TW201837812A - 電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法 - Google Patents

電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法 Download PDF

Info

Publication number
TW201837812A
TW201837812A TW107100901A TW107100901A TW201837812A TW 201837812 A TW201837812 A TW 201837812A TW 107100901 A TW107100901 A TW 107100901A TW 107100901 A TW107100901 A TW 107100901A TW 201837812 A TW201837812 A TW 201837812A
Authority
TW
Taiwan
Prior art keywords
data
aforementioned
period
advertisement
advertising
Prior art date
Application number
TW107100901A
Other languages
English (en)
Other versions
TWI765952B (zh
Inventor
岸本渉
Original Assignee
日商電通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商電通股份有限公司 filed Critical 日商電通股份有限公司
Publication of TW201837812A publication Critical patent/TW201837812A/zh
Application granted granted Critical
Publication of TWI765952B publication Critical patent/TWI765952B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0247Calculate past, present or future revenues
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • G06Q30/0244Optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0277Online advertisement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/23424Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving splicing one content stream with another content stream, e.g. for inserting or substituting an advertisement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

提供一種以高精確度來對於由電視等之收視者所致的廣告之收視率進行預測,並將在電視等之廣播媒體中的廣告時段最佳化之廣告時段最佳化系統以及廣告時段最佳化方法。本發明之將在廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統,其特徵為;廣告時段最佳化系統,係具備有高度收視率預測裝置(SHARE);和目標實際最佳化裝置(TAOS),前述SHARE,係構成為以較特定之精確度而更高之精確度來預測目標收視率及/或輸入第3方機關即時性進行測定之收視率資料,並將廣告時段之預測收視率資料及/或緊接於廣播之前之收視率資料送訊至前述TAOS處,前述TAOS,係構成從前述SHARE而受訊關連於預定廣播的廣告之該廣告之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定作送訊。

Description

電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法
本發明,係有關於將在電視等的廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統及廣告時段最佳化方法
針對在電視等之廣播媒體中而從先前技術起便有所進行的廣告時段(以下,亦會有稱作CM時段的情況)之交易的概略內容作說明。在廣播媒體中,係包含有:包含地面電視以及衛星廣播電視之電視、收音機、網際網路、無線通訊、使用有擴音器等之廣播方法、以及其他之廣播手段。
首先,廣告主以及廣告公司,係因應於廣告預算而實行媒體企劃。該實施方法,係依存於廣告主而有所相異。作為其中一例,係存在有從全體的廣告預算中來決定對於電視廣告之投入規模,並決定此電視廣告預算之地區分發以及訂購目標之廣播台分發的方法。進而,係亦針對要將TVCM在何者之節目、何種時間帶來播放(以下,亦會有稱作OA的情況)等等的CM之時段取得條件作決定。
廣告主以及從廣告主而受理委託的廣告公司,係基於所被分配的預算,來進行廣告(以下,亦會有稱作CM的情況)之「企劃」,基於此「企劃」,廣告公司係對於各廣播台而傳達期間、預算、CM之時段取得條件等並訂購,藉由此,來實施像是具體而言要在哪一年哪一個月的哪一天的什麼時間或者是什麼時間帶而播放何者之CM一般之具體性的「立案」。所謂「立案」,係指實施預定廣播之CM的廣告時段之時段取得的行為,或者是指時段取得之實施後的時段(=廣播預測時程)之全體。
在實施此具體性之「立案」時,例如,係使用VIDEO RESEARCH股份有限公司等所發行的「收視率資料」。亦即是,作為對於將來之CM時段的曝光量以及廣告價值進行推測之指標,係使用「過去之收視率」。之後,在與廣告主以及廣播台進行數次之「立案」的確認、修正之後,係成為決定出最終的「CM之OA時段」。
但是,在實際放映了CM之後,在「購買時之收視率」與「實際情況」(該CM所實際能夠獲得的收視率」)之間,係絕對會發生有差距(差異)。
因此,在先前技術中,廣告主以及廣告公司,主要係在上述之過程中,對於要使用何者之「過去之收視率」的資料來對於CM之廣播台時段進行購買(買入、購入)一事作考慮,而實施以實際情況之效果的提升作為目的之管理。此事,係並不侷限於地面電視之廣告,針對衛星廣播電視之廣告、收音機廣告、透過網際網路所進行的廣播中之廣告以及使用有其他的廣播媒體之廣告而言,亦為相同。
[發明所欲解決之課題]
然而,在上述之先前技術之方法中,由於成為將來的預測之基礎的資料,係為過去4星期間的單純平均,因此,係並未成為對於「播放」(OA:廣播)當天的節目內容和其他對手的節目編組、出場明星、天氣、氣溫等之實際的OA階段時之狀況有所反映的素材分配,而有著成為無法將「實際落差」(實際上所能夠獲得的收視率與所預測的收視率之間之差距(差異))縮小至最小限度或者是完全避免的狀態之問題。
本發明,係為有鑑於上述一般之先前技術之課題所進行者,其目的,係在於提供一種以高精確度來對於媒體收視率、特別是對於由電視之收視者所致的廣告時段之收視率作預測,及/或參考緊接於廣播之前之收視率資料來將在電視等之廣播媒體中的廣告時段最佳化之廣告時段最佳化系統以及廣告時段最佳化方法。另外,所謂「緊接於廣播之前」,係指在被廣播之前的數秒鐘~數十分鐘之時序。 [用以解決課題之手段]
本發明之上述課題,係藉由下述之廣告時段最佳化系統而被達成,其係為將在電視等之廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統,其特徵為;廣告時段最佳化系統,係具備有高度收視率預測裝置(SHARE);和目標實際最佳化裝置(TAOS),前述SHARE,係構成為以較特定之精確度而更高之精確度來預測目標收視率及/或輸入第3方機關即時性進行測定之收視率資料,並將廣告時段之預測收視率資料及/或緊接於廣播之前之收視率資料送訊至前述TAOS處,前述TAOS,係構成從前述SHARE而受訊關連於預定廣播的廣告之該廣告之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定作送訊。
上述之本發明之廣告時段最佳化系統,係亦可構成為,係更進而具備有:經常最佳再配置裝置(CORE),前述CORE,係構成為從前述TAOS而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告。
又,本發明之上述課題,係藉由下述之廣告時段最佳化系統而被達成,其係為將在電視等之廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統,其特徵為:係具備有高度收視率預測裝置,該高度收視率預測裝置,係藉由下述手段所構成:資料輸入手段,係輸入資料及/或資料源頭資訊;和說明變數化手段,係被與前述資料輸入手段作連接,及/或對於從該資料輸入手段所輸入的前述資料源頭資訊施加特定之加工處理而將該資料源頭資訊說明變數化;和程式安裝、實行手段,係被與前述資料輸入手段以及前述說明變數化手段作連接,及/或安裝有特定之演算法的程式;和資料輸出手段,係被與前述程式安裝、實行手段作連接,及/或輸出由該安裝、實行手段所得到之結果,使用從前述資料輸入手段所輸入的前述資料及/或前述資料源頭資訊和藉由前述說明變數化手段而作說明變數化所得到的說明變數,來使前述程式安裝、實行手段實行前述所安裝的程式之前述演算法,並從前述輸出手段而輸出實行該演算法所得到的預測收視率資料,再基於前述所輸出的預測收視率資料,來將廣告時段最佳化。
在上述本發明之廣告時段最佳化系統中,係亦可構成為:前述高度收視率預測裝置,係包含有代表媒體之詳細的範疇、分類的後設資料、調查公司(第3方機關)所調查實施的追蹤資料(panel data)、代表對於媒體之期待值的對於節目表之存取資料、SNS上之文本資料或者是在檢索網站處之檢索資訊、天氣預報等,並以能夠對巨量資料(big data)作處理的方式來構成之,前述高度收視率預測裝置,係更進而藉由將能夠對於前述巨量資料進行高速處理之雲端基礎以及藉由對於多種類的變數進行自主學習來將精確度逐漸提高的所謂深層學習之分析手法作組合,來將外部因素、編組因素以及內容因素設定為前述說明變數,並對於可能會對於媒體收視率造成影響的因素作考慮,而構成為能夠對於前述媒體收視率進行預測。
在上述本發明之廣告時段最佳化系統中,係亦可構成為,係更進而具備有:目標實際最佳化裝置,其係由下述手段所構成:第1輸入手段,係輸入包含有參考過去收視率、購買成本等之資訊之第1廣告時段立案資料;和第2輸入手段,係被與前述高度收視率預測裝置作連接,並輸入包含預測收視率及/或即時收視率等之資訊之第2廣告時段立案資料;和資料處理手段,係被與前述第1輸入手段以及前述第2輸入手段作連接,及/或被搭載有重新配置程式,並基於被輸入至前述第1輸入手段中之前述第1廣告時段立案資料以及被輸入至前述第2輸入手段中之前述第2廣告時段立案資料,來使用前述重新配置程式而作成目標實際最佳化資料並輸出;和指示輸出手段,前述資料處理手段,係構成為使用前述重新配置程式,來針對各廣告時段之每一者而對於前述第1廣告時段立案資料與前述第2廣告時段立案資料之間之差分進行評價,並基於作為該差分之結果所得到的第3廣告時段立案資料來針對對於廣告時段之素材之分配進行再分發,而將代表再分發後之各廣告時段之素材指定的目標實際最佳化資料輸出,前述指示輸出手段,係被與前述資料處理手段作連接,並輸入從該資料處理手段所輸出的前述目標實際最佳化資料而作輸出。
在上述本發明之廣告時段最佳化系統中,係亦可構成為,係更進而具備有:經常最佳再配置裝置,其係構成為從前述目標實際最佳化裝置而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告。
又,本發明之上述課題,係藉由下述之廣告時段最佳化方法而被達成,其係為使用具備有高度收視率預測裝置(SHARE)和目標實際最佳化裝置(TAOS)以及經常最佳再配置裝置(CORE)之廣告時段最佳化系統來將在電視等之廣播媒體中所廣播的廣告時段最佳化之方法,其特徵為,係具備有下述之各階段:藉由前述SHARE,來以較特定之精確度而更高之精確度來預測目標收視率及/或輸入第3方機關即時性進行測定之收視率資料,並將廣告時段之預測收視率資料及/或緊接於廣播之前之收視率資料送訊至前述TAOS處之階段;和藉由前述TAOS,來從前述SHARE而受訊關連於預定廣播的廣告之該廣告時段之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定直接送訊至前述CORE處之階段;和藉由前述CORE來直接受訊從前述TAOS而來之再分發後之各廣告時段的素材指定,並基於再分發後之各廣告時段的素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告之階段。
又,本發明之上述課題,係藉由下述之廣告時段最佳化方法而被達成,其係為將在電視等之廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化方法,其特徵為:係具備有:輸入資料及/或資料源頭資訊之階段;和對於所輸入的前述資料源頭資訊施加特定之加工處理而將該資料源頭資訊說明變數化之階段;和安裝特定之演算法的程式之階段;和輸出由前述被安裝的程式所得到的結果之階段,使用前述資料及/或前述資料源頭資訊和前述進行說明變數化所得到的說明變數,來實行前述所安裝的程式之前述演算法,並輸出實行該演算法所得到的預測收視率資料,再基於前述所輸出的預測收視率資料,來將廣告時段最佳化。
在上述本發明之廣告時段最佳化方法中,係亦可構成為,係更進而具備有:對於包含有代表媒體之詳細的範疇、分類的後設資料、調查公司所調查實施的追蹤資料(panel data)、代表對於媒體之期待值的對於節目表之存取資料、SNS上之文本資料或者是在檢索網站處之檢索資訊、天氣預報等之巨量資料(big data)作處理之階段;和藉由將能夠對於前述巨量資料進行高速處理之雲端基礎以及藉由對於多種類的變數進行自主學習來將精確度逐漸提高的所謂深層學習之分析手法作組合,來將外部因素、編組因素以及內容因素設定為前述說明變數,並對於可能會對於收視率造成影響的因素全部作考慮,而對於前述收視率進行預測之階段。
在上述本發明之廣告時段最佳化方法中,係亦可構成為,係更進而具備有:輸入包含有參考過去收視率、購買成本等之資訊之第1廣告時段立案資料之第1輸入階段;和被與前述高度收視率預測裝置作連接,並輸入包含預測收視率及/或即時收視率等之資訊之第2廣告時段立案資料之第2輸入階段;和基於在前述第1輸入階段中所被輸入之前述第1廣告時段立案資料以及在前述第2輸入階段中所被輸入之前述第2廣告時段立案資料,來使用重新配置程式而作成目標實際最佳化資料並輸出之資料處理階段;和指示輸出階段,前述資料處理階段,係構成為使用前述重新配置程式,來針對各廣告時段之每一者而對於前述第1廣告時段立案資料與前述第2廣告時段立案資料之間之差分進行評價,並基於作為該差分之結果所得到的第3廣告時段立案資料來針對對於廣告時段之素材之分配進行再分發,而將代表再分發後之各廣告時段之素材指定的目標實際最佳化資料輸出,前述指示輸出階段,係輸入從前述資料處理階段所輸出的前述目標實際最佳化資料而作輸出。
在上述本發明之廣告時段最佳化方法中,係亦可構成為,係更進而具備有:構成為從前述目標實際最佳化裝置而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告之階段。 [發明之效果]
係成為能夠將在個人實際狀況中所頻繁出現的「0.0%」之時段抽換為其他之個人實際狀況素材,若是實施由本發明所致之廣告時段最佳化系統,則係能夠期待有廣告效果之達成效率的3%~6%左右之改善。關於此事,在對於投入至電視廣告中之年度出案量的規模之大小作考慮的情況時,可以想見,對應於效率之改善的金額幅度係會成為非常大的金額。
又,在進行了抽換源頭時段之適用範圍之擴大(針對收視率為0.1%以上之時段亦實施抽換)的情況時,係可期待能夠對於廣告效果之達成效率改善幅度以及對應於效率之改善的金額幅度作更大幅度之擴大。
以下,參考圖面,針對由本發明所致之在電視等之廣播媒體中之廣告時段最佳化系統以及廣告時段最佳化方法作說明。   圖1,係為對於由本發明所致之在電視等之廣播媒體中的廣告時段最佳化系統之其中一個實施形態作展示之概略構成圖。
如同圖1中所示一般,在本實施形態中,廣告時段最佳化系統100,係由高度收視率預測裝置(System for High-advanced Rating Estimate,以下,簡稱為SHARE)101、和目標實際最佳化裝置(Target Actual Optimization System,以下,簡稱為TAOS)102、以及經常最佳再配置裝置(Constantly Optimum Relocation Equipment,以下,簡稱為CORE)103,而構成之,SHARE 101,係構成為以高精確度來預測目標收視率及/或獲取第3方機關即時性進行測定之收視率資料,並將廣告(CM)時段之預測收視率及緊接於廣播之前之收視率資料送訊至TAOS 102處,TAOS 102,係構成為從SHARE 101而受訊關連於預定廣播的廣告之該廣告時段之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定直接送訊至CORE 103處,而,CORE 103,係構成為直接受訊從TAOS 102而來之再分發後之各廣告時段的素材指定,並基於再分發後之各廣告時段的素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告(CM)。
接著,針對上述之SHARE 101、TAOS 102以及CORE 103之各者,對於構成作詳細敘述。
SHARE 101,係使用對於巨量資料作處理之新的分析手法,來構成為能夠以高精確度來對於電視之「收視者的廣告收視率」作預測。
圖2,係為對於在構成圖1中所示之廣告時段最佳化系統之一部分的高度收視率預測裝置(SHARE)之其中一個實施形態中之構成作展示的概略構成圖。
以下,參考圖2,針對SHARE 101之其中一個實施例之構成作說明。   本實施例之SHARE 101,係藉由下述各部所構成:資料輸入部101-1,係身為輸入資料及/或資料源頭資訊之資料輸入手段;和說明變數化部101-2,係身為被與資料輸入部101-1作連接,及/或對於從該資料輸入部101-1所輸入的資料源頭資訊施加特定之加工處理而將該資料源頭資訊說明變數化之說明變數化手段;和程式安裝、實行部101-3,係身為被與資料輸入部101-1以及說明變數化部101-2作連接,及/或安裝有特定之演算法的程式之程式安裝、實行手段;和資料輸出部101-4,係身為被與程式安裝、實行部101-3作連接,及/或輸出由該安裝、實行部101-3手段所得到之結果之資料輸出手段,並構成為使用從資料輸入部101-1所輸入的資料及/或資料源頭資訊和藉由說明變數化部101-2而作說明變數化所得到的說明變數,來使程式安裝、實行部101-3手段實行所安裝的程式之演算法,並從輸出部101-4而輸出實行該演算法所得到的預測收視率資料,再基於所輸出的預測收視率資料,來將廣告時段最佳化。
在程式安裝、實行部101-3中所被使用的「資料及/或資料源頭資訊」中之「資料源頭資訊」,係為了將由分析所至之預測精確度提高,而在藉由說明變數化部101-2來預先進行了加工處理之後,被作說明變數化。
以下,與在SHARE 101中所使用之資料源頭資訊一同地,針對說明變數之作成方法作說明。
作為在SHARE 101中所使用之資料源頭資訊,係存在有下述之資訊。 I.資料源頭資訊 I-1:VR收視率資料   根據VIDEO RESEARCH進行隨機取樣所抽出的調查追蹤資料而收集的收視率資料。家戶收視率,係指調查追蹤家戶中之1台以上的電視為成為ON的家戶數量之比例。又,個人收視率,係指相對於居住在調查追蹤家戶中的個人目標之全體人數的對於電視進行了收視的人數之比例(例如,假設在男性之20~34歲的目標為100人的情況時,當其中之打開了電視的男性20~34歲為存在有20人的情況時,男性20~34歲目標之個人收視率係成為20%)。上述VR收視率,在日本關東、關西、中部區域,係在調查追蹤家戶中設置稱為「PEOPLE METER」之收視率調查專用的機器,而進行測定。
I-2:VR節目資訊   此係為VIDEO RESEARCH將OA結束後之節目名稱、廣播分鐘數、廣播開始時間、廣播日期、廣播台名稱等作了資料庫化之資訊。
I-3:電視後設資料   此係為WIREACTION股份有限公司在電視廣播的OA之後,經由獨有的輸入介面來對於在節目中所介紹的企業或商品、店鋪、樂曲、出場者等之實際廣播了的內容進行收錄並製作的資料庫。詳細內容係如下所述。
I-4:EPG節目資訊   廣播台之正式的節目資訊。此係為Interactive Program Guide(=IPG)股份有限公司從全國的廣播台來直接獲取節目之相關資訊並對於此資料作了統籌管理者。具體而言,係包含有節目名稱、廣播日期時間、節目概要、節目詳細內容、範疇、頻道辨識ID、節目辨識ID等。
I-5:EPG(Electronic Program Guide:電子節目表)事先閱覽數量   當對於EPG電子節目表而在電腦之網頁上進行閱覽或者是在行動智慧型手機之應用程式上進行閱覽時,於最初的顯示階段中,係成為能夠對於電子節目表之全體(=時間表)進行閱覽的型態,但是,藉由從此階段起而進行節目個別之欄的選擇(點擊等),係能夠對於節目內容的詳細內容進行閱覽。針對在節目廣播前而對於此節目之個別的詳細頁面進行了何種程度的存取一事進行了統計之數量,係為EPG事先閱覽數量。
接著,針對在SHARE 101中所使用之「說明變數」之作成方法作說明。 II.說明變數之作成方法   以下,針對各說明變數之定義以及說明變數之作成方法作記述。但是,說明變數之名稱,係為任意作了設定者。
II-1:<節目廣播時段重要因素>
II-1-1:節目廣播周   概要:在將1月1日~1月7日作為第1周的情況時之連續編號
II-1-2:前4周平均   概要:在該時間處的前4周之家戶收視率之平均   處理:   1.作成限定於同一廣播台之從廣播開始時刻起之4周間的資料組   2.根據自身節目之開始時刻、結束時刻,而以unix time來取得1~4周前之同一時刻   (例)n周間前之開始unix time=自身節目之開始unix time-3600×24×7×n   3.對於藉由上述1.所作成的資料組中之廣播開始、結束時刻與藉由上述2.所算出的時刻作比較。   4.算出藉由上述3.所抽出的資料之收視率的平均。
II-1-3:他台節目時段前4周平均   概要:以該節目之他台節目時段作為對象的前4周平均   處理:限定於其他廣播台而作成資料組,之後,藉由與前4周收視率相同的方法來進行算出。
II-1-4:前一時段前4周平均   概要:以該節目之前1個節目作為對象的前4周平均   處理:針對同一廣播台之自身之廣播開始時刻會成為=該時段(前一時段)之廣播結束時刻的節目,來藉由與前4周收視率相同的方法而進行算出。
II-1-5:前一時段他台節目時段前4周平均   概要:以該節目之前1個節目的他台節目時段作為對象的前4周平均   處理:以他台來作成資料組,並針對自身之廣播開始時刻會成為=該他台節目時段(前一個他台節目時段)之廣播結束時刻的節目,來藉由與前4周收視率相同的方法而進行算出。
II-1-6:上周收視率   概要:該節目之上周之收視率   處理:限定於自身廣播台之上周而作成資料組,之後,藉由與前4周收視率相同的方法來進行算出。
II-1-7:節目開始時間   概要:該節目開始時刻   處理:以24小時制之時間分鐘單位來輸入節目開始時刻。
II-1-8:節目結束時間   概要:該節目結束時刻   處理:以24小時制之時間分鐘單位來輸入節目結束時刻。
II-1-9:廣播時間   概要:廣播分鐘數   處理:廣播結束時刻-廣播開始時刻。
II-1-10:星期幾   概要:為在星期幾被廣播   處理:分別置換為星期天=0/星期一=1/星期二=2/星期三=3/星期四=4/星期五=5/星期六=6。
II-1-11:一星期中之各天的型態   概要:將被廣播的日期區分成平日與假日者   處理:分別置換為星期一~星期五=平日、星期六、星期日=假日。
II-1-12:廣播台名稱   概要:廣播台名稱
II-2:<節目內容因素> II-2-1:收視感叢集   概要:依據是否具備有收視感叢集之23個的形容詞性之字句一事來豎立旗標(豎立旗標:若是符合條件則作為數字而設為1,若是並不符合則設為0的處理(以下相同))。   處理:   1.從1年份的EPG節目詳細資訊中藉由自然語言處理而精選出形容動詞語感   2.作成同時出現的單字之叢集(收視感叢集)(23叢集)   3.依據針對各節目之EPG節目詳細資訊是否隸屬於藉由上述2.所產生的收視感叢集一事來豎立旗標   4.藉由奇異值分解(singular value decomposition)來(將「收視感叢集」)壓縮為n維
II-2-2:出場者資訊   概要:出場者之中的頻繁出場之前300名的姓名是否被記載在EPG節目詳細資訊中。   處理:   1.依據出場者之中的頻繁出場之前300名的姓名是否被記載在EPG節目詳細資訊中一事而豎立旗標   2.藉由奇異值分解來(將「出場者資訊」)壓縮為n維
II-2-3:關鍵字分類   概要:各節目ID之WIRE ACTION所分配的關鍵字分類28種類之含有率   處理:   1.針對各節目ID之每一者而分別計算WIRE ACTION所分配的關鍵字分類之含有率。主要係為對於成為對象之關鍵字分類在特定節目內之內容中有幾分鐘的符合一事進行計數,並將該「符合之分鐘數」除以「節目全體分鐘數」,來作為含有率而計算之。   2.藉由奇異值分解來(將「關鍵字分類」)壓縮為n維。
II-2-4:主題(topic)分類   概要:各節目ID之WIRE ACTION所分配的主題分類35種類之含有率   處理:   1.針對各節目ID之每一者而分別計算WIRE ACTION所分配的主題分類之含有率。主要係為對於成為對象之主題分類在特定節目內之內容中有幾分鐘的符合一事進行計數,並將該「符合之分鐘數」除以「節目全體分鐘數」,來作為含有率而計算之。   2.藉由奇異值分解來(將「主題分類」)壓縮為n維。
II-2-5:資訊型態   概要:各節目ID之WIRE ACTION所分配的資訊型態45種類之含有率   處理:   1.針對各節目ID之每一者而分別計算WIRE ACTION所分配的資訊型態之含有率。   主要係為對於成為對象之資訊型態在特定節目內之內容中有幾分鐘的符合一事進行計數,並將該「符合之分鐘數」除以「節目全體分鐘數」,來作為含有率而計算之。   2.藉由奇異值分解來(將「資訊型態」)壓縮為n維。
II-2-6:人物最大權重   概要:在人物分類中所符合的明星之google檢索命中數之最大值
II-2-7:人物權重合計   概要:在人物分類中所符合的明星之google檢索命中數之合計值
II-2-8:VR節目分類   概要:VIDEO RESEARCH之節目大範疇
II-2-9:事先閱覽數量合計   概要:G guide mobile之事先閱覽數量   處理:使用從廣播日之7天前起直到當天為止的資料中之直到第3天為止的事先閱覽數量的合計。
II-2-10:Yahoo!電子節目表事先閱覽數量合計   概要:yahoo!電子節目表之事先閱覽數量   處理:使用從廣播日之7天前起直到當天為止的資料中之直到第3天為止的事先閱覽數量的合計。
II-2-11:各目標之個別EPG事先閱覽數量   概要:各目標階層之個別的G guide mobile之事先閱覽數量   處理:使用所取得的從7天前起直到當天為止的資料中之直到第3天為止的累積事先閱覽數量。
II-2-12:他台節目的各目標之個別事先閱覽數量   概要:作為替代而使用將自身節目之G guide mobile之閱覽數量除以自身節目與他台節目之閱覽數量合計後的值。   處理:使用所取得的從7天前起直到當天為止的資料中之直到第3天為止的累積事先閱覽數量。
另外,上述之所謂的EPG事先閱覽數量,係指對於IPG所展開的電子電視節目表內之節目詳細資訊的存取數量,電子電視節目表,在行動終端中係作為「G guide mobile」而被展開,在Yahoo!電視(http://tv.yahoo.co.jp/)中係作為「Yahoo!電視節目表」而被展開。   另外,關於上述之變數,係並不被限定於此處所記載者。又,關於獲取資料之目標的企業以及組織等,係並不被限定於上述所記載之企業、組織等。
III.接著,針對在本實施例中被SHARE101所採用的「演算法」作說明。   作為在SHARE 101中所採用的「演算法」,只要是能夠得到「成為目標之輸出」、亦即是能夠得到「高精確度之預測收視率」者,則係並不被限定於特定之演算法。   在本實施例中,針對在SHARE101作為「演算法」而採用了「隨機森林」的情況作說明。
III-1:概念   「隨機森林」,係為將由藉由簡單的模型來進行的弱學習機所導出的預測結果作複數之集中並進行學習的被稱作「集團學習」的手法之其中一者,並為具備有「高預測精確度」和「結果之可讀性」的機械學習之手法。   在「隨機森林」中,係於個別之弱學習機中使用有「決定樹」,而可以說是在對於「決定樹」之優點有所活用的同時亦對於其之課題作了解決的手法。   決定樹,係為以與軸相正交之直線來對空間進行分割,並對於各區間而分配預測值之預測手法。在決定樹中,由於係將空間作直線性的分解,因此係易於將預測結果之理由可視化,故而係廣泛使用來進行簡單之分布的資料之分析。
另一方面,由於模型係被過度地單純化,因此,在複雜之分布之資料的情況時,係可能會發生無法得到高預測精確度的情形。   因此,在「隨機森林」中,係如同圖3中所示一般,產生複數之決定樹,並藉由取得其之預測結果的平均,來將空間作曲線性的分割,而構成為就算是對於無法僅藉由決定樹而得到高精確度的複雜之分布的資料,也能夠實現高精確度之預測。
III-2:資料之可讀性   在如同上述一般地而展現有「高預測精確度」和「泛用化能力」的同時,由於個別之弱學習機,係具備有決定樹的特徵,因此,藉由對於「預測精確度為最高之弱學習機」進行分析,係亦易於進行「預測結果之原因分析」,而亦適合於進行「預測模型」之常態性的改善運用。
III-3:泛用化能力   「隨機森林」,由於係為集團學習,因此在「泛用化能力」(對於未知之資料的預測精確度)上亦為優良。在先前技術之機械學習中,由於係在一次的學習中而使用資料中之所有的屬性、個體,因此,常常會對於在學習中所使用的資料而過度地配合,其結果,係發生有會損害「對於未知之資料的預測精確度」之情形(過度學習)。   另一方面,在以「隨機森林」為首之集團學習中,由於係僅賦予一部分的屬性、個體而使其進行學習,因此,係成為從訓練階段起便包含有未知資料地來進行學習,對於未知資料之對應能力係提高。
III-4:對於資料大小之可擴縮性(scalability)   在「隨機森林」中,就算是輸入之資料係身為大規模的資料,對於個別的弱學習機亦係分配有限的資料組。又,個別之弱學習機,由於係與其他之弱學習機之結果相互獨立地而進行預測,而能夠在相異之系統環境下進行預測,因此係能夠進行「分散處理」,相對於資料量的增加,係能夠藉由線性地對設備進行擴充,來並不使計算時間增加地而進行分析。
IV.用以解決在先前手法中之課題的重點   於此,針對先前手法之課題以及用以解決該課題的重點作說明。
IV-1:關於先前手法之課題   於上述I.中所敘述的先前技術之手法,係以「複迴歸分析」作為基礎。以下,對於由複迴歸分析所致之「迴歸式」(數式1)作展示。 [數式1]
基本上,係僅將關連於節目的編組資訊(廣播台名稱、在星期幾廣播、以及廣播時間)作為說明變數而採用。   此係因為,在其背景環境中,係有著在「複迴歸分析」中若是說明變數之數量變得龐大則「預測精確度」會下降的課題之故。因此,在「複迴歸分析」中,係僅能夠對於有所侷限的節目之編組資訊作考慮。   但是,其實,節目收視率,係會依存於節目本身之「節目內容因素」(範疇、出場者等)而產生大幅度的變化。   作為其中一例,例如,知名演員所演出的連續劇之收視率會變高等的情形,係符合於此。
如此這般,若是無法對於「節目內容因素」作考慮,則係無法對於各個的節目而以高精確度來預測收視率。   又,為了對於範疇和出場者等之關連於節目的資訊作考慮,由於係有需要對於上述II.所介紹的「電視後設資料」和「EPG節目詳細資訊」等的龐大數量之「說明變數」進行處理,因此,如同前述一般,在先前技術之「複迴歸分析」中,係有著「會使對於變數進行處理一事變得困難」之課題。
因此,為了對於在使用有「複迴歸分析」之手法中的課題作解決,係有必要安裝具備有用以將「節目內容因素」之資訊組入至模型中的「巨量資料處理」和成為能夠以日單位來對於預測收視率作掌握的「高速演算處理」之功能的「演算法」。
於此,由於「隨機森林」係能夠實現「巨量資料處理」、「高速演算處理」以及「預測值之安定化」,因此,係作為最適合用來建構在SHARE 101中所使用的「收視率預測模型」者而在本實施例中有所採用。
IV-2:解決課題之重點   於此,使用在本實施例中之「隨機森林」而針對「求取出收視率的方法」作說明。
「隨機森林」,係為以被稱作CART之手法作為基礎,而從資料來取樣抽出「變數×記錄」並產生多數之決定樹,再藉由將各個的決定樹作組合,而作成高精確度之模型的手法。   在複數之決定樹中,由於係亦能夠作出使用「具有影響力的變數」以外之「變數」來進行預測的決定樹,因此,在進行綜合性的預測判定時,係亦能夠對於所有的「說明變數」之影響程度作掌握。   藉由對於身為「隨機森林」之特徵的能夠對於「龐大之資料」進行演算處理的功能作活用,而對於像是「EPG節目詳細資訊」和「EPG事先閱覽數量」或者是節目之「主題資訊」和「關鍵字資訊」等的文本基礎之「後設資料」等的資料量為多而在先前技術之複迴歸分析中並無法作為說明變數來處理的資料進行處理,係實現以節目單位來對於「(節目)內容因素」作了考慮的「預測模型」之作成。
接著,參考圖4,對於在SHARE 101中的「預測模型」之建構作說明。   在SHARE 101中,首先,係將成為在「預測模型」之建構中所需要的「VIDEO RESEARCH資料」等之收視率調查資料、「IPG資料」等之電子節目表資料(包含節目編組資料、各節目之個別的事先閱覽數量等)、「WIREACTION資料」等之節目後設資料、「開源資料」等之「關連於電視之收視的資料」,先集中在「說明變數資料庫」101-11中,並對於此「說明變數資料庫」101-11,而進行如同在上述之II.中所說明的「說明變數化」之處理,並將「被說明變數化後之資料」積蓄在「隨機森林學習器」101-12中,而建構出「預測模型」。   又,在「隨機森林」中,係構成為藉由作為輸入資料而將「成為預測對象之媒體資訊」(廣告時段資訊)輸入至「隨機森林學習器」101-12中,並作為「隨機森林學習器」101-12之輸出(output)而算出「預測對象媒體」之「預測收視率」(預測媒體接觸率)。   表1,係為針對成為相對於「預測精確度」之「說明變數」的有用性之指標的「重要程度」而對於各「說明變數」之每一者來作了一覽之表。
上述之表1,係於表頂(橫)展示「節目範疇」,並於表側(縱)展示「說明變數」。又,表中之格子被以「網格」作標示的場所,其「重要程度」係為高,並代表其為相對於預測精確度之提昇而為「有用」。   例如,可以得知,「自身時段前4周平均」,不論是對於節目之何種範疇而言均係身為相對於「預測精確度之提昇」而「重要程度」為「高」的「說明變數」。   但是,像是「自身時段前4周平均」、「他台節目時段前4周平均」、「前一時段前4周平均」「他台節目前一時段前4周平均」之類的「說明變數」,由於原本與「預測對象節目」之間的「相關性便為高」,因此,「重要程度」係必然會變高。又,由於此係為符合於就算是在先前技術之複迴歸分析中也有所考量的時段資訊之變數,因此,係並無法說是相對於前述之課題的解決方案。亦即是,此係並不應被視為僅在「隨機森林」中所特有的「說明變數」。
另一方面,代表「節目內容資訊」之「主題分類」和「關鍵字分類」,依存於「節目範疇」,其「重要程度」係變「高」,而可得知其作為「說明變數」係為有用。   進而,關於「EPG事先閱覽數量」和「Yahoo!節目表事先閱覽數量」,亦能夠發現到「重要程度」會變「高」的「節目範疇」。
在先前技術之「複迴歸分析」中,係難以對於成為「節目內容資訊」之資料源頭的「後設資料」等之「龐大的資料」進行處理,在由「複迴歸分析」所致之「預測模型」中,此些之資料,係並無法對於作為「說明變數」之有用性進行檢證,但是,在由能夠對於「龐大之資料」進行處理的「隨機森林」所致之「預測模型」中,係可根據上述表1,而確認到「節目內容資訊」相對於「預測精確度之提昇」係為有用。
實際上,針對「僅對於時段資訊」作了考慮的由「複迴歸分析」所致之「預測結果」和由「亦對於內容資訊有所考慮」的「隨機森林」所致之「預測結果」之間進行了比較。   以下之圖5,係為對於由複迴歸分析所得到之結果和由隨機森林所得到之結果作了比較者。
根據圖5,可以發現到,「藉由隨機森林所算出的「預測結果」,其與實測值之間的相關係為高」。   係可對於作為對於預測精確度之高低進行評價的「指標」之「相關係數」和「平均平方誤差」作確認。   若是「相關係數」越接近「1」,則係代表「實測值」與「預測值」之間之「相關性」為越強,若是「平均平方誤差」之值「越小」,則代表「實測值」與「預測值」之間之「誤差」為越小。
在圖5所示之數字中,相較於複迴歸分析,由「隨機森林」所得到之結果,其「相關係數」係更接近1,其「平均平方誤差」係變得更小,而可以確認到「預測精確度」係為高。   另外,雖然亦存在有與上述之「隨機森林」相異的稱作「深層學習(deep learning)」之「預測手法」,不過,雖然作為在本發明之SHARE 101中所使用的演算法也能夠採用「深層學習」等之其他的演算法,但是,於此,為了將說明簡略化,係針對「深層學習」等之其他的演算法而將該些之說明省略。
上述之SHARE 101,係能夠對於包含有代表媒體之詳細的範疇、分類的「後設資料」以及代表對於媒體之期待值的對於節目表之存取資料等的「巨量資料」作處理,並且係藉由將能夠對於「巨量資料」進行高速處理之「雲端基礎」以及藉由對於多種類的變數進行自主學習來將精確度逐漸提高的「深層學習」之分析手法作組合,來將「外部因素」、「編組因素」以及「內容因素」設定為「說明變數」,並對於可能會對於收視率造成影響的因素全部作考慮,而能夠「對於收視率進行預測」。
接著,針對上述之TAOS 102作說明。   圖6,係為對於TAOS 102之理想的其中一個實施形態之構成作概略展示之構成圖。
如同圖6中所示一般,在本實施形態中,TAOS 102,係具備有(1)第1輸入部102-1,係身為輸入包含有「參考過去收視率」、「購買成本」等之資訊之第1廣告時段立案資料之第1輸入手段;和(2)第2輸入部102-2手段,係身為被與上述SHARE 101作連接,並輸入包含「預測收視率」及/或「即時收視率」等之資訊之第2廣告時段立案資料之第2輸入手段;和(3)處理部102-3,係身為被與前述第1輸入部102-1以及前述第2輸入部102-2作連接,及/或被搭載有重新配置程式,並基於被輸入至前述第1輸入部102-1中之前述第1廣告時段立案資料以及被輸入至前述第2輸入部102-2中之前述第2廣告時段立案資料,來使用前述重新配置程式而作成目標實際最佳化資料並輸出之處理手段;和(4)指示輸出部102-4,係身為被與前述處理部102-3作連接,並輸入從前述處理部102-3所輸出的目標實際最佳化資料,而對於CORE 103作輸出之指示輸出手段。
圖7,係為用以對於由圖6中所示之TAOS 102所致的動作作說明之流程圖。   於此,參照圖6以及圖7,針對由TAOS 102所致之處理作詳細的說明。
首先,TAOS 102,係將外部機關或外部系統(例如,VIDEO RESEARCH等)基於「4周平均之過去收視率」等所預測到的「過去基礎將來收視率」(第1資料),從第1輸入部102-1而輸入(亦即是,輸入上述[a.]第1資料=「過去基礎將來收視率」之資料)(由TAOS 102所致之處理:步驟a)。
在上述步驟a中,可以預測到,於外部機關處,係能夠獲得M1層(20~34歳之男性)的個人收視率15.0%,並且能夠獲得F1層(20~34歳之女性)的個人收視率為10.0%。
接著,將藉由SHARE 101所作成的「預測將來收視率」(第2資料),從第2輸入部102-2而輸入(亦即是,輸入上述[b.]第2資料=「預測將來收視率」之資料)(由TAOS 102所致之處理:步驟b)。
在上述步驟b中,於此實施例中,可以預測到,於SHARE 101處,係分別預測出能夠獲得M1層(20~34歳之男性)的個人收視率5.0%,並且能夠獲得F1層(20~34歳之女性)的個人收視率為15.0%。
若是單純對於上述步驟a以及上述步驟b之結果作比較,則在X之廣播時段中,係被分配有以F1層作為目標之廣告主的A商品之廣告素材。亦即是,在TAOS 102處,係使用「重新配置程式」,來基於「預測將來收視率」,而如同上述一般地,藉由處理部102-3,而暫定性地使全部之各品牌的素材(廣告素材)被作分配(由TAOS 102所致之處理:步驟c)。
但是,實際上,關於是要分配適合於M1層之商品的廣告素材還是要分配適合於F1層之商品的廣告素材一事,係成為將藉由第1輸入部102-1而被作了輸入的例如適合於M1層之A素材的廣播優先程度(宣傳活動期間接近尾聲)之資訊等的各種之因素作組合,並最終性地判斷是要分配適合於何種階層之商品的廣告素材。
基本上,由於藉由對素材進行交換所獲得的實際GRP有所上升(被支付的金額有所上升)一事,係成為指標,因此,在圖7所示之例中,係成為被分配有適合於預測個人收視率之百分比為高之「15.0%」的F1層(20~34歲女性)之商品的廣告素材。
然而,例如,在像是適合於M1層之廣告素材的宣傳活動期間會在近日結束一般的情況時,在處理部102-3處,係亦可考慮並不對適合於M1層之廣告素材進行交換而維持原樣地進行放映之選項。
於此,針對在廣告業界中之「GRP」以及「實際GRP」作說明。
在廣告業界中之所謂「GRP」,係為代表根據「出案量」與「收視率」所得到的CM之定量性之「指標」者,而亦被稱作「總收視率」。
GRP,係被使用於在廣播台所制定的時段(CM時段)中所放映之「檔次廣告(spot CM)」之交易等中,若是GRP的數字越大,則代表廣告訊息係被傳達到更多的收視者處。
又,GRP,對於廣告主及廣告公司而言,係身為與「出案計畫」、「廣告計畫」有著直接關連的「指標」,另一方面,對於身為媒體公司之電視廣播台而言,則係有著作為廣告時段之「庫存管理」之「指標」的意義。
具體而言,當廣告主對於電視而出案有10個的檔次廣告的情況時,將該廣告之分別在一周中的哪幾天被廣播、被廣播的時間帶、或者是被廣播之節目中之過去的一定時間點之收視率,單純地作10個的量之加算,並將該合計值作為該廣告之GRP。更正確來說,所謂廣告的GRP,係為「被廣告所取得的時段之節目以及時間帶的過去之特定4周間的平均值(將過去4周間的平均稱作「號數」)。
更具體而言,例如,當對於家戶收視率15%之時段出案有5個的廣告,並對於家戶收視率10%之時段出案有10個的廣告,並且對於家戶收視率5%之時段出案有10個的廣告(CM)的情況時,GRP之值,係基於以下所示之數式,而成為225。
(15%×5)+(10%×10)+(5%×10)=225GRP
上述情況,係為基於過去之特定4周間的平均值資料所算出之收視率之累積值,但是,當實際被播放時,係幾乎不會有成為完全相同之收視率的情況,在多數的情況中,係成為被測定有相異之收視率。將此對於被作了播放時所實際測定到的收視率進行了總計之GRP,特別稱作「實際(actual)GRP」。而,廣告主和廣告公司,在廣播後,作為用以進行被作了廣播的廣告之評價的「指標」,多係使用此實際GRP。
於此,再度回到處理之說明,而繼續進行針對由TAOS 102所致之處理的說明。
情況1:   針對TAOS 102從SHARE 101而獲得在廣告被廣播之前所預測到的收視率資料([b.資料]=第2資料=預測個人收視率之資料)(步驟b)的情況作說明。
在上述步驟b中,係如同下述一般,從SHARE 101而獲得在廣播前所預測到的個人收視率。   例如,被分配有適合於M1層之A商品的廣告素材之X廣播時段的預測個人收視率,係如同下述一般。   M1層:5.0%   F1層(20~34歳女性):15.0%   又,在相同廣播台中,也存在有適合於F1層之B商品的廣告素材之出案預定。
接著,TAOS 102,係針對各廣告時段之每一者,而針對基於上述[a.]第1資料和上述[b.]第2資料(廣播前之預測收視率資料)之間之「差分」([c.]第3資料=基於4周資料所得到的單純過去平均基礎之將來收視率資料和SHARE所算出的廣播前之預測收視率之間的「差分」)進行評價(步驟c)。
針對上述步驟c,例如,TAOS 102,係藉由處理部102-3,而如同下述一般地對於(第1和第2)個人預測收視率之「差分」進行評價。
(1)藉由以下之數式,而算出在X廣播時段中之適合於M1層之A商品的廣告費之減少金額(在A商品中之減少金額):
(關係式1)   在X廣播時段中之適合於M1層之A商品之廣告費的減少金額(在A商品中之減少金額)=關連於適合於M1層之A商品的出案之購買成本(每收視率1%(=1GRP)之成本)×(緊接於前之M1層個人收視率-所預測到的M1層個人收視率)
(2)藉由以下之數式,而算出在X廣播時段中之當改成分配適合於F2層之B商品之廣告素材時的(廣告費之增加)金額(在B商品中之增加金額):
(關係式2)   在X廣播時段中之當改成分配適合於F1層之B商品之廣告素材時的(廣告費之增加)金額(在B商品中之增加金額)=關連於適合於F1層之B商品的出案之購買成本×所預測到的F1層個人收視率   於此,係假設為「關於原本所分配了的M1層,雖然係有必要對於『過去4周平均與預測(≒實際)之間的差異』作計算,但是,關於作為替代素材而被推出的F1層,則並不需要對於『過去4周平均與預測(≒實際)之間的差異』作計算」。但是,在實施更為精緻化之運用時,係亦有必要將F1層(替代素材)之過去4周平均與預測收視率之間的乖離列入考慮。
更具體而言,關於是要直接放映A商品之廣告素材還是要改成分配B商品之廣告素材一事,係基於以下之各要素來進行判斷。
(a):對於[在A商品中之減少金額]和[在B商品中之增加金額]作比較,並因應於該些之大小來進行判斷。   例如,在對於A商品:成本1萬圓×相對預測差負10GRP=相對預測減額10萬圓和B商品:成本5萬圓×緊接於前(≒實際)5GRP=在作了替換的情況時之預測增額25萬圓作了比較的情況時,於播放中,係以B商品為優先。
(b):A商品之廣告素材之出案期間的有無。例如,若是A商品之廣告宣傳期間的結束期間為明天,則係優先放映A商品、等等。
圖8,係為用以對於由圖6中所示之TAOS 102所致的其他之實施形態中之動作作說明之流程圖。   於此,參照圖8,針對由圖6中所示之TAOS 102所致之處理作詳細的說明。
情況2:   針對TAOS 102從SHARE 101以外之外部機關或外部系統(例如,VIDEO RESEARCH等)而獲得在緊接於廣告被廣播之前(例如,「廣告被廣播前之1分鐘」)等的收視率資料([b.資料]=第2資料=緊接於廣播之前的特定時間(1分鐘前)之收視率之資料)(步驟b')的情況作說明。   現今,係成為能夠對於收視率作即時性的計測並使該計測到的收視率能夠即時性地在網際網路上進行閱覽,並且亦提供有此種服務(例如,Switch Media Lab,Inc./資料分析服務SMART、等)。
在上述步驟b'中,係如同下述一般,從外部機關而獲得在緊接於廣播前的收視率資料。   例如,由SHARE 101所得到的緊接於被分配有適合於M1層之A商品的廣告素材之X廣播時段的收視率,係如同下述一般。   M1層:5.0%   F1層(20~34歳女性):15.0%   又,在相同廣播台中,也存在有適合於F1層之B商品的廣告素材之出案預定。
接著,TAOS 102,係針對各廣告時段之每一者,而針對基於上述[a.]第1資料和上述[b'.]第2資料(1分鐘前之收視率資料)之間之「差分」([c'.]第3資料=4周之收視率資料和1分鐘前之收視率資料之間的「差分」)進行評價(步驟c')。
針對上述步驟c',例如,TAOS 102,係藉由處理部102-3,而如同下述一般地對於(第1和第2)個人收視率之差分進行評價。
(1)藉由以下之數式,而算出在X廣播時段中之適合於M1層之A商品的廣告費之減少金額(在A商品中之減少金額):
(關係式1')   在X廣播時段中之適合於M1層之A商品之廣告費的減少金額(在A商品中之減少金額)=關連於適合於M1層之A商品的出案之購買成本(每收視率1%(=1GRP)之成本)×(4周之M1層個人收視率-緊接於廣播前之M1層個人收視率)
(2)藉由以下之數式,而算出在X廣播時段中之當改成分配適合於F2層之B商品之廣告素材時的(廣告費之增加)金額(在B商品中之增加金額):
(關係式2')   在X廣播時段中之當改成分配適合於F2層之B商品之廣告素材時的(廣告費之增加)金額(在B商品中之增加金額)=關連於適合於F1層之B商品的出案之購買成本×緊接於廣播之前的F1層個人收視率
於此,係假設為「關於原本所分配了的M1層,雖然係有必要對於『過去4周平均與緊接於廣播前(≒實際)之間的差異』作計算,但是,關於作為替代素材而被推出的F1層,則並不需要對於『過去4周平均與緊接於廣播前(≒實際)之間的差異』作計算」。但是,在實施更為精緻化之運用時,係亦有必要將F1層(替代素材)之過去4周平均的收視率與緊接於廣播前之收視率之間的乖離列入考慮。
更具體而言,關於是要直接放映A商品之廣告素材還是要改成分配B商品之廣告素材一事,係基於以下之各要素來進行判斷。
情況(a'):對於[在A商品中之減少金額]和[在B商品中之增加金額]作比較,並因應於該些之大小來進行判斷。   例如,在對於A商品:成本1萬圓×相對緊接於前之差負10GRP=相對緊接於前之減額10萬圓和B商品:成本5萬圓×緊接於前(≒實際)5GRP=在作了替換的情況時之相對緊接於前之增額25萬圓作了比較的情況時,於播放中,係以B商品為優先。
情況(b'):A商品之廣告素材之出案期間的有無。例如,若是A商品之廣告宣傳期間的結束期間為明天,則係優先放映A商品、等等。
CORE 103,係基於上述[c.]第3資料,而「再度」實施最適化素材分配(步驟e)。   上述步驟e,係為在廣播台之伺服器內而進行素材之更換。
於此,所謂的「再度」,具體而言係為如同下述一般之處理。   通常,電視廣告之素材,係在時段廣播開始之相隔3個工作天之前為止而進行素材指定。相對於此直到相隔3個工作天為止的素材指定,而基於緊接於前所獲得的個人收視率資料,來將最適當的素材「再度」實施分配。廣播台,通常,由於係以依據從廣告公司而來之素材指定而播放廣告素材一事作為前提,因此,所謂「再度」之最適當素材指定,係緊接於前地而對於「廣告公司⇒廣播台」送出再指定之訊號,並因應於此訊號之資料,來在廣播台處進行素材指定之更換。
接著,TAOS 102,係實施將再分發後之各時段素材指定對於CORE 103而直接送出的處理(步驟f)。
電視廣告素材,係在CORE 103內而個別地被分類整理,而成為能夠進行個別指定。
以下,對於在構成圖1中所示之廣告時段最佳化系統之一部分的經常最佳再配置裝置(CORE)之其中一個實施形態中之構成作說明。   CORE,係構成為在基於從SHARE 101所得到的資訊、亦即是基於「緊接於廣播之前之收視率資料」,而使TAOS 102實行了「放映廣告素材之最佳化」之後,對於「預定放映廣告素材清單」以及「廣告素材庫」而進行「素材替換」(素材指定之變更)。
故而,在「廣告素材庫」中,係並不僅是記憶有「預定放映之廣告素材」,而亦將具有可能會被與其他之廣告素材作替換並放映的可能性之廣告素材(「具有替換可能性之廣告素材」),附加有能夠特定出該廣告素材的編號並記憶在(「廣告素材庫」)中。   於此,針對雖然在「預定放映廣告素材清單」上以在某一特定之時間中放映特定之廣告素材(例如「素材A」)的方式而作了指定,但是係從TAOS 102而下達有將被配置在「預定放映廣告素材清單」上之「素材A」替換為被配置在「廣告素材庫」內之「素材B」之指示的情況作說明。
另外,針對「素材A」,係分別附加有能夠特定出該「素材A」之編號以及能夠特定出「預定放映時間帶」之編號(將此些之2個的編號一併稱作「預定放映素材編號」),該「預定放映素材編號」係被配置在「預定放映廣告素材清單」中。
受到從TAOS 102而來之指示,CORE 103,係對於「預定放映廣告素材清單」,而將「素材A」從時間線上去除,並送訊替換為「素材B」之指示(「素材指定之變更」)的訊號,其結果,「預定放映廣告素材清單」內之時間線係被作更新。   與此同時地,CORE 103,係亦對於「廣告素材庫」而送訊替換為「素材B」之指示(「素材指定之變更」)訊號(具體而言,「預定放映素材編號」),依循於此,「素材B」之「編號」係被送訊至「預定放映廣告素材清單」,及/或「素材B」之「影像資料」係被送訊至「送出機器」處,最終而言,係成為被放映有「素材B」。   在CORE 103處,對於素材作替換的指示(「素材指定之變更」)訊號之送訊,係直接從廣告公司而進行。   在本實施例中,CORE 103,係藉由忠實地實行TAOS 102所送訊的「素材替換指示」,而構成為因應於在特定之時間前(在本實施例中,所謂「特定之時間前」,係為1分鐘前)所取得的收視率資料來將特定之時間後(同樣的,在本實施例中,所謂「特定之時間後」,係為1分鐘後)的素材根據「實際」的觀點來作最佳配置。
另外,在本實施例中,作為素材之其中一例,雖係作為代表「廣告素材」者而作了說明,但是,素材係並非為僅被限定於廣告素材。   又,通常,「廣告素材庫」,係被設置於廣播台處,但是,係亦可設置在廣告公司處,於此情況,係構成為使用EDI等之技術,來從被設置在廣告公司處之「廣告素材庫」而將廣告素材之影像資料送訊至廣播台處,但是,素材指定,係亦可構成為從廣告公司來對於廣播台之主機而直接(direct)且即時性地作指定。
係構成為亦能夠從像是VIDEO RESEARCH等之收視率調查公司之類的外部機構(第3方機關)來以如同Switch Media Lab一般的型態而獲得即時資料。   如同上述一般,藉由使用本發明之CORE 103,係能夠使由SHARE 101所得到的預測收視率之「預測極限」(=統計誤差)盡可能地接近於「0」。
若是作總結,則CORE 103,係具備有持續緊接於前地而對於被播放(OA)之廣告作指定的功能,藉由對於此CORE 103,而以上述之SHARE 101而輸入第3方機關所即時性進行測定的收視率資料,並且即時性地指定由TAOS 102所致之個別素材(指定),係成為能夠將針對各(廣告)時段之每一者所個別計測的個人實際之分配最佳化。
又,藉由緊接於前地而將素材作替換,作為其結果,係能夠極為有效地避免實際下降的情形。以上,主要係針對地面電視廣播之廣告為例來進行了說明,但是,本發明係並不被限定於此。亦即是,本發明,係並不侷限於地面電視之廣告,針對衛星廣播電視之廣告、收音機廣告、透過網際網路所進行的廣播中之廣告以及使用有其他的廣播媒體之廣告而言,亦可同樣地作適用。此時,例如,作為收視率資料,係亦可使用與在本說明書中所作了說明者相異之資料。作為其中一例,在衛星廣播電視的情況時,係亦可使用其之收視率資料,在收音機廣播的情況時,係亦可使用其之收聽率資料,在透過網際網路所進行的廣播的情況時,係亦可使用其之收視者資料。 [產業上之利用可能性]
係成為能夠對於在個人實際狀況中所頻繁出現的「0.0%」之時段抽換為其他之個人實際狀況素材,若是實施由上述之本發明所致之廣告時段最佳化系統,則係能夠期待有廣告效果之達成效率的3%~6%左右之改善。關於此事,在對於投入至電視廣告中之年度出案量的規模之大小作考慮的情況時,可以想見,對應於效率之改善的金額幅度係會成為非常大的金額。又,在進行了抽換源頭時段之適用範圍之擴大(針對收視率為0.1%以上之時段亦實施抽換)的情況時,係可期待能夠對於廣告效果之達成效率改善幅度以及對應於效率之改善的金額幅度作更大幅度之擴大。
本申請案,係基於2017年1月10日所申請之日本特願2017-002006。將其內容預先全部包含於本案中。
100‧‧‧廣告時段最佳化系統
101‧‧‧高度收視率預測裝置
101-1‧‧‧資料輸入部
101-2‧‧‧說明變數化部
101-3‧‧‧程式安裝、實行部
101-4‧‧‧資料輸出部
101-11‧‧‧說明變數資料庫
101-12‧‧‧隨機森林學習器
102‧‧‧目標實際最佳化裝置
102-1‧‧‧第1輸入部
102-2‧‧‧第2輸入部
102-3‧‧‧處理部
102-4‧‧‧指示輸出部
103‧‧‧經常最佳再配置裝置
[圖1]係為對於在由本發明所致之廣告時段最佳化系統的其中一個實施形態中之構成作展示的概略構成圖。   [圖2]係為對於在構成圖1中所示之廣告時段最佳化系統之一部分的高度收視率預測裝置(SHARE)之其中一個實施形態中之構成作展示的概略構成圖。   [圖3]係為在圖2中所示之SHARE中所採用的「隨機森林」之說明圖。   [圖4]係為對於由在圖2中所示之SHARE中所採用的「隨機森林」所致之「預測模型」的構造作展示之概略構成圖。   [圖5]係為對於由在圖2中所示之SHARE中所採用的「隨機森林」所得到之結果和在先前技術中所採用的「複迴歸分析」所得到之結果作比較展示之說明圖。   [圖6]係為對於在構成圖1中所示之廣告時段最佳化系統之一部分的目標實際最佳化裝置(TAOS)之其中一個實施形態中之構成作展示的概略構成圖。   [圖7]係為用以對於在圖6中所示之TAOS的其中一個實施形態中之動作作說明之流程圖。   [圖8]係為用以對於在圖6中所示之TAOS的另外一個實施形態中之動作作說明之流程圖。

Claims (11)

  1. 一種廣告時段最佳化系統,係為將在廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統,其特徵為:   廣告時段最佳化系統,係具備有高度收視率預測裝置(SHARE)、和目標實際最佳化裝置(TAOS),   前述SHARE,係構成為以較特定之精確度而更高之精確度來預測目標收視率及/或輸入第3方機關即時性進行測定之收視率資料,並將廣告時段之預測收視率資料及/或緊接於廣播之前之收視率資料送訊至前述TAOS處,   前述TAOS,係構成從前述SHARE而受訊關連於預定廣播的廣告之該廣告之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定作送訊。
  2. 如申請專利範圍第1項所記載之廣告時段最佳化系統,其中,   係更進而具備有:經常最佳再配置裝置(CORE),   前述CORE,係構成為從前述TAOS而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告。
  3. 一種廣告時段最佳化系統,係為將在廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化系統,其特徵為:   係具備有高度收視率預測裝置,   該高度收視率預測裝置,係藉由下述手段所構成:   資料輸入手段,係輸入資料及/或資料源頭資訊;和   說明變數化手段,係被與前述資料輸入手段作連接,及/或對於從該資料輸入手段所輸入的前述資料源頭資訊施加特定之加工處理而將該資料源頭資訊說明變數化;和   程式安裝、實行手段,係被與前述資料輸入手段以及前述說明變數化手段作連接,及/或安裝有特定之演算法的程式;和   資料輸出手段,係被與前述程式安裝、實行手段作連接,及/或輸出由該安裝、實行手段所得到之結果,   使用從前述資料輸入手段所輸入的前述資料及/或前述資料源頭資訊和藉由前述說明變數化手段而作說明變數化所得到的說明變數,來使前述程式安裝、實行手段實行前述所安裝的程式之前述演算法,並從前述輸出手段而輸出實行該演算法所得到的預測收視率資料,再基於前述所輸出的預測收視率資料,來將廣告時段最佳化。
  4. 如申請專利範圍第3項所記載之廣告時段最佳化系統,其中,   前述高度收視率預測裝置,係包含有代表媒體之詳細的範疇、分類的後設資料;調查公司(第3方機關)所調查實施的追蹤資料(panel data);代表對於媒體之期待值的對於節目表之存取資料;SNS上之文本資料;在檢索網站處之檢索資訊以及天氣預報,此些之至少1者,並以能夠對巨量資料(big data)作處理的方式來構成之,   前述高度收視率預測裝置,係更進而藉由將能夠對於前述巨量資料進行高速處理之雲端基礎以及藉由對於多種類的變數進行自主學習來將精確度逐漸提高的所謂深層學習之分析手法作組合,來將外部因素、編組因素以及內容因素設定為前述說明變數,並對於可能會對於收視率造成影響的因素作考慮,而構成為能夠對於前述收視率進行預測。
  5. 如申請專利範圍第3項或第4項所記載之廣告時段最佳化系統,其中,係更進而具備有:   目標實際最佳化裝置,其係由下述手段所構成:   第1輸入手段,係輸入包含有參考過去收視率以及購買成本之至少1個的資訊之第1廣告時段立案資料;和   第2輸入手段,係被與前述高度收視率預測裝置作連接,並輸入包含預測收視率以及即時收視率之至少1個的資訊之第2廣告時段立案資料;和   資料處理手段,係被與前述第1輸入手段以及前述第2輸入手段作連接,及/或被搭載有重新配置程式,並基於被輸入至前述第1輸入手段中之前述第1廣告時段立案資料以及被輸入至前述第2輸入手段中之前述第2廣告時段立案資料,來使用前述重新配置程式而作成目標實際最佳化資料並輸出;和   指示輸出手段,   前述資料處理手段,係構成為使用前述重新配置程式,來針對各廣告時段之每一者而對於前述第1廣告時段立案資料與前述第2廣告時段立案資料之間之差分進行評價,並基於作為該差分之結果所得到的第3廣告時段立案資料來針對對於廣告時段之素材之分配進行再分發,而將代表再分發後之各廣告時段之素材指定的目標實際最佳化資料輸出,   前述指示輸出手段,係被與前述資料處理手段作連接,並輸入從該資料處理手段所輸出的前述目標實際最佳化資料而作輸出。
  6. 如申請專利範圍第5項所記載之廣告時段最佳化系統,其中,係更進而具備有:   經常最佳再配置裝置,其係構成為從前述目標實際最佳化裝置而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告。
  7. 一種廣告時段最佳化方法,係為使用具備有高度收視率預測裝置(SHARE)和目標實際最佳化裝置(TAOS)以及經常最佳再配置裝置(CORE)之廣告時段最佳化系統來將在廣播媒體中所廣播的廣告時段最佳化之方法,其特徵為,係具備有下述之各階段:   藉由前述SHARE,來以較特定之精確度而更高之精確度來預測目標收視率及/或輸入第3方機關即時性進行測定之收視率資料,並將廣告時段之預測收視率資料及/或緊接於廣播之前之收視率資料送訊至前述TAOS處之階段;和   藉由前述TAOS,來從前述SHARE而受訊關連於預定廣播的廣告之該廣告時段之預測收視率及/或緊接於播放(OA,on air)之前的收視率資料,並針對各廣告時段之每一者,而基於對於第1資料和第2資料之間之差分進行評價所得到的第3資料,來針對對於廣告時段之素材的分配進行再分發,且將再分發後之各廣告時段之素材指定直接送訊至前述CORE處之階段;和   藉由前述CORE來直接受訊從前述TAOS而來之再分發後之各廣告時段的素材指定,並基於再分發後之各廣告時段的素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告之階段。
  8. 一種廣告時段最佳化方法,係為將在廣播媒體中所廣播的廣告時段最佳化之廣告時段最佳化方法,其特徵為,係具備有:   輸入資料及/或資料源頭資訊之階段;和   對於所輸入的前述資料源頭資訊施加特定之加工處理而將該資料源頭資訊說明變數化之階段;和   安裝特定之演算法的程式之階段;和   輸出由前述被安裝的程式所得到的結果之階段,   使用前述資料及/或前述資料源頭資訊和前述進行說明變數化所得到的說明變數,來實行前述所安裝的程式之前述演算法,並輸出實行該演算法所得到的預測收視率資料,再基於前述所輸出的預測收視率資料,來將廣告時段最佳化。
  9. 如申請專利範圍第8項所記載之廣告時段最佳化方法,其中,係更進而具備有:   對於包含有代表媒體之詳細的範疇、分類的後設資料以及代表對於媒體之期待值的對於節目表之存取資料之至少1者的巨量資料(big data)作處理之階段;和   藉由將能夠對於前述巨量資料進行高速處理之雲端基礎以及藉由對於多種類的變數進行自主學習來將精確度逐漸提高的所謂深層學習之分析手法作組合,來將外部因素、編組因素以及內容因素設定為前述說明變數,並對於可能會對於收視率造成影響的因素全部作考慮,而對於前述收視率進行預測之階段。
  10. 如申請專利範圍第8項或第9項所記載之廣告時段最佳化方法,其中,係更進而具備有:   輸入包含有參考過去收視率以及購買成本之至少1個的資訊之第1廣告時段立案資料之第1輸入階段;和   被與前述高度收視率預測裝置作連接,並輸入包含預測收視率以及即時收視率之至少1個的資訊之第2廣告時段立案資料之第2輸入階段;和   基於在前述第1輸入階段中所被輸入之前述第1廣告時段立案資料以及在前述第2輸入階段中所被輸入之前述第2廣告時段立案資料,來使用重新配置程式而作成目標實際最佳化資料並輸出之資料處理階段;和   輸出階段,   前述資料處理階段,係構成為使用前述重新配置程式,來針對各廣告時段之每一者而對於前述第1廣告時段立案資料與前述第2廣告時段立案資料之間之差分進行評價,並基於作為該差分之結果所得到的第3廣告時段立案資料來針對對於廣告時段之素材之分配進行再分發,而將代表再分發後之各廣告時段之素材指定的目標實際最佳化資料輸出,   前述輸出階段,係輸入從前述資料處理階段所輸出的前述目標實際最佳化資料而作輸出。
  11. 如申請專利範圍第10項所記載之廣告時段最佳化方法,其中,係更進而具備有:   從前述目標實際最佳化裝置而直接受訊再分發後之各廣告時段之素材指定,並基於再分發後之各廣告時段之素材指定,來將各時段之素材適用於所對應之各廣告時段而廣播廣告之階段。
TW107100901A 2017-01-10 2018-01-10 電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法 TWI765952B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017002006 2017-01-10
JP2017-002006 2017-01-10

Publications (2)

Publication Number Publication Date
TW201837812A true TW201837812A (zh) 2018-10-16
TWI765952B TWI765952B (zh) 2022-06-01

Family

ID=62839895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100901A TWI765952B (zh) 2017-01-10 2018-01-10 電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法

Country Status (6)

Country Link
US (1) US20200074502A1 (zh)
EP (1) EP3570241A4 (zh)
JP (1) JP6423132B1 (zh)
RU (1) RU2019122991A (zh)
TW (1) TWI765952B (zh)
WO (1) WO2018131576A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203112A (zh) * 2020-10-13 2021-01-08 广州欢网科技有限责任公司 基于互联网电视的广告投放方法、装置和系统
TWI836099B (zh) * 2019-06-20 2024-03-21 日商電通股份有限公司 檔次規劃評價系統、檔次規劃評價裝置及程式
TWI845822B (zh) * 2020-04-07 2024-06-21 日商電通股份有限公司 資訊處理裝置、修案支援方法、及修案支援程式

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10831825B2 (en) * 2018-10-30 2020-11-10 ZERF, Inc. Predicting a concept prediction for media
JP7260085B2 (ja) * 2019-01-24 2023-04-18 株式会社電通 枠交換評価システム、枠交換評価装置及びプログラム
JP7256073B2 (ja) * 2019-05-15 2023-04-11 株式会社フジミック Cm順位付け自動化システム、プログラム及び方法
JP6762483B1 (ja) * 2019-05-22 2020-09-30 株式会社電通 Ltvプランニングシステム、ltvプランニング装置、ltvプランニング方法及びプログラム
WO2020241004A1 (ja) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 営業支援システム、営業支援方法及びプログラム
JP7276076B2 (ja) * 2019-10-31 2023-05-18 富士通株式会社 情報処理プログラム、装置、及び方法
JP6754485B1 (ja) * 2019-12-16 2020-09-09 株式会社ビデオリサーチ 情報処理装置及び情報処理方法
CN111031363B (zh) * 2019-12-19 2021-12-31 北京汉晟时代科技有限公司 一种基于定量大数据的用户收视情况预测方法及系统
JP6902636B1 (ja) * 2020-01-28 2021-07-14 株式会社電通 予測装置、予測方法、及び予測プログラム
JP6902637B1 (ja) * 2020-02-07 2021-07-14 株式会社電通 広告素材アロケーションシステム、広告素材アロケーション装置及びプログラム
CN111768228A (zh) * 2020-06-19 2020-10-13 京东数字科技控股有限公司 广告标志的识别准确性验证方法、装置、设备和存储介质
KR102569584B1 (ko) * 2020-06-22 2023-09-14 주식회사 테크랩스 자동화된 노출 최적화를 지원하는 광고 미디에이션 방법 및 그 장치
WO2021260755A1 (ja) * 2020-06-22 2021-12-30 日本電気株式会社 視聴率推定装置、視聴率推定方法および記録媒体
WO2022044889A1 (ja) * 2020-08-26 2022-03-03 株式会社Nttドコモ 広告効果予測装置
KR102340485B1 (ko) * 2020-12-30 2021-12-17 주식회사 코어닷투데이 시놉시스 텍스트 분석 및 시청률 예측 방법
US11838571B2 (en) * 2021-03-04 2023-12-05 The Nielsen Company (Us), Llc Apparatus and methods to estimate media audience consistency
KR102579156B1 (ko) * 2021-06-08 2023-09-15 주식회사 테크랩스 오디언스별 동적 미디에이션을 지원하는 광고 서비스 제공 장치 및 방법
CN115225969A (zh) * 2022-07-28 2022-10-21 南京航空航天大学 一种回避电视广告的行为模拟方法
CN115209225A (zh) * 2022-07-28 2022-10-18 南京航空航天大学 一种回避电视广告的行为模拟软件
JP2024076476A (ja) 2022-11-25 2024-06-06 ノバセル株式会社 Tvcmの案を評価するための装置、方法及びそのためのプログラム
JP7247415B1 (ja) 2022-11-25 2023-03-28 株式会社ビデオリサーチ 情報処理装置、及び情報処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124867A (ja) * 1998-10-19 2000-04-28 Okinawa Television Broadcasting Co Ltd スポット自動作案システム、作案方法及び記憶媒体
JP2001352308A (ja) * 2000-06-09 2001-12-21 Dentsu Inc 視聴率データ分析システムと視聴率データ分析方法
CA2860960C (en) * 2005-01-12 2022-04-12 Invidi Technologies Corporation Targeted impression model for broadcast network asset delivery
KR100755703B1 (ko) * 2006-01-19 2007-09-05 삼성전자주식회사 시청률에 따른 동적 광고 할당 방법 및 시스템
US20110040636A1 (en) * 2009-08-14 2011-02-17 Simmons Willard L Learning system for the use of competing valuation models for real-time advertisement bidding
JP2012039498A (ja) * 2010-08-10 2012-02-23 Kddi Corp コンテンツ視聴傾向分析システム、方法およびプログラム
CN102655607B (zh) * 2011-03-04 2016-03-30 富士通株式会社 用于统计目标观众的收视率的方法和装置
EP3152899A4 (en) * 2014-06-03 2017-10-25 Visible World Inc. Methods, systems, and computer-readable media for dynamic content allocation
JP6477703B2 (ja) * 2014-07-14 2019-03-06 日本電気株式会社 Cm計画支援システムおよび売上予測支援システム
WO2016086076A1 (en) * 2014-11-24 2016-06-02 The Nielsen Company (Us), Llc Methods and apparatus to project ratings for future broadcasts of media
EP3310087B1 (en) * 2015-06-11 2020-12-02 Sony Corporation Control device, method, and computer program
JP6657611B2 (ja) 2015-06-15 2020-03-04 Dic株式会社 カルボニル化合物の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836099B (zh) * 2019-06-20 2024-03-21 日商電通股份有限公司 檔次規劃評價系統、檔次規劃評價裝置及程式
TWI845822B (zh) * 2020-04-07 2024-06-21 日商電通股份有限公司 資訊處理裝置、修案支援方法、及修案支援程式
CN112203112A (zh) * 2020-10-13 2021-01-08 广州欢网科技有限责任公司 基于互联网电视的广告投放方法、装置和系统

Also Published As

Publication number Publication date
JPWO2018131576A1 (ja) 2019-01-17
EP3570241A1 (en) 2019-11-20
RU2019122991A (ru) 2021-02-12
RU2019122991A3 (zh) 2021-06-03
EP3570241A4 (en) 2020-07-01
WO2018131576A1 (ja) 2018-07-19
JP6423132B1 (ja) 2018-11-14
TWI765952B (zh) 2022-06-01
US20200074502A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI765952B (zh) 電視等的廣播媒體中之廣告時段最佳化系統及廣告時段最佳化方法
US20230014859A1 (en) Systems and methods for a television scoring service that learns to reach a target audience
US11514473B2 (en) System and method for determining effects of multi-channel media sources on multi-channel conversion events
US9426511B2 (en) Method and system for automatically determining demographics of media assets for targeting advertisements
US20190158921A1 (en) Methods and apparatus to assign viewers to media meter data
US9584874B1 (en) Portal for collection and distribution of web-based audiovisual content blocks and creation of audience statistics
JP2010524092A (ja) 予想データの測定データとの照合
US20150271540A1 (en) Audience-Based Television Advertising Transaction Engine
CN105208411B (zh) 一种实现数字电视目标受众统计的方法及装置
US20220076152A1 (en) Methods and apparatus to determine a conditional probability based on audience member probability distributions for media audience measurement
Molteni et al. Forecasting with twitter data: an application to Usa Tv series audience
JP6910613B2 (ja) テレビ番組用広告の提供方法
JP6698129B2 (ja) 視聴分析装置及び視聴分析方法
JP6831543B2 (ja) テレビ番組用広告の提供方法
JP7162260B2 (ja) テレビ番組用広告の提供方法
JP7186970B2 (ja) テレビ番組用広告の提供方法
CN102483828A (zh) 基于参与分类的自动信息选择
Badea Customer orientation in the Local Media. Case study: the Audiovisual in Dambovita County
Belo et al. The impact of time-shift television on TV viewership behavior
JP2022188027A (ja) テレビ番組用広告の提供方法
JP2006324982A (ja) 番組編成情報生成装置及び番組編成情報生成プログラム、並びに、電子番組ガイド配信装置及び電子番組ガイド配信プログラム
Schellner TV audience fragmentation: Measurement, causes, and economic consequences
TW201508653A (zh) 家戶設備數位媒體廣告目標預測方法