸出層、輸入層與輸出層之間的一個或多個隱藏層以及第一電路,其中,指定的隱藏層以指定的權係數連接到前一個隱藏層或輸入層,指定的隱藏層以指定的權係數連接到下一個隱藏層或輸出層,第一值與取得第一值的時刻作為一個資料組被測量,對輸入層供應在不同時刻測定的資料組, 從輸出層輸出對應於輸入到輸入層的資料組的第二值,第一電路進行積和運算,第一電路包括第一電晶體、電容器及第二電晶體,第一電晶體的源極和汲極中的一個電連接到電容器的一個電極及第二電晶體的閘極,第一電晶體的通道形成區包含金屬氧化物,金屬氧化物包含銦及元素M,元素M為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個,並且第一電晶體的源極和汲極中的一個保持對應於類比資料的電位。
藉由本發明的一個實施方式,可以提供一種具有優良特性的蓄電系統。另外,藉由本發明的一個實施方式,可以提供一種安全性高的蓄電系統。另外,藉由本發明的一個實施方式,可以提供一種劣化小的蓄電系統。
另外,藉由本發明的一個實施方式,可以提供一種具有優良特性的蓄電池。另外,藉由本發明的一個實施方式,可以提供一種安全性高的蓄電池。另外,藉由本發明的一個實施方式,可以提供一種劣化小的蓄電池。另外,藉由本發明的一個實施方式,可以提供一種安裝有具有優良特性的蓄電系統的電子裝置。另外,藉由本發明的一個實施方式,可以提供一種安裝有具有優良特性的蓄電系統的車輛。另外,藉由本發明的一個實施方式,可以提供一種新穎的半導體裝置。
注意,這些效果的記載不妨礙其他效果的存在。此外,本發明的一個實施方式不需要具有所有上述效果。另外,從說明書、圖式、申請專利範圍等的記載中可明顯得知上述以外的效果,而可以從說明書、圖式、申請專利範圍等的記載中衍生出上述以外的效果。
81‧‧‧正極
82‧‧‧負極
83‧‧‧固體電解質層
84‧‧‧基板
85‧‧‧佈線電極
86‧‧‧佈線電極
87‧‧‧正極活性物質
88‧‧‧負極活性物質
100‧‧‧半導體裝置
105‧‧‧絕緣體
110‧‧‧導電體
112‧‧‧導電體
120‧‧‧導電體
130‧‧‧蓄電系統
131‧‧‧控制電路
135‧‧‧蓄電池
135_k‧‧‧蓄電池
135_m‧‧‧蓄電池
135_S‧‧‧蓄電池
135_1‧‧‧蓄電池
135_2‧‧‧蓄電池
135_3‧‧‧蓄電池
135_4‧‧‧蓄電池
137‧‧‧保護電路
137_S‧‧‧保護電路
137_2‧‧‧保護電路
140‧‧‧電容器
141‧‧‧開關群
142‧‧‧開關群
144‧‧‧電阻器
145‧‧‧電阻器
146‧‧‧電容器
147‧‧‧電晶體
148‧‧‧電晶體
149‧‧‧積體電路
150‧‧‧絕緣體
156‧‧‧導電體
160‧‧‧絕緣體
166‧‧‧導電體
200‧‧‧電晶體
201‧‧‧電晶體
214‧‧‧絕緣體
216‧‧‧絕緣體
218‧‧‧導電體
220‧‧‧絕緣體
222‧‧‧絕緣體
224‧‧‧絕緣體
225‧‧‧絕緣體
230‧‧‧氧化物
246‧‧‧導電體
248‧‧‧導電體
280‧‧‧絕緣體
282‧‧‧絕緣體
286‧‧‧絕緣體
300‧‧‧電晶體
310‧‧‧導電體
310a‧‧‧導電體
310b‧‧‧導電體
311‧‧‧基板
313‧‧‧半導體區域
314a‧‧‧低電阻區
314b‧‧‧低電阻區
315‧‧‧絕緣體
316‧‧‧導電體
320‧‧‧絕緣體
322‧‧‧絕緣體
324‧‧‧絕緣體
326‧‧‧絕緣體
328‧‧‧導電體
330‧‧‧導電體
350‧‧‧絕緣體
352‧‧‧絕緣體
354‧‧‧絕緣體
356‧‧‧導電體
360‧‧‧絕緣體
362‧‧‧絕緣體
364‧‧‧絕緣體
366‧‧‧導電體
370‧‧‧絕緣體
372‧‧‧絕緣體
374‧‧‧絕緣體
376‧‧‧導電體
380‧‧‧絕緣體
382‧‧‧絕緣體
384‧‧‧絕緣體
386‧‧‧導電體
404‧‧‧導電體
404a‧‧‧導電體
404b‧‧‧導電體
405‧‧‧導電體
405a‧‧‧導電體
405b‧‧‧導電體
406‧‧‧金屬氧化物
406a‧‧‧金屬氧化物
406b‧‧‧金屬氧化物
406c‧‧‧金屬氧化物
412‧‧‧絕緣體
413‧‧‧絕緣體
418‧‧‧絕緣體
419‧‧‧絕緣體
420‧‧‧絕緣體
426a‧‧‧區域
426b‧‧‧區域
426c‧‧‧區域
440‧‧‧導電體
440a‧‧‧導電體
440b‧‧‧導電體
450a‧‧‧導電體
450b‧‧‧導電體
451a‧‧‧導電體
451b‧‧‧導電體
452a‧‧‧導電體
452b‧‧‧導電體
500‧‧‧二次電池
510‧‧‧正極引線電極
511‧‧‧負極引線電極
601‧‧‧虛擬異常發生開關
602‧‧‧仿真器
603‧‧‧控制器IC
604‧‧‧OS-LSI推論晶片
605‧‧‧顯示器
700‧‧‧二次電池
701‧‧‧正極蓋
702‧‧‧電池罐
703‧‧‧正極端子
704‧‧‧正極
705‧‧‧隔離體
706‧‧‧負極
707‧‧‧負極端子
708‧‧‧絕緣板
709‧‧‧絕緣板
710‧‧‧墊片
711‧‧‧PTC元件
712‧‧‧安全閥機構
7100‧‧‧可攜式顯示裝置
7101‧‧‧外殼
7102‧‧‧顯示部
7103‧‧‧操作按鈕
7104‧‧‧蓄電池
7200‧‧‧可攜式資訊終端
7201‧‧‧外殼
7202‧‧‧顯示部
7203‧‧‧帶子
7204‧‧‧帶扣
7205‧‧‧操作按鈕
7206‧‧‧輸入輸出端子
7207‧‧‧圖示
7300‧‧‧無人航空載具
7301‧‧‧蓄電池系統
7302‧‧‧旋翼
7303‧‧‧相機
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
7407‧‧‧蓄電池
8000‧‧‧顯示裝置
8001‧‧‧外殼
8002‧‧‧顯示部
8003‧‧‧揚聲器部
8004‧‧‧控制電路
8021‧‧‧充電裝置
8022‧‧‧電纜
8024‧‧‧蓄電系統
8100‧‧‧照明設備
8101‧‧‧外殼
8102‧‧‧光源
8103‧‧‧控制電路
8104‧‧‧天花板
8200‧‧‧室內機
8201‧‧‧外殼
8202‧‧‧出風口
8203‧‧‧控制電路
8204‧‧‧室外機
8230‧‧‧太陽能電池板
8231‧‧‧佈線
8240‧‧‧充電裝置
8250‧‧‧汽車
8251‧‧‧蓄電池
8300‧‧‧蓄電系統
8301‧‧‧充電裝置
8302‧‧‧智慧手機
8400‧‧‧汽車
8401‧‧‧可動部
8406‧‧‧電氣電動機
8500‧‧‧汽車
8600‧‧‧小型摩托車
8601‧‧‧後視鏡
8602‧‧‧蓄電系統
8603‧‧‧方向燈
8604‧‧‧座下收納部
8700‧‧‧電動自行車
8701‧‧‧蓄電池
8702‧‧‧電池組
8703‧‧‧顯示部
8710‧‧‧電動二輪車
8711‧‧‧蓄電池
8712‧‧‧顯示部
8713‧‧‧方向盤
9600‧‧‧平板終端
9625‧‧‧開關
9626‧‧‧開關
9627‧‧‧電源開關
9628‧‧‧操作開關
9629‧‧‧夾子
9630‧‧‧外殼
9630a‧‧‧外殼
9630b‧‧‧外殼
9631‧‧‧顯示部
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧蓄電體
9636‧‧‧DCDC轉換器
9637‧‧‧轉換器
9640‧‧‧可動部
在圖式中:圖1A和圖1B是蓄電系統的例子;圖2是保護電路的例子;圖3A至圖3D示出蓄電池的充電曲線的例子;圖4A至圖4C示出蓄電池的充電曲線的例子;圖5A示出蓄電池的充電曲線的例子,圖5B示出蓄電池的充電曲線的例子,圖5C示出蓄電池的充電曲線及放電曲線的例子,圖5D示出蓄電池的充電曲線及放電曲線的例子;圖6示出蓄電池的充電曲線及放電曲線的例子;圖7是示出蓄電系統的工作的流程圖;圖8是示出蓄電系統的工作的流程圖;圖9是示出神經網路的結構實例的圖;圖10A至圖10C是示出神經網路的結構實例的圖;圖11A至圖11C是示出神經網路的結構實例的圖;圖12是示出積和運算電路的結構實例的方塊圖;圖13是示出電路的結構實例的電路圖;圖14是示出積和運算電路的工作實例的時序圖;圖15是示出蓄電池及電路的結構實例的圖;圖16是示出蓄電池及電路的結構實例的圖;圖17A和圖17B是示出二次電池的例子的立體圖;圖18A至圖18D是示出二次電池的例子的剖面圖及立體圖; 圖19A至圖19C示出車輛的例子;圖20A至圖20C示出車輛的例子;圖21A至圖21C示出電子裝置的例子;圖22A和圖22B示出蓄電系統的應用實例;圖23A至圖23F示出電子裝置的例子;圖24是示出半導體裝置的結構實例的剖面圖;圖25是示出半導體裝置的結構實例的剖面圖;圖26A至圖26C是示出電晶體的結構實例的俯視圖及剖面圖;圖27A和圖27B是示出電晶體的結構實例的剖面圖;圖28A至圖28C是示出電晶體的結構實例的俯視圖及剖面圖;圖29A至圖29C是示出LSTM的網路模型及充電曲線的例子的圖;圖30A和圖30B是系統的方塊圖及試製品的外觀照片;圖31是試製品的外觀照片;圖32是示出全局演算法的圖;圖33是示出演算法的圖;圖34是示出演算法的圖;圖35是示出演算法的圖;圖36是示出LSTM的演算法的圖。
下面,參照圖式對實施方式進行說明。注意,實施方式可以以多個不同模式來實現,並且所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被 變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下實施方式所記載的內容中。
在圖式中,為顯而易見,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。
另外,在本說明書中,可以適當地組合以下實施方式。另外,當在一個實施方式中示出多個結構實例時,可以適當地組合這些結構實例。
在本說明書中,神經網路是指模仿生物的神經回路網,藉由學習決定神經元之間的連接強度,由此具有問題解決能力的所有模型。神經網路包括輸入層、中間層(也稱為隱藏層)及輸出層。
此外,在本說明書中,在說明神經網路時,有時將根據已有的資訊決定神經元之間的連接強度(也稱為權係數)的工作稱為“學習”。
另外,在本說明書中,有時將使用藉由學習得到的連接強度構成神經網路,從此導出新的結論的工作稱為“推論”。
使用本發明的一個實施方式的神經網路的系統例如可以由使用在通道形成區中包含氧化物半導體或金屬氧化物的電晶體的電路實現。
另外,使用本發明的一個實施方式的神經網路的系統也可以由軟體及 硬體構成。此時,作為硬體的記憶體,可以使用安裝有在通道形成區中含有氧化物半導體或金屬氧化物的電晶體的記憶體,也可以使用其他的已知的記憶體。作為軟體的作業系統,可以使用Windows(註冊商標)、UNIX(註冊商標)或macOS(註冊商標)等各種作業系統。軟體的應用程式可以使用Python(註冊商標)、Go、Perl、Ruby、Prelog、Visual Basic(註冊商標)、C、C++、Swift、Java(註冊商標)、.NET等各種程式設計語言編寫。另外,應用程式可以使用Chainer(註冊商標)(可在Python中利用)、Caffe(可在Python及C++中利用)、TensorFlow(可在C、C++及Python中利用)等框架編寫。
在本說明書中說明的實施方式中,使用包括各種電腦硬體或軟體的專用電腦或通用電腦。另外,本說明書中說明的實施方式可以安裝有使用電腦能夠讀取的儲存媒體。另外,儲存媒體也可以包括RAM、ROM、光碟、磁片或電腦所能夠存取的任意的其他的存儲介質。另外,在本說明書中說明的實施方式中作為一個例子示出的演算法、組件、流程、程式等可以由軟體或者硬體與軟體的組合執行。
實施方式1
在本實施方式中,說明將蓄電池的參數輸入神經網路並對蓄電池的狀態進行解析的例子。
作為本發明的一個實施方式的蓄電池,例如較佳為使用二次電池。作為二次電池,例如可以舉出:鋰離子電池等使用電化學反應的二次電池; 雙電層電容器、氧化還原電容器等電化學電容器;空氣電池;燃料電池等。
作為二次電池的正極材料,例如可以使用包含元素A、元素X及氧的材料。元素A較佳為選自第一族元素及第二族元素中的一個以上的元素。作為第一族元素,例如可以使用鋰、鈉、鉀等鹼金屬。另外,作為第二族元素,例如可以使用鈣、鈹、鎂等。作為元素X,例如可以使用選自金屬元素、矽和磷中的一個以上的元素。另外,元素X較佳為選自鈷、鎳、錳、鐵和釩中的一個以上的元素。
為了安全使用安裝有蓄電池的裝置(例如,車輛或電子裝置等),需要使蓄電池穩定工作。
在蓄電池內部,除了充電及放電的可逆反應以外,例如有時發生蓄電池的安全性降低的現象。例如,可以舉出電解液的分解等副反應或電極表面上的金屬析出等。這些現象有時不僅使蓄電池的電容降低,而且使蓄電池的安全性降低。
下面,詳細說明蓄電池的安全性降低的現象的例子。在蓄電池中,有時由於正極與負極的短路,有時發生如下現象:蓄電池的電解液明顯地分解而發生氣體;因蓄電池的溫度上升而發生電極材料的分解反應;等。這種現象有時使蓄電池的安全性降低。例如,有時在鋰離子電池的負極上析出鋰金屬而發生短路。
本發明的一個實施方式的蓄電系統在蓄電池的充電及放電的過程中例 如藉由測量電壓或電流等參數,來對蓄電池的狀態進行解析,根據蓄電池的狀態決定蓄電池的工作條件。更詳細地說,例如,對充電曲線或放電曲線進行解析。在此,充電曲線例如是指充電過程中的隨時間的電壓推移或者隨時間的電容推移。另外,放電曲線例如是指放電過程中的隨時間的電壓推移或者隨時間的電容推移。
藉由使用本發明的一個實施方式的蓄電系統,例如在檢測或預測出蓄電池的安全性降低的現象的情況下,藉由改變蓄電池的工作條件,來確保蓄電池的安全性。藉由本發明的一個實施方式的蓄電系統,可以抑制蓄電池的劣化。因此,有時可以抑制蓄電池的電容下降。另外,藉由本發明的一個實施方式的蓄電系統,有時可以抑制伴隨著充放電循環的電容下降。另外,藉由本發明的一個實施方式的蓄電系統,有時可以抑制蓄電池的溫度上升。因此,有時可以延長蓄電池的壽命。
在將蓄電池安裝在使用者所穿戴的裝置或者使用者所操作的車輛等的情況下,藉由提高蓄電池的安全性,可以確保使用者的安全。另外,藉由抑制蓄電池的電容下降,可以延長安裝有蓄電池的裝置等的蓄電池的更換間隔或者不需要更換電池,從而可以提高方便性,並可以抑制成本。另外,藉由防止蓄電池的電容下降,可以延長安裝有蓄電池的裝置等的使用時間。例如,可以提高車輛的行駛距離。藉由延長使用時間,充電次數減少,所使用的電量減少,所以可以減少對環境的負載。
圖1A示出本發明的一個實施方式的蓄電系統130的例子。圖1A和圖1B所示的蓄電系統130包括蓄電池135、與蓄電池135電連接的保護電路 137、藉由保護電路137與蓄電池135電連接的控制蓄電池135的工作的控制電路131以及與控制電路131電連接的藉由控制電路131接收蓄電池135的參數的神經網路NN。控制電路131例如藉由保護電路137控制蓄電池135的工作。神經網路NN的輸出供應到控制電路131,根據輸出結果決定蓄電池135的工作條件。控制電路131較佳為包括暫存器RS、庫侖計CC及電路BC。電路BC例如具有控制蓄電池的工作的功能。
如圖1B所示,蓄電系統130也可以包括多個蓄電池。圖1B所示的蓄電系統包括k個蓄電池及k個保護電路。各蓄電池與各自對應的保護電路連接。在此,將與第m蓄電池連接的保護電路稱為第m保護電路。在此,k為1以上的整數,m為1以上且k以下的整數。k個保護電路分別與控制電路131連接。在圖1B中示出各蓄電池與各自對應的保護電路連接的例子,但是,例如,蓄電系統130也可以具有如下結構:控制電路131包括保護電路,k個蓄電池分別與控制電路電連接且由控制電路131所包括的保護電路控制。關於蓄電池135的記載可以適用於蓄電池135_m。
保護電路137所包括的端子V1及端子V2電連接到控制電路131。在圖1A和圖1B所示的例子中,端子V1及端子V2電連接到電路BC。端子V1及端子V2藉由保護電路137電連接到蓄電池135的兩極。另外,蓄電池135的兩極也可以以不藉由保護電路137的方式電連接到控制電路131。
保護電路137也可以包括端子V1及端子V2以外的端子。在圖1A和圖1B所示的例子中,保護電路137包括端子B1,端子B1與控制電路131電連接。例如,可以從端子B1輸出蓄電池135的各時刻的測量參數(例如, 電流、電壓、溫度等)。
圖2示出保護電路137的例子。保護電路137包括端子V1及端子V2。端子V1與蓄電池135的正極電連接,端子V2與蓄電池135的負極電連接。另外,保護電路137包括積體電路149、電晶體147及電晶體148。電晶體147及電晶體148較佳為包括寄生二極體的MOSFET,以寄生二極體的方向彼此相反的方式連接電晶體147和電晶體148。另外,也可以電連接其他二極體元件代替寄生二極體。電晶體148與蓄電池135的負極電連接。電晶體147及電晶體148設置在從端子V2對蓄電池135進行充電或放電的路徑上。電晶體147被用作充電用開關,電晶體148被用作放電用開關。在用於充放電的電壓範圍之外的電壓被施加到端子V1與端子V2之間的情況下以及在超過用於充放電的電流範圍的電流被供應到端子V1與端子V2之間的情況下,使電晶體147或電晶體148關閉來保護蓄電池135。
保護電路137較佳為包括其一個電極與端子V1電連接的電阻器144及其一個電極與端子V2電連接的電阻器145。電阻器144的另一個電極及電阻器145的另一個電極電連接到積體電路149。
保護電路137也可以包括與蓄電池135並聯連接的電容器146。
在本發明的一個實施方式的神經網路中,作為輸入參數,較佳為使用有關蓄電池的測量資料。例如,可以每隔一定時間同時對蓄電池的電流與電壓的組進行取樣並讀出,儲存規定個數的資料組,將其用作輸入參數。或者,作為輸入參數,例如可以使用時刻及各時刻的蓄電池的電流與電壓 的組的資料。在此,蓄電池的電壓例如是蓄電池的兩極的電位差。
另外,作為輸入參數,可以使用蓄電池的電容與電壓的組。蓄電池的電容例如可以利用蓄電池的電流與時間之積來獲得。另外,也可以使用庫侖計CC獲得蓄電池的電容。
另外,作為輸入參數,也可以使用蓄電池的SOC(state of charge,充電狀態)。蓄電池的SOC例如是從蓄電池的充電電容的絕對值減去放電電容的絕對值而獲得的值與充滿電電容的比率。或者,蓄電池的SOC也可以利用蓄電池的電壓推測。
在蓄電池的充電及放電中,電壓通常根據電流的大小變化。例如,因蓄電池的電阻所引起的電壓下降的值根據電流的大小變化。因此,有時根據電流的大小與電壓的關係,可以算出蓄電池的電阻。可以將藉由上述方法算出的電阻值用作輸入參數。
作為輸入參數,還可以使用蓄電池的開路電壓(OCV:open circuit voltage,有時將其稱為開放電壓)。蓄電池的開路電壓例如是指不使電流流過蓄電池的狀態下的蓄電池的兩極的電位差。在此,“不使電流流過蓄電池的狀態”例如是指不對蓄電池施加負載的狀態及蓄電池不與充電電路電連接的狀態。藉由對開路電壓與明顯的電流流過蓄電池的狀態下的電壓進行比較,例如有時可以算出蓄電池的電阻。
供應到控制電路131的蓄電池135的參數較佳為儲存於暫存器RS。例 如,蓄電池135_1至蓄電池135_k的參數儲存在暫存器RS中,並且依次被神經網路NN解析。
或者,有時在暫存器RS中儲存蓄電池135的時間序列資料,對該時間序列資料進行比較及解析。例如,有時對某個充電循環或者放電循環中的時間序列資料進行解析。
或者,也可以在暫存器RS中儲存對應於蓄電池的第x次的充放電循環(x為1以上的整數)的輸入參數,並對該輸入參數與對應於蓄電池的第y次的充放電循環(y為大於x的整數)的輸入參數進行比較。例如,可以算出第y次的充放電循環的電壓與第x次的充放電循環的電壓之差而將其用作輸入參數。
另外,可以算出電流、電壓、電容等的參數的時間微分而將其用作輸入參數。
[學習]
本發明的一個實施方式的神經網路較佳為進行用來判斷是否改變蓄電池的工作條件的學習。“改變蓄電池的工作條件”例如是指停止蓄電池的工作。或者,是指改變蓄電池的充電或放電的速度。例如,是指改變蓄電池的充電或放電的電流的大小的上限。或者,是指改變蓄電池的充電或放電的電壓。例如,是指改變蓄電池的充電或放電的電壓的上限或下限。
在測量蓄電池之後,根據資料將蓄電池分為兩組:判斷為較佳為改變 工作條件的組(A組);判斷為不需要改變工作條件的組(B組)。分組基準由測量結果的觀測者決定。或者,也可以根據蓄電池的測量參數的值進行分組。作為蓄電池的測量參數,可以舉出上述電流、電壓、電容及測量這些參數的時刻。在此,時刻也可以是相對的時刻。例如,可以使用以充電開始時刻為基準的時刻。另外,作為蓄電池的測量參數,例如可以舉出蓄電池的溫度或膨脹(體積變化)等。例如,在蓄電池的表面溫度與測量環境的溫度之差超過一定數值的情況下,判斷該資料屬於A組。
另外,當改變蓄電池的工作條件時,如果有兩個以上的改變之後的條件的情況下,可以根據該條件數進行分組。例如,可以分為三個以上的組。
在本發明的一個實施方式的蓄電系統中,輸入到神經網路的參數例如是在某個期間儲存的測量資料。例如,以各時間(時刻)的蓄電池的電壓與測量該電壓的時間為一組,將多個組的資料輸入神經網路。或者,也可以以各時間(時刻)的蓄電池的電壓、從外部充電的電流和測量該電壓及電流的時間為一組,將多個組的資料輸入神經網路。另外,在本發明的一個實施方式的神經網路中,較佳為對某個期間的蓄電池的參數的隨時間的推移(例如,電壓的隨時間的推移)進行解析。
在本發明的一個實施方式的蓄電系統中,在各時間獲得測量資料並將該測量資料與時間的組(例如,時間與電壓;時間、電壓與電流;或者時間與電容)輸入神經網路。在此,在多個組的資料中,在各期間相對於時間(或者電容)的資料的頻率可以不同。例如,在圖3A中,將由點劃線圍繞的區域分別稱為期間A、期間B及期間C。期間A及期間C(亦即,充 電初期及充電後期)與期間B(亦即,充電中期)相比相對於電容的電壓變化量大。因此,較佳為在期間A及期間C中比期間B更深入地進行解析。例如,較佳為提高輸入到神經網路的資料的相對於時間(或者電容)的頻率。
下面說明基於觀測者根據蓄電池的充電測量結果決定的基準進行分組的情況的例子。在以下例子中,對充電進行測量,但是,也可以對放電進行測量,或對充電及放電的兩者進行測量。或者,可以使用不進行充放電的蓄電池的測量結果。
作為測量結果,可以使用不同蓄電池的充電資料或者同一蓄電池的不同循環數的充電資料等。
圖3A至圖3D示出蓄電池的充電資料的四個測量結果。橫軸表示電容(Capacity),縱軸表示電壓(Voltage)。
根據測量結果的觀測者所決定的基準將圖3A分為不改變蓄電池的工作條件的組(亦即,B組),將圖3B至圖3D分為較佳為改變蓄電池的工作條件的組(亦即,A組)。觀測者判斷圖3B至圖3D中的由虛線圍繞的區域是異常資料。判斷為異常資料的理由例如可認為是電流的變動大、有多個極大點及極小點、極大點與極小點的週期不規則等。藉由將這些資料輸入神經網路NN並進行學習,即使觀測者不將特徵作為參數抽出,也可以藉由神經網路中的運算抽出特徵量。此時,有時抽出觀測者沒有意識到的特徵。換言之,藉由使用神經網路對蓄電池的工作進行解析,有時例如可以提高 蓄電池的安全性。另外,有時可以提高蓄電池的性能。
另外,電壓根據從外部充電的電流的變化而變化不是異常,因此此時較佳為分為不改變蓄電池的工作條件的B組。另一方面,在蓄電池的內部發生短路的情況下,雖然從外部進行控制的電流不容易發生變化,但是電壓會下降。在此情況下,發生異常,所以需要分為較佳為改變工作條件的A組。因此,在資料組不僅包括電壓和時間而且還包括電流的情況下,可以進行更準確的學習及推論,從而可以進行更準確的異常檢測。
另外,資料組較佳為還包括蓄電池的溫度。在蓄電池的溫度急劇上升的情況下,在蓄電池內部中發生短路等發生安全性上重大問題的可能性高,需要分為較佳為改變工作條件的A組。因此,在資料組包括蓄電池的溫度的情況下,可以進行更準確的異常檢測。
另外,也可以對充電曲線進行平滑處理。圖4A示出充電曲線的例子。在圖4A中,觀察到微小的電壓的上下變動。圖4B是圖4A中由虛線圍繞的區域的放大圖。
圖4C是對圖4B的充電曲線進行平滑處理的結果的例子。電壓的上下變動經過平滑處理而被抑制。
另外,根據蓄電池的正極及負極的材料可知蓄電池的電壓範圍,因此也可以僅將需要注目的範圍的電壓用於學習,刪除其他範圍的資料。另外,也可以將需要注目的範圍的電壓正規化。例如,在正極活性物質為磷酸鐵 鋰且負極活性物質為黑鉛的蓄電池的充電曲線中,可以僅將2.5V至最大電壓(約4.0V)的資料用於學習並刪除2.5V以下的資料。另外,可以將2.5V至最大電壓的範圍的資料正規化為0至1。
另外,可以根據充電時間最長的條件的充電曲線決定最終時間。在其他條件的充電曲線中,可以使用最大電壓填充充電結束之後到最終時間的無資料期間的資料。
另外,對按時間排列的資料可以使用線性函數等進行插值。由此,即使測量間隔不規則,也可以容易應用於學習。另外,如果測量點過多,神經網路NN的存儲內容的相關性有可能變低,因此也可以減少資料數。
接著,將對應於各測量結果的輸入參數輸入神經網路NN。
在圖3A至圖3D所示的例子中,例如,使用蓄電池的資料製作圖表,測量者將該圖表作為影像在視覺上進行判斷。因此,例如,可以製作以時間為橫軸且以電壓為縱軸的圖表或者以電容為橫軸且以電壓為縱軸的圖表等,將所製作的圖表轉換為影像,將其用作神經網路NN的輸入參數。
接著,以神經網路NN的輸出在A組與B組之間不同的方式決定神經網路NN的權係數。例如,以在輸入A組的蓄電池的資料的情況下神經網路NN輸出高電壓信號(以下將其稱為H)且在輸入B組的蓄電池的資料的情況下神經網路NN輸出低電壓信號(以下將其稱為L)的方式決定權係數。
在分為三組以上的情況下,以對應於各組的輸入的輸出分別對應於3個以上的不同的輸出值的方式決定權係數即可。
在此,例如,在圖3B至圖3D中,可以將對應於圖表內的所有的區域的資料用作輸入參數,也可以僅將對應於由虛線圍繞的區域(亦即,判斷為異常的期間)的資料用作輸入參數。如此,當將具有更明顯特徵期間的資料輸入來進行學習時,藉由神經網路獲得的結果的精度有時得到提高。
在此,當進行學習時,作為輸入參數,也可以使用蓄電系統130所包括的蓄電池的測量資料,但是,也可以從外部輸入參數來進行學習。或者,也可以將在外部進行學習的結果作為神經網路NN的權係數而供應。
[推論]
接著,使用進行過學習的神經網路NN對蓄電池的狀態進行解析。
圖5A示出充電曲線的例子。在圖5A中,橫軸表示電容(Capacity),縱軸表示電壓(Voltage)。在圖5A中,在期間Ra進行定電流充電,在期間Rb進行定電壓充電。圖5B為將圖5A中的橫軸改變為時間(Time)的圖表。
在圖5A及圖5B所示的例子中,示出使用者將蓄電池充電至接近充滿電的狀態的例子,但是在使用者在充電時使用蓄電池的情況下,如圖5C所示,有時在將蓄電池充電至接近充滿電的狀態之前,進行放電。
在圖5C中,橫軸表示時間(Time),縱軸表示Voltage(電壓)。在圖5C中,在期間R1進行充電,在期間R2進行放電,接著,在期間R3進行充電,在期間R4進行放電。圖5D為將圖5C中的橫軸改變為電容(Capacity)的圖表。
另外,在充電與放電之間電流的方向不同。因此,輸入到神經網路NN的電流的極性可以在充電與放電之間相反。例如,充電時可以為正電流,放電時可以為負電流。另外,在充電和放電中可以使用電流的絕對值。
圖6示出在期間R3觀察到電壓的微小變動的例子。可以對神經網路NN僅輸入充電資料(亦即,圖6的期間R1及期間R3的資料),也可以對神經網路NN輸入充電資料及放電資料(亦即,圖6的期間R1至期間R4的資料)。
在已充分學習的情況下,神經網路NN可以判斷期間R3的充電資料屬於A組(亦即,較佳為改變蓄電池的工作條件)。
在圖3A至圖3D所示的例子中,用於學習的資料為SOC 0%左右至100%左右的充電曲線。另外,如圖6所示,在使用者使用蓄電池的情況下,僅對充電曲線的一部分的期間進行解析。
參照圖7的流程圖對推論的步驟進行說明。
蓄電系統130與電子裝置等被供電裝置電連接。在蓄電系統130中蓄電 池135在工作。例如,蓄電池135在進行放電或者充電工作。在蓄電池135中測得的參數被輸入到神經網路NN(步驟S001)。
神經網路NN將對應於輸入參數的值輸出到控制電路131(步驟S002)。
接著,控制電路131根據從神經網路NN輸出的值進行判定。有時將該工作稱為基於神經網路NN的輸出值的分組。在圖7所示的例子中,在被輸出的值是H的情況下,進入步驟S004,在被輸出的值不是H(例如為L)的情況下,回到步驟S001。
在步驟S004中,控制電路131改變蓄電池135的工作條件。例如,停止蓄電池135的工作。在將本發明的一個實施方式的蓄電系統用於多個蓄電池135的情況下,例如,將各蓄電池135的測量資料輸入神經網路NN並對各蓄電池135進行解析即可。或者,也可以對串聯連接或並聯連接的多個蓄電池進行測量,將該資料輸入神經網路NN,進行解析。
多個蓄電池的連接例子將在後面進行說明。
參照圖8對分組進行更詳細的說明。
由於步驟S001及步驟S002與圖7相同,因此省略說明。
考慮在步驟S002中控制電路131的輸出取V1、V2及V3的三個值的情況。另外,在此示出取三個輸出值的例子,但是也可以取四個以上的輸出 值。在步驟S003中,根據輸出值進行分組。在輸出值為V1的情況下進入步驟S004,在輸出值為V2的情況下進入步驟S005,在輸出值為V3的情況下進入步驟S006。
在步驟S004將工作條件設定為C1,在步驟S005將工作條件設定為C2,在步驟S006將工作條件設定為C3。藉由上述步驟,可以對蓄電池的狀態進行解析,而進行分組。
作為工作條件的改變的例子,可以舉出蓄電池的充電及放電的速度(電流密度的大小)、上限電壓及下限電壓等的參數的改變或者上述工作的停止等。
另外,蓄電池根據正極及負極的材料具有不同的性質。因此,根據正極及負極材料,有時具有不同的電壓、電流、電容、SOC、電阻、時間、溫度、充電曲線、放電曲線等的輸入參數。另外,根據正極材料和負極材料,有時是否改變蓄電池的工作條件的判斷基準不同。
因此,較佳為根據正極與負極的組合分別進行學習及推論。例如,在對正極活性物質為鈷酸鋰且負極活性物質為黑鉛的組合的蓄電池進行學習的情況下,使神經網路NN的權係數與“正極:鈷酸鋰,負極:黑鉛”的組合的資料相關聯。同樣地,例如,在對正極活性物質為磷酸鐵鋰且負極活性物質為黑鉛的組合的蓄電池進行學習的情況下以及在對正極活性物質為鎳-錳-鈷酸鋰且負極活性物質為鈦酸鋰的組合的蓄電池進行學習的情況等下,也使各權係數與各活性物質的組合的資料相關聯。
另外,當使用進行過學習的神經網路NN對蓄電池的狀態進行解析時,較佳為解析者指定該蓄電池所包含的正極活性物質及負極活性物質的組合,使用與該組合相關聯的權係數進行解析。
如此,藉由根據正極及負極的材料的組合分別進行學習及推論,可以更準確地檢測異常。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式2
在本實施方式中,示出神經網路NN的結構實例。
圖9示出本發明的一個實施方式的神經網路的例子。圖9所示的神經網路NN包括輸入層IL、輸出層OL及隱藏層(中間層)HL。神經網路NN可以由包括多個隱藏層HL的神經網路,亦即,深度神經網路(DNN)構成。另外,有時將深度神經網路中的學習稱為深度學習。輸出層OL、輸入層IL及隱藏層HL分別具有多個神經元電路,設置在不同的層中的神經元電路藉由突觸電路彼此連接。
神經網路NN藉由學習而具有對蓄電池的狀態進行解析的功能。在神經網路NN被輸入所測量的蓄電池的參數時,在各層中進行運算處理。各層中的運算處理藉由前一層所包括的神經元電路的輸出和權係數的積和運算等 執行。另外,層之間的連接可以是所有的神經元電路彼此連接的全連接,也可以是一部分的神經元電路彼此連接的部分連接。
例如,也可以使用卷積神經網路(CNN:Convolutional Neural Network),其包括卷積層和池化層,在相鄰的層間只有特定的單元具有連接。CNN例如用於影像處理。在卷積層中例如進行影像資料與過濾器的積和運算。池化層較佳為直接配置在卷積層之後。
卷積層具有對影像資料進行卷積的功能。卷積藉由反復進行影像資料的一部分與權重濾波器(weight filter)的濾波值的積和運算來進行。藉由卷積層中的卷積,抽取影像的特徵。
在卷積中可以使用權重濾波器。對輸入到卷積層的影像資料使用過濾器施行過濾器處理。
在被施行卷積的資料利用活化函數被轉換之後,被輸出到池化層。作為活化函數,可以使用ReLU(Rectified Linear Unit:線性整流函數)等。ReLU是如下函數:在輸入值為負值時輸出“0”,在輸入值為“0”以上時直接輸出輸入值。作為活化函數,還可以使用sigmoid函數或tanh函數等。
池化層具有對從卷積層輸入的影像資料進行池化的功能。池化是如下處理:將影像資料分割為多個區域,按該區域提取指定資料,並將該資料配置為矩陣狀。藉由池化,可以在不失去在卷積層提取的特徵的情況下縮小影像資料。作為池化,可以利用最大池化、平均池化、Lp池化等。
卷積神經網路(CNN)藉由上述卷積處理及池化處理進行特徵提取。CNN可以由多個卷積層及多個池化層構成。
在例如交替配置幾個卷積層和幾個池化層之後,較佳為配置全連接層。也可以配置多個全連接層。全連接層較佳為具有使用進行過卷積及池化的影像資料進行影像判定的功能。
圖10A所示的神經網路NN的結構實例有時被稱為循環神經網路(Recurrent Neural Network:RNN)。圖10A所示的循環神經網路由於隱藏層HL包括回饋迴路,所以隱藏層HL的輸出輸入到隱藏層HL自身(回饋)。藉由使用RNN,可以對時間序列資料進行解析,而進行資料的預測。例如,在本發明的一個實施方式的神經網路中,有時根據以前的充放電曲線推測指定時間之後的資料。
圖10B是簡化時刻T=T(x)時的RNN的圖。Win表示輸入層IL到隱藏層HL的輸入的權係數,Wout表示隱藏層HL到輸出層OL的輸入的權係數,Wr表示從隱藏層HL回饋的權係數。
如圖10C所示,在RNN中,藉由展開時間軸,可以將各時刻(在圖10A至圖10C中,為時刻T(1)至T(x)的各時刻)的層視為不同的層(輸入層IL(1)至輸入層IL(x)、隱藏層HL(1)至隱藏層HL(x)及輸出層OL(1)至輸出層OL(x))。藉由將RNN在時間軸方向上展開,如圖10C所示,RNN可以被視為沒有回饋迴路的前饋型網路。
另外,作為神經網路,可以使用被稱為Long Short-Term Memory(LSTM:長短期記憶)的結構。在LSTM中,使RNN中的隱藏層具有記憶單元,而可以儲存狀態,由此可以對更長時間的資料進行解析(例如,推測)等。
對具有學習功能的神經網路NN的結構實例進行說明。圖11A至圖11C示出神經網路NN的結構實例。神經網路NN由神經元電路NC與設置在神經元電路之間的突觸電路SC構成。
圖11A示出構成神經網路NN的神經元電路NC和突觸電路SC的結構實例。向突觸電路SC輸入輸入資料x1至輸入資料xL(L為自然數)。此外,突觸電路SC具有儲存權係數wk(k為1以上且L以下的整數)的功能。權係數wk對應於神經元電路NC間的鍵合強度。
當向突觸電路SC輸入輸入資料x1至xL時,神經元電路NC被供應如下值:輸入到突觸電路SC的輸入資料xk與儲存在突觸電路SC中的權係數wk之積(xkwk)在k=1至L的條件下相加而得到的值(x1w1+x2w2+...+xLwL),亦即藉由使用xk和wk的積和運算得到的值。在該值超過神經元電路NC的臨界值θ的情況下,神經元電路NC輸出高位準信號y。將該現象稱為神經元電路NC的觸發。
圖11B示出使用神經元電路NC和突觸電路SC構成分層感知器的神經網路NN的模型。神經網路NN包括輸入層IL、隱藏層(中間層)HL及輸出層OL。
從輸入層IL輸出輸入資料x1至輸入資料xL。隱藏層HL包括隱藏突觸電路HS及隱藏神經元電路HN。輸出層OL包括輸出突觸電路OS及輸出神經元電路ON。
向隱藏神經元電路HN供應藉由使用輸入資料xk和保持在隱藏突觸電路HS中的權係數wk的積和運算得到的值。向輸出神經元電路ON供應根據使用隱藏神經元電路HN的輸出和保持在輸出突觸電路OS中的權係數wk的積和運算得到的值。另外,從輸出神經元電路ON輸出輸出資料y1至輸出資料yL
如此,接收指定的輸入資料的神經網路NN具有作為輸出資料輸出對應於保持在突觸電路SC中的權係數和神經元電路的臨界值θ的值的功能。
另外,藉由輸入監督資料,神經網路NN可以進行監督學習。圖11C示出利用反向傳播演算法進行監督學習的神經網路NN的模型。
反向傳播演算法是以神經網路的輸出資料與監督資料之間的誤差變小的方式改變突觸電路的權係數wk的方法。明確而言,根據基於輸出資料y1至yL和監督資料t1至tL決定的誤差δO而改變隱藏突觸電路HS的權係數wk。此外,根據隱藏突觸電路HS的權係數wk的變化量而改變前一層的突觸電路SC的權係數wk。如此,藉由基於監督資料t1至tL依次改變突觸電路SC的權係數,神經網路NN能夠進行學習。
注意,在圖11B和圖11C中示出一層的隱藏層HL,但是也可以設置兩層以上的隱藏層HL。藉由使用包括兩層以上的隱藏層HL的神經網路(深度神經網路(DNN)),可以進行深層學習。由此,可以提高蓄電池的狀態的預測精度。
如圖10C所示,藉由在時間軸方向上展開RNN,可以將RNN視為沒有回饋迴路的前饋型網路。在前饋型網路中,可以使用上述反向傳播演算法根據監督資料改變權係數。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式3
在本實施方式中,對可用於上述實施方式所示的神經網路的類比積和運算電路的具體例子進行說明。
圖9至圖11C所示的神經網路整體的運算使用龐大的積和運算執行。在使用數位電路進行這些運算處理的情況下,所需要的電晶體數增多,效率下降,功耗增加。因此,上述積和運算較佳為使用類比積和運算電路(以下,將其稱為APS(Analog Product-Sum circuit))進行。另外,APS較佳為包括類比記憶體。藉由將利用學習獲得的權係數儲存於上述類比記憶體中,APS可以對類比資料按其原樣進行積和運算。其結果是,藉由利用APS,可以以少量的電晶體高效地構成神經網路。
另外,在本說明書中,類比記憶體是指能夠儲存類比資料的記憶體裝置。另外,在本說明書中,類比資料是指具有3位元(8值)以上的解析度的資料。有時將多值資料稱為類比資料。
作為上述類比記憶體,可以使用多值快閃記憶體、ReRAM(Resistive Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)或者使用OS電晶體的記憶體(將其稱為OS記憶體)。
OS電晶體的通道形成區較佳為包含金屬氧化物。通道形成區所具有的金屬氧化物較佳為包含銦(In)。在通道形成區所具有的金屬氧化物包含銦的情況下,OS電晶體的載子移動率(電子移動率)得到提高。另外,通道形成區所具有的金屬氧化物較佳為包含元素M的氧化物半導體。元素M較佳為鋁(Al)、鎵(Ga)或錫(Sn)等。作為可用作元素M的其他元素,有硼(B)、矽(Si)、鈦(Ti)、鐵(Fe)、鎳(Ni)、鍺(Ge)、釔(Y)、鋯(Zr)、鉬(Mo)、鑭(La)、鈰(Ce)、釹(Nd)、鉿(Hf)、鉭(Ta)、鎢(W)等。注意,作為元素M,有時也可以組合多個上述元素。元素M例如是與氧的鍵能高的元素。元素M例如是與氧的鍵能高於銦的元素。此外,通道形成區所具有的金屬氧化物較佳為包含鋅(Zn)。包含鋅的金屬氧化物有時容易晶化。
通道形成區所具有的金屬氧化物不侷限於包含銦的金屬氧化物。通道形成區所具有的金屬氧化物例如也可以是鋅錫氧化物或鎵錫氧化物等不包含銦且包含鋅、鎵或錫的金屬氧化物等。圖12示出積和運算電路的結構實例。圖12所示的積和運算電路MAC為進行後述的記憶單元所保持的第一 資料與被輸入的第二資料的積和運算的電路。另外,第一資料及第二資料可以為類比資料或多值資料(離散資料)。
積和運算電路MAC包括電流源電路CS、電流鏡電路CM、電路WDD、電路WLD、電路CLD、偏置電路OFST、活化函數電路ACTV及記憶單元陣列CA。
記憶單元陣列CA包括記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]及記憶單元AMref[2]。記憶單元AM[1]及記憶單元AM[2]具有保持第一資料的功能,記憶單元AMref[1]及記憶單元AMref[2]具有保持為了進行積和運算而需要的參考資料的功能。另外,與第一資料及第二資料同樣,參考資料也可以是類比資料或多值資料(離散資料)。
另外,在圖12的記憶單元陣列CA中,記憶單元配置為2行2列的矩陣狀,但是記憶單元陣列CA也可以具有記憶單元配置為3行以上3列以上的矩陣狀的結構。另外,在進行乘法而不進行積和運算的情況下,記憶單元陣列CA也可以具有記憶單元配置為1行2列以上的矩陣狀的結構。
記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]及記憶單元AMref[2]都包括電晶體Tr11、電晶體Tr12及電容器C1。
電晶體Tr11較佳為OS電晶體。
另外,藉由作為電晶體Tr12使用OS電晶體,可以同時製造電晶體Tr11 及電晶體Tr12,所以有時可以縮短積和運算電路的製程。另外,電晶體Tr12的通道形成區也可以是非晶矽或多晶矽等,而不是氧化物。
在各記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]和記憶單元AMref[2]中,電晶體Tr11的第一端子與電晶體Tr12的閘極電連接。電晶體Tr12的第一端子與佈線VR電連接。電容器C1的第一端子與電晶體Tr12的閘極電連接。
在記憶單元AM[1]中,電晶體Tr11的第二端子與佈線WD電連接,電晶體Tr11的閘極與佈線WL[1]電連接。電晶體Tr12的第二端子與佈線BL電連接,電容器C1的第二端子與佈線CL[1]電連接。另外,在圖12所示的記憶單元AM[1]中,將電晶體Tr11的第一端子、電晶體Tr12的閘極和電容器C1的第一端子的連接部分表示為節點NM[1]。另外,將從佈線BL流到電晶體Tr12的第二端子的電流表示為IAM[1]
在記憶單元AM[2]中,電晶體Tr11的第二端子與佈線WD電連接,電晶體Tr11的閘極與佈線WL[2]電連接。電晶體Tr12的第二端子與佈線BL電連接,電容器C1的第二端子與佈線CL[2]電連接。另外,在圖12所示的記憶單元AM[2]中,將電晶體Tr11的第一端子、電晶體Tr12的閘極和電容器C1的第一端子的連接部分表示為節點NM[2]。另外,將從佈線BL流到電晶體Tr12的第二端子的電流表示為IAM[2]
在記憶單元AMref[1]中,電晶體Tr11的第二端子與佈線WDref電連接,電晶體Tr11的閘極與佈線WL[1]電連接。電晶體Tr12的第二端子與佈線 BLref電連接,電容器C1的第二端子與佈線CL[1]電連接。另外,在圖12所示的記憶單元AMref[1]中,將電晶體Tr11的第一端子、電晶體Tr12的閘極和電容器C1的第一端子的連接部分表示為節點NMref[1]。另外,將從佈線BLref流到電晶體Tr12的第二端子的電流表示為IAMref[1]
在記憶單元AMref[2]中,電晶體Tr11的第二端子與佈線WDref電連接,電晶體Tr11的閘極與佈線WL[2]電連接。電晶體Tr12的第二端子與佈線BLref電連接,電容器C1的第二端子與佈線CL[2]電連接。另外,在圖12所示的記憶單元AMref[2]中,將電晶體Tr11的第一端子、電晶體Tr12的閘極和電容器C1的第一端子的連接部分表示為節點NMref[2]。另外,將從佈線BLref流到電晶體Tr12的第二端子的電流表示為IAMref[2]
上述節點NM[1]、節點NM[2]、節點NMref[1]及節點NMref[2]被用作各記憶單元的保持節點。
佈線VR為對記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]及記憶單元AMref[2]的各電晶體Tr12的第一端子與第二端子之間供應電流的佈線。因此,佈線VR被用作用來供應指定的電位的佈線。另外,在本實施方式中,佈線VR所供應的電位為參考電位或低於參考電位的電位。
電流源電路CS與佈線BL及佈線BLref電連接。電流源電路CS具有對佈線BL及佈線BLref供應電流的功能。另外,對佈線BL及佈線BLref供應的電流量可以彼此不同。在本結構實例中,將從電流源電路CS流到佈線BL的電流稱為IC,將從電流源電路CS流到佈線BLref的電流稱為ICref
電流鏡電路CM包括佈線IE及佈線IEref。佈線IE與佈線BL電連接,在圖12中,將佈線IE與佈線BL的連接部分表示為節點NP。佈線IEref與佈線BLref電連接,在圖12中,將佈線IEref與佈線BLref的連接部分稱為節點NPref。電流鏡電路CM具有將對應於節點NPref的電位的電流從佈線BLref的節點NPref排出到佈線IEref且將與該電流相同量的電流從佈線BL的節點NP排出到佈線IE的功能。另外,在圖12中,將從節點NP排出到佈線IE的電流及從節點NPref排出到佈線IEref的電流表示為ICM。另外,將在佈線BL中從電流鏡電路CM流到記憶單元陣列CA的電流表示為IB,將在佈線BLref中從電流鏡電路CM流到記憶單元陣列CA的電流表示為IBref
電路WDD與佈線WD及佈線WDref電連接。電路WDD具有發送儲存在記憶單元陣列CA的各記憶單元中的資料的功能。
電路WLD與佈線WL[1]及佈線WL[2]電連接。電路WLD具有在將資料寫入記憶單元陣列CA中的記憶單元時選擇資料寫入對象的記憶單元的功能。
電路CLD與佈線CL[1]及佈線CL[2]電連接。電路CLD具有對記憶單元陣列CA的各記憶單元的電容器C1的第二端子施加電位的功能。
電路OFST與佈線BL及佈線OE電連接。電路OFST具有測量從佈線BL流到電路OFST的電流量和/或從佈線BL流到電路OFST的電流的變化量的功能。另外,電路OFST具有將該測量結果輸出到佈線OE的功能。另 外,電路OFST可以具有將該測量結果直接作為電流輸出到佈線OE的結構,也可以具有在將該測量結果轉換為電壓之後將其輸出到佈線OE的結構。另外,在圖12中,將從佈線BL流到電路OFST的電流表示為Iα
例如,電路OFST也可以具有圖13所示的結構。在圖13中,電路OFST包括電晶體Tr21、電晶體Tr22、電晶體Tr23、電容器C2及電阻器R。
電容器C2的第一端子與佈線BL電連接,電阻器R的第一端子與佈線BL電連接。電容器C2的第二端子與電晶體Tr21的第一端子電連接,電晶體Tr21的第一端子與電晶體Tr22的閘極電連接。電晶體Tr22的第一端子與電晶體Tr23的第一端子電連接,電晶體Tr23的第一端子與佈線OE電連接。另外,將電容器C2的第一端子與電阻器R的第一端子的電連接點稱為節點Na,將電容器C2的第二端子、電晶體Tr21的第一端子與電晶體Tr22的閘極的電連接點稱為節點Nb。
電阻器R的第二端子與佈線VrefL電連接。電晶體Tr21的第二端子與佈線VaL電連接,電晶體Tr21的閘極與佈線RST電連接。電晶體Tr22的第二端子與佈線VDDL電連接。電晶體Tr23的第二端子與佈線VSSL電連接,電晶體Tr23的閘極與佈線VbL電連接。
佈線VrefL是供應電位Vref的佈線,佈線VaL為供應電位Va的佈線,佈線VbL為供應電位Vb的佈線。佈線VDDL為供應電位VDD的佈線,佈線VSSL為供應電位VSS的佈線。尤其是,在該電路OFST的結構實例中,電位VDD為高位準電位,電位VSS為低位準電位。佈線RST為供應用來 切換電晶體Tr21的導通狀態/非導通狀態的電位的佈線。
在圖13所示的電路OFST中,電晶體Tr22、電晶體Tr23、佈線VDDL、佈線VSSL及佈線VbL構成源極隨耦電路。
在圖13所示的電路OFST中,由於電阻器R及佈線VrefL,對應於從佈線BL流出的電流及電阻器R的電阻的電位供應到節點Na。
對圖13所示的電路OFST的工作實例進行說明。當電流第一次從佈線BL流入(下面,將該電流稱為第一電流)時,由於電阻器R及佈線VrefL,對應於第一電流及電阻器R的電阻的電位被供應到節點Na。此時,藉由使電晶體Tr21處於導通狀態,來對節點Nb供應電位Va。然後,使電晶體Tr21處於非導通狀態。
接著,當電流第二次從佈線BL流入(下面,將該電流稱為第二電流)時,與第一電流時同樣,由於電阻器R及佈線VrefL,對應於第二電流及電阻器R的電阻的電位被供應到節點Na。此時,由於節點Nb處於浮動狀態,因此當節點Na的電位發生變化時,節點Nb的電位也由於電容耦合而變化。當節點Na的電位變化為△VNa且電容耦合係數為1時,節點Nb的電位為Va+△VNa。當電晶體Tr22的臨界電壓為Vth時,電位Va+△VNa-Vth從佈線OE輸出。在此,藉由將電位Va設定為臨界電壓Vth,可以從佈線OE輸出電位△VNa
電位△VNa根據第一電流與第二電流之間的變化量、電阻器R及電位 Vref而決定。由於電阻器R和電位Vref是已知的,所以藉由使用圖13所示的電路OFST,可以從電位△VNa獲得流過佈線BL的電流的變化量。
活化函數電路ACTV電連接於佈線OE及佈線NIL。對活化函數電路ACTV藉由佈線OE輸入電路OFST中測量的電流的變化量的結果。活化函數電路ACTV為根據已定義的函數系統對該結果進行運算的電路。作為該函數系統,例如可以使用sigmoid函數、tanh函數、softmax函數、ReLU函數、定限函數(threshold function)等。這些函數被用作神經網路中的活化函數。
〈積和運算電路的工作實例〉
接著,對積和運算電路MAC的工作實例進行說明。
圖14示出積和運算電路MAC的工作實例的時序圖。圖14的時序圖示出時刻T01至時刻T09的佈線WL[1]、佈線WL[2]、佈線WD、佈線WDref、節點NM[1]、節點NM[2]、節點NMref[1]、節點NMref[2]、佈線CL[1]及佈線CL[2]的電位的變動以及電流IB-Iα及電流IBref的大小的變動。尤其是,電流IB-Iα示出從佈線BL流到記憶單元陣列CA的記憶單元AM[1]及記憶單元AM[2]的電流的總和。
〈〈時間T01至時間T02〉〉
在時間T01至時間T02的期間,對佈線WL[1]施加高位準電位(在圖14中記為High),對佈線WL[2]施加低位準電位(在圖14中記為Low)。再者,對佈線WD施加比接地電位(在圖14中記為GND)高VPR-VW[1]的電位, 並且對佈線WDref施加比接地電位高VPR的電位。再者,對佈線CL[1]及佈線CL[2]分別施加參考電位(在圖14中記為REFP)。
此外,電位Vw[1]為對應於第一資料之一的電位。此外,電位VPR為對應於參考資料的電位。
此時,記憶單元AM[1]及記憶單元AMref[1]的各電晶體Tr11的閘極被施加高位準電位,由此記憶單元AM[1]及記憶單元AMref[1]的各電晶體Tr11成為導通狀態,節點NM[1]的電位成為VPR-VW[1],節點NMref[1]的電位成為VPR
當從佈線BL藉由記憶單元AM[1]的電晶體Tr12的第二端子流到第一端子的電流由IAM[1],0表示時,IAM[1],0可以由以下公式表示。
[公式1]I AM[1],0=k(V PR-V W[1]-V th)2 (E1)
k為取決於電晶體Tr12的通道長度、通道寬度、移動率以及閘極絕緣膜的電容等的常數。此外,Vth表示電晶體Tr12的臨界電壓。
同樣,當從佈線BLref藉由記憶單元AMref[1]的電晶體Tr12的第二端子流到第一端子的電流由IAMref[1],0表示時,IAMref[1],0可以由以下公式表示。
[公式2] I AMref[1],0=k(V PR-V th)2 (E2)
此外,記憶單元AM[2]及記憶單元AMref[2]的各電晶體Tr11的閘極被施加低位準電位,由此記憶單元AM[2]及記憶單元AMref[2]的各電晶體Tr11成為非導通狀態。由此,電位不被保持在節點NM[2]及節點NMref[2]中。
〈〈時間T02至時間T03〉〉
在時間T02至時間T03的期間,對佈線WL[1]施加低位準電位。此時,記憶單元AM[1]及記憶單元AMref[1]的各電晶體Tr11的閘極被施加低位準電位,由此記憶單元AM[1]及記憶單元AMref[1]的各電晶體Tr11成為非導通狀態。
此外,對佈線WL[2]在時間T02以後也繼續施加低位準電位。由此,記憶單元AM[2]及記憶單元AMref[2]的各電晶體Tr11在時間T02以前繼續處於非導通狀態。因此,在時刻T02至時刻T03的期間,節點NM[1]、節點NM[2]、節點NMref[1]及節點NMref[2]分別保持電位。藉由作為電晶體Tr11使用OS電晶體,可以減少電晶體Tr11的第一端子與第二端子之間的洩漏電流,所以可以長時間保持各節點的電位。佈線WD及佈線WDref被施加接地電位,電晶體Tr11處於非導通狀態,因此從佈線WD及佈線WDref施加的電位不會改寫保持在節點中的電位。
〈〈時間T03至時間T04〉〉
在時間T03至時間T04的期間,對佈線WL[1]施加低位準電位,對佈線WL[2]施加高位準電位。另外,對佈線WD施加比接地電位高VPR-Vw[2]的電 位,並且對佈線WDref施加比接地電位高VPR的電位。另外,對佈線CL[1]及佈線CL[2]時間T02以後也繼續施加參考電位。
另外,電位Vw[2]為對應於第一資料之一的電位。
此時,記憶單元AM[2]及記憶單元AMref[2]的各電晶體Tr11的閘極被施加高位準電位,由此記憶單元AM[2]及記憶單元AMref[2]的各電晶體Tr11成為導通狀態,節點NM[2]的電位成為VPR-VW[2],節點NMref[2]的電位成為VPR
當從佈線BL藉由記憶單元AM[2]的電晶體Tr12的第二端子流到第一端子的電流由IAM[2],0表示時,電流IAM[2],0可以由以下公式表示。
[公式3]I AM[2],0=k(V PR-V W[2]-V th)2 (E3)
同樣,當從佈線BLref藉由記憶單元AMref[2]的電晶體Tr12的第二端子流到第一端子的電流由IAMref[2],0表示時,電流IAMref[2],0可以由以下公式表示。
[公式4]I AMref[2],0=k(V PR-V th)2 (E4)
〈〈時刻T04至時刻T05〉〉
在此,對在時刻T04至時刻T05的期間流過佈線BL及佈線BLref的電 流進行說明。
電流從電流源電路CS被供應到佈線BLref。再者,電流從電流鏡電路CM、記憶單元AMref[1]及記憶單元AMref[2]排出到佈線BLref。當在佈線BLref中從電流源電路CS供應的電流由ICref表示,從電流鏡電路CM排出的電流由ICM,0表示時,根據基爾霍夫定律,以下公式成立。
[公式5]I Cref-I CM,0=I AMref[1],0+I AMref[2],0 (E5)
在佈線BL中,當從電流源電路CS供應的電流由IC,0表示,從佈線BL流到電路OFST的電流由Iα,0表示時,根據基爾霍夫定律,以下公式成立。
[公式6]I C-I CM,0=I AM[1],0+I AM[2],0+I α,0 (E6)
〈〈時刻T05至時刻T06〉〉
在時刻T05至時刻T06的期間,對佈線CL[1]施加比參考電位高VX[1]的電位。此時,記憶單元AM[1]及記憶單元AMref[1]的各電容器C1的第二端子被施加電位VX[1],因此電晶體Tr12的閘極的電位上升。
另外,電位Vx[1]為對應於第二資料之一的電位。
此外,電晶體Tr12的閘極的電位的增加量相當於佈線CL[1]的電位變化 量乘以由記憶單元的結構決定的電容耦合係數的電位。該電容耦合係數根據電容器C1的電容、電晶體Tr12的閘極電容以及寄生電容而算出。在本工作例中,為了容易說明,假設為佈線CL[1]的電位的增加量與電晶體Tr12的閘極的電位的增加量相等的情況來進行說明。這意味著將記憶單元AM[1]和記憶單元AMref[1]的電容耦合係數都設定為1。
因為電容耦合係數被設定為1,所以藉由對記憶單元AM[1]及記憶單元AMref[1]的各電容器C1的第二端子施加電位Vx[1],節點NM[1]及節點NMref[1]的電位都上升Vx[1]
這裡,考察從記憶單元AM[1]及記憶單元AMref[1]的各電晶體Tr12的第二端子流到第一端子的電流。當從佈線BL藉由記憶單元AM[1]的電晶體Tr12的第二端子流到第一端子的電流由IAM[1],1表示時,IAM[1],1可以由如下公式表示。
[公式7]I AM[1],1=k(V PR-V W[1]+V X[1]-V th)2 (E7)
也就是說,藉由對佈線CL[1]施加電位Vx[1],從佈線BL藉由記憶單元AM[1]的電晶體Tr12的第二端子流到第一端子的電流增加IAM[1],1-IAM[1],0(在圖14中記為△IAM[1])。
同樣,當從佈線BLref藉由記憶單元AMref[1]的電晶體Tr12的第二端子流到第一端子的電流由IAMref[1],1表示時,電流IAMref[1],1可以由如下公式表示。
[公式8]I AMref[1],1=k(V PR+V X[1]-V th)2 (E8)
也就是說,藉由對佈線CL[1]施加電位Vx[1],從佈線BLref藉由記憶單元AMref[1]的電晶體Tr12的第二端子流到第一端子的電流增加IAMref[1],1-IAMref[1],0(在圖14中記為△IAMref[1])。
當在佈線BLref中從電流鏡電路CM排出的電流由ICM,1表示時,根據基爾霍夫定律,以下公式成立。
[公式9]I Cref-I CM,1=I AMref[1],1+I AMref[2],1 (E9)
當在佈線BL中從佈線BL流到電路OFST的電流由Iα,1表示時,根據基爾霍夫定律,以下公式成立。
[公式10]I C-I CM,1=I AM[1],1+I AM[2],0+I α,1 (E10)
在時刻T04至時刻T05的期間從佈線BL流到佈線OFST的電流Iα,0與在時刻T05至時刻T06的期間從佈線BL流到佈線OFST的電流Iα,1之差由△Iα表示。下面,將△Iα稱為積和運算電路MAC中的差分電流。差分電流△Iα可以利用公式(E1)至公式(E10)表示為以下公式。
[公式11]△I α =I α,1-I α,0=2kV W[1] V X[1] (E11)
〈〈時刻T06至時刻T07〉〉
在時刻T06至時刻T07的期間,對佈線CL[1]施加接地電位。此時,記憶單元AM[1]及記憶單元AMref[1]的各電容器C1的第二端子被施加接地電位,因此節點NM[1]及節點NMref[1]的電位恢復到時刻T04至時刻T05的電位。
〈〈時刻T07至時刻T08〉〉
在時刻T07至時刻T08的期間,對佈線CL[1]施加比參考電位高VX[1]的電位,對佈線CL[2]施加比參考電位高VX[2]的電位。此時,記憶單元AM[1]及記憶單元AMref[1]的各電容器C1的第二端子被施加電位VX[1],記憶單元AM[2]及記憶單元AMref[2]的各電容器C1的第二端子被施加電位VX[2]。因此,記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]及記憶單元AMref[2]的各電晶體Tr12的閘極的電位上升。
當從佈線BL藉由記憶單元AM[2]的電晶體Tr12的第二端子流到第一端子的電流由IAM[2],1表示時,IAM[2],1可以由以下公式表示。
[公式12]I AM[2],1=k(V PR-V W[2]+V X[2]-V th)2 (E12)
同樣,當從佈線BLref藉由記憶單元AMref[2]的電晶體Tr12的第二端子流到第一端子的電流由IAMref[2],1表示時,IAMref[2],1可以由以下公式表示。
[公式13]I AMref[2],1=k(V PR+V X[2]+V th)2 (E13)
當在佈線BLref中從電流鏡電路CM排出的電流由ICM,2表示時,根據基爾霍夫定律,以下公式成立。
[公式14]I Cref-I CM,2=I AMref[1],1+I AMref[2],1 (E14)
當在佈線BL中從佈線BL流到電路OFST的電流由Iα,3表示時,根據基爾霍夫定律,以下公式成立。
[公式15]I C-I CM0,2=I AM[1],1+I AM[2],1+I α,3 (E15)
在時刻T04至時刻T05的期間從佈線BL流到佈線OFST的電流Iα,0與在時刻T07至時刻T08的期間從佈線BL流到佈線OFST的電流Iα,3之差的差分電流△Iα可以利用公式(E1)至公式(E8)及公式(E12)至公式(E15)表示為以下公式。
[公式16] △I α =I α,0-I α,3=2k(V W[1] V X[1]+V W[2] V X[2]) (E16)
如公式(E16)所示,輸入到電路OFST的差分電流△Iα對應於多個第一資料的電位VW和多個第二資料的電位VX的積之和。換言之,藉由在電路OFST中測量差分電流△Iα,可以獲得第一資料與第二資料的積和值。
〈〈時刻T08至時刻T09〉〉
在時刻T08至時刻T09的期間,對佈線CL[1]及佈線CL[2]施加參考電位。此時,記憶單元AM[1]、記憶單元AM[2]、記憶單元AMref[1]及記憶單元AMref[2]的各電容器C1的第二端子被施加參考電位,因此節點NM[1]、節點NM[2]、節點NMref[1]及節點NMref[2]的電位恢復到時刻T06至時刻T07的電位。
在時刻T05至時刻T06的期間,對佈線CL[1]施加VX[1],在時刻T07至時刻T08的期間,對佈線CL[1]及佈線CL[2]分別施加VX[1]及VX[2]。但是,施加到佈線CL[1]及佈線CL[2]的電位也可以低於參考電位REFP。在對佈線CL[1]和/或佈線CL[2]施加低於參考電位REFP的電位的情況下,可以利用電容耦合降低與佈線CL[1]和/或佈線CL[2]連接的記憶單元的保持節點的電位。因此,可以利用積和運算獲得第一資料與作為負值的第二資料之一的積。例如,在時刻T07至時刻T08的期間,在對佈線CL[2]不施加VX[2]而施加-VX[2]的情況下,差分電流△Iα可以由以下公式表示。
[公式17]△I α =I α,1-I α,3=2k(V W[1] V X[1]-V W[2] V X[2]) (E17)
另外,在本工作實例中,使用包括配置為2行2列的矩陣狀的記憶單元的記憶單元陣列CA,但是,也可以使用1行2列以上或者3行以上3列以上的記憶單元陣列同樣地進行積和運算。在此情況下,藉由將積和運算電路中的多個列中的一列的記憶單元用作保持參考資料(電位VPR)的記憶單元,可以同時執行多個列中的剩下的列數的積和運算處理。換言之,藉由增加記憶單元陣列的列數,可以提供能夠實現高速積和運算處理的運算電路。另外,藉由增加行數,可以增加積和運算中相加的加數。在增加行數的情況下,差分電流△Iα可以由以下公式表示。
另外,在本實施方式中說明的積和運算電路中,記憶單元AM的行數對應於前一層的神經元數。換言之,記憶單元AM的行數對應於輸入到下一層的前一層的神經元的輸出信號的個數。另外,記憶單元AM的列數對應於下一層的神經元數。換言之,記憶單元AM的列數對應於從下一層輸出的神經元的輸出信號的個數。換言之,前一層、下一層的各神經元的個數決定積和運算電路的記憶單元陣列的行數及列數,因此,根據想要構成的神經網路,決定記憶單元陣列的行數及列數而設計神經網路即可。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式4
在本實施方式中,對包括多個蓄電池的蓄電系統進行說明。
說明圖1B所示的包括多個蓄電池的蓄電系統130包括備用蓄電池且將判斷為停止工作的蓄電池替換成備用蓄電池的情況。
圖15示出蓄電池135_1至蓄電池135_4電連接到控制電路131的例子。在圖15中,蓄電池的兩極以不藉由保護電路的方式電連接到端子V1及端子V2,端子V1及端子V2電連接到控制電路131。控制電路131包括電路BC。電路BC包括電路BM。電路BM電連接到各蓄電池的端子V1及端子V2。電路BM例如被用作各蓄電池的保護電路。在電路BM中,較佳為測量各蓄電池的電壓。另外,電路BM較佳為具有對各蓄電池進行充電及放電的功能。
電路BM較佳為包括比較器,該比較器較佳為對蓄電池間的電壓進行比較。電路BM例如也可以對所測量的各蓄電池的電壓進行比較,根據比較結果控制各蓄電池的工作。例如,在充電中,可以停止被測量的電壓比電壓最低的蓄電池高的蓄電池的充電。或者,可以對被測量的電壓高的蓄電池進行放電以使其電壓達到電壓最低的蓄電池的電壓左右。另外,在該放電過程中,也可以將被放電的電荷充電到其他蓄電池。
端子V1及端子V2與電路BC的開關群141電連接。
在圖15中,蓄電池135_1至蓄電池135_4彼此串聯電連接。
在圖15中,蓄電池135_S是備用蓄電池,蓄電池135_S與電路BC電連接。與蓄電池135_S連接的端子V1及端子V2與開關群142電連接。
參照圖16對將判斷為停止工作的蓄電池替換成備用蓄電池的情況進行說明。在圖16中,作為例子,說明藉由使用上述神經網路NN的推論判斷停止蓄電池135_2的工作且將蓄電池135_2替換成蓄電池135_S的情況。
在開關群141中,使連接到與蓄電池135_2連接的端子V1及端子V2的開關處於非導通狀態。
在開關群142中,將與蓄電池135_S連接的端子V1及端子V2電連接到以前與蓄電池135_2連接的行的佈線。藉由該操作,蓄電池135_S與蓄電池135_1及蓄電池135_3串聯電連接。
在圖15及圖16中,示出四個蓄電池串聯連接的例子,但是也可以連接五個以上的蓄電池。另外,在蓄電池並聯連接的情況下,也可以將停止工作的蓄電池替換成備用蓄電池。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式5
在本實施方式中,對二次電池的例子進行說明。
[圓筒型二次電池]
接著,參照圖17A和圖17B對圓筒型二次電池的例子進行說明。如圖17A所示,圓筒型二次電池700在頂面具有正極蓋(電池蓋)701,並在側面及底面具有電池罐(外裝罐)702。上述正極蓋701與電池罐(外裝罐)702藉由墊片(絕緣墊片)710絕緣。
圖17B是示意性地示出圓筒型二次電池的剖面的圖。在中空圓柱狀電池罐702的內側設置有電池元件,在該電池元件中,帶狀正極704和帶狀負極706夾著隔離體705被捲繞。雖然未圖示,但是電池元件以中心銷為中心被捲繞。電池罐702的一端關閉且另一端開著。作為電池罐702可以使用對電解液具有抗腐蝕性的鎳、鋁、鈦等金屬、它們的合金或者它們和其他金屬的合金(例如不鏽鋼等)。另外,為了防止電解液所引起的腐蝕,電池罐702較佳為被鎳或鋁等覆蓋。在電池罐702的內側,正極、負極及隔離體被捲繞的電池元件由對置的一對絕緣板708和絕緣板709夾著。另外,在設置有電池元件的電池罐702的內部中注入有非水電解液(未圖示)。作為非水電解液,可以使用與硬幣型二次電池相同的電解液。
因為用於圓筒型二次電池的正極及負極被捲繞,從而活性物質較佳為形成在集電器的兩個表面。正極704與正極端子(正極集電引線)703連接,而負極706與負極端子(負極集電引線)707連接。正極端子703及負極端子707都可以使用鋁等金屬材料。將正極端子703電阻銲接到安全閥機構712,而將負極端子707電阻銲接到電池罐702底。安全閥機構712與正極蓋701藉由PTC(Positive Temperature Coefficient:正溫度係數)元件711電 連接。當電池的內壓上升到超過指定的臨界值時,安全閥機構712切斷正極蓋701與正極704的電連接。另外,PTC元件711是在溫度上升時其電阻增大的熱敏感電阻器,並藉由電阻的增大來限制電流量以防止異常發熱。PTC元件可以使用鈦酸鋇(BaTiO3)類半導體陶瓷等。
在本實施方式中,示出鋰離子二次電池的例子,但是不侷限於鋰離子二次電池。作為二次電池的正極材料,例如可以使用包含元素A、元素X及氧的材料。元素A較佳為選自第一族元素及第二族元素中的一個以上的元素。作為第一族元素,例如可以使用鋰、鈉、鉀等鹼金屬。另外,作為第二族元素,例如可以使用鈣、鈹、鎂等。作為元素X,例如可以使用選自金屬元素、矽和磷中的一個以上的元素。另外,元素X較佳為選自鈷、鎳、錳、鐵和釩中的一個以上的元素。典型的例子是鋰鈷複合氧化物(LiCoO2)和磷酸鐵鋰(LiFePO4)。
負極包括負極活性物質層及負極集電器。負極活性物質層也可以包含導電添加劑及黏合劑。
作為負極活性物質,可以使用能夠藉由與鋰的合金化/脫合金化反應進行充放電反應的元素。例如,可以使用包含矽、錫、鎵、鋁、鍺、鉛、銻、鉍、銀、鋅、鎘和銦等中的至少一個的材料。這種元素的電容比碳大,尤其是矽的理論電容大,為4200mAh/g。
另外,二次電池較佳為包括隔離體。作為隔離體,例如可以使用如下材料:紙等具有纖維素的纖維、不織布、玻璃纖維、陶瓷或包含尼龍(聚 醯胺)、維尼綸(聚乙烯醇類纖維)、聚酯、丙烯酸樹脂、聚烯烴、聚氨酯的合成纖維等。
另外,二次電池較佳為包括電解液。另外,電解液較佳為包含溶劑及電解質。作為電解液的溶劑,較佳為使用非質子有機溶劑,例如可以使用碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、碳酸氯乙烯酯、碳酸伸乙烯酯、γ-丁內酯、γ-戊內酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、1,3-二氧六環、1,4-二氧六環、乙二醇二甲醚(DME)、二甲亞碸、二乙醚、甲基二甘醇二甲醚(methyl diglyme)、乙腈、苯腈、四氫呋喃、環丁碸、磺內酯等中的一種,或者可以以任意組合及比率使用上述中的兩種以上。
另外,藉由作為電解液的溶劑使用一種或多種具有阻燃性及難揮發性的離子液體(室溫融鹽),即使因二次電池的內部短路、過充電等而使內部溫度上升也可以防止二次電池的破裂或起火等。在將二次電池安裝在可攜式終端或車輛等的裝置的情況下,有時該裝置在二次電池與使用者的距離很近的狀態下被使用。在發生二次電池的破裂或起火等的情況下,例如,會發生使用者的人身安全問題。當電解液的溶劑包含離子液體時,使用者可以更安全地使用安裝有二次電池的可攜式終端或車輛等。離子液體由陽離子和陰離子構成,包含有機陽離子和陰離子。作為用於電解液的有機陽離子,可以舉出四級銨陽離子、三級鋶陽離子及四級鏻陽離子等脂肪族鎓陽離子或咪唑鎓陽離子及吡啶鎓陽離子等芳香族陽離子。此外,作為用於電解液的陰離子可以舉出一價醯胺類陰離子、一價甲基化物類陰離子、氟 磺酸陰離子、全氟烷基磺酸陰離子、四氟硼酸陰離子、全氟烷基硼酸陰離子、六氟磷酸陰離子或全氟烷基磷酸陰離子等。
另外,作為溶解於上述溶劑中的電解質,例如可以使用LiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、LiN(C2F5SO2)2等鋰鹽中的一種,或者可以以任意組合及比率使用上述中的兩種以上。
作為用於二次電池的電解液的溶劑,也可以使用混合有機溶劑與離子液體的溶劑。
作為用於二次電池的電解液,較佳為使用粒狀的塵埃或電解液的構成元素以外的元素(以下,簡稱為“雜質”)的含量少的高度純化的電解液。明確而言,使雜質在電解液的重量中所佔的比率為1%以下,較佳為0.1%以下,更佳為0.01%以下。
此外,也可以對電解液添加碳酸伸乙烯酯、丙磺酸內酯(PS)、三級丁基苯(TBB)、碳酸氟乙烯酯(FEC)、雙乙二酸硼酸鋰(LiBOB)或丁二腈、己二腈等二腈化合物等添加劑。將添加劑的濃度可以設定為例如在溶劑整體中佔有0.1wt%以上且5wt%以下。
另外,也可以使用使聚合物以電解液溶脹了的聚合物凝膠電解質。
當使用聚合物凝膠電解質時,防液體洩漏等的安全性得到提高。此外,可以實現二次電池的薄型化及輕量化。
作為被凝膠化的聚合物,可以使用矽酮凝膠、丙烯酸膠、丙烯腈膠、聚氧化乙烯類膠、聚氧化丙烯類膠、氟類聚合物膠等。
作為聚合物,例如可以使用聚氧化乙烯(PEO)等具有聚氧化烷烯結構的聚合物、PVDF及聚丙烯腈等、以及包含這些聚合物的共聚物等。例如,可以使用作為PVDF及六氟丙烯(HFP)的共聚物的PVDF-HFP。此外,所形成的聚合物也可以具有多孔形狀。
此外,可以使用包含硫化物類或氧化物類等的無機材料的固體電解質、包含PEO(聚氧化乙烯)類等的高分子材料的固體電解質代替電解液。當使用固體電解質時,不需要設置隔離體或間隔物。另外,由於可以使電池整體固態化,所以沒有液體洩漏的擔憂而使安全性顯著提高。
作為本發明的一個實施方式的二次電池,可以使用全固態電池。本發明的一個實施方式的二次電池由多個層壓型二次電池構成。圖18D示出使用全固態電池的層壓型二次電池的例子。
圖18D所示的層壓型二次電池500包括正極引線電極510及負極引線電極511。
簡單地說明對層壓型二次電池的製程。首先,準備正極及負極。正極 包括正極集電器,正極活性物質層形成在正極集電器的表面。另外,正極具有正極集電器的一部分露出的區域(以下,稱為極耳區域(tab region))。負極包括負極集電器,負極活性物質層形成在負極集電器的表面。此外,負極具有負極集電器的一部分露出的區域,亦即極耳區域。
然後,層疊負極、固體電解質層及正極。在此,示出使用5組負極和4組正極的例子。接著,使正極的極耳區域彼此接合,並且使正極引線電極510與最表面的正極的極耳區域接合。例如可以利用超聲波銲接等進行接合。與此同樣,使負極的極耳區域彼此接合,並且使負極引線電極511與最表面的負極的極耳區域接合。
接著,在外包裝體上配置負極、固體電解質層及正極。固體電解質層是包含能夠傳導鋰離子的固體成分的材料層(陶瓷等)即可。例如,作為固體電解質層,使陶瓷粉末或者玻璃粉末漿料化並成型為片狀。陶瓷可以是諸如氧化物、碳化物、氮化物、硼化物等無機化合物的金屬或非金屬材料。玻璃是非晶,定義為具有玻璃轉化現象的材料,但是有時將微晶化玻璃稱為陶瓷玻璃。由於陶瓷玻璃具有結晶性,所以可以藉由X射線繞射法分辨。作為固體電解質,例如可以使用氧化物固體電解質或硫化物固體電解質等。另外,正極活性物質層和負極活性物質層包含固體電解質,也可以包含導電添加劑。導電添加劑的材料具有電子傳導性即可,例如,可以使用碳材料或金屬材料等。
另外,作為可用作正極活性物質的氧化物固體電解質,例如可以使用Li3PO4、Li3BO3、Li4SiO4、Li4GeO4、LiNbO3、LiVO2、LiTiO3、LiZrO3等。另外, 也可以使用這些化合物的複合化合物,例如可以舉出Li3BO3-Li4SiO4等。另外,固體電解質的表面的至少一部分也可以由1nm以上且20nm以下的保護層覆蓋,作為保護層的材料,使用Li離子傳導性氧化物。
作為可用作負極活性物質的氧化物固體電解質,可以舉出Nb2O5、Li4Ti5O12、SiO等。在本說明書等中,SiO例如是指一氧化矽。或者,SiO是指矽的組成比SiO2多的材料,也可以表示為SiOx。在此,x較佳為1左右。例如,x較佳為0.2以上且1.5以下,更佳為0.3以上且1.2以下。
另外,作為可用作正極活性物質的硫化物固體電解質,可以舉出包含Li及S的材料,明確而言,Li7P3S11、Li2S-SiS2、Li2S-P2S5等。
接著,使外包裝體折疊。然後,使外包裝體的外周部接合。作為外包裝體,可以使用層疊金屬箔與有機樹脂薄膜的層壓薄膜,例如,可以使用鋁箔或不鏽鋼箔,例如可以藉由熱壓合等進行接合。藉由上述步驟,可以製造圖18D所示的層壓型二次電池500。另外,在此,示出使用1個層壓薄膜進行接合的例子,但是也可以層疊兩個層壓薄膜並黏合邊緣部而進行密封。
圖18A是固態電池的示意圖,該固態電池在正極81與負極82之間包括固體電解質層83。另外,固態電池分為薄膜型全固態電池和體型(bulk-type)全固態電池。薄膜型全固態電池是藉由層疊薄膜而獲得的全固態電池,體型全固態電池是藉由層疊微粒子而獲得的全固態電池。
圖18B示出體型全固態電池的例子,在正極81附近設置有粒子狀正極活性物質87,在負極82附近設置有粒子狀負極活性物質88,以填充它們之間的間隙的方式配置有固體電解質層83。藉由進行加壓,以正極81與負極82之間不發生空隙的方式填充多個種類的粒子。
另外,圖18C示出薄膜型全固態電池的例子。薄膜型全固態電池的組件藉由氣相法(真空蒸鍍法、熱噴塗法、脈衝雷射沉積法、離子鍍法、冷噴塗法、氣浮沉積、濺射法)形成。圖18C示出藉由如下步驟製造鋰離子蓄電池的例子:在基板84上形成佈線電極85、86之後,在佈線電極85上形成正極81,在正極81上形成固體電解質層83,在固體電解質層83及佈線電極86上形成負極82。作為基板84,可以使用陶瓷基板、玻璃基板、塑膠基板、金屬基板等。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式6
在本實施方式中,示出將本發明的一個實施方式的蓄電系統安裝在車輛的例子。作為車輛,例如可以舉出汽車、二輪車和自行車等。
當將蓄電系統安裝在車輛時,可以實現混合動力汽車(HEV)、電動汽車(EV)或插電式混合動力汽車(PHEV)等新一代清潔能源汽車。
在圖19A至圖19C中,例示出使用本發明的一個實施方式的蓄電系統 的車輛。圖19A所示的汽車8400是作為行駛的動力源使用電動機的電動汽車。或者,汽車8400是作為行駛的動力源能夠適當地使用電動機或引擎的混合動力汽車。藉由使用本發明的一個實施方式,可以實現行駛距離長的車輛。另外,汽車8400具備蓄電系統。蓄電系統不但驅動電發動機8406,而且還可以將電力供應到車頭燈8401或室內燈(未圖示)等發光裝置。
另外,蓄電系統可以將電力供應到汽車8400所具有的速度表、轉速計等顯示裝置。此外,蓄電系統可以將電力供應到汽車8400所具有的導航系統等。
在圖19B所示的汽車8500中,可以藉由利用插電方式或非接觸供電方式等從外部的充電設備接收電力,來對汽車8500所具有的蓄電系統8024進行充電。圖19B示出從地上設置型充電裝置8021藉由電纜8022對安裝在汽車8500中的蓄電系統8024進行充電的情況。當進行充電時,作為充電方法或連接器的規格等,可以適當地使用CHAdeMO(註冊商標)或聯合充電系統“Combined Charging System”等的規定的方式。作為充電裝置8021,也可以使用設置在商業設施的充電站或家庭的電源。例如,藉由利用插電技術從外部供應電力,可以對安裝在汽車8500中的蓄電系統8024進行充電。可以藉由AC/DC轉換器等轉換裝置將交流電力轉換成直流電力來進行充電。
另外,雖然未圖示,但是也可以將受電裝置安裝在車輛中並從地上的送電裝置非接觸地供應電力來進行充電。當利用非接觸供電方式時,藉由在公路或外壁中組裝送電裝置,不但在停車時而且在行駛時也可以進行充 電。此外,也可以利用該非接觸供電方式,在車輛之間進行電力的發送及接收。再者,還可以在車輛的外部設置太陽能電池,在停車時或行駛時進行蓄電系統的充電。可以利用電磁感應方式或磁場共振方式實現這樣的非接觸供電。
圖19C是使用本發明的一個實施方式的蓄電系統的二輪車的例子。圖19C所示的小型摩托車8600包括蓄電系統8602、後視鏡8601及方向燈8603。蓄電系統8602可以對方向燈8603供電。
此外,在圖19C所示的小型摩托車8600中,可以將蓄電系統8602收納在座位下收納部8604中。即使座位下收納部8604空間小,也可以將蓄電系統8602收納在座位下收納部8604中。
另外,圖20A示出使用本發明的一個實施方式的蓄電系統的電動自行車的例子。圖20A所示的電動自行車8700可以使用本發明的一個實施方式的蓄電系統。本發明的一個實施方式的蓄電系統例如包括多個蓄電池、保護電路及神經網路。
電動自行車8700包括電池組8702。電池組8702對輔助駕駛者的電動機供應電力。另外,電池組8702是可攜帶的,圖20B示出從自行車取出的電池組8702。電池組8702內置有多個本發明的一個實施方式的蓄電系統所包括的蓄電池8701,可以由顯示部8703顯示剩餘電量等。另外,電池組8702較佳為安裝有保護電路和神經網路等。
另外,圖20C示出使用本發明的一個實施方式的蓄電系統的電動二輪車8710。圖20C所示的電動二輪車8710可以使用本發明的一個實施方式的蓄電系統。本發明的一個實施方式的蓄電系統例如包括多個蓄電池、保護電路及神經網路。
電動二輪車8710包括蓄電池8711、顯示部8712及方向盤8713。蓄電池8711可以對作為動力源的電動機供應電力。顯示部8712可以顯示蓄電池8711的剩餘電量、電動二輪車8710的速度或水平狀態等。蓄電池8711較佳為安裝有保護電路和神經網路等。
本實施方式可以與其他實施方式適當地組合。
實施方式7
在本實施方式中,對將上述實施方式所示的蓄電系統安裝在電子裝置中的例子進行說明。
圖21A和圖21B示出能夠進行對折的平板終端的例子。圖21A和圖21B所示的平板終端9600包括外殼9630a、外殼9630b、連接外殼9630a和外殼9630b的可動部9640、顯示部9631、顯示模式切換開關9626、電源開關9627、省電模式切換開關9625、扣件9629以及操作開關9628。藉由將撓性面板用於顯示部9631,可以實現顯示部更大的平板終端。圖21A示出打開平板終端9600的狀態,圖21B示出合上平板終端9600的狀態。
平板終端9600在外殼9630a及外殼9630b的內部具備蓄電體9635。蓄電體9635穿過可動部9640設置在外殼9630a及外殼9630b。
在顯示部9631中,可以將其一部分用作觸控面板的區域,並且可以藉由接觸所顯示的操作鍵來輸入資料。此外,藉由使用手指或觸控筆等接觸觸控面板上的鍵盤顯示切換按鈕的位置,可以在顯示部9631上顯示鍵盤按鈕。
另外,顯示模式切換開關9626能夠進行豎屏顯示和橫屏顯示等顯示的方向的切換以及黑白顯示和彩色顯示的切換等。根據藉由平板終端9600所內置的光感測器所檢測的使用時的外光的光量,省電模式切換開關9625可以使顯示的亮度設定為最適合的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
圖21B是合上平板終端的狀態,並且平板終端包括外殼9630、太陽能電池9633、具備DCDC轉換器9636的充放電控制電路9634。另外,作為蓄電體9635可以使用本發明的一個實施方式的蓄電系統。
如上述實施方式所示,本發明的一個實施方式的蓄電系統較佳為包括蓄電池、保護電路、控制電路及神經網路。在此,本發明的一個實施方式的蓄電系統所包括的控制電路、神經網路、保護電路等的積體電路例如也可以與控制顯示部9631的電路(例如,驅動電路等)一起設置在IC晶片上。或者,也可以與充放電控制電路9634一起設置在IC晶片上。
此外,平板終端9600能夠進行對折,因此不使用時可以以重疊的方式折疊外殼9630a及外殼9630b。藉由折疊外殼9630a及外殼9630b,可以保護顯示部9631,而可以提高平板終端9600的耐久性。
此外,圖21A和圖21B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行觸摸輸入操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供應到觸控面板、顯示部或影像信號處理部等。注意,太陽能電池9633可以設置在外殼9630的一個表面或兩個表面,並且可以高效地對蓄電體9635進行充電。
另外,參照圖21C所示的方塊圖對圖21B所示的充放電控制電路9634的結構和工作進行說明。圖21C示出太陽能電池9633、蓄電體9635、DCDC轉換器9636、轉換器9637、開關SW1至開關SW3以及顯示部9631,蓄電體9635、DCDC轉換器9636、轉換器9637、開關SW1至開關SW3對應圖21B所示的充放電控制電路9634。
首先,說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池所產生的電力進行升壓或降壓以使其電壓成為用來對蓄電體9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時使開關SW1導通,利用轉換器9637將其升壓 或降壓到顯示部9631所需要的電壓。另外,可以採用在不進行顯示部9631中的顯示時使開關SW1斷開且使開關SW2導通來對蓄電體9635進行充電的結構。
注意,作為發電單元的例子示出太陽能電池9633,但是不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行蓄電體9635的充電。例如,也可以使用以無線(非接觸)方式能夠收發電力來進行充電的非接觸電力傳輸模組或組合其他充電方法進行充電。
圖22A和圖22B示出其他的蓄電系統及電子裝置的例子。圖22A示出包括本發明的一個實施方式的蓄電系統8300及太陽能電池板8230的住宅的例子。住宅較佳為設置有地上設置型充電裝置8240。另外,蓄電系統8300較佳為包括保護電路、控制電路及神經網路。
蓄電系統8300、太陽能電池板8230及充電裝置8240藉由佈線8231等彼此電連接。從太陽能電池板8230獲得的電力可以充電至蓄電系統8300。儲存在蓄電系統8300中的電力可以充電至汽車8250所包括的蓄電池8251。汽車8250為電動汽車或者插頭混合動力汽車。
儲存在蓄電系統8300中的電力也可以供應到其他的電子裝置。例如,如圖22B所示,藉由將蓄電系統8300電連接於固定照明設備8100,來對照明設備8100供應電力。明確地說,照明設備8100包括外殼8101、光源8102及控制電路8103等。照明設備8100既可以接收來自商業電源的電力供應, 又可以使用蓄積在蓄電系統8300中的電力。因此,即使當由於停電等不能接收來自商業電源的電力供應時,藉由將本發明的一個實施方式的蓄電系統8300用作不斷電供應系統,也可以利用照明設備8100。
另外,雖然在圖22A和圖22B中例示出設置在天花板8104的固定照明設備8100,但是本發明的一個實施方式的蓄電系統8300可以對設置在天花板8104以外的例如側壁、地板或窗戶等的固定照明設備供應電力,也可以對臺式照明設備等供應電力。
另外,作為光源8102,可以使用利用電力人工性地得到光的人工光源。明確地說,作為上述人工光源的例子,可以舉出白熾燈泡、螢光燈等放電燈以及LED或有機EL元件等發光元件。
同樣,蓄電系統8300可以對顯示裝置8000供應電力。顯示裝置8000包括外殼8001、顯示部8002、揚聲器部8003及控制電路8004等。顯示裝置8000可以從商用電源供應電力,也可以使用儲存在蓄電系統8300中的電力。作為顯示部8002,可以使用半導體顯示裝置諸如液晶顯示裝置、在每個像素中具備有機EL元件等發光元件的發光裝置、電泳顯示裝置、DMD(數位微鏡裝置:Digital Micromirror Device)、PDP(電漿顯示面板:Plasma Display Panel)及FED(場致發射顯示器:Field Emission Display)等。
另外,除了電視廣播接收用顯示裝置之外,顯示裝置還包括個人電腦用顯示裝置或廣告顯示用顯示裝置等所有顯示資訊用顯示裝置。
同樣,蓄電系統8300可以對包括室內機8200及室外機8204的空調供應電力。室內機8200包括外殼8201、出風口8202及控制電路8203等。空調可以從商用電源供應電力,也可以使用儲存在蓄電系統8300中的電力。
另外,雖然在圖22B中例示由室內機和室外機構成的分體式空調器,但是也可以從本發明的一個實施方式的蓄電系統對在一個外殼中具有室內機的功能和室外機的功能的一體式空調器供應電力。
另外,蓄電系統8300較佳為包括充電裝置8301。當包括充電裝置8301時,可以使用蓄電系統8300對各種電子裝置進行充電。充電裝置8301可以為有線充電用充電裝置,也可以為無線充電(也稱為非接觸充電或無線電力供電)用充電裝置。當蓄電系統8300包括無線充電用充電裝置時,可以對安裝有無線充電系統的智慧手機8302等進行充電。
圖23A至圖23F示出將本發明的一個實施方式的蓄電系統安裝在電子裝置中的例子。作為應用本發明的一個實施方式的蓄電系統的電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈珠機等大型遊戲機等。
圖23A示出行動電話機的例子。行動電話機7400除了組裝在外殼7401中的顯示部7402之外還具備操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,行動電話機7400具有本發明的一個實施方式的蓄電 系統。本發明的一個實施方式的蓄電系統例如包括蓄電池7407、保護電路、控制電路及神經網路。
圖23B示出使行動電話機7400彎曲的狀態。在利用外部的力量使行動電話機7400變形而使其整體彎曲時,設置在其內部的蓄電池7407有時也會被彎曲。在此情況下,作為蓄電池7407,較佳為使用撓性蓄電池。圖23C示出撓性蓄電池被彎曲的狀態。
此外,也可以將撓性蓄電池沿著房屋及高樓的內壁或外壁、汽車的內部裝修或外部裝修的曲面組裝。
圖23D示出手鐲型顯示裝置的例子。可攜式顯示裝置7100具備外殼7101、顯示部7102、操作按鈕7103及本發明的一個實施方式的蓄電系統。本發明的一個實施方式的蓄電系統例如包括蓄電池7104、保護電路、控制電路及神經網路。
圖23E是手錶型可攜式資訊終端的例子。可攜式資訊終端7200包括外殼7201、顯示部7202、帶子7203、帶扣7204、操作按鈕7205、輸入輸出端子7206等。
可攜式資訊終端7200可以執行行動電話、電子郵件、文章的閱讀及編寫、音樂播放、網路通訊、電腦遊戲等各種應用程式。
顯示部7202的顯示面是彎曲的,能夠沿著彎曲的顯示面進行顯示。另 外,顯示部7202具備觸控感測器,可以用手指或觸控筆等觸摸螢幕來進行操作。例如,藉由觸摸顯示於顯示部7202的圖示7207,可以啟動應用程式。
操作按鈕7205除了時刻設定之外,還可以具有電源開關、無線通訊的開關、靜音模式的設置及取消、省電模式的設置及取消等各種功能。例如,藉由利用組裝在可攜式資訊終端7200中的作業系統,可以自由地設定操作按鈕7205的功能。
另外,可攜式資訊終端7200可以執行被通訊標準化的近距離無線通訊。例如,藉由與可無線通訊的耳麥通訊,可以進行免提通話。
另外,可攜式資訊終端7200具備輸入輸出端子7206,可以藉由連接器直接向其他資訊終端發送資料或從其他資訊終端接收資料。另外,也可以藉由輸入輸出端子7206進行充電。另外,充電工作也可以利用無線供電進行,而不利用輸入輸出端子7206。
可攜式資訊終端7200包括本發明的一個實施方式的蓄電系統。
可攜式資訊終端7200較佳為包括感測器。作為感測器例如較佳為安裝指紋感測器、脈搏感測器、體溫感測器等人體感測器、觸控感測器、壓力感測器、加速度感測器等。
圖23F為包括多個旋翼7302的無人航空載具7300。無人航空載具7300包括本發明的一個實施方式的蓄電池系統7301、相機7303及天線(未圖示)。 無人航空載具7300可以藉由天線遠端操作。
本實施方式可以與其他實施方式的記載適當地組合。
實施方式8
在本實施方式中,參照圖24和圖25對上述實施方式中記載的半導體裝置的一個實施方式進行說明。
〈半導體裝置100的剖面結構〉
圖24為示出半導體裝置100的例子的剖面示意圖。半導體裝置100包括電晶體300、電晶體200及電容器140。電晶體200設置在電晶體300的上方,電容器140設置在電晶體300及電晶體200的上方。
電晶體200為通道形成區中包含氧化物半導體的OS電晶體。
電晶體300設置在基板311上,包括:導電體316、絕緣體315、由基板311的一部分構成的半導體區域313;以及被用作源極區或汲極區的低電阻區域314a及低電阻區域314b。
電晶體300可以為p通道電晶體或n通道電晶體。
半導體區域313的形成通道的區域或其附近的區域、被用作源極區或汲極區的低電阻區域314a及低電阻區域314b等較佳為包含矽類半導體等半 導體,更佳為包含單晶矽。另外,也可以使用包含Ge(鍺)、SiGe(矽鍺)、GaAs(砷化鎵)、GaAlAs(鎵鋁砷)等的材料形成。可以使用藉由對晶格施加應力,改變晶面間距而控制有效質量的矽。
低電阻區域314a及低電阻區域314b除了應用於半導體區域313的半導體材料之外,還包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素。
作為被用作閘極電極的導電體316,可以使用包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素的矽等半導體材料、金屬材料、合金材料或金屬氧化物材料等導電材料。
在圖24所示的電晶體300中,形成通道的半導體區域313(基板311的一部分)具有凸形狀。另外,以隔著絕緣體315覆蓋半導體區域313的側面及頂面的方式設置導電體316。另外,導電體316可以使用調整功函數的材料。因為利用半導體基板的凸部,所以這種電晶體300也被稱為FIN型電晶體。另外,也可以以與凸部的頂面接觸的方式具有被用作用來形成凸部的遮罩的絕緣體。此外,雖然在此示出對半導體基板的一部分進行加工來形成凸部的情況,但是也可以對SOI基板進行加工來形成具有凸形狀的半導體膜。
注意,圖24所示的電晶體300的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。
以覆蓋電晶體300的方式依次層疊有絕緣體320、絕緣體322、絕緣體324及絕緣體326。
作為絕緣體320、絕緣體322、絕緣體324及絕緣體326,例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁及氮化鋁等。
注意,在本說明書中,“氧氮化矽”是指氧含量多於氮含量的材料,“氮氧化矽”是指氮含量多於氧含量的材料。注意,在本說明書中,“氧氮化鋁”是指氧含量多於氮含量的材料,“氮氧化鋁”是指氮含量多於氧含量的材料。
絕緣體322也可以被用作使因設置在其下方的電晶體300等而產生的步階平坦化的平坦化膜。例如,為了提高平坦性,也可以利用化學機械拋光(CMP)法等平坦化處理使絕緣體322的頂面平坦化。
作為絕緣體324,較佳為使用能夠防止氫或雜質從基板311或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。
注意,絕緣體326的相對介電常數較佳為比絕緣體324低。例如,絕緣體326的相對介電常數較佳為低於4,更佳為低於3。例如,絕緣體326的相對介電常數較佳為絕緣體324的相對介電常數的0.7倍以下,更佳為0.6倍以下。藉由將相對介電常數低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。
另外,在絕緣體320、絕緣體322、絕緣體324及絕緣體326中埋入導電體328及導電體330等。另外,導電體328及導電體330被用作插頭或佈線。注意,有時使用同一元件符號表示被用作插頭或佈線的多個導電體。此外,在本說明書等中,佈線和電連接到該佈線的插頭也可以是一個組件。就是說,導電體的一部分有時被用作佈線,並且導電體的一部分有時被用作插頭。
作為各插頭及佈線(導電體328及導電體330等)的材料,可以使用金屬材料、合金材料、金屬氮化物材料或金屬氧化物材料等導電材料的單層或疊層。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。或者,較佳為使用鋁或銅等低電阻導電材料。藉由使用低電阻導電材料可以降低佈線電阻。
另外,也可以在絕緣體326及導電體330上形成佈線層。例如,在圖24中,依次層疊有絕緣體350、絕緣體352、絕緣體354、絕緣體360、絕緣體362、絕緣體364、絕緣體370、絕緣體372、絕緣體374、絕緣體380、絕緣體382及絕緣體384。另外,在這些絕緣體中形成有導電體356、導電體366、導電體376及導電體386。這些導電體被用作插頭或佈線。此外,這些導電體可以使用與導電體328及導電體330同樣的材料形成。
另外,與絕緣體324同樣,絕緣體350、絕緣體360、絕緣體370及絕緣體380較佳為使用對氫具有阻擋性的絕緣體。此外,導電體356、導電體366、導電體376及導電體386較佳為包含對氫具有阻擋性的導電體。例如, 在注目於絕緣體350和導電體356的情況下,由於絕緣體350所包括的開口部中形成有導電體356,所以可以抑制氫從電晶體300擴散到電晶體200。這同樣適用於其他的絕緣體和導電體。
注意,作為對氫具有阻擋性的導電體,例如較佳為使用氮化鉭等。另外,藉由層疊氮化鉭和導電性高的鎢,不但可以保持佈線的導電性而且可以抑制氫從電晶體300擴散。
絕緣體384上層疊有絕緣體214及絕緣體216。作為絕緣體214和絕緣體216中的任何一個,較佳為使用對氧或氫具有阻擋性的物質。
作為絕緣體214,例如較佳為使用能夠防止氫或雜質從設置有基板311或電晶體300的區域等擴散到設置有電晶體200的區域中的具有阻擋性的膜。因此,作為絕緣體214可以使用與絕緣體324同樣的材料。
例如,作為對氫具有阻擋性的膜,絕緣體214較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物。
例如,作為絕緣體216,可以使用與絕緣體320同樣的材料。此外,藉由由介電常數較低的材料形成層間膜,可以減少產生在佈線之間的寄生電容。例如,作為絕緣體216,可以使用氧化矽膜和氧氮化矽膜等。
另外,在絕緣體214及絕緣體216中埋入有導電體218及構成電晶體200的導電體(例如,被用作背閘極的電極)等。導電體218可以使用與導 電體328及導電體330同樣的材料形成。
導電體218較佳為對氧、氫及水具有阻擋性的導電體。藉由採用該結構,可以利用對氧、氫及水具有阻擋性的層將電晶體300與電晶體200分離,從而可以抑制氫從電晶體300擴散到電晶體200中。
在絕緣體216的上方設置有電晶體200。另外,作為電晶體200使用OS電晶體即可。關於電晶體200的詳細內容將在後述的實施方式9中進行說明。
在電晶體200的上方設置絕緣體280。在絕緣體280中,較佳為形成有過量氧區域。尤其是,在將氧化物半導體用於電晶體200時,藉由作為電晶體200附近的層間膜等形成具有過量氧區域的絕緣體,可以減少電晶體200所包括的氧化物230中的氧缺陷,而可以提高電晶體200的可靠性。另外,覆蓋電晶體200的絕緣體280也可以被用作覆蓋其下方的凹凸形狀的平坦化膜。以與在電晶體200的上方形成的絕緣體225接觸的方式設置絕緣體280。
明確而言,作為具有過量氧區域的絕緣體,較佳為使用藉由加熱使一部分的氧脫離的氧化物材料。藉由加熱使氧脫離的氧化物是指在TDS分析中換算為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的氧化物膜。另外,進行上述TDS分析時的膜的表面溫度較佳為在100℃以上且700℃以下,或者100℃以上且500℃以下的範圍內。
例如,作為這種材料,較佳為使用包含氧化矽或氧氮化矽的材料。另外,也可以使用金屬氧化物。
在絕緣體280上也可以設置有絕緣體282。絕緣體282較佳為使用對氧或氫具有阻擋性的物質。因此,作為絕緣體282可以使用與絕緣體214同樣的材料。例如,作為絕緣體282較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物。例如,當藉由濺射法使用含氧的電漿形成絕緣體282時,可以對將成為該絕緣體的基底層的絕緣體280添加氧。
此外,在絕緣體282上設置有絕緣體286。作為絕緣體286可以使用與絕緣體320同樣的材料。此外,藉由將介電常數較低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。例如,作為絕緣體286,可以使用氧化矽膜及氧氮化矽膜等。
此外,在絕緣體220、絕緣體222、絕緣體224、絕緣體225、絕緣體280、絕緣體282及絕緣體286中埋入導電體246及導電體248等。
導電體246及導電體248可以使用與導電體328及導電體330同樣的材料形成。
另外,在電晶體200的上方設置有電容器140。電容器140包括導電體110、導電體120及絕緣體105。
此外,也可以在導電體246及導電體248上設置導電體112。此外,可以同時形成導電體112及導電體110。
作為導電體112及導電體110可以使用包含選自鉬、鈦、鉭、鎢、鋁、銅、鉻、釹和鈧中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鉭膜、氮化鈦膜、氮化鉬膜、氮化鎢膜)等。或者,作為導電體112及導電體110,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等導電材料。
在圖24中導電體112及導電體110具有單層結構,但是不侷限於此,也可以具有兩層以上的疊層結構。例如,也可以在具有阻擋性的導電體與導電性高的導電體之間形成與具有阻擋性的導電體以及導電性高的導電體的黏合性高的導電體。
此外,在導電體112及導電體110上作為電容器140的介電質設置絕緣體105。絕緣體105例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等的疊層或單層。
例如,絕緣體105可以使用氧氮化矽等絕緣強度高的材料。藉由採用該結構,電容器140由於包括絕緣體105,所以可以提高絕緣強度,可以抑制電容器140的靜電破壞。
在絕緣體105上以與導電體110重疊的方式設置導電體120。作為導電體120可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當導電體120與導電體等其他組件同時形成時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
在導電體120及絕緣體105上設置有絕緣體150。作為絕緣體150可以使用與絕緣體320同樣的材料。另外,絕緣體150可以被用作覆蓋其下方的凹凸形狀的平坦化膜。
另外,絕緣體150中埋入有導電體156。另外,導電體156可以使用與導電體328及導電體330同樣的材料形成。
另外,導電體156上設置有導電體166。另外,導電體166及絕緣體150上設置有絕緣體160。另外,絕緣體160也可以被用作覆蓋其下的凹凸形狀的平坦化膜。
以上是對結構實例的說明。藉由採用本結構,在使用OS電晶體的半導體裝置中,可以在抑制電特性變動的同時提高可靠性。另外,可以降低使用OS電晶體的半導體裝置的功耗。此外,可以實現使用OS電晶體的半導體裝置的微型化或高積體化。此外,可以高生產率地提供微型化或高積體化的半導體裝置。
〈半導體裝置100的變形例子〉
圖25示出本實施方式的變形例子。
圖25是將圖24的電晶體200替換成電晶體201時的剖面示意圖。與電晶體200同樣,電晶體201是OS電晶體。另外,關於電晶體201的詳細將在後述的實施方式9中進行說明。
關於圖25的其他的組件的詳細內容,可以參照圖24的記載。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
實施方式9
在本實施方式中,參照圖26A至圖27B說明實施方式8中示出的電晶體200及電晶體201的詳細內容。
〈〈電晶體200〉〉
首先,詳細地說明圖24所示的電晶體200。
圖26A是包括電晶體200的半導體裝置的俯視圖。圖26B是圖26A中的點劃線A1-A2所示的部分的剖面圖且是電晶體200的通道長度方向的剖面圖。圖26C是圖26A中的點劃線A3-A4所示的部分的剖面圖且是電晶體200的通道寬度方向的剖面圖。另外,為了明確起見,在圖26A所示的俯視圖中未圖示一部分的組件。
如圖26A至圖26C所示,電晶體200包括:設置在基板(未圖示)上的絕緣體224;設置在絕緣體224上的金屬氧化物406a;以與金屬氧化物406a的頂面的至少一部分接觸的方式設置的金屬氧化物406b;設置在金屬氧化物406b上的絕緣體412;設置在絕緣體412上的導電體404a;設置在導電體404a上的導電體404b;設置在導電體404b上的絕緣體419;以與絕緣體412、導電體404a、導電體404b及絕緣體419的各側面接觸的方式設置的絕緣體418;以與金屬氧化物406b的頂面接觸且與絕緣體418的側面接觸的方式設置的絕緣體225。在此,如圖26B所示,絕緣體418的頂面較佳為與絕緣體419的頂面大致對齊。此外,絕緣體225較佳為覆蓋絕緣體419、導電體404、絕緣體418及金屬氧化物406。
以下,有時將金屬氧化物406a及金屬氧化物406b總稱為金屬氧化物406。注意,雖然示出在電晶體200中層疊金屬氧化物406a和金屬氧化物406b的結構,但是本發明不侷限於此。例如,可以採用只設置有金屬氧化物406b的結構。另外,有時將導電體404a及導電體404b總稱為導電體404。注意,雖然示出在電晶體200中層疊導電體404a和導電體404b的結構,但是本發明不侷限於此。例如,可以採用只設置導電體404b的結構。
導電體440包括導電體440a及導電體440b。以與絕緣體384的開口的內壁接觸的方式形成有導電體440a,並在其內側形成有導電體440b。在此,可以使導電體440a及導電體440b的頂面的高度與絕緣體384的頂面的高度大致相同。雖然示出在電晶體200中層疊導電體440a及導電體440b的結構,但是本發明不侷限於此。例如,也可以採用只設置導電體440b的結構。
導電體310包括導電體310a及導電體310b。導電體310a以與絕緣體214及絕緣體216的開口的內壁接觸的方式形成,並在其內側形成有導電體310b。因此,導電體310a較佳為與導電體440b接觸。在此,可以使導電體310a及導電體310b的頂面的高度與絕緣體216的頂面的高度大致相同。注意,雖然示出在電晶體200中層疊導電體310a和導電體310b的結構,但是本發明不侷限於此。例如,可以採用只設置導電體310b的結構。
導電體404可被用作頂閘極,導電體310可被用作背閘極。背閘極的電位可以與頂閘極相等,也可以為接地電位或任意電位。另外,藉由不跟頂閘極聯動而獨立地改變背閘極的電位,可以改變電晶體的臨界電壓。
導電體440與導電體404同樣地在通道寬度方向上延伸,並被用作對導電體310(亦即,背閘極)施加電位的佈線。在此,藉由在被用作背閘極的佈線的導電體440上層疊埋入絕緣體214及絕緣體216的導電體310,可以將絕緣體214及絕緣體216等設置在導電體440與導電體404之間,由此可以降低導電體440與導電體404之間的寄生電容,而可以提高絕緣耐壓。藉由降低導電體440與導電體404之間的寄生電容,可以提高電晶體的切換速度,而可以實現具有高頻率特性的電晶體。此外,藉由提高導電體440與導電體404之間的絕緣耐壓,可以提高電晶體200的可靠性。因此,絕緣體214及絕緣體216的膜厚度較佳為大。此外,導電體440的延伸方向不侷限於此,例如也可以在電晶體200的通道長度方向上延伸。
在此,作為導電體310a及導電體440a較佳為使用具有抑制水或氫等雜質透過(不容易透過)的功能的導電材料。作為導電體310a及導電體440a, 例如可以使用鉭、氮化鉭、釕或氧化釕等的單層或疊層。由此,可以抑制氫、水等雜質從下層經過導電體440及導電體310擴散到上層。導電體310a及導電體440a較佳為具有抑制氫原子、氫分子、水分子、氧原子、氧分子、氮原子、氮分子、氧氮化分子(N2O、NO及NO2等)、銅原子等雜質、氧(例如氧原子及氧分子等)中的至少一個透過的功能。另外,上述內容同樣也適用於以下具有抑制雜質透過的功能的導電材料的記載。藉由使導電體310a及導電體440a具有抑制氧的透過的功能,可以防止因導電體310b及導電體440b氧化而導致導電率的下降。
作為導電體310b,較佳為使用以鎢、銅或鋁為主要成分的導電材料。此外,由於導電體440b被用作佈線,所以較佳為使用其導電性比導電體310b高的導電體,例如,可以使用以銅或鋁為主要成分的導電材料。此外,雖然未圖示,但是導電體310b及導電體440b也可以為疊層結構,例如可以為鈦、氮化鈦與上述導電材料的疊層。
絕緣體214可以被用作防止水或氫等雜質從下層混入電晶體的阻擋絕緣膜。絕緣體214較佳為具有抑制氫原子、氫分子、水分子、氮原子、氮分子、氧氮化分子(N2O、NO及NO2等)、銅原子等雜質中的至少一個透過的功能。此外,作為絕緣體214,較佳為使用具有抑制氧(例如,氧原子或氧分子等)透過的功能的絕緣材料。由此,可以抑制絕緣體224等所包含的氧擴散到下方。
此外,藉由在導電體440上層疊導電體310,可以在導電體440與導電體310之間設置絕緣體214。在此,即使作為導電體440b使用銅等容易擴 散的金屬,藉由作為絕緣體214設置氮化矽等也可以防止該金屬擴散到絕緣體214上方的層。
此外,作為絕緣體222,較佳為使用具有抑制水或氫等雜質以及氧透過的功能的絕緣材料。由此,可以抑制氫、水等雜質從絕緣體222之下的層擴散到絕緣體222之上的層。同時,也可以抑制絕緣體224等所包含的氧擴散到下方。
此外,較佳為減少絕緣體224中的水、氫或氮氧化物等雜質的濃度。例如,絕緣體224的氫脫離量在熱脫附譜分析法(TDS(Thermal Desorption Spectroscopy))中的膜表面溫度為50℃至500℃的範圍內,換算為每絕緣體224面積的氫分子為2×1015molecules/cm2以下,較佳為1×1015molecules/cm2以下,更佳為5×1014molecules/cm2以下,即可。另外,絕緣體224較佳為藉由加熱而使氧釋放的絕緣體形成。
絕緣體412可以被用作第一閘極絕緣膜,絕緣體220、絕緣體222以及絕緣體224可被用作第二閘極絕緣膜。注意,在電晶體200中層疊有絕緣體220、絕緣體222以及絕緣體224,但是本發明不侷限於此。例如,可以採用絕緣體220、絕緣體222和絕緣體224中的任兩個層的疊層結構,也可以採用絕緣體220、絕緣體222和絕緣體224中的任一個層的單層結構。
作為金屬氧化物406較佳為使用被用作氧化物半導體的金屬氧化物。較佳為使用其能隙為2eV以上,較佳為2.5eV以上的金屬氧化物。如此,藉由使用能隙較寬的金屬氧化物,可以降低電晶體的關態電流。
由於使用金屬氧化物的電晶體在非導通狀態下的洩漏電流非常小,所以可以提供功耗低的半導體裝置。此外,由於金屬氧化物可以利用濺射法等形成,所以可以用於構成高集成型半導體裝置的電晶體。
金屬氧化物406較佳為至少包含銦或鋅。尤其較佳為包含銦及鋅。另外,除此之外,較佳為還包含鋁、鎵、釔或錫等。或者,也可以包含硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此,考慮金屬氧化物406為包含銦、元素M及鋅的In-M-Zn氧化物的情況。注意,元素M為鋁、鎵、釔或錫等。作為可用作元素M的其他元素,有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時也可以組合多個上述元素。
在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
在此,用於金屬氧化物406a的金屬氧化物的構成元素中的元素M的原子個數比較佳為大於用於金屬氧化物406b的金屬氧化物的構成元素中的元素M的原子個數比。另外,用於金屬氧化物406a的金屬氧化物中的相對於In的元素M的原子個數比較佳為大於用於金屬氧化物406b的金屬氧化物中的相對於In的元素M的原子個數比。此外,用於金屬氧化物406b的金屬 氧化物中的相對於元素M的In原子個數比較佳為大於用於金屬氧化物406a的金屬氧化物中的相對於元素M的In的原子個數比。
較佳的是,藉由將上述金屬氧化物用於金屬氧化物406a,使金屬氧化物406a的導帶底的能量高於金屬氧化物406b的導帶底的能量低的區域的導帶底的能量。換言之,金屬氧化物406a的電子親和力較佳為小於金屬氧化物406b的導帶底的能量低的區域的電子親和力。
在此,在金屬氧化物406a及金屬氧化物406b中,導帶底的能階平緩地變化。換言之,也可以將上述情況表達為導帶底的能階連續地變化或者連續地接合。為此,較佳為降低形成在金屬氧化物406a與金屬氧化物406b的介面的混合層的缺陷態密度。
明確而言,藉由使金屬氧化物406a和金屬氧化物406b包含氧之外的共同元素(為主要成分),可以形成缺陷態密度低的混合層。例如,在金屬氧化物406b為In-Ga-Zn氧化物的情況下,作為金屬氧化物406a較佳為使用In-Ga-Zn氧化物、Ga-Zn氧化物及氧化鎵等。
此時,載子的主要路徑成為形成在金屬氧化物406b中的窄隙部分。因為可以降低金屬氧化物406a與金屬氧化物406b的介面的缺陷態密度,所以介面散射給載子傳導帶來的影響小,從而可以得到大通態電流(on-state current)。
另外,金屬氧化物406包括區域426a、區域426b及區域426c。如圖26B 所示,區域426a夾在區域426b和區域426c之間。區域426b及區域426c是其電阻藉由絕緣體225的成膜而降低的區域,其導電性比區域426a高。對區域426b及區域426c添加形成絕緣體225時的成膜氛圍所包含的氫或氮等雜質元素。由此,藉由以金屬氧化物406b中的與絕緣體225重疊的區域為中心由被添加的雜質元素形成氧缺陷,並且使該雜質元素進入氧缺陷,可以使載子密度增高並且使電阻降低。
因此,區域426b及區域426c中的氫和氮中的至少一個的濃度較佳為比區域426a高。測量氫或氮的濃度可以利用二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)。在此,作為區域426a的氫或氮的濃度,測量金屬氧化物406b的與絕緣體412重疊的區域的中央附近(例如,金屬氧化物406b的距離絕緣體412的通道長度方向的兩側面的距離大致相等的部分)的氫或氮的濃度即可。
另外,藉由對區域426b及區域426c添加形成氧缺陷的元素或者與氧缺陷鍵合的元素,可以實現低電阻化。作為上述元素,典型地可以舉出氫、硼、碳、氮、氟、磷、硫、氯、鈦、稀有氣體等。另外,作為稀有氣體元素的典型例子,有氦、氖、氬、氪以及氙等。因此,區域426b及區域426c可以包含上述元素中的一種或多種。
此外,在金屬氧化物406a中,區域426b及區域426c的相對於元素M的In的原子個數比較佳為與金屬氧化物406b的相對於元素M的In的原子個數比大致相同。換言之,在金屬氧化物406a中,區域426b及區域426c的相對於元素M的In的原子個數比較佳為大於區域426a的相對於元素M 的In的原子個數比。在此,在金屬氧化物406中,藉由提高銦含量,可以提高載子密度,而實現低電阻化。藉由採用這種結構,即使在電晶體200的製程中金屬氧化物406b的厚度變薄,而金屬氧化物406b的電阻變大,也在區域426b及區域426c中金屬氧化物406a的電阻充分低,由此可以將金屬氧化物406的區域426b及區域426c用作源極區域及汲極區域。
圖27A示出圖26B所示的區域426a附近的放大圖。如圖27A所示,區域426b及區域426c形成在金屬氧化物406中的至少與絕緣體225重疊的區域。在此,金屬氧化物406b的區域426b和區域426c中的一個被用作源極區域,另一個被用作汲極區域。另外,金屬氧化物406b的區域426a被用作通道形成區域。
在圖26B及圖27A中,區域426a、區域426b以及區域426c形成在金屬氧化物406b及金屬氧化物406a中,但是上述區域可以至少在金屬氧化物406b中形成。另外,在圖26B等中示出區域426a與區域426b的邊界以及區域426a與區域426c的邊界大致垂直於金屬氧化物406的頂面,但是本實施方式不侷限於此。例如,區域426b及區域426c在金屬氧化物406b的表面附近有時是突出到導電體404一側的形狀,並且在金屬氧化物406a的底面附近有時是縮向絕緣體225一側的形狀。
在電晶體200中,如圖27A所示,區域426b及區域426c形成在金屬氧化物406中的與絕緣體225接觸的區域以及與絕緣體418和絕緣體412的兩端附近重疊的區域。此時,區域426b及區域426c中的與導電體404重疊的部分被用作所謂的重疊區域(也稱為Lov區域)。藉由採用具有Lov區域的 結構,金屬氧化物406的通道形成區域與源極區域及汲極區域之間不會形成高電阻區域,因此可以提高電晶體的通態電流及移動率。
但是,本實施方式所示的半導體裝置不侷限於此。例如,如圖27B所示,區域426b及區域426c也可以形成在金屬氧化物406的與絕緣體225及絕緣體418重疊的區域。換言之,圖27B所示的結構是導電體404的通道長度方向上的寬度與區域426a的寬度大致一致的結構。當採用圖27B所示的結構時,在源極區域與汲極區域之間不會形成高電阻區域,由此可以提高電晶體的通態電流。此外,當採用圖27B所示的結構時,在通道長度方向上源極區域及汲極區域不與閘極重疊,由此可以抑制不需要的電容的形成。
如此,藉由適當地選擇區域426b及區域426c的範圍,可以根據電路設計,容易地提供具有期望的電特性的電晶體。
絕緣體412較佳為以與金屬氧化物406b的頂面接觸的方式配置。絕緣體412較佳為使用藉由加熱而使氧釋放的絕緣體形成。藉由以與金屬氧化物406b的頂面接觸的方式設置上述絕緣體412,可以有效地將氧供應到金屬氧化物406b。此外,與絕緣體224同樣,較佳為減少絕緣體412中的水或氫等雜質的濃度。絕緣體412的厚度較佳為1nm以上且20nm以下,例如可以為1nm左右。
絕緣體412較佳為包含氧。例如,利用熱脫附譜分析法(TDS法),在100℃以上且700℃以下或者100℃以上且500℃以下的表面溫度範圍內,換 算為絕緣體412的單位面積的氧分子的脫離量為1×1014molecules/cm2以上,較佳為2×1014molecules/cm2以上,更佳為4×1014molecules/cm2以上,即可。
絕緣體412、導電體404及絕緣體419包括與金屬氧化物406b重疊的區域。另外,較佳的是,絕緣體412、導電體404a、導電體404b及絕緣體419的側面大致對齊。
作為導電體404a,較佳為使用導電性氧化物。例如,可以使用能夠被用作金屬氧化物406a或金屬氧化物406b的金屬氧化物。尤其較佳為使用金屬的原子個數比滿足[In]:[Ga]:[Zn]=4:2:3至4:2:4.1及其附近值的導電性高的In-Ga-Zn類氧化物。藉由設置上述導電體404a,可以抑制氧向導電體404b透過並防止因氧化導致的導電體404b的電阻值的增加。
另外,藉由利用濺射法形成上述導電性氧化物,可以對絕緣體412添加氧,可以將氧供應到金屬氧化物406b。由此,可以減少金屬氧化物406的區域426a中的氧缺陷。
作為導電體404b,例如可以使用鎢等金屬。另外,作為導電體404b,可以使用能夠將氮等雜質供應到導電體404a而提高導電體404a的導電性的導電體。作為導電體404b,例如較佳為使用氮化鈦。另外,導電體404b可以採用在氮化鈦等金屬氮化物上層疊鎢等金屬的疊層結構。
在此,被用作閘極電極的導電體404隔著絕緣體412以覆蓋金屬氧化物406b的區域426a附近的頂面及通道寬度方向的側面的方式設置。因此,可 以由被用作閘極電極的導電體404的電場電圍繞金屬氧化物406b的區域426a附近的頂面及通道寬度方向的側面。將由導電體404的電場電圍繞通道形成區域的電晶體的結構稱為surrounded channel(s-channel)結構。因此,由於可在金屬氧化物406b的區域426a附近的頂面及通道寬度方向的側面上形成通道,所以能夠在源極與汲極之間流過大電流,增大導通時的電流(通態電流)。另外,因為金屬氧化物406b的區域426a附近的頂面及通道寬度方向的側面由導電體404的電場圍繞,所以可以減少非導通時的洩漏電流(關態電流)。
較佳為在導電體404b上配置絕緣體419。較佳的是,絕緣體419、導電體404a、導電體404b及絕緣體412的側面大致對齊。較佳的是,利用原子層沉積(ALD:Atomic Layer Deposition)法形成絕緣體419。由此,可以以1nm以上且20nm以下左右,較佳為5nm以上且10nm以下左右的厚度形成絕緣體419。在此,與絕緣體418同樣,作為絕緣體419較佳為使用具有可以抑制水或氫等雜質以及氧透過的功能的絕緣材料,例如較佳為使用氧化鋁或氧化鉿等。
藉由設置上述絕緣體419,可以由具有抑制水或氫等雜質及氧透過的功能的絕緣體419及絕緣體418覆蓋導電體404的頂面及側面。由此,可以防止水或氫等雜質經過導電體404混入金屬氧化物406中。如此,絕緣體418及絕緣體419被用作保護閘極的閘極蓋。
絕緣體418與絕緣體412、導電體404及絕緣體419的側面接觸。此外,絕緣體418的頂面較佳為與絕緣體419的頂面大致對齊。絕緣體418較佳為 利用ALD法形成。由此,可以形成其厚度為1nm以上且20nm以下左右,較佳為1nm以上且3nm以下左右,例如為1nm的絕緣體418。
如上所述,金屬氧化物406中的區域426b及區域426c由在形成絕緣體225時添加的雜質元素形成。當使電晶體微型化而使其通道長度為10nm至30nm左右時,有源極區域或汲極區域所包含的雜質元素擴散而使源極區域和汲極區域電導通的擔憂。另一方面,如本實施方式所示,藉由形成絕緣體418,可以增加金屬氧化物406的與絕緣體225接觸的區域之間的距離,所以可以防止源極區域與汲極區域電導通。再者,藉由利用ALD法形成絕緣體418,可以使絕緣體418的厚度與微型化通道長度相同或更薄,這樣可以防止源極區域和汲極區域之間的距離過大而可以增大電阻。
在此,作為絕緣體418及絕緣體419較佳為使用具有抑制水或氫等雜質及氧透過的功能的絕緣材料。由此,可以防止絕緣體412中的氧擴散到外部。另外,可以抑制氫、水等雜質從絕緣體412的端部等侵入到金屬氧化物406。
絕緣體418較佳為藉由如下方法形成:在利用ALD法形成絕緣膜後進行各向異性蝕刻,以使該絕緣膜中的與絕緣體412、導電體404及絕緣體419的側面接觸的部分留下。由此,可以容易形成上述厚度薄的絕緣體。此時,藉由在導電體404上設置絕緣體419,即使因該各向異性蝕刻該絕緣體419的一部分被去除,也可以充分留下絕緣體418的與絕緣體412及導電體404接觸的部分。
以覆蓋絕緣體419、絕緣體418、金屬氧化物406及絕緣體224的方式設置絕緣體225。在此,以與絕緣體419及絕緣體418的頂面以及絕緣體418的側面接觸的方式設置絕緣體225。如上所述,因為從絕緣體225對金屬氧化物406添加氫或氮等雜質來形成區域426b及區域426c。因此,絕緣體225較佳為包含氫和氮中的至少一種。
另外,絕緣體225較佳為以與金屬氧化物406b的頂面以及金屬氧化物406b的側面及金屬氧化物406a的側面接觸的方式設置。由此,在區域426b及區域426c中,可以降低金屬氧化物406b的側面及金屬氧化物406a的側面的電阻。
另外,作為絕緣體225,較佳為使用具有抑制水或氫等雜質或者氧透過的功能的絕緣材料。例如,作為絕緣體225,較佳為使用氮化矽、氮氧化矽、氧氮化矽、氮化鋁、氮氧化鋁等。
較佳為在絕緣體225上設置有絕緣體280。另外,與絕緣體224等同樣,較佳為減少絕緣體280中的水或氫等雜質的濃度。
導電體450a和導電體451a以及導電體450b和導電體451b配置在形成於絕緣體280及絕緣體225中的開口。導電體450a和導電體451a以及導電體450b和導電體451b較佳為以夾著導電體404彼此對置的方式設置。
在此,以與絕緣體280及絕緣體225的開口的內壁接觸的方式形成有導電體450a,並在其內側形成有導電體451a。金屬氧化物406的區域426b位 於該開口的底部的至少一部分,並且,導電體450a與區域426b接觸。同樣地,以與絕緣體280及絕緣體225的開口的內壁接觸的方式形成有導電體450b,並在其內側形成有導電體451b。金屬氧化物406的區域426c位於該開口的底部的至少一部分,並且,導電體450b與區域426c接觸。
導電體450a及導電體451a被用作源極電極和汲極電極中的一個,導電體450b及導電體451b被用作源極電極和汲極電極中的另一個。
與導電體310a等同樣,作為導電體450a及導電體450b較佳為使用具有抑制氫、水等雜質透過的功能的導電材料。
作為導電體451a及導電體451b,較佳為使用以鎢、銅或鋁為主要成分的導電材料。另外,雖然未圖示,但是導電體451a及導電體451b可以採用疊層結構,例如可以為鈦或氮化鈦與上述導電材料的疊層。
下面,對電晶體200的構成材料進行說明。
〈基板〉
作為形成電晶體200的基板例如可以使用絕緣體基板、半導體基板或導電體基板。作為絕緣體基板,例如可以舉出玻璃基板、石英基板、藍寶石基板、穩定氧化鋯基板(釔安定氧化鋯基板等)、樹脂基板等。另外,作為半導體基板,例如可以舉出由矽或鍺等構成的半導體基板、或者由碳化矽、矽鍺、砷化鎵、磷化銦、氧化鋅或氧化鎵等構成的化合物半導體基板等。再者,還可以舉出在上述半導體基板內部具有絕緣體區域的半導體基 板,例如有SOI(Silicon On Insulator;絕緣層上覆矽)基板等。作為導電體基板,可以舉出石墨基板、金屬基板、合金基板、導電樹脂基板等。或者,可以舉出包含金屬氮化物的基板、包含金屬氧化物的基板等。再者,還可以舉出設置有導電體或半導體的絕緣體基板、設置有導電體或絕緣體的半導體基板、設置有半導體或絕緣體的導電體基板等。或者,也可以使用在這些基板上設置有元件的基板。作為設置在基板上的元件,可以舉出電容器、電阻器、切換元件、發光元件、記憶元件等。
此外,作為基板也可以使用撓性基板。作為在撓性基板上設置電晶體的方法,也可以舉出如下方法:在非撓性基板上形成電晶體之後,剝離電晶體而將該電晶體轉置到撓性基板上。在此情況下,較佳為在非撓性基板與電晶體之間設置剝離層。此外,作為基板,也可以使用包含纖維的薄片、薄膜或箔等。另外,基板也可以具有伸縮性。此外,基板可以具有在停止彎曲或拉伸時恢復為原來的形狀的性質。或者,也可以具有不恢復為原來的形狀的性質。基板例如包括具有如下厚度的區域:5μm以上且700μm以下,較佳為10μm以上且500μm以下,更佳為15μm以上且300μm以下。藉由將基板形成得薄,可以實現包括電晶體的半導體裝置的輕量化。另外,藉由將基板形成得薄,即便在使用玻璃等的情況下也有時會具有伸縮性或在停止彎曲或拉伸時恢復為原來的形狀的性質。因此,可以緩和因掉落等基板上的半導體裝置受到的衝擊等。亦即,可以提供一種耐用的半導體裝置。
作為撓性基板,例如可以使用金屬、合金、樹脂或玻璃或者其纖維等。撓性基板的線性膨脹係數越低,因環境而發生的變形越得到抑制,所以是 較佳的。作為撓性基板,例如使用線性膨脹係數為1×10-3/K以下、5×10-5/K以下或1×10-5/K以下的材料即可。作為樹脂,例如可以舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯、丙烯酸等。尤其是芳族聚醯胺的線性膨脹係數較低,因此適用於撓性基板。
〈絕緣體〉
作為絕緣體,有具有絕緣性的氧化物、氮化物、氧氮化物、氮氧化物、金屬氧化物、金屬氧氮化物以及金屬氮氧化物等。
藉由由具有抑制氫等雜質及氧透過的功能的絕緣體圍繞電晶體,能夠使電晶體的電特性穩定。例如,作為絕緣體222及絕緣體214可以使用具有抑制氫等雜質及氧透過功能的絕緣體。
作為具有抑制氫等雜質及氧透過的功能的絕緣體,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。
明確而言,作為絕緣體222及絕緣體214,可以使用氧化鋁、氧化鎂、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭等金屬氧化物、氮氧化矽或氮化矽等。絕緣體222及絕緣體214較佳為包含氧化鋁或氧化鉿等。
例如,作為絕緣體384、絕緣體216、絕緣體220、絕緣體224及絕緣體412,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、 鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,絕緣體384、絕緣體216、絕緣體220、絕緣體224及絕緣體412較佳為包含氧化矽、氧氮化矽或氮化矽。
作為絕緣體220、絕緣體222、絕緣體224以及/或絕緣體412較佳為包括相對介電常數高的絕緣體。例如,作為絕緣體220、絕緣體222、絕緣體224以及/或絕緣體412較佳為包含氧化鎵、氧化鉿、氧化鋯、含有鋁及鉿的氧化物、含有鋁及鉿的氧氮化物、含有矽及鉿的氧化物、含有矽及鉿的氧氮化物或者含有矽及鉿的氮化物等。或者,絕緣體220、絕緣體222、絕緣體224以及/或絕緣體412較佳為具有氧化矽或氧氮化矽與相對介電常數高的絕緣體的疊層結構。
注意,絕緣體384、絕緣體216及絕緣體280較佳為包括相對介電常數低的絕緣體。例如,絕緣體384、絕緣體216及絕緣體280較佳為包含氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽、具有空孔的氧化矽或樹脂等。或者,絕緣體384、絕緣體216及絕緣體280較佳為具有氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽或具有空孔的氧化矽與樹脂的疊層結構。因為氧化矽及氧氮化矽具有熱穩定性,所以藉由與樹脂組合,可以實現具有熱穩定性且相對介電常數低的疊層結構。作為樹脂,例如可以舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯或丙烯酸樹脂等。
作為絕緣體418及絕緣體419,例如可以使用氧化鋁、氧化鉿、氧化鎂、 氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹或氧化鉭等金屬氧化物、氮氧化矽或氮化矽等。
〈〈導電體〉〉
作為導電體404a、導電體404b、導電體310a、導電體310b、導電體450a、導電體450b、導電體451a及導電體451b較佳為使用包含選自鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦和釕等的金屬元素中的一種以上的材料。另外,也可以使用以包含磷等雜質元素的多晶矽為代表的導電率高的半導體以及鎳矽化物等矽化物。
另外,作為上述導電體,尤其是導電體404a、導電體310a、導電體450a及導電體450b,可以使用包含可用於金屬氧化物406的金屬氧化物所包含的金屬元素及氧的導電材料。或者,也可以使用包含上述金屬元素及氮的導電材料。例如,也可以使用氮化鈦、氮化鉭等包含氮的導電材料。或者,可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有矽的銦錫氧化物。或者,也可以使用包含氮的銦鎵鋅氧化物。
另外,也可以層疊多個由上述材料形成的導電層。例如,也可以採用組合包含上述金屬元素的材料和包含氧的導電材料的疊層結構。另外,也可以採用組合包含上述金屬元素的材料和包含氮的導電材料的疊層結構。另外,也可以採用組合包含上述金屬元素的材料、包含氧的導電材料和包含氮的導電材料的疊層結構。
此外,在將氧化物用於電晶體的通道形成區域的情況下,作為閘極電極較佳為具有組合包含上述金屬元素的材料和包含氧的導電材料的疊層結構。在此情況下,較佳為將包含氧的導電材料設置在通道形成區域一側。藉由將包含氧的導電材料設置在通道形成區域一側,從該導電材料脫離的氧容易被供應到通道形成區域。
〈〈電晶體201〉〉
接著,對圖25所示的電晶體201的詳細結構進行說明。
圖28A是電晶體201的俯視圖。圖28B是圖28A中的點劃線A1-A2所示的部分的剖面圖且是電晶體201的通道長度方向的剖面圖。圖28C是圖28A中的點劃線A3-A4所示的部分的剖面圖且是電晶體201的通道寬度方向的剖面圖。另外,為了明確起見,在圖28A所示的俯視圖中未圖示一部分的組件。使用同一符號表示電晶體201的與電晶體200共同的組件。
如圖28A至圖28C所示,電晶體201包括:設置在基板(未圖示)上的絕緣體224;設置在絕緣體224上的金屬氧化物406a;以與金屬氧化物406a的頂面的至少一部分接觸的方式設置的金屬氧化物406b;以與金屬氧化物406b的頂面的至少一部分接觸的方式設置的導電體452a及導電體452b;與金屬氧化物406b的頂面的至少一部分接觸並設置在導電體452a及導電體452b上的金屬氧化物406c;設置在金屬氧化物406c上的絕緣體413;設置在絕緣體413上的導電體405a;設置在導電體405a上的導電體405b;設置在導電體405b上的絕緣體420。
導電體405(導電體405a及導電體405b)可被用作頂閘極,導電體310可被用作背閘極。背閘極的電位可以與頂閘極相等,也可以為接地電位或任意電位。另外,藉由不跟頂閘極聯動而獨立地改變背閘極的電位,可以改變電晶體的臨界電壓。
導電體405a可以使用與圖26A至圖26C的導電體404a同樣的材料形成。導電體405b可以使用與圖26A至圖26C的導電體404b同樣的材料形成。
導電體452a被用作源極電極和汲極電極中的一個,導電體452b被用作源極電極和汲極電極中的另一個。
導電體452a、導電體452b可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以這些元素為主要成分的合金。雖然圖式示出單層結構,但是也可以採用兩層以上的疊層結構。另外,作為導電體452a、導電體452b,可以使用包含氧化銦、氧化錫或氧化鋅的透明導電材料。
在電晶體201中,通道較佳為形成在金屬氧化物406b中。因此,作為金屬氧化物406c較佳為使用絕緣性比金屬氧化物406b高的材料。金屬氧化物406c可以使用與金屬氧化物406a同樣的材料。
藉由設置金屬氧化物406c可以實現埋入通道型的電晶體201。另外,可以防止導電體452a及導電體452b的端部的氧化。可以防止導電體405與導電體452a(或導電體405與導電體452b)之間的洩漏電流。注意,有時可以省略金屬氧化物406c。
作為絕緣體420,較佳為使用具有抑制水或氫等雜質及氧透過的功能的絕緣材料。作為絕緣體420,例如可以使用氧化鋁、氧化鎂、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭等金屬氧化物、氮氧化矽或氮化矽等。
在電晶體201中,藉由設置絕緣體420可以防止導電體405的氧化。另外,可以防止水或氫等雜質進入金屬氧化物406中。
與電晶體200相比,電晶體201中的金屬氧化物406b與電極(源極電極或汲極電極)的接觸面積可以更大。另外,不需要圖26A至圖26C所示的區域426b及區域426c的形成製程。因此可以使電晶體201的通態電流比電晶體200大。此外,可以簡化製程。
電晶體201的其他組件的詳細內容可以參照電晶體200的記載。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
實施例1
在本實施例中,說明將本發明的一個實施方式的神經網路用於二次電池的異常發生(明確而言,微小短路(micro short)的發生)的預測及檢測的例子。
圖29C示出發生微小短路的充放電曲線的示意圖的例子。
微小短路是指二次電池內部的微小短路,不是不能進行充放電的狀態,而是微少短路電流流過微小短路部的現象。發生微小短路的原因被認為是由於多次充放電,發生正極活性物質的不均勻分佈,於是正極的一部分與負極的一部分發生局部性電流集中,而使隔離體的一部分不起作用,或者,因副反應而發生副反應物,導致發生微小短路。
為了實現二次電池的小型化,需要減薄隔離體。另外,需要以高電壓高速供電來進行充電。但在上述結構中,二次電池容易發生微小短路。另外,當反復發生微小短路時,有可能導致二次電池的異常發熱及起火等重大事故。
因此,需要構成能早期發現微小短路來防患於未然的蓄電系統或者二次電池的控制系統。為此,首先,嘗試了使用神經網路預測二次電池的異常發生。
作為神經網路,使用被稱為LSTM的循環神經網路。LSTM的網路是適合處理時間序列資料的模型,每隔一定時間測量充電電壓,根據積累的時間序列資料可以預測未來一段時間的充電特性。LSTM的演算法使用Python(Chainer)構成。基於此,使用包括通道形成區中包含氧化物半導體的電晶體的電路實現系統。圖29A示出LSTM的網路模型。
圖29B中的實線示出充電時的充電曲線,虛線部分示出被預測的充電 曲線。
明確而言,使神經網路學習正常的充電曲線,如果預測的一段時間後的充電曲線與正常的充電曲線是重疊的,則判斷該期間無異常,另一方面,如圖29C的充電曲線的右端部所示,當波形出現紊亂,(亦即,發生微小短路),偏離正常的充電曲線時,判斷該期間發生異常。
圖30A是試製品的方塊圖。其中,模擬在鋰離子二次電池中發生微小短路,預測其舉動,並在顯示器上即時顯示其狀態(充電曲線)。
在圖30A中,601表示虛擬異常發生開關,602表示可視為電池的仿真器。從仿真器602輸出充電測量資料,由控制器IC603進行測量及判斷。由於OS-LSI推論晶片604在積和運算電路內包括使用OS-FET的非揮發性記憶體,因此可以一直載入權重值。從控制器IC603輸入積和運算用輸入資料,從OS-LSI推論晶片604輸出運算結果,使用不同顏色在顯示器605上重疊地顯示推論結果的資料及測量資料,由此進行比較。另外,在膝上型個人電腦的顯示器605顯示兩個充電曲線(例如,綠色:測量資料,黃色:被預測的充電曲線)。
圖30B示出對應於上述方塊圖的試製品的外觀照片。圖30B的右下的電路板上安裝有OS-LSI推論晶片604。另外,在圖30B中,中央的電路板是控制器IC603,包括虛擬異常發生開關601的仿真器602設置在左下。
另外,圖31示出試製品的外觀照片,其中,除了圖30B所示的試製品 以外,在右側還設置有監視實際的硬幣型鋰離子二次電池的面板,由此即時顯示異常預測。
下面,對上述LSTM的演算法進行詳細說明。
在上述演算法中,t表示時間,l表示層的index。換言之,t-1表示前面的時間,l-1表示前一層。上述公式中的符號⊙表示哈達馬積(hadamard product)(元素積:element wise multiplication)。進行以下公式所示的運算。
另外,T表示將2n維轉換為4n維的矩陣運算,其中對每n個要素進行“sigm”、“tanh”的計算,轉換為具有n個要素的向量、i(input gate)、f(forget gate)、o(output gate)及g(input modulation gate)。“sigm”表示使用sigmoid函數進行運算,“tanh”表示使用hyperbolic tangent函數進行運算。
上述運算的種類為積和運算、元素積、活化函數(sigmoid or tanh)。另外,LSTM有時包括全連接層的網路,在該網路也進行“積和運算”。
在時間Time=0至t step進行L層的計算,此時,在推論計算中不改變權重。注意,在本實施例中Time=0實質上相當於1,因此時間實質上是1至t+1step。作為cell state和輸出,儲存上一個值,並將其用於下一個time step。作為輸入每次被提供新的值(Cell state及輸出的存儲值在用作輸入值之後就不需要了,因此可以改寫)。
圖32示出實際的運算全局。另外,圖33示出圖32中的PU的單位。另外,圖34示出圖33中的AU的單位。另外,圖35示出圖34的NNM的單位。圖36示出圖35的LSTM的單位。圖36示出LSTM的演算法。
在圖35中,網路為五層,其中三層為LSTM。另外,隱藏層的層數為30。
藉由上述演算法,可以高精度地預測波形,因此可以構成如果檢測出異常就立即停止充電或顯示警告的控制系統。

Claims (13)

  1. 一種蓄電系統,包括:神經網路;以及蓄電池,其中,該神經網路包括輸入層、輸出層及該輸入層與該輸出層之間的一個或多個隱藏層,指定的該隱藏層以指定的權係數連接到前一個該隱藏層或前一個該輸入層,該指定的該隱藏層以指定的權係數連接到下一個該隱藏層或下一個該輸出層,在該蓄電池中,該蓄電池的電壓與取得該電壓的時刻作為一個資料組被測量,在不同時刻測量的該資料組被供應到該輸入層,並且,根據從該輸出層輸出的信號改變該蓄電池的工作條件。
  2. 根據申請專利範圍第1項之蓄電系統,其中作為該資料組測量從外部供應至該蓄電池的電流。
  3. 根據申請專利範圍第1或2項之蓄電系統,其中作為該資料組測量該蓄電池的溫度。
  4. 根據申請專利範圍第1或2項之蓄電系統,其中在進行該蓄電池的充電期間在該蓄電池中測量該資料組,並且在從該輸出層輸出第一信號時,停止該蓄電池的工作。
  5. 根據申請專利範圍第1或2項之蓄電系統,其中在進行該蓄電池的充電期間在該蓄電池中測量該資料組,在從該輸出層輸出第一信號時,停止該蓄電池的該充電,並且在從該輸出層輸出第二信號時,繼續進行該充電。
  6. 一種蓄電系統,包括:神經網路;以及n個蓄電池,其中,n為2以上的整數,該神經網路包括輸入層、輸出層及該輸入層與該輸出層之間的一個或多個隱藏層,指定的該隱藏層以指定的權係數連接到前一個該隱藏層或前一個該輸入層,該指定的該隱藏層以指定的權係數連接到下一個該隱藏層或下一個該輸出層,在該n個蓄電池中,第一至第(n-1)蓄電池串聯電連接,在各該第一至第(n-1)蓄電池中測量的資料組被供應到該輸入層,在各該第一至第(n-1)蓄電池中測量電壓與取得該電壓的時間而成的該資料組,並且根據從該輸出層輸出的信號停止該第一蓄電池的工作,將該第一蓄電池置換成該第n蓄電池,將該第n蓄電池串電聯連接到該第二至第(n-1)蓄電池。
  7. 根據申請專利範圍第1、2和6中任一項之蓄電系統,其中該神經網路包括第一電路,該第一電路進行積和運算,該第一電路包括第一電晶體、電容器及第二電晶體,該第一電晶體的源極和汲極中的一個電連接到該電容器的一個電極及該第二電晶體的閘極,該第一電晶體在其通道形成區中包含金屬氧化物,該金屬氧化物包含銦及元素M, 該元素M為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個,並且在該第一電晶體的該源極和該汲極中的一個中存儲對應於類比資料的電位。
  8. 根據申請專利範圍第7項之蓄電系統,其中該第二電晶體在其通道形成區中包含矽。
  9. 根據申請專利範圍第7項之蓄電系統,其中該第二電晶體在其通道形成區中包含第二金屬氧化物,該第二金屬氧化物包含銦及元素M2,並且該元素M2為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個。
  10. 一種蓄電系統,包括:蓄電池;以及第一電路,其中,測量該蓄電池的電壓和取得該電壓的時刻作為一個資料組,在進行該蓄電池的充電期間在該蓄電池中測量該資料組,在不同時刻測量的該資料組被輸入到該第一電路,並且,該第一電路根據該資料組改變該蓄電池的工作條件。
  11. 一種包括申請專利範圍第1、2、6和10中任一項之蓄電系統的車輛。
  12. 一種包括申請專利範圍第1、2、6和10中任一項之蓄電系統的電子裝置。
  13. 一種神經網路,包括:輸入層;輸出層; 該輸入層與該輸出層之間的一個或多個隱藏層;以及第一電路,其中,指定的該隱藏層以指定的權係數連接到前一個該隱藏層或前一個該輸入層,該指定的該隱藏層以指定的權係數連接到下一個該隱藏層或下一個該輸出層,第一值與取得該第一值的時刻作為一個資料組被測量,在不同時刻測量的該資料組被輸入到該輸入層,對應於供應到該輸入層的該資料組的第二值從該輸出層被輸出,該第一電路進行積和運算,該第一電路包括第一電晶體、電容器及第二電晶體,該第一電晶體的源極和汲極中的一個電連接到該電容器的一個電極及該第二電晶體的閘極,該第一電晶體在其通道形成區中包含金屬氧化物,該金屬氧化物包含銦及元素M,該元素M為選自鋁、鎵、錫、硼、矽、鈦、鐵、鎳、鍺、釔、鋯、鉬、鑭、鈰、釹、鉿、鉭和鎢中的一個或多個,並且在該第一電晶體的該源極和該汲極中的一個中存儲對應於類比資料的電位。
TW107114571A 2017-05-03 2018-04-27 神經網路、蓄電系統、車輛及電子裝置 TWI793120B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-092024 2017-05-03
JP2017092024 2017-05-03
JP2017124077 2017-06-26
JP2017-124077 2017-06-26
JP2017-151306 2017-08-04
JP2017151306 2017-08-04

Publications (2)

Publication Number Publication Date
TW201843904A true TW201843904A (zh) 2018-12-16
TWI793120B TWI793120B (zh) 2023-02-21

Family

ID=64016011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107114571A TWI793120B (zh) 2017-05-03 2018-04-27 神經網路、蓄電系統、車輛及電子裝置

Country Status (6)

Country Link
US (2) US11594770B2 (zh)
JP (3) JP7064940B2 (zh)
KR (2) KR20230170991A (zh)
CN (1) CN110622348A (zh)
TW (1) TWI793120B (zh)
WO (1) WO2018203170A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751931B (zh) * 2020-05-04 2022-01-01 神盾股份有限公司 用於執行卷積神經網路運算的處理裝置與處理方法
US11493558B2 (en) 2018-04-27 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Estimation method of state of charge of power storage device and estimation system of state of charge of power storage device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164822A (zh) 2017-07-25 2020-05-15 株式会社半导体能源研究所 蓄电系统、电子设备及车辆以及推测方法
WO2019053557A1 (ja) 2017-09-14 2019-03-21 株式会社半導体エネルギー研究所 二次電池の異常検知システム及び二次電池の異常検出方法
US11797829B2 (en) * 2017-12-28 2023-10-24 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
WO2019193471A1 (ja) * 2018-04-06 2019-10-10 株式会社半導体エネルギー研究所 蓄電装置の充電状態推定方法及び蓄電装置の充電状態推定システム
US10692991B2 (en) 2018-09-06 2020-06-23 Globalfoundries Inc. Gate-all-around field effect transistors with air-gap inner spacers and methods
US20220113354A1 (en) * 2018-12-28 2022-04-14 Gs Yuasa International Ltd. Data processing apparatus, data processing method and computer readable medium
JP6989552B2 (ja) * 2019-03-18 2022-01-05 株式会社東芝 ニューラルネットワーク装置
KR102354112B1 (ko) * 2019-03-26 2022-01-24 서강대학교산학협력단 인공 지능에 기반하여 배터리의 상태를 추정하는 장치 및 방법
US10903317B1 (en) 2019-08-07 2021-01-26 Globalfoundries U.S. Inc. Gate-all-around field effect transistors with robust inner spacers and methods
US11790217B2 (en) * 2019-09-25 2023-10-17 Intel Corporation LSTM circuit with selective input computation
JP6808858B1 (ja) * 2020-01-07 2021-01-06 廣美 畑中 全固体電池とledを組み合わせた構造の蓄電型電灯による照明方法。
JP7420224B2 (ja) * 2020-03-26 2024-01-23 株式会社村田製作所 蓄電装置、電動車両および電力システム
KR102387780B1 (ko) * 2020-03-30 2022-04-18 주식회사 아르고스다인 신경망 기반의 배터리 용량 추정 방법 및 장치
KR102339485B1 (ko) * 2020-06-30 2021-12-15 강원대학교산학협력단 인공신경망을 이용한 아크신호 검출방법
DE102020117609B8 (de) 2020-07-03 2022-11-03 TWAICE Technologies GmbH Verarbeitung von Zustandsdaten einer Batterie zur Alterungsschätzung
US20230411521A1 (en) * 2020-11-20 2023-12-21 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
KR102547083B1 (ko) * 2020-12-18 2023-06-22 연세대학교 산학협력단 전기 화학 임피던스 분광법을 이용한 배터리 상태 판단 장치 및 방법
CN113219358A (zh) * 2021-04-29 2021-08-06 东软睿驰汽车技术(沈阳)有限公司 电池包健康状态计算方法、系统及电子设备
CN113972714B (zh) * 2021-09-27 2023-08-08 湖南国天电子科技有限公司 重型水下机器人超级电容器的节能控制方法及系统
CN113962154A (zh) * 2021-10-22 2022-01-21 山东大学 一种基于迁移学习的锂电池核温评估方法及系统
KR102635229B1 (ko) * 2021-10-25 2024-02-08 연세대학교 산학협력단 전극 특성 검출 장치 및 방법
CN116299038B (zh) * 2023-02-13 2024-04-05 上海玫克生储能科技有限公司 电芯微短路的检测方法、系统、设备及存储介质

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172574A (ja) * 1990-11-07 1992-06-19 Matsushita Electric Ind Co Ltd グラフ認識装置
US6064180A (en) 1996-10-29 2000-05-16 General Motors Corporation Method and apparatus for determining battery state-of-charge using neural network architecture
JP2000329834A (ja) 1999-05-20 2000-11-30 Hitachi Shonan Denshi Co Ltd バッテリー劣化検出方法とその装置
US6757591B2 (en) 2000-08-11 2004-06-29 Robert A. Kramer Energy management system and methods for the optimization of distributed generation
DE10107583A1 (de) 2001-02-17 2002-08-29 Vb Autobatterie Gmbh Verfahren zur Bestimmung der Leistungsfähigkeit einer Speicherbatterie
JP4038788B2 (ja) 2002-02-22 2008-01-30 アクソンデータマシン株式会社 バッテリの残存容量判定方法と、その装置
JP3935099B2 (ja) 2003-04-15 2007-06-20 株式会社デンソー 車両用蓄電装置の内部状態検出システム
US7583059B2 (en) * 2003-12-18 2009-09-01 Lg Chem, Ltd. Apparatus and method for estimating state of charge of battery using neural network
CN100433447C (zh) 2004-09-24 2008-11-12 株式会社东芝 蓄电系统、再生蓄电系统和汽车
JP4314223B2 (ja) 2004-09-24 2009-08-12 株式会社東芝 回生用蓄電システム、蓄電池システムならびに自動車
KR100880717B1 (ko) 2005-02-14 2009-02-02 가부시키가이샤 덴소 뉴럴네트워크연산에 기초한 2차전지의 충전상태를 검출하기위한 방법 및 장치
JP5366166B2 (ja) * 2006-02-09 2013-12-11 株式会社デンソー 二次電池の状態量演算方式
US8132026B2 (en) 2006-06-02 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device and mobile electronic device having the same
JP2008232758A (ja) 2007-03-19 2008-10-02 Nippon Soken Inc 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置
CN101067644B (zh) * 2007-04-20 2010-05-26 杭州高特电子设备有限公司 蓄电池性能分析专家诊断方法
JP5467010B2 (ja) * 2010-07-22 2014-04-09 ニチコン株式会社 学習型蓄電池マネジメントシステム
EP2660615B1 (en) 2010-12-28 2018-11-21 Sanyo Electric Co., Ltd. Battery degradation level detection method
CN102324582B (zh) * 2011-08-12 2013-10-02 重庆东电通信技术有限公司 一种多功能铅酸蓄电池智能维护装置及容量预测方法
JP2013219996A (ja) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> 電源システムおよび可搬型電源システム
CN102738525A (zh) 2012-06-14 2012-10-17 沈阳中科正方新能源技术有限公司 一种车载锂动力电池的电池管理系统
JP5810116B2 (ja) 2013-03-14 2015-11-11 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
CN103941191B (zh) * 2014-03-26 2016-05-04 海博瑞恩电子科技无锡有限公司 一种储能装置综合管理的方法及储能装置
US9553465B2 (en) 2014-04-21 2017-01-24 Palo Alto Research Center Incorporated Battery management based on internal optical sensing
KR102215450B1 (ko) 2014-06-24 2021-02-15 삼성전자주식회사 배터리의 상태 정보를 학습 및 추정하는 장치 및 방법
WO2016006462A1 (ja) * 2014-07-07 2016-01-14 日立オートモティブシステムズ株式会社 電池制御装置
JP6615565B2 (ja) 2014-10-24 2019-12-04 株式会社半導体エネルギー研究所 半導体装置
JP6145824B2 (ja) * 2014-10-31 2017-06-14 エンネット株式会社 電池診断装置および電池診断方法
US11080587B2 (en) * 2015-02-06 2021-08-03 Deepmind Technologies Limited Recurrent neural networks for data item generation
JP6674838B2 (ja) 2015-05-21 2020-04-01 株式会社半導体エネルギー研究所 電子装置
KR102468895B1 (ko) 2015-07-21 2022-11-21 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
AU2015404618A1 (en) * 2015-07-31 2018-02-15 Kabushiki Kaisha Toshiba Storage battery evaluating device, power storage system and storage battery evaluating method
JP2017060373A (ja) 2015-09-18 2017-03-23 エリーパワー株式会社 蓄電池の充放電制御装置及び充放電制御方法
CN105678300A (zh) * 2015-12-30 2016-06-15 成都数联铭品科技有限公司 一种复杂图像文字序列识别方法
CN105680109B (zh) * 2016-03-25 2018-01-30 杭州电子科技大学 一种基于深度学习的动力电池配组方法
CN105932762A (zh) * 2016-05-30 2016-09-07 深圳市天泽慧通新能源科技有限公司 一种基于太阳能发电的电池组的应用系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493558B2 (en) 2018-04-27 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Estimation method of state of charge of power storage device and estimation system of state of charge of power storage device
TWI751931B (zh) * 2020-05-04 2022-01-01 神盾股份有限公司 用於執行卷積神經網路運算的處理裝置與處理方法

Also Published As

Publication number Publication date
CN110622348A (zh) 2019-12-27
US20230155199A1 (en) 2023-05-18
JP6533607B2 (ja) 2019-06-19
KR20230170991A (ko) 2023-12-19
WO2018203170A1 (en) 2018-11-08
JP2019023995A (ja) 2019-02-14
US11955612B2 (en) 2024-04-09
JP7064940B2 (ja) 2022-05-11
JP2019023853A (ja) 2019-02-14
KR20190140996A (ko) 2019-12-20
TWI793120B (zh) 2023-02-21
KR102613749B1 (ko) 2023-12-13
US11594770B2 (en) 2023-02-28
JP2022109974A (ja) 2022-07-28
US20210288357A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
TWI793120B (zh) 神經網路、蓄電系統、車輛及電子裝置
KR102393022B1 (ko) 축전 장치의 제어 시스템, 축전 시스템, 및 전기 기기
CN111509199B (zh) 便携式信息终端
US11870042B2 (en) Power storage system, vehicle, electronic device, and semiconductor device
US20230100524A1 (en) Semiconductor device, power storage device, battery management circuit, electronic component, vehicle, and electronic device
US20220045532A1 (en) Semiconductor device and charge control system
US20220094177A1 (en) Semiconductor device and operating method of semiconductor device
US20220085427A1 (en) Semiconductor device
US20210242690A1 (en) Semiconductor device and operating method of semiconductor device
US20230408595A1 (en) Power storage system, vehicle, and electronic device
US20230336006A1 (en) Control Circuit And Electronic Device