TW201830873A - 增量調變器及類比數位轉換器 - Google Patents

增量調變器及類比數位轉換器 Download PDF

Info

Publication number
TW201830873A
TW201830873A TW106139280A TW106139280A TW201830873A TW 201830873 A TW201830873 A TW 201830873A TW 106139280 A TW106139280 A TW 106139280A TW 106139280 A TW106139280 A TW 106139280A TW 201830873 A TW201830873 A TW 201830873A
Authority
TW
Taiwan
Prior art keywords
control signal
terminal
feedback gain
switch group
group
Prior art date
Application number
TW106139280A
Other languages
English (en)
Other versions
TWI754697B (zh
Inventor
李在訓
羅啟倫
吳承賢
李鐘娓
李宗祐
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201830873A publication Critical patent/TW201830873A/zh
Application granted granted Critical
Publication of TWI754697B publication Critical patent/TWI754697B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • H03M3/022Delta modulation, i.e. one-bit differential modulation with adaptable step size, e.g. adaptive delta modulation [ADM]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/464Details of the digital/analogue conversion in the feedback path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/478Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication
    • H03M3/488Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control
    • H03M3/49Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/186Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedforward mode, i.e. by determining the range to be selected directly from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • H03M3/426Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one the quantiser being a successive approximation type analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • H03M3/434Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one with multi-level feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/494Sampling or signal conditioning arrangements specially adapted for delta-sigma type analogue/digital conversion systems
    • H03M3/496Details of sampling arrangements or methods
    • H03M3/498Variable sample rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一種可變反饋增益的增量調變器及類比數位轉換器。所述增量調變器包括:電容器群組,共同連接到第一端子,且分別被分類成第一電容器群組及第二電容器群組;比較器,基於所述第一端子的電壓依序產生n位元數位輸出信號;以及開關群組,包括分別連接到所述電容器的開關,所述開關被分類成分別連接到所述第一電容器群組及第二電容器群組的第一開關群組及第二開關群組,且所述第一開關群組及第二開關群組分別根據第一控制信號及第二控制信號來操作,所述第一控制信號及第二控制信號是基於所述n位元數位輸出信號及所述可變反饋增益確定的。

Description

增量調變器及類比數位轉換器
根據示例性實施例的方法及設備涉及一種通信裝置,且更具體來說,涉及一種具有可變反饋增益的增量(D)調變器、包括所述增量調變器的類比/數位轉換器、及包括所述增量調變器的通信裝置。
類比/數位轉換器將類比輸入信號轉換成數位輸出信號。無線通訊系統使用類比/數位轉換器將所接收的射頻(radio frequency,RF)信號轉換成基頻信號,並基於類比基頻信號產生數位輸出信號。類比/數位轉換器的實例可包括快閃式類比/數位轉換器、循續漸近式暫存器(Successive Approximation Register,SAR)型類比/數位轉換器、S-D類比/數位轉換器等,且每一種類型均可根據其特性而用於某一領域中。快閃式類比/數位轉換器具有快的運行速度,但包含2n個比較器來提供n位元數位輸出信號。因此,快閃式類比/數位轉換器會消耗大量的電力且具有大的實作面積。與快閃式類比/數位轉換器相比,循續漸近式暫存器型類比/數位轉換器具有低的運行速度,但僅包括一個比較器。因此,循續漸近式暫存器型類比/數位轉換器僅消耗少量的電力且具有小的實作面積。S-D類比/數位轉換器具有高的訊噪比(signal-to-noise ratio,SNR),但包括被動元件的增量調變器的反饋增益被固定為1。
根據示例性實施例的一方面,提供一種增量調變器,所述增量調變器包括:電容器群組,包括共同連接到第一端子的多個電容器,其中所述多個電容器分別被分類成第一電容器群組及第二電容器群組,以使所述增量調變器具有可變反饋增益;比較器,被配置成基於所述第一端子的第一端子電壓依序產生n位元數位輸出信號,其中n是正整數;以及開關群組,包括分別連接到所述多個電容器的多個開關。所述多個開關分別被分類成第一開關群組及第二開關群組,所述第一開關群組及所述第二開關群組分別連接到所述第一電容器群組及所述第二電容器群組,且所述第一開關群組及所述第二開關群組被配置成分別根據第一控制信號及第二控制信號來操作,所述第一控制信號及所述第二控制信號是基於所述n位元數位輸出信號及所述可變反饋增益確定的。
根據另一個示例性實施例的一方面,提供一種被配置成將類比輸入信號轉換成數位輸出信號的類比/數位轉換器,所述類比/數位轉換器包括:增量調變器,被配置成在採樣階段中接收所述類比輸入信號,並在轉換階段中輸出所述數位輸出信號,所述增量調變器具有可變反饋增益,所述增量調變器包括:電容器群組,包括共同連接到第一端子的多個電容器,所述多個電容器分別被分類成第一電容器群組及第二電容器群組,以使所述增量調變器具有可變反饋增益;比較器,被配置成基於所述第一端子的電壓依序產生所述數位輸出信號,所述數位輸出信號具有n位元,其中n是正整數;以及開關群組,包括分別連接到所述多個電容器的多個開關,其中所述多個開關分別被分類成第一開關群組及第二開關群組,所述第一開關群組及所述第二開關群組分別連接到所述第一電容器群組及所述第二電容器群組,且所述第一開關群組及所述第二開關群組被配置成分別根據第一控制信號及第二控制信號來操作,所述第一控制信號及所述第二控制信號是基於所述數位輸出信號及所述可變反饋增益確定的。
根據再一個示例性實施例的一方面,提供一種增量調變器,所述增量調變器包括:第一電容器群組,包括共同連接到第一端子的第一多個電容器;第二電容器群組,包括共同連接到所述第一端子的第二多個電容器;第一開關群組,包括分別對應於所述第一多個電容器的第一多個開關;第二開關群組,包括分別對應於所述第二多個電容器的第二多個開關;第一控制器,被配置成基於第一n位元數位輸出信號來產生第一控制信號及第二控制信號,所述第一控制信號被配置成控制所述第一開關群組,所述第二控制信號被配置成控制所述第二開關群組;以及比較器,被配置成基於所述第一端子的第一電壓位準依序產生所述第一n位元數位輸出信號。
圖1是根據示例性實施例的通信裝置(communication device,CD)的方塊圖。
參照圖1,通信裝置可包括類比/數位轉換器(analog-to-digital converter,ADC)10、天線20、射頻(RF)電路30、及參考電壓產生器40。在示例性實施例中,通信裝置可表示用於接收各種資訊的接收終端。然而,示例性實施例並非僅限於此。在一些示例性實施例中,通信裝置可表示用於傳送各種資訊的傳送終端、或者執行接收功能及傳送功能兩者的收發器。在通信裝置中包括的各個元件可使用硬體區塊(例如,類比電路及/或數位電路)或軟體區塊(例如由處理器執行的指令)來實作。
射頻電路30可經由天線20接收射頻信號IN,且可通過對所接收的射頻信號IN執行下轉換來產生基頻信號。基頻信號可被稱為類比輸入信號Ain。在示例性實施例中,射頻電路30可通過執行直接轉換,以將射頻信號IN直接轉換成基頻信號來產生類比輸入信號Ain。在示例性實施例中,射頻電路30可將射頻信號IN轉換成中頻(Intermediated Frequency,IF)信號,且可通過執行兩步式下轉換(2-step down conversion),以將中頻信號轉換成基頻信號來產生類比輸入信號Ain。
類比/數位電路10可接收類比輸入信號Ain,且可將所接收的類比輸入信號Ain轉換成數位輸出信號Dout。在本示例性實施例中,類比/數位轉換器10可包括具有可變反饋增益的增量調變器100。舉例來說,可根據時鐘信號CLK的頻率自我調整性地調整所述反饋增益。當時鐘信號CLK的頻率高時,反饋增益降低,且當時鐘信號CLK的頻率低時,反饋增益提高,從而確定最佳增益。時鐘信號CLK可包括採樣階段及轉換階段。以下將參照圖5詳細闡述時鐘信號CLK。
參考電壓產生器40可產生參考電壓REF,且可將所產生的參考電壓REF提供至類比/數位轉換器10。參考電壓REF的位準可根據增量調變器100的反饋增益而改變。舉例來說,當反饋增益小於或等於1時,參考電壓REF具有第一電壓位準,且當反饋增益大於1時,參考電壓REF可具有第二電壓位準。在這種情形中,第二電壓位準可對應於第一電壓位準乘以反饋增益。另外,參考電壓REF的位準可在增量調變器100的採樣階段及轉換階段中保持相同。因此,通信裝置可不包括用於實作具有可變反饋增益的增量調變器100的參考電壓產生器,且因此,通信裝置所消耗的電力量及通信裝置的實作面積可減小。
圖2是圖1所示類比/數位轉換器10的詳細方塊圖。
參照圖2,類比/數位轉換器10可為S-D類比/數位轉換器且可包括增量調變器100及積分器200。積分器200可接收類比輸入信號Ain,且可通過對類比輸入信號Ain進行積分來產生輸入電壓Vin。在這種情形中,輸入電壓Vin可為類比輸入電壓。增量調變器100可基於輸入電壓Vin產生數位輸出信號Dout。然而,示例性實施例並非僅限於此,且可應用於包括增量調變器100的任意類比/數位轉換器。
增量調變器100可包括減法器110、量化器120、及放大器130。減法器110可在時鐘信號CLK的採樣階段中從輸入電壓Vin減去放大器130的輸出。量化器120可在時鐘信號CLK的轉換階段中量化減法器110的輸出,以輸出數位輸出信號Dout,且在這種情形中,數位輸出信號Dout可為n位元信號(其中,n是正整數)。量化器120可為多位元量化器且可經由一個反饋路徑連接到放大器130。放大器130可使用參考電壓REF,且因此可通過反饋增益G來放大量化器120的輸出。當確定反饋增益G時,參考電壓REF的位準可在時鐘信號CLK的採樣階段及轉換階段中保持相同。
在示例性實施例中,在反饋增益G大於1時所施加的參考電壓REF的位準可大於在反饋增益G小於或等於1時所施加的參考電壓REF的位準。因此,當反饋增益G大於1時,減法器110的減法量可增大。在示例性實施例中,在反饋增益G小於1時所施加的參考電壓REF的位準可相同於在反饋增益G等於1時所施加的參考電壓REF的位準。當反饋增益G小於1時,可使用形成減法器110的電容器中的僅某些電容器來減小減法器110的減法量。以下將參照圖4提供關於這一點的說明。
圖3是根據示例性實施例的類比/數位轉換器10的方塊圖。
參照圖3,類比/數位轉換器10a可包括增量調變器100及積分區塊200a。增量調變器100可包括減法器110、量化器120及放大器130。積分區塊200a可被實施為二階積分器(second-order integrator),所述二階積分器包括放大器210至250、第一減法器260及第二減法器270、以及第一積分器280及第二積分器290。然而,示例性實施例並非僅限於此,且積分區塊200a的結構可有所變化。
圖4說明根據示例性實施例的增量調變器100。圖5說明根據示例性實施例的增量調變器中所使用的時鐘信號CLK及循續漸近式暫存器時鐘信號SAR CLK。在下文中,將參照圖4及圖5來提供說明。
參照圖4,增量調變器100可包括電容器群組CG、比較器CP、及開關群組SWG。另外,增量調變器100可進一步包括數位邏輯DL及輸入開關SWin。舉例來說,輸入開關SWin及電容器群組CG可形成圖2所示的減法器110,比較器CP可形成圖2所示的量化器120,且開關群組SWG及數位邏輯DL可形成圖2所示的放大器130。
電容器群組CG可包括共同連接到第一端子T1的電容器C11至C14以及C21至C24。當數位輸出信號Dout是n位元信號時,電容器C11至C14以及C21至C24的數目可為2n。在這種情形中,電容器C11至C14以及C21至C24中的每一個可包括以並聯方式、串聯方式、或串並聯方式連接到彼此的電容器。
電容器C11至C14以及C21至C24可基於可變反饋增益而被分類成第一電容器群組CG1及第二電容器群組CG2。第一電容器群組CG1的第一電容對第二電容器群組CG2的第二電容的比率可基於可變反饋增益來確定。在示例性實施例中,第一電容與第二電容的比可為x:1-x,其中x是基於可變反饋增益確定的任意數目(0 < x < 1)。
第一電容器群組CG1可包括n個電容器(即,電容器C11至C14)。電容器C11的電容可為2n-1 *x,電容器C12的電容可為22 *x,電容器C13的電容可為21 *x,且電容器C14的電容可為20 *x。第二電容器群組CG2可包括n個電容器(即,電容器C21至C24)。電容器C21的電容可為2n-1 *(1-x),電容器C22的電容可為22 *(1-x),電容器C23的電容可為21 *(1-x),且電容器C24的電容可為20 *(1-x),其中n是位數。舉例來說,當n是4時,數位輸出信號Dout可為4位元信號,電容器C11至C14的電容可分別為23 *x、22 *x、21 *x、及20 *x,且電容器C21至C24的電容可分別為23 *(1-x)、22 *(1-x)、21 *(1-x)、及20 *(1-x)。
輸入開關SWin可連接在第一端子T1與輸入電壓端子之間,輸入電壓Vin被施加到輸入電壓端子。輸入開關SWin可對應於取樣保持電路(sample-and-hold circuit)。在示例性實施例中,輸入開關SWin可基於時鐘信號CLK而接通或斷開。具體來說,輸入開關SWin可在採樣階段Samp中接通且在轉換階段Conv中斷開。
比較器CP可基於第一端子T1的電壓Vtop,依序產生n位元數位輸出信號Dout。在示例性實施例中,比較器CP可基於時鐘信號CLK而被致能。具體來說,比較器CP可在採樣階段Samp中斷開,且在轉換階段Conv中接通。在示例性實施例中,如圖6A所示,比較器CP可以單端方式(single-ended manner)實施。在示例性實施例中,如圖6B所示,比較器CP可以差動方式實施。將參照圖6A及圖6B來闡述上述方式。
數位邏輯DL可從比較器CP接收數位輸出信號Dout,基於數位輸出信號Dout產生第一控制信號CS1及第二控制信號CS2,且分別將所產生的第一控制信號CS1及第二控制信號CS2提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一控制信號CS1及第二控制信號CS2中的每一個可被實施為n位元信號。舉例來說,數位邏輯DL可包括D正反器(D-flipflop)。
在示例性實施例中,在採樣階段Samp中,數位邏輯DL可基於先前資料D[t-1](其中t表示時間)產生第一控制信號CS1及第二控制信號CS2。在示例性實施例中,在轉換階段Conv中,數位邏輯DL可基於當前資料D[t]產生第一控制信號CS1及第二控制信號CS2。舉例來說,在轉換階段Conv中,數位邏輯DL可基於循續漸近式暫存器時鐘信號SAR CLK,依序輸出n位元當前資料D[t]。
開關群組SWG可包括分別連接到電容器C11至C14以及C21至C24的開關SW11至SW14以及SW21至SW24。開關SW11至SW14以及SW21至SW24的數目可對應於電容器C11至C14以及C21至C24的數目,且可為例如2n。開關群組SWG中所包括的開關SW11至SW14以及SW21至SW24可被分類成第一開關群組SWG1及第二開關群組SWG2。第一開關群組SWG1可連接到第一電容器群組CG1,且第二開關群組SWG2可連接到第二電容器群組CG2。每一個開關可選擇性地將對應的電容器連接到參考電壓端子或接地電壓端子。
開關SW11至SW14可基於第一控制信號CS1而連接到正參考電壓所施加到的正參考電壓端子Vrefp或連接到負參考電壓所施加到的負參考電壓端子Vrefn。同樣地,開關SW21至SW24可基於第二控制信號CS2連接到正參考電壓所施加到的正參考電壓端子Vrefp或連接到負參考電壓所施加到的負參考電壓端子Vrefn。在示例性實施例中,圖1所示的參考電壓REF被施加到正參考電壓端子Vrefp,且接地電壓被施加到負參考電壓端子Vrefn。在下文中,正參考電壓端子Vrefp被稱為“參考電壓端子”,且負參考電壓端子Vrefn被稱為“接地電壓端子”。
參照圖5,時鐘信號CLK可包括採樣階段Samp及轉換階段Conv。時鐘信號CLK可為被傳送到類比/數位轉換器(例如,圖2所示類比/數位轉換器)的外部時鐘信號。在示例性實施例中,時鐘信號CLK在採樣階段Samp中可具有高位準且在轉換階段Conv中可具有低位準。然而,示例性實施例並非僅限於此。時鐘信號CLK在採樣階段Samp中可具有低位準且在轉換階段Conv中可具有高位準。在示例性實施例中,採樣階段Samp的長度可不同於轉換階段Conv的長度。舉例來說,轉換階段Conv的長度可大於採樣階段Samp的長度,但示例性實施例並非僅限於此。在示例性實施例中,採樣階段Samp的長度可相同於轉換階段Conv的長度。
循續漸近式暫存器時鐘信號SAR CLK可為基於時鐘信號CLK而在類比/數位轉換器內產生的內部時鐘信號。舉例來說,循續漸近式暫存器時鐘信號SAR CLK可由比較器CP產生。然而,示例性實施例並非僅限於此。在示例性實施例中,循續漸近式暫存器時鐘信號SAR CLK在轉換階段Conv中可包括n個週期。舉例來說,n可為4。包括採樣階段Samp及轉換階段Conv的一個時鐘週期可被劃分成第一階段51至第四階段54。具體來說,採樣階段Samp可對應於第一階段51,且轉換階段Conv可對應於第二階段52至第四階段54。在下文中,將闡述第一階段51至第四階段中的增量調變器的操作。
在第一階段51中,輸入開關SWin被接通,且開關群組SWG的開關SW11至SW14以及SW21至SW24基於先前資料D[t-1]而被接通/斷開。因此,第一端子T1的電壓Vtop對應於輸入電壓Vin。在第二階段52中,輸入開關SWin被斷開,且開關群組SWG的開關SW11至SW14以及SW21至SW24如在第一階段51中一樣,基於先前資料D[t-1]而被接通/斷開。因此,第一端子T1的電壓Vtop對應於輸入電壓Vin與基於先前資料D[t-1]的電壓之間的差。
在第三階段53中,在循續漸近式暫存器時鐘信號SAR CLK的整個階段中,開關SW11至SW14以及SW21至SW24可基於當前資料D[t]的各個位元而被接通或斷開,且可被施加到開關SW11至SW14以及SW21至SW24的參考電壓的位準可基於反饋增益來確定。因此,第一端子T1的電壓Vtop基於當前資料D[t]而依序改變。在第四階段54中,開關群組SWG中的開關SW11至SW14以及SW21至SW24的接通狀態/斷開狀態不會改變,且因此第一端子T1的電壓Vtop對應於根據當前資料D[t]的電壓和輸入電壓Vin與根據先前資料D[t-1]的電壓之間的差之和。
一般來說,增量調變器包括被動元件且具有被固定為1的反饋增益。為調整增量調變器的反饋增益,增量調變器包括至少兩個電壓產生器,所述至少兩個電壓產生器分別用於提供在採樣階段中使用的第一參考電壓以及在轉換階段中使用的第二參考電壓。然而,由於參考電壓產生器的功耗及實作面積大於增量調變器的功耗及實作面積,因此當增量調變器包括多個參考電壓產生器時,可極大地增大增量調變器的功耗及實作面積。
然而,根據本示例性實施例,電容器群組CG被分類成第一電容器群組CG1及第二電容器群組CG2,且第一電容器群組CG1與第二電容器群組CG2的電容的比率基於反饋增益被確定成使得採樣操作及轉換操作可通過基於反饋增益選擇性地控制第一電容器群組CG1及第二電容器群組CG2來執行。因此,儘管在採樣階段及轉換階段中施加了相同的參考電壓,然而反饋增益可小於1或大於1。因此,根據本示例性實施例,具有可變反饋增益的增量調變器100可被實施成具有較低的功耗及小的實作面積。
圖6A說明根據示例性實施例的增量調變器100的實例。
參照圖6A,增量調變器100a可以單端方式實施。增量調變器100a可以與圖4所示增量調變器100實質上相似的方式實施,且因此,將僅闡述增量調變器100a與增量調變器100之間的差異。比較器CP'可從第一輸入端子接收第一端子T1的電壓Vtop,且可從第二輸入端子接收共用電壓Vcm。比較器CP'可通過將第一端子T1的電壓Vtop與共用電壓Vcm進行比較來產生數位輸出信號Dout。舉例來說,共用電壓Vcm可通過公式1來表達。 [公式1]
圖6B說明根據示例性實施例的增量調變器100的另一個實例。
參照圖6B,增量調變器100b可以差動方式實施。不同於圖4所示增量調變器100,增量調變器100b可接收正輸入電壓Vinp及負輸入電壓Vinn,且可產生正數位輸出信號Doutp及負數位輸出信號Doutn。具體來說,增量調變器100b可包括一對電容器群組CG及CG'、一對開關群組SWG及SWG'、一對數位邏輯DL及DL'、一對輸入開關SWinp及SWinn、及比較器CP''。
電容器群組CG可包括第一電容器群組CG1及第二電容器群組CG2,且電容器群組CG'可包括第一電容器群組CG1'及第二電容器群組CG2'。電容器群組CG及CG'可以彼此實質上相同的方式實施。開關群組SWG可包括開關SW11至SW14以及SW21至SW24,且開關群組SWG'可包括開關SW11'至SW14'以及SW21'至SW24'。開關群組SWG及SWG'可以彼此實質上相同的方式實施。
輸入開關SWinn可向第一端子T1施加負輸入電壓Vinn,且輸入開關SWinp可向第二端子T2施加正輸入電壓Vinp。比較器CP''可將第一端子T1的電壓Vtopn與第二端子T2的電壓Vtopp進行比較,且因此可產生負數位輸出信號Doutn及正數位輸出信號Doutp。數位邏輯DL可基於負數位輸出信號Doutn產生第一控制信號CS1及第二控制信號CS2,且數位邏輯DL'可基於正數位輸出信號Doutp產生第一控制信號CS1'及第二控制信號CS2'。
圖7A及圖7B分別說明根據示例性實施例的當圖4所示增量調變器100的反饋增益G是1時的採樣操作及轉換操作。在下文中,將參照圖4、圖5、圖7A、及圖7B來闡述採樣操作及轉換操作。
參照圖7A,當反饋增益G是1時,被施加到參考電壓端子Vrefp的參考電壓Vrefp可具有第一電壓位準,且x可為0與1之間的任意實數(0 < x <1)。在這種情形中,在反饋增益G是1時獲得的結果可與電容器群組G不被分類成第一電容器群組CG1及第二電容器群組CG2時獲得的結果相同。
在採樣階段Samp中,輸入開關SWin可回應於時鐘信號CLK而被接通,且因此,輸入電壓Vin可被施加到第一端子T1。另外,在採樣階段Samp中,數位邏輯DL可分別將第一控制信號CS1及第二控制信號CS2提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一控制信號CS1及第二控制信號CS2可為n位元信號且可彼此相同。具體來說,第一控制信號CS1與第二控制信號CS2可彼此相同地為n位元先前資料D[t-1]。第一開關群組SWG1的開關SW11至SW14可基於第一控制信號CS1連接到參考電壓端子Vrefp或接地電壓端子Vrefn。同樣地,第二開關群組SWG2的開關SW21至SW24可基於第二控制信號CS2連接到參考電壓端子Vrefp或接地電壓端子Vrefn。
在對應於採樣階段Samp的第一階段51中,第一端子T1的電壓Vtop可對應於輸入電壓Vin,且在採樣階段Samp結束之後的第二階段52中,第一端子T1的電壓Vtop可通過公式2來表達。 [公式2] Vtop = Vin – Dout[t-1]∙Vref/2n
在公式2中,Dout[t-1]對應於先前資料,Vref表示被施加到參考電壓端子Vrefp的參考電壓,且n表示位元數。
參照圖7B,在轉換階段Conv中,輸入開關SWin可回應於時鐘信號CLK而被斷開,且因此,輸入電壓Vin可不被施加到第一端子T1。另外,在轉換階段Conv中,數位邏輯DL可分別將第一控制信號CS1及第二控制信號CS2提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一控制信號CS1及第二控制信號CS2可為依序提供的n位元信號且可彼此相同。具體來說,第一控制信號CS1與第二控制信號CS2可彼此相同地為n位元當前資料D[t]。
在對應於轉換階段Conv的第三階段53中,數位邏輯DL可基於循續漸近式暫存器時鐘信號SAR CLK,而依序輸出當前資料D[t]的每一位元作為第一控制信號CS1及第二控制信號CS2。第一開關群組SWG1的開關SW11至SW14可基於第一控制信號CS1,依序連接到參考電壓端子Vrefp或接地電壓端子Vrefn。同樣地,第二開關群組SWG2的開關SW21至SW24可基於第二控制信號CS2,依序連接到參考電壓端子Vrefp或接地電壓端子Vrefn。在第四階段54中,第一端子T1的電壓Vtop可通過公式3來表達。 [公式3] Vtop = Vin – Dout[t-1]∙Vref/2n + Dout[t]∙Vref/2n
在公式3中,Dout[t]對應於當前資料,Vref表示被施加到參考電壓端子Vrefp的參考電壓,且n表示位元數。Dout[t]可通過公式4來表達。 [公式4]
在公式4中,Data[t][n-1]對應於Dout[t]的最高有效位元(most significant bit,MSB),且Data[t][0]對應於Dout[t]的最低有效位元(least significant bit,LSB)。
圖8A及圖8B分別說明根據示例性實施例的當圖4所示增量調變器100的反饋增益G小於1時的採樣操作及轉換操作。在下文中,將參照圖4、圖5、圖8A及圖8B闡述採樣操作及轉換操作。
參照圖8A,當反饋增益G小於1時,被施加到參考電壓端子Vrefp的參考電壓Vref的位準可為第一電壓位準,且x具有與反饋增益G相等的值,且可為0與1之間的任意實數(即,x = G,0 < x <1)。
在採樣階段Samp中,輸入開關SWin可回應於時鐘信號CLK而被接通,且因此,輸入電壓Vin可被施加到第一端子T1。另外,在採樣階段Samp中,數位邏輯DL可將第一控制信號CS1提供至第一開關群組SWG1,且第一控制信號CS1可為n位元先前資料D[t-1]。回應於第一控制信號CS1,第一開關群組SWG1的開關SW11至SW14可連接到參考電壓端子Vrefp或接地電壓端子Vrefn。參考電壓Vref可被施加到參考電壓端子Vrefp,且接地電壓可被施加到接地電壓端子Vrefn。
在採樣階段Samp中,數位邏輯DL可將第二控制信號CS2提供至第二開關群組SWG2,且第二控制信號可為n位元重置資料。舉例來說,重置資料可為[1,…,0,0,0]。在這種情形中,開關SW21可連接到參考電壓端子Vrefp,且開關SW22至SW24可連接到接地電壓端子Vrefn。因此,可認為共用電壓Vcm施加到第二電容器群組CG2。然而,第二控制信號CS2並非僅限於[1,…,0,0,0],且第二開關群組SWG2的開關SW21至SW24可被配置成產生任意重置資料,而不論先前資料D[t-1]如何。
在第一階段51中,對應於採樣階段Samp,第一端子T1的電壓Vtop可對應於輸入電壓Vin,且在採樣階段Samp結束之後的第二階段52中,第一端子T1的電壓Vtop可通過公式5來表達。 [公式5] Vtop = Vin – x∙Dout[t-1]∙Vref/2n
在公式5中,Dout[t-1]對應於先前資料,Vref表示對參考電壓端子Vrefp施加的參考電壓,且n表示位元數。在本示例性實施例中,不同於公式2,公式5示出當將第二控制信號CS2設定為重置資料時,從輸入電壓Vin減去與Dout[t-1]∙Vref/2n 乘以x對應的電壓。因此,與反饋增益是1的情形相比,所減去的電壓量可減小。
參照圖8B,在轉換階段Conv中,輸入開關SWin回應於時鐘信號CLK而被斷開,且因此,可不對第一端子T1施加輸入電壓Vin。另外,在轉換階段Conv中,數位邏輯DL可將第一控制信號CS1及第二控制信號CS2分別提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一控制信號CS1及第二控制信號CS2可為依序提供的n位元信號且可彼此相同。具體來說,第一控制信號CS1與第二控制信號CS2可彼此相同地為n位元當前資料D[t]。
在第三階段53中,對應於轉換階段Conv,數位邏輯DL可基於循續漸近式暫存器時鐘信號SAR CLK,而依序輸出當前資料D[t]的每一位元作為第一控制信號CS1及第二控制信號CS2。第一開關群組SWG1的開關SW11至SW14可回應於第一控制信號CS1,依序連接到參考電壓端子Vrefp或接地電壓端子Vrefn。同樣,第二開關群組SWG2的開關SW21至SW24可回應於第二控制信號CS2,依序連接到參考電壓端子Vrefp或接地電壓端子Vrefn。在第四階段54中,第一端子T1的電壓Vtop可通過公式6來表達。 [公式6] Vtop = Vin – Dout[t-1]∙Vref/2n + Dout[t]∙Vref/2n
在公式6中,Dout[t]對應於當前資料,Vref表示被施加到參考電壓端子Vrefp的參考電壓,且n表示位元數。在本示例性實施例中,儘管反饋增益G小於1,然而在轉換階段中,轉換操作是通過將第一控制信號CS1及第二控制信號CS2設定為n位元當前資料D[t]來執行。因此,反饋增益小於1不會影響轉換操作。
圖9A及圖9B分別說明根據示例性實施例的當圖4所示增量調變器100的反饋增益G大於1時的採樣操作及轉換操作。在下文中,將參照圖4、圖5、圖9A及圖9B闡述採樣操作及轉換操作。
參照圖9A,當反饋增益G大於1時,施加到參考電壓端子Vrefp的參考電壓A∙Vref的位準可為第二電壓位準,且第二電壓位準可對應於圖7A及圖7B的第一電壓位準的整數倍。在這種情形中,A可具有與反饋增益G對應的值(即,A = G)。另外,x乘以反饋增益G等於1,且x可為0與1之間的任意實數(即,x∙G = 1,0 < x < 1)。
在採樣階段Samp中,輸入開關SWin可回應於時鐘信號CLK而被接通,且因此,輸入電壓Vin可被施加到第一端子T1。另外,在採樣階段Samp中,數位邏輯DL可將第一控制信號CS1及第二控制信號CS2提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一控制信號CS1及第二控制信號CS2可為n位元信號且可彼此相同。具體來說,第一控制信號CS1與第二控制信號CS3可彼此相同地為n位元先前資料D[t-1]。第一開關群組SWG1的開關SW11至SW14可基於第一控制信號CS1而連接到參考電壓端子Vrefp或接地電壓端子Vrefn。同樣,第二開關群組SWG2的開關SW21至SW24可基於第二控制信號CS2而連接到參考電壓端子Vrefp或接地電壓端子Vrefn。
在第一階段51中,對應於採樣階段Samp,第一端子T1的電壓Vtop對應於輸入電壓Vin,且在採樣階段Samp結束之後的第二階段52中,第一端子T1的電壓Vtop可通過公式7來表達。 [公式7] Vtop = Vin – A∙Dout[t-1]∙Vref/2n
在公式7中,Dout[t-1]對應於先前資料,A∙Vref表示向參考電壓端子Vrefp施加的參考電壓,且n表示位元數。在本示例性實施例中,由於反饋增益G大於1,因此對參考電壓端子Vrefp施加的參考電壓A∙Vref的位準高於圖7A及圖8A所示參考電壓Vref的位準。因此,不同於公式2,公式7示出從輸入電壓Vin減去與Dout[t-1]∙Vref/2n 乘以A對應的電壓。因此,與反饋增益是1的情形相比,所減去的電壓量可減小。
參照圖9B,在轉換階段Conv中,輸入開關SWin可回應於時鐘信號CLK而被斷開,且因此,可不對第一端子T1施加輸入電壓Vin。另外,在轉換階段Conv中,數位邏輯DL可將第一控制信號CS1提供至第一開關群組SWG1。第一控制信號CS1可為依序輸出的n位元當前資料D[t]。
在採樣階段Samp中,數位邏輯DL可將第二控制信號CS2提供至第二開關群組SWG2,且第二控制信號CS2可為n位元重置資料。舉例來說,重置資料可為[1,…,0,0,0]。在這種情形中,開關SW21可連接到參考電壓端子Vrefp,且開關SW22至SW24可連接到接地電壓端子Vrefn。因此,可認為共用電壓Vcm施加到第二電容器群組CG2。然而,第二控制信號CS2並非僅限於[1,…,0,0,0],且第二開關群組SWG2的開關SW21至SW24可產生不論先前資料D[t-1]如何均可固定的任意重置資料。
在第三階段53中,對應於轉換階段Conv,數位邏輯DL可基於循續漸近式暫存器時鐘信號SAR CLK,而依序輸出當前資料D[t]的每一位元作為第一控制信號CS1。第一開關群組SWG1的開關SW11至SW14可回應於第一控制信號CS1,依序連接到參考電壓端子Vrefp或接地電壓端子Vrefn。在第四階段54中,第一端子T1的電壓Vtop可通過公式8來表達。 [公式8] Vtop = Vin – A∙Dout[t-1]∙Vref/2n + A∙x∙Dout[t]∙Vref/2n
在公式8中,Dout[t]對應於當前資料,A∙Vref表示被施加到參考電壓端子Vrefp的參考電壓,且n表示位元數。在本示例性實施例中,當反饋增益G大於1且因此對參考電壓端子Vrefp施加高的參考電壓A∙Vref時,在轉換階段中仍可通過將第一控制信號CS1設定為n位元當前資料D[t]及將第二控制信號CS2設定為n位元重置資料來執行轉換操作。在這種情形中,由於A∙x是1,因此反饋增益G大於1不會影響轉換操作。
圖10是根據示例性實施例的增量調製方法的流程圖。
參照圖10,根據本示例性實施例的增量調製方法是通過基於可變反饋增益分別在採樣階段及轉換階段中對第一電容器群組CG1及第二電容器群組CG2中的至少一個群組進行控制來執行採樣操作及轉換操作的方法。參照圖1至圖9B提供的說明可應用於本示例性實施例,且將不再對重複的說明予以贅述。根據本示例性實施例的增量調製方法可包括例如由圖4所示增量調變器100執行的在時間上連續進行的操作。在下文中,將參照圖4及圖10闡述增量調製方法。
在操作S110中,確定增量調變器的反饋增益G。舉例來說,當時鐘信號具有高頻率時,反饋增益G可減小,而當時鐘信號具有低頻率時,反饋增益G可增大。在操作S120中,判斷反饋增益G是否是1。根據判斷結果,當反饋增益G是1時,執行操作S130,但如果反饋增益G不是1,則執行操作S150。在操作S150中,判斷反饋增益G是否小於1。根據判斷結果,當反饋增益G小於1時,則執行操作S160,但如果反饋增益G不小於1,則執行操作S180。
在操作S130中,在採樣階段中,可將先前資料D[t-1]分別傳送到第一開關群組SWG1及第二開關群組SWG2。舉例來說,數位邏輯DL可基於先前資料D[t-1]分別產生n位元第一控制信號CS1及n位元第二控制信號CS2,且可將n位元第一控制信號CS1及n位元第二控制信號CS2分別傳送到第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一開關群組SWG1中所包括的開關SW11至SW14以及第二開關群組SWG2中所包括的開關SW21至SW24可基於先前資料D[t-1],將具有第一電壓位準的參考電壓Vref或接地電壓提供至電容器C11至C14以及C21至C24。
在操作S140中,在轉換階段中,可將當前資料D[t]依序提供至第一開關群組SWG1及第二開關群組SWG2。舉例來說,數位邏輯DL可基於當前資料D[t]產生n位元第一控制信號CS1及n位元第二控制信號CS2,且可將所產生的n位元第一控制信號CS1及n位元第二控制信號CS2依序提供至第一開關群組SWG1及第二開關群組SWG2。
在操作S160中,在採樣階段中,將先前資料D[t-1]提供至僅第一開關群組SWG1。舉例來說,數位邏輯DL可基於先前資料D[t-1]產生n位元第一控制信號CS1,並將所產生的n位元第一控制信號CS1提供至第一開關群組SWG1。在這種情形中,數位邏輯DL可向第二開關群組SWG2提供不與先前資料D[t-1]相關的重置資料。在這種情形中,第一開關群組SWG1的開關SW11至SW14可基於先前資料D[t-1]分別向電容器C11至C14及C21至C24提供具有第一電壓位準的參考電壓Vref或接地電壓。
在操作S170中,在轉換階段中,將當前資料D[t]依序提供至第一開關群組SWG1及第二開關群組SWG2。舉例來說,數位邏輯DL可基於當前資料D[t]分別產生n位元第一控制信號CS1及n位元第二控制信號CS2,且可分別將所產生的n位元第一控制信號CS1及n位元第二控制信號CS2依序提供至第一開關群組SWG1及第二開關群組SWG2。
在操作S180中,在採樣階段中,可將先前資料D[t-1]提供至第一開關群組SWG1及第二開關群組SWG2中的每一個群組。舉例來說,數位邏輯DL可基於先前資料D[t-1]產生n位元第一控制信號CS1及n位元第二控制信號CS2,且可分別將所產生的n位元第一控制信號CS1及n位元第二控制信號CS2提供至第一開關群組SWG1及第二開關群組SWG2。在這種情形中,第一開關群組SWG1中所包括的開關SW11至SW14以及第二開關群組SWG2中所包括的開關SW21至SW24可向電容器C11至C14及C21至C24提供具有第二電壓位準的參考電壓A∙Vref或接地電壓。
在操作S190中,在轉換階段中,將當前資料D[t]依序提供至僅第一開關群組SWG1。舉例來說,數位邏輯DL可基於當前資料D[t]產生n位元第一控制信號CS1,且可將所產生的n位元第一控制信號CS1依序提供至第一開關群組SWG1。在這種情形中,數位邏輯DL可向第二開關群組SWG2提供不與當前資料D[t]相關的重置資料。
圖11是根據示例性實施例的增量調製方法的流程圖。
參照圖11,根據本示例性實施例的增量調製方法是通過基於可變反饋增益在採樣階段及轉換階段中對第一電容器群組CG1及第二電容器群組CG2中的至少一個群組進行控制來執行採樣操作及轉換操作的方法。參照圖1至圖9B提供的說明可應用於本示例性實施例,且將不再對重複的說明予以贅述。根據本示例性實施例的增量調製方法可包括例如由圖4所示增量調變器100以在時間上連續的方式執行的操作。在下文中,將參照圖4及圖11闡述增量調製方法。
在操作S210中,確定增量調變器100的反饋增益G。在操作S230中,基於反饋增益G來確定參考電壓Vref。可將所確定的參考電壓相同地應用於採樣階段與轉換階段,且因此,不需要使用多個參考電壓產生器來實施具有可變反饋增益G的增量調變器。舉例來說,當反饋增益G小於或等於1時,可將具有第一電壓位準的參考電壓Vref施加到參考電壓端子Vrefp,且當反饋增益G大於1時,可將具有第二電壓位準的參考電壓A∙Vref施加到參考電壓端子Vrefp。
在操作S250中,可基於反饋增益G來確定第一電容器群組CG1的電容與第二電容器群組CG2的電容的比率。第一電容器群組CG1的第一電容與第二電容器群組CG2的第二電容的比可等於x:1-x,其中x可基於反饋增益G來確定且可為0與1之間的任意實數(即,0 < x < 1)。因此,x對應於可變反饋增益。舉例來說,當反饋增益G小於1時,x可具有與反饋增益G相等的值,且當反饋增益G大於1時,x可為當x乘以反饋增益G時等於1的值。
在操作S270中,基於反饋增益G及參考電壓Vref或A∙Vref,選擇性地控制第一電容器群組CG1及第二電容器群組CG2以執行增量調製。舉例來說,當反饋增益G等於1時,可將具有第一電壓位準的參考電壓Vref施加到參考電壓端子Vrefp。可通過將先前資料D[t-1]提供至第一開關群組SWG1及第二開關群組SWG2來執行採樣操作,且可通過將當前資料D[t]提供至第一開關群組SWG1及第二開關群組SWG2來執行轉換操作。舉例來說,當反饋增益G小於1時,可將具有第一電壓位準的參考電壓Vref施加到參考電壓端子Vrefp。可通過將先前資料D[t-1]提供至僅第一開關群組SWG1來執行採樣操作,且可通過將當前資料D[t]提供至第一開關群組SWG1及第二開關群組SWG2來執行轉換操作。舉例來說,當反饋增益G大於1時,將具有第二電壓位準的參考電壓A∙Vref施加到參考電壓端子Vrefp。可通過將先前資料D[t-1]提供至第一開關群組SWG1及第二開關群組SWG2來執行採樣操作,且可通過將當前資料D[t]提供至僅第一開關群組SWG1來執行轉換操作。
圖12是根據示例性實施例的類比/數位轉換方法的流程圖。
參照圖12,根據本示例性實施例的類比/數位轉換方法是使用具有可變反饋增益的增量調變器來執行類比/數位轉換操作的方法。參照圖1至圖11提供的說明可應用於本示例性實施例,且不再對重複的說明予以贅述。根據本示例性實施例的類比/數位轉換方法可包括例如由圖2所示類比/數位轉換器10以在時間上連續的方式執行的操作。在下文中,將參照圖2、圖4、及圖12闡述類比/數位轉換方法。
在操作S310中,類比/數位轉換器接收類比輸入信號Ain。在操作S330中,基於可變反饋增益G,確定參考電壓REF以及第一電容器群組CG1的第一電容與第二電容器群組CG2的第二電容的比率。當反饋增益G小於或等於1時,可將參考電壓REF確定為具有第一電壓位準的參考電壓Vref,且當反饋增益G大於1時,可將參考電壓REF確定為具有第二電壓位準的參考電壓A∙Vref,其中A對應於反饋增益G。
在操作S350中,基於所確定的反饋增益G及參考電壓REF,選擇性地控制第一電容器群組CG1及第二電容器群組CG2,且從而對類比輸入信號Ain執行增量調製。舉例來說,當反饋增益G等於1時,可通過將具有第一電壓位準的參考電壓Vref施加到參考電壓端子Vrefp以及將先前資料D[t-1]提供至第一開關群組SWG1及第二開關群組SWG2來執行採樣操作,且可通過將當前資料D[t]提供至第一開關群組SWG1及第二開關群組SWG2來執行轉換操作。舉例來說,當反饋增益G小於1時,可通過將具有第一電壓位準的參考電壓Vref施加到參考電壓端子Vrefp以及將先前資料D[t-1]提供至僅第一開關群組SWG1來執行採樣操作,且可通過將當前資料D[t]提供至第一開關群組SWG1及第二開關群組SWG2來執行轉換操作。舉例來說,當反饋增益G大於1時,可通過將具有第二電壓位準的參考電壓A∙Vref施加到參考電壓端子Vrefp以及將先前資料D[t-1]提供至第一開關群組SWG1及第二開關群組SWG2來執行採樣操作,且可通過將當前資料D[t]提供至僅第一開關群組SWG1來執行轉換操作。在操作S370中,類比/數位轉換器基於增量調製結果產生數位輸出信號。
圖13A及圖13B是根據各個示例性實施例的通信裝置1000a及1000b的方塊圖。
參照圖13A,通信裝置1000a可包括天線1100a、射頻積體電路(radio frequency integrated circuit,RFIC)1200a、類比/數位轉換器1300a、及數據機1400a。根據本示例性實施例的射頻積體電路1200a可經由天線1100a接收無線信號,且可將無線信號的頻率降低到基頻,從而將類比資料信號DATA signal_a提供至類比/數位轉換器1300a。類比/數位轉換器1300a可將類比資料信號DATA signal_a轉換成數位資料信號,且數據機1400a可將數位資料信號轉換成可由應用處理器(application processor,AP)處理的資料信號。根據示例實施例,類比/數位轉換器1300a及數據機1400a可被實施為單個晶片。包括類比/數位轉換器1300a及數據機1400a的單個晶片可經由多條類比信號線連接到射頻積體電路1200a。因此,根據本示例性實施例的單個晶片可為數據機晶片。
參照圖13B,不同於圖13A所示示例性實施例,射頻積體電路1200b及類比/數位轉換器1300b可被實施為單個晶片。包括射頻積體電路1200b及類比/數位轉換器1300b的單個晶片可將數位輸入信號DATA signal_b傳送到數據機1400b。數據機1400b可將數位輸入信號DATA signal_b轉換成可由應用處理器處理的資料信號。包括射頻積體電路1200b及類比/數位轉換器1300b的單個晶片可經由多條數位信號線連接到數據機1400b。因此,根據本示例性實施例的單個晶片可為射頻晶片。
當圖13B所示射頻積體電路1200b及類比/數位轉換器1300b被實施為單個晶片時,用於將數位輸入信號DATA signal_b傳送到數據機1400b的信號線的數目可小於用於將圖13A所示類比資料信號DATA signal_a傳送至類比/數位轉換器1300a的信號線的數目。然而,本示例性實施例並非僅限於此。射頻積體電路1200b、類比/數位轉換器1300b及數據機1400b可被實施為單個晶片,且此外,射頻積體電路1200b、類比/數位轉換器1300b、數據機1400b及應用處理器可被實施為單個晶片。
圖14是根據示例性實施例的物聯網(IoT)裝置2000的方塊圖。
參考圖14,根據一個或多個示例實施例的類比/數位轉換器可包含於物聯網裝置2000中。物聯網可表示由相互聯網的產品利用有線/無線通訊構成的系統。物聯網裝置可具有可存取的有線或無線介面,且可經由有線或無線介面與至少一個裝置交換資料。可存取的有線或無線介面可包括可存取行動蜂巢網路的以下介面:區域網路(Local Area Network,LAN);無線區域網路(Wireless Local Area Network,WLAN),例如Wi-Fi;無線個人區域網路(Wireless Personal Area Network,WPAN),例如藍牙;無線通用序列匯流排(Wireless Universal Serial Bus,USB);紫蜂(Zigbee);近場通信(Near Field Communication,NFC);無線射頻識別(Radio-frequency Identification,RFID);電力線通信(Power Line Communication,PLC);數據機通信介面,例如第三代(third generation,3G)、第四代(fourth generation,4G);或長期演化(Long Term Evolution,LTE)。所述藍牙介面可支援低功耗藍牙(Bluetooth Low Energy,BLE)。
具體來說,物聯網裝置2000可包括與外部裝置進行通信的通信介面2200。通信介面2200可為可存取移動通信網路的例如以下通信介面:無線短距離通信介面(wireless short-range communication interface),例如區域網路、藍牙、Wi-Fi、或紫蜂;或者數據機通信介面,例如電力線通信、3G、或長期演化。通信介面2200可包括傳送器、接收器或收發器(傳送器與接收器)。物聯網裝置2000可通過通信介面向存取點或閘道器傳送資訊及/或從存取點或閘道器接收資訊。另外,物聯網裝置2000可通過與使用者裝置或另一個物聯網裝置進行通信來傳送及/或接收物聯網裝置2000的控制資訊或資料。
在本示例性實施例中,通信介面2200的接收器可包括類比/數位轉換器,且類比/數位轉換器可根據參照圖1至圖13B所提供的說明來實施。具體來說,通信介面2200的接收器可包括類比/數位轉換器,且類比/數位轉換器可包括具有可變反饋增益的增量調變器。基於可變反饋增益,可確定對增量調變器施加的參考電壓位準,且可確定增量調變器中所包括的第一電容器群組的電容與第二電容器群組的電容的比率。
物聯網裝置2000可包括用於執行算數運算的處理器,例如應用處理器2100。物聯網裝置2000可進一步包括電源,例如電池或從外部源接收電力的外部電源。另外,物聯網裝置2000可包括用於顯示資料(例如,物聯網裝置2000的內部狀態)的顯示器2400。使用者可經由顯示器2400的使用者介面(user interface,UI)來控制物聯網裝置2000。物聯網裝置2000可通過傳送器來傳送內部狀態及/或資料,且可通過接收器從外部接收控制指令及/或資料。
記憶體2300可儲存用於控制物聯網裝置2000的控制指令代碼、控制資料或使用者資料。記憶體2300可包括揮發性記憶體及非揮發性記憶體中的至少一個。非揮發性記憶體可包括以下中的至少一個:唯讀記憶體(Read Only Memory,ROM)、可程式唯讀記憶體(Programmable ROM,PROM)、可抹除可程式化唯讀記憶體(Electrically Programmable ROM,EPROM)、電子可抹除可程式化唯讀記憶體(Electrically Erasable and Programmable ROM,EEPROM)、快閃記憶體、相變隨機存取記憶體(Phase-change random access memory,PRAM)、磁性隨機存取記憶體(Magnetic RAM,MRAM)、電阻式隨機存取記憶體(Resistive RAM,ReRAM)、及鐵電隨機存取記憶體(Ferroelectric RAM,FRAM)。揮發性記憶體可包括以下中的至少一個:動態隨機存取記憶體(Dynamic RAM,DRAM)、靜態隨機存取記憶體(Static RAM,SRAM)、及同步動態隨機存取記憶體(Synchronous DRAM,SDRAM)。
物聯網裝置2000可進一步包括儲存裝置。所述儲存裝置可為以下非揮發性媒介:例如硬碟(hard disk drive,HDD)、固態硬碟(Solid State Disk,SSD)、嵌入式多媒體卡(embedded Multi Media Card,eMMC)或通用快閃記憶體儲存(Universal Flash Storage,UFS)。儲存裝置可儲存經由輸入/輸出裝置2500提供的使用者資訊、以及經由感測器2600收集的感測資訊。
儘管已參照示例性實施例具體顯示並闡述了所述示例性實施例的各個方面,然而應理解,在不背離以下申請專利範圍的精神及範圍的條件下可在本文中作出形式及細節上的各種改變。
10、10a、1300a、1300b‧‧‧類比/數位轉換器
20、1100a、1100b‧‧‧天線
30‧‧‧射頻電路
40‧‧‧參考電壓產生器
51~54‧‧‧階段
100、100a、100b‧‧‧增量調變器
110、260、270‧‧‧減法器
120‧‧‧量化器
130‧‧‧放大器
200、280、290‧‧‧積分器
200a‧‧‧積分區塊
210、220、230、240、250‧‧‧放大器
1000a、1000b‧‧‧通信裝置
1200a、1200b‧‧‧射頻積體電路
1400a、1400b‧‧‧數據機
2000‧‧‧物聯網裝置
2100‧‧‧應用處理器
2200‧‧‧通信介面
2300‧‧‧記憶體
2400‧‧‧顯示器
2500‧‧‧輸入/輸出裝置
2600‧‧‧感測器
Ain‧‧‧類比輸入信號
A*Vref‧‧‧參考電壓/高參考電壓
C11~C14、C15、C21~C24‧‧‧電容器
CG、CG1'、CG2'‧‧‧電容器群組
CLK‧‧‧時鐘信號
Conv‧‧‧轉換階段
CP、CP'、CP''‧‧‧比較器
CS1、CS1'、CS2、CS2'‧‧‧控制信號
DATA signal_a‧‧‧類比資料信號
DATA signal_b‧‧‧數位輸入信號
DL、DL'‧‧‧數位邏輯
Dout‧‧‧數位輸出信號
Doutp‧‧‧正數位輸出信號
Doutn‧‧‧負數位輸出信號
D[t]‧‧‧當前資料
D[t-1]‧‧‧先前資料
G‧‧‧反饋增益
IN‧‧‧射頻信號
REF‧‧‧參考電壓
Samp‧‧‧採樣階段
SAR CLK‧‧‧循續漸近式暫存器時鐘信號
SW11~SW14、SW11'~SW14'、SW21~SW24、SW21'~SW24'‧‧‧開關
SWG、SWG'、SWG1、SWG1'、SWG2、SWG2'‧‧‧開關群組
SWin、SWinp、SWinn‧‧‧輸入開關
T1‧‧‧第一端子
Vcm‧‧‧共用電壓
Vin‧‧‧輸入電壓
Vinn‧‧‧負輸入電壓
Vinp‧‧‧正輸入電壓
Vrefn‧‧‧負參考電壓端子/接地電壓端子
Vrefp‧‧‧正參考電壓端子/參考電壓端子
Vtop、Vtopp、Vtopn‧‧‧電壓
REF、Vref‧‧‧參考電壓
Vtop、Vtopp、Vtopn‧‧‧電壓
S110~S190、S210~S270、S310~S370‧‧‧操作
通過結合所附圖式閱讀以下詳細說明,將更清楚地理解示例性實施例,在所附圖式中:
圖1是根據示例性實施例的通信裝置的方塊圖。
圖2是根據示例性實施例的類比/數位轉換器的詳細方塊圖。
圖3是根據示例性實施例的類比/數位轉換器的方塊圖。
圖4說明根據示例性實施例的增量調變器。
圖5說明根據示例性實施例的增量調變器中所使用的時鐘信號及循續漸近式暫存器時鐘信號。
圖6A說明根據示例性實施例的增量調變器。
圖6B說明根據另一個示例性實施例的增量調變器。
圖7A及圖7B分別說明根據示例性實施例的當增量調變器的反饋增益是1時的採樣操作及轉換操作。
圖8A及圖8B分別說明根據示例性實施例的當增量調變器的反饋增益小於1時的採樣操作及轉換操作。
圖9A及圖9B分別說明根據示例性實施例的當增量調變器的反饋增益大於1時的採樣操作及轉換操作。
圖10是根據示例性實施例的增量調製方法的流程圖。
圖11是根據示例性實施例的增量調製方法的流程圖。
圖12是根據示例性實施例的類比/數位轉換方法的流程圖。
圖13A及圖13B是根據一個或多個示例性實施例的通信裝置的方塊圖。
圖14是根據示例性實施例的物聯網(Internet of Things,IoT)裝置的方塊圖。

Claims (20)

  1. 一種增量調變器,包括: 電容器群組,包括共同連接到第一端子的多個電容器,其中,所述多個電容器分別被分類至第一電容器群組及第二電容器群組,以使所述增量調變器具有可變反饋增益; 比較器,被配置成基於所述第一端子的第一端子電壓依序產生n位元數位輸出信號,其中n是正整數;以及 開關群組,包括分別連接到所述多個電容器的多個開關,其中所述多個開關分別被分類至第一開關群組及第二開關群組,所述第一開關群組及所述第二開關群組分別與所述第一電容器群組及所述第二電容器群組連接,且所述第一開關群組及所述第二開關群組被配置成分別根據第一控制信號及第二控制信號來操作,所述第一控制信號及所述第二控制信號是基於所述n位元數位輸出信號及所述可變反饋增益確定的。
  2. 如申請專利範圍第1項所述的增量調變器,其中 所述多個開關中的每一個均被配置為:根據所述第一控制信號及所述第二控制信號,將所述多個電容器中的所對應的電容器選擇性地與參考電壓端子或接地電壓端子連接,且 其中,施加到所述參考電壓端子的參考電壓位準在採樣階段及轉換階段中保持相同。
  3. 如申請專利範圍第2項所述的增量調變器,其中 所述可變反饋增益小於或等於1時,所述參考電壓位準為第一電壓位準,且 所述可變反饋增益大於1時,所述參考電壓位準是所述第一電壓位準乘以所述可變反饋增益而得到的第二電壓位準。
  4. 如申請專利範圍第1項所述的增量調變器,其中 所述第一電容器群組的第一電容與所述第二電容器群組的第二電容之比是x:(1-x),該x與所述可變反饋增益對應。
  5. 如申請專利範圍第4項所述的增量調變器, 所述可變反饋增益大於1時,所述x為乘以所述可變反饋增益後等於1,且 所述可變反饋增益小於1時,所述x對應於所述可變反饋增益。
  6. 如申請專利範圍第1項所述的增量調變器,其中 在採樣階段中,所述可變反饋增益大於1時,所述第一控制信號和所述第二控制信號為彼此相同的n位元先前資料,且 在轉換階段中,所述第一控制信號是依序輸出的n位元當前資料,且所述第二控制信號是與所述n位元當前資料無關的重置資料。
  7. 如申請專利範圍第1項所述的增量調變器,其中 在採樣階段中,所述可變反饋增益小於1時,所述第一控制信號是n位元先前資料,且所述第二控制信號是與所述先前資料無關的重置資料,且 在轉換階段中,所述第一控制信號和所述第二控制信號為彼此相同的依序輸出的n位元當前資料。
  8. 如申請專利範圍第1項所述的增量調變器,其中 在採樣階段中,所述可變反饋增益等於1時,所述第一控制信號和所述第二控制信號為彼此相同的n位元先前資料,且 在轉換階段中,所述第一控制信號和所述第二控制信號為彼此相同的n位元當前資料。
  9. 如申請專利範圍第1項所述的增量調變器,更包括: 位於所述第一端子與輸入端子之間的輸入開關,所述輸入端子被配置成接收類比輸入電壓, 其中,所述輸入開關被配置成在採樣階段中接通且在轉換階段中斷開。
  10. 如申請專利範圍第1項所述的增量調變器,更包括: 數位邏輯,所述數位邏輯被配置成: 從所述比較器依序接收所述n位元數位輸出信號; 產生所述第一控制信號及所述第二控制信號;以及 將所產生的所述第一控制信號及所述第二控制信號分別提供至所述第一開關群組及所述第二開關群組。
  11. 一種類比/數位轉換器,其配置為將類比輸入信號轉換成數位輸出信號,所述類比/數位轉換器的特徵在於,包括: 增量調變器,被配置成在採樣階段中接收所述類比輸入信號,並在轉換階段中輸出所述數位輸出信號,所述增量調變器具有可變反饋增益, 其中,所述增量調變器包括: 電容器群組,包括共同連接到第一端子的多個電容器,其中所述多個電容器分別被分類至第一電容器群組及第二電容器群組,以使所述增量調變器具有可變反饋增益; 比較器,被配置成基於所述第一端子的電壓依序產生所述數位輸出信號,所述數位輸出信號具有n位元,其中n是正整數;以及 開關群組,包括分別連接到所述多個電容器的多個開關,其中所述多個開關分別被分類至第一開關群組及第二開關群組,所述第一開關群組及所述第二開關群組分別與所述第一電容器群組及所述第二電容器群組連接,且所述第一開關群組及所述第二開關群組被配置成分別根據第一控制信號及第二控制信號來操作,所述第一控制信號及所述第二控制信號是基於所述數位輸出信號及所述可變反饋增益確定的。
  12. 如申請專利範圍第11項所述的類比/數位轉換器,其中 所述增量調變器更包括輸入開關,所述輸入開關被配置成:在所述採樣階段中接收所述類比輸入信號並將所述類比輸入信號提供至所述第一端子。
  13. 如申請專利範圍第11項所述的類比/數位轉換器,其中 所述增量調變器更包括數位邏輯,所述數位邏輯被配置成: 從所述比較器依序接收所述數位輸出信號; 產生所述第一控制信號及所述第二控制信號;以及 將所產生的所述第一控制信號及所述第二控制信號分別提供至所述第一開關群組及所述第二開關群組。
  14. 如申請專利範圍第11項所述的類比/數位轉換器,其中 所述多個開關中的每一個均被配置為:根據所述第一控制信號及所述第二控制信號,將所述多個電容器中所對應的電容器選擇性地與參考電壓端子或接地電壓端子連接,且 施加到所述參考電壓端子的參考電壓位準在採樣階段及轉換階段中保持相同。
  15. 如申請專利範圍第14項所述的類比/數位轉換器,其中 所述可變反饋增益小於或等於1時,所述參考電壓位準是第一電壓位準,且 所述可變反饋增益大於1時,所述參考電壓位準是所述第一電壓位準乘以所述可變反饋增益而得到的第二電壓位準。
  16. 如申請專利範圍第11項所述的類比/數位轉換器,其中 所述第一電容器群組的第一電容與所述第二電容器群組的第二電容之比是x:(1-x),且 其中x與所述可變反饋增益對應。
  17. 一種增量調變器,包括: 第一電容器群組,包括共同連接到第一端子的多個第一電容器; 第二電容器群組,包括共同連接到所述第一端子的多個第二電容器; 第一開關群組,包括分別對應於所述多個第一電容器的多個第一開關; 第二開關群組,包括分別對應於所述多個第二電容器的多個第二開關; 第一控制器,被配置成基於第一n位元數位輸出信號來產生第一控制信號及第二控制信號,所述第一控制信號被配置成控制所述第一開關群組,所述第二控制信號被配置成控制所述第二開關群組;以及 比較器,被配置成基於所述第一端子的第一電壓位準依序產生所述第一n位元數位輸出信號, 其中n是正整數。
  18. 如申請專利範圍第17項所述的增量調變器,更包括: 第三電容器群組,包括共同連接到第二端子的多個第三電容器; 第四電容器群組,包括共同連接到所述第二端子的多個第四電容器; 第三開關群組,包括分別對應於所述多個第三電容器的多個第三開關; 第四開關群組,包括分別對應於所述多個第四電容器的多個第四開關;以及 第二控制器,被配置成基於第二n位元數位輸出信號來產生第三控制信號及第四控制信號,所述第三控制信號被配置成控制所述第三開關群組,所述第四控制信號被配置成控制所述第四開關群組, 其中所述比較器更被配置成:基於所述第二端子的第二電壓位準來依序產生所述第二n位元數位輸出信號。
  19. 如申請專利範圍第18項所述的增量調變器,更包括: 第一輸入開關,所述第一輸入開關被配置成:在採樣階段中接收第一類比輸入信號並將所述第一類比輸入信號提供至所述第一端子;以及 第二輸入開關,其被配置成:在所述採樣階段中接收第二類比輸入信號並將所述第二類比輸入信號提供至所述第二端子。
  20. 如申請專利範圍第19項所述的增量調變器,其中 所述第一類比輸入信號是負輸入電壓, 所述第二類比輸入信號是正輸入電壓,且 所述比較器是差動比較器。
TW106139280A 2017-01-31 2017-11-14 增量調變器及類比數位轉換器 TWI754697B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0014111 2017-01-31
??10-2017-0014111 2017-01-31
KR1020170014111A KR102653887B1 (ko) 2017-01-31 2017-01-31 가변 피드백 이득을 갖는 델타 변조기, 이를 포함하는 아날로그-디지털 변환기 및 통신 장치

Publications (2)

Publication Number Publication Date
TW201830873A true TW201830873A (zh) 2018-08-16
TWI754697B TWI754697B (zh) 2022-02-11

Family

ID=62980348

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139280A TWI754697B (zh) 2017-01-31 2017-11-14 增量調變器及類比數位轉換器

Country Status (4)

Country Link
US (2) US10110248B2 (zh)
KR (1) KR102653887B1 (zh)
CN (1) CN108377150B (zh)
TW (1) TWI754697B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944418B2 (en) * 2018-01-26 2021-03-09 Mediatek Inc. Analog-to-digital converter capable of generate digital output signal having different bits
US10917105B1 (en) * 2018-08-29 2021-02-09 Shenzhen Goodix Techology Co., Ltd Successive approximation analog-to-digital converter with nonlinearity compensation

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305004A (en) * 1992-09-29 1994-04-19 Texas Instruments Incorporated Digital to analog converter for sigma delta modulator
US6037887A (en) * 1996-03-06 2000-03-14 Burr-Brown Corporation Programmable gain for delta sigma analog-to-digital converter
US5995036A (en) 1998-03-17 1999-11-30 Sonic Innovations, Inc. Passive switched capacitor delta analog-to-digital converter with programmable gain control
US6826388B1 (en) * 1999-11-15 2004-11-30 Renesas Technology Corp. Mobile communication apparatus including dividers in transmitter and receiver
CN1285174C (zh) * 2001-06-18 2006-11-15 三洋电机株式会社 模-数转换电路
DE60106070T2 (de) * 2001-12-27 2005-10-13 Stmicroelectronics S.R.L., Agrate Brianza Verfahren zur Selbstkalibrierung einer Frequenz einer Modulatorschaltung, und dieses Verfahren anwendende Schaltung
ATE342611T1 (de) * 2002-03-20 2006-11-15 Freescale Semiconductor Inc Analog-digital sigma-delta modulator mit fir- filter
US6674381B1 (en) * 2003-02-28 2004-01-06 Texas Instruments Incorporated Methods and apparatus for tone reduction in sigma delta modulators
EP1727287B1 (en) * 2005-05-27 2015-07-15 STMicroelectronics Srl Method of adding a dither signal in output to the last integrator of a sigma-delta converter and relative sigma-delta converter
US7221303B1 (en) 2006-03-24 2007-05-22 Cirrus Logic, Inc. Delta sigma modulator analog-to-digital converters with multiple threshold comparisons during a delta sigma modulator output cycle
KR100826509B1 (ko) * 2006-09-05 2008-05-02 삼성전자주식회사 Cds와 adc를 병렬로 처리할 수 있는 장치와 방법
JP4660444B2 (ja) * 2006-09-08 2011-03-30 パナソニック株式会社 デルタシグマ変調器の制御方法およびデルタシグマ変調器
CN101179280A (zh) * 2006-11-09 2008-05-14 北京三星通信技术研究有限公司 基于特定查找表的数字自动增益控制装置
JP2009118049A (ja) 2007-11-05 2009-05-28 Panasonic Corp 離散時間型増幅回路及びアナログ・ディジタル変換器
CN101420209B (zh) * 2008-11-21 2011-08-31 北京时代民芯科技有限公司 一种高速大动态范围数字化自动增益控制电路
US7880654B2 (en) * 2009-02-27 2011-02-01 Freescale Semiconductor, Inc. Continuous-time sigma-delta modulator with multiple feedback paths having independent delays
JP5358829B2 (ja) * 2009-10-28 2013-12-04 ルネサスエレクトロニクス株式会社 Δς型a/d変換器
KR101248485B1 (ko) 2010-03-29 2013-04-03 서강대학교산학협력단 가변 이득 증폭기를 갖는 adc
US8344921B2 (en) 2010-11-04 2013-01-01 Mediatek Inc. Sigma-delta modulator with SAR ADC and truncater having order lower than order of integrator and related sigma-delta modulation method
CN101980446B (zh) * 2010-11-25 2012-05-30 复旦大学 一种高性能低功耗流水线模数转换器
CN102545900B (zh) 2010-12-20 2015-05-20 意法半导体研发(上海)有限公司 用于模数(a/d)转换的系统和方法
JP5754550B2 (ja) * 2012-04-19 2015-07-29 トヨタ自動車株式会社 Δς変調器及びδς型a/d変換器
EP2706666A1 (en) 2012-09-10 2014-03-12 Imec Circuit for digitizing a sum of signals
KR101435980B1 (ko) 2012-11-02 2014-09-02 서강대학교산학협력단 레인지 스케일링을 이용한 sar adc
US8659461B1 (en) 2012-11-13 2014-02-25 University Of Macau Analog to digital converter circuit
US10177781B2 (en) * 2013-06-24 2019-01-08 Silicon Laboratories Inc. Circuit including a switched capacitor bridge and method
US9197239B2 (en) * 2014-01-08 2015-11-24 Maxlinear, Inc. Method and system for analog-to-digital converter with near-constant common mode voltage
US9385740B2 (en) 2014-11-07 2016-07-05 Mediatek Inc. SAR ADC and method thereof
US9350381B1 (en) * 2014-12-16 2016-05-24 Freescale Semiconductor Inc. Circuit generating an analog signal using a part of a sigma-delta ADC
US9362939B1 (en) 2014-12-31 2016-06-07 Texas Instruments Incorporated Reduction of input dependent capacitor DAC switching current in flash-SAR analog-to-digital converters
US9577662B2 (en) * 2015-02-06 2017-02-21 Broadcom Corporation Method and apparatus for excess loop delay compensation in continuous-time sigma-delta analog-to-digital converters
CN107994883A (zh) * 2017-12-27 2018-05-04 山东师范大学 一种人体生物微弱小信号的斩波放大调理芯片系统

Also Published As

Publication number Publication date
US10110248B2 (en) 2018-10-23
US20190007057A1 (en) 2019-01-03
CN108377150B (zh) 2021-06-18
KR102653887B1 (ko) 2024-04-02
US20180219559A1 (en) 2018-08-02
US10439636B2 (en) 2019-10-08
TWI754697B (zh) 2022-02-11
CN108377150A (zh) 2018-08-07
KR20180089245A (ko) 2018-08-08

Similar Documents

Publication Publication Date Title
US10291181B2 (en) Supply modulator and communication device including the same
US10547322B2 (en) Analog-digital converter having multiple feedback, and communication device including the analog-digital converter
US6967611B2 (en) Optimized reference voltage generation using switched capacitor scaling for data converters
CN102832948B (zh) 可重构的连续时间型高速低功耗sigma-delta调制器
US8860600B1 (en) Successive-approximation-register analog-to-digital converter for programmably amplifying amplitude of input signal and method thereof
US20180212616A1 (en) A/d converter
US10778239B2 (en) Electronic circuit for implementing modulator configured to perform noise shaping in digital domain
US10541652B2 (en) Apparatus and method for filter settling calibration to improve speed of tracking and cancelling of DC offset
TWI754697B (zh) 增量調變器及類比數位轉換器
KR20150122478A (ko) 재구성형 아날로그-디지털 컨버터 및 이를 포함하는 이미지 센서
US20190326922A1 (en) Analog to digital convertor (adc) using a common input stage and multiple parallel comparators
CN102638268B (zh) 基于逐次比较量化器的三阶前馈Sigma-Delta调制器
Harpe et al. Low-power SAR ADCs: trends, examples and future
CN101924554A (zh) 电荷耦合流水线模数转换器的共模误差校准电路
KR101364987B1 (ko) 아날로그 입력신호 범위 확장을 통한 데이터 변환이 가능한 파이프라인 아날로그-디지털 변환기
Samadpoor Rikan et al. A 6‐bit 4 MS/s 26fJ/conversion‐step segmented SAR ADC with reduced switching energy for BLE
US10505557B2 (en) Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
Hwang et al. A range-scaled 13b 100MS/s 0.13 μm CMOS SHA-free ADC based on a single reference
TW202116020A (zh) 訊號轉換裝置
KR20190088390A (ko) 멀티플 피드백을 갖는 아날로그-디지털 변환기 및 상기 아날로그-디지털 변환기를 포함하는 통신 장치
Zhang et al. New applications and technology scaling driving next generation A/D converters
US20200274543A1 (en) Electronic circuit including pipeline converting circuit
US20200166606A1 (en) Ad converter device and millimeter wave radar system
KR20230108190A (ko) 증폭기 및 이를 포함하는 전자 시스템
KR20210110992A (ko) 회로 시스템