TW201826509A - 顯示裝置及電子裝置 - Google Patents

顯示裝置及電子裝置 Download PDF

Info

Publication number
TW201826509A
TW201826509A TW106130878A TW106130878A TW201826509A TW 201826509 A TW201826509 A TW 201826509A TW 106130878 A TW106130878 A TW 106130878A TW 106130878 A TW106130878 A TW 106130878A TW 201826509 A TW201826509 A TW 201826509A
Authority
TW
Taiwan
Prior art keywords
metal oxide
film
oxide film
transistor
insulating film
Prior art date
Application number
TW106130878A
Other languages
English (en)
Other versions
TWI743187B (zh
Inventor
山崎舜平
肥塚純一
岡崎健一
Original Assignee
日商半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源硏究所股份有限公司 filed Critical 日商半導體能源硏究所股份有限公司
Publication of TW201826509A publication Critical patent/TW201826509A/zh
Application granted granted Critical
Publication of TWI743187B publication Critical patent/TWI743187B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/103Detection of image changes, e.g. determination of an index representative of the image change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/39Control of the bit-mapped memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Liquid Crystal (AREA)

Abstract

本發明的一個實施方式的目的是提供一種新穎的顯示裝置。該顯示裝置包括像素部以及驅動該像素部的驅動電路,驅動電路包括雙閘極結構的第一電晶體,像素部包括單閘極結構的第二電晶體及與第二電晶體電連接的像素電極。第一電晶體及第二電晶體的每一個包括具有通道的功能的第一金屬氧化物膜。各金屬氧化物膜包括第一區域及第二區域,第一區域包含In或者Zn、以及氧,第二區域包含In或者元素M、以及氧,並且,第一區域及第二區域以馬賽克狀分散或者分佈。

Description

顯示裝置及電子裝置
本發明的一個實施方式係關於一種顯示裝置及電子裝置。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的技術領域係關於一種物體、方法或製造方法。或者,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。
因此,明確而言,作為本說明書等所公開的本發明的一個實施方式的技術領域的例子可以舉出半導體裝置、顯示裝置、電子裝置、這些裝置的驅動方法或這些裝置的製造方法。注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。
作為可用於電晶體的半導體材料,氧化物半導體受到矚目。例如,已公開了如下半導體裝置:層疊有多個氧化物半導體層,在該多個氧化物半 導體層中,被用作通道的氧化物半導體層包含銦及鎵,並且使銦的比率比鎵的比率高,由此提高場效移動率(有時,簡單地稱為移動率或μFE)的半導體裝置(參照專利文獻1)。
另外,將氧化物半導體電晶體用於液晶顯示器或有機EL(Electroluminescence:電致發光)顯示器等顯示裝置的技術受到注目。氧化物半導體電晶體的關態電流(off-state current)非常低。已公開了藉由利用該特性降低顯示靜態影像時的更新頻率,來降低液晶顯示器或有機EL顯示器的功耗的技術(參照專利文獻2及專利文獻3)。注意,在本說明書中,將上述降低顯示裝置的功耗的驅動方法稱為IDS(idling stop:空轉停止)驅動。
[專利文獻1]日本專利申請公開第2014-7399號公報
[專利文獻2]日本專利申請公開第2011-141522號公報
[專利文獻3]日本專利申請公開第2011-141524號公報
將氧化物半導體膜用於通道區的電晶體的場效移動率越高越好。然而,具有高場效移動率的電晶體有趨於具有常開啟特性的問題。“常開啟”是指即使不對閘極電極施加電壓也存在通道,而電流流過電晶體的狀態。
此外,在將氧化物半導體膜用於通道區的電晶體中,形成在氧化物半導體膜中的氧缺陷對電晶體特性造成負面影響,所以會成為問題。例如, 當在氧化物半導體膜中形成有氧缺陷時,該氧缺陷與氫鍵合以成為載子供應源。當在氧化物半導體膜中形成有載子供應源時,產生具有氧化物半導體膜的電晶體的電特性變動,典型的是,產生臨界電壓的漂移。
例如,在氧化物半導體膜中的氧缺陷量過多時,電晶體的臨界電壓向負方向漂移而電晶體具有常開啟特性。因此,在氧化物半導體膜中,尤其是在通道區中,氧缺陷量較佳為少,或者氧缺陷量較佳為少得不使電晶體具有常開啟特性。
另外,當製造顯示裝置時,在絕緣表面上形成多個不同的電路的情況下,例如,在同一基板上形成像素部和驅動電路的情況下,用於像素部的電晶體需要具有優良的開關特性諸如高開關比,而用於驅動電路的電晶體需要具有較快的工作速度。尤其是,顯示裝置的清晰度越高,顯示影像的寫入時間越短,因此用於驅動電路的電晶體較佳為進行高速工作。尤其是,Ultra High-Definition(也被稱為“4K解析度”、“4K2K”、“4K”等)或Super High-Definition(也被稱為“8K解像度”、“8K4K”、“8K”等)等高解析度顯示裝置的顯示影像的寫入時間更短,因此用於驅動電路的電晶體的工作速度較佳為更快。
鑒於上述問題,本發明的一個實施方式的目的之一是提高包含金屬氧化物膜的電晶體的場效移動率及可靠性。此外,本發明的一個實施方式的目的之一是抑制包含金屬氧化物膜的電晶體的電特性變動並提高該電晶體的可靠性。此外,本發明的一個實施方式的目的之一是提供一種顯示品質高的高解析度顯示裝置。此外,本發明的一個實施方式的目的之一是提供 一種功耗低的顯示裝置。此外,本發明的一個實施方式的目的之一是提供一種新穎的顯示裝置。此外,本發明的一個實施方式的目的之一是提供一種新穎的電子裝置。
注意,上述目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。上述目的以外的目的從說明書等的記載看來是顯而易見的,並可以從說明書等中抽取上述目的以外的目的。
本發明的一個實施方式是一種顯示裝置,該顯示裝置包括:像素部;以及驅動像素部的驅動電路,其中驅動電路包括第一電晶體,像素部包括第二電晶體及與第二電晶體電連接的像素電極,第一電晶體包括:第一閘極電極;第二閘極電極;以及設置在第一閘極電極與第二閘極電極之間的被用作通道的第一金屬氧化物膜,第一閘極電極及第二閘極電極彼此電連接,第二電晶體包括被用作通道的第二金屬氧化物膜,像素電極包括第三金屬氧化物膜,第三金屬氧化物膜包括氫濃度比第二金屬氧化物膜高的區域,第一金屬氧化物膜、第二金屬氧化物膜及第三金屬氧化物膜的每一個包括第一區域及第二區域,第一區域包含In或者Zn、以及氧,第二區域包含In或者元素M、以及氧,並且,第一區域及第二區域以馬賽克狀分散或者分佈。
另外,也可以在第一金屬氧化物膜及第二電晶體上設置有絕緣膜,該絕緣膜也可以在第二電晶體上包括開口,第二金屬氧化物膜也可以設置在閘極絕緣膜上,第一閘極電極和第二閘極電極中的一個及第三金屬氧化物膜也可以設置在絕緣膜上,並且第三金屬氧化物膜也可以在絕緣膜的開口 中與第二電晶體電連接。
另外,也可以在第一金屬氧化物膜及第二電晶體上依次層疊有第一絕緣膜及第二絕緣膜,第一絕緣膜及第二絕緣膜的每一個也可以在第二電晶體上包括開口,第二金屬氧化物膜也可以設置在閘極絕緣膜上,第一閘極電極和第二閘極電極中的一個也可以設置在第一絕緣膜上,第三金屬氧化物膜也可以設置在第二絕緣膜上,並且,第三金屬氧化物膜也可以在第一絕緣膜及第二絕緣膜的每一個的開口中與第二電晶體電連接。
另外,第一絕緣膜也可以包括無機絕緣膜,並且第二絕緣膜也可以包括有機樹脂膜。
另外,第二電晶體也可以包括第三閘極電極及閘極絕緣膜,並且第二金屬氧化物膜及第三金屬氧化物膜也可以設置在閘極絕緣膜上。
本發明的一個實施方式是一種顯示裝置,該顯示裝置包括:像素部;以及驅動像素部的驅動電路,其中驅動電路包括第一電晶體,像素部包括第二電晶體及與第二電晶體電連接的像素電極,在第二電晶體上依次設置有第一絕緣膜及第二絕緣膜,第一絕緣膜及第二絕緣膜的每一個在第二電晶體上包括開口,第一電晶體包括第一閘極電極、第二閘極電極以及設置在第一閘極電極與第二閘極電極之間的被用作通道的第一金屬氧化物膜,第一閘極電極及第二閘極電極彼此電連接,第二電晶體包括被用作通道的第二金屬氧化物膜,第一閘極電極和第二閘極電極中的一個設置在第一絕緣膜上,像素電極設置在第二絕緣膜上,像素電極在第一絕緣膜和第二絕 緣膜中的每一個的開口中與第二電晶體電連接,第一金屬氧化物膜及第二金屬氧化物膜的每一個包括第一區域及第二區域,第一區域包含In或者Zn、以及氧,第二區域包含In或者元素M、以及氧,並且,第一區域及第二區域以馬賽克狀分散或者分佈。
另外,第一絕緣膜也可以包括無機絕緣膜,並且第二絕緣膜也可以包括有機樹脂膜。
另外,第三金屬氧化物膜的氫濃度也可以為1×1020atoms/cm3以上。
另外,第一金屬氧化物膜、第二金屬氧化物膜及第三金屬氧化物膜的每一個也可以包括在In、M及Zn原子的總和中In的含量為40%以上且50%以下的區域及M的含量為5%以上且30%以下的區域。
另外,在第一金屬氧化物膜、第二金屬氧化物膜及第三金屬氧化物膜的每一個中,在In、M及Zn的原子個數比為4:x:y的情況下,x也可以為1.5以上且2.5以下且y也可以為2以上且4以下。
另外,在第一金屬氧化物膜、第二金屬氧化物膜及第三金屬氧化物膜的每一個中,在In、M及Zn的原子個數比為5:x:y的情況下,x也可以為0.5以上且1.5以下且y也可以為5以上且7以下。
另外,元素M也可以為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
另外,第一電晶體也可以具有雙閘極結構,並且第二電晶體也可以具有單閘極結構。
另外,本發明的其他實施方式是包括上述顯示裝置中的任一個以及觸控感測器的顯示模組。另外,本發明的其他實施方式是一種電子裝置,該電子裝置包括:上述顯示裝置中的任一個或者上述顯示模組;以及接收器、操作鍵或電池。
藉由本發明的一個實施方式,可以提高包含金屬氧化物膜的電晶體的場效移動率及可靠性。此外,藉由本發明的一個實施方式,可以抑制包含金屬氧化物膜的電晶體的電特性變動並提高該電晶體的可靠性。此外,藉由本發明的一個實施方式,可以提供一種顯示品質高的高解析度顯示裝置。此外,藉由本發明的一個實施方式,可以提供一種功耗低的顯示裝置。此外,藉由本發明的一個實施方式,可以提供一種新穎的顯示裝置。此外,藉由本發明的一個實施方式,可以提供一種新穎的顯示裝置。
注意,上述效果的記載不妨礙其他效果的存在。本發明的一個實施方 式並不需要實現所有上述效果。另外,從說明書、圖式、申請專利範圍等的記載中可明顯得知上述以外的效果,而可以從說明書、圖式、申請專利範圍等的記載中衍生上述以外的效果。
100A‧‧‧電晶體
100C‧‧‧電晶體
100D‧‧‧電晶體
100E‧‧‧電晶體
102‧‧‧基板
104‧‧‧導電膜
106‧‧‧絕緣膜
108‧‧‧金屬氧化物膜
108_1‧‧‧金屬氧化物膜
108_1_0‧‧‧金屬氧化物膜
108_2‧‧‧金屬氧化物膜
108_2_0‧‧‧金屬氧化物膜
112a‧‧‧導電膜
112a_1‧‧‧導電膜
112a_2‧‧‧導電膜
112a_3‧‧‧導電膜
112b‧‧‧導電膜
112b_1‧‧‧導電膜
112b_2‧‧‧導電膜
112b_3‧‧‧導電膜
114‧‧‧絕緣膜
116‧‧‧絕緣膜
117‧‧‧開口
118‧‧‧絕緣膜
119‧‧‧絕緣膜
120‧‧‧導電膜
120a‧‧‧導電膜
120a_1‧‧‧導電膜
142a‧‧‧開口
191‧‧‧靶材
192‧‧‧電漿
193‧‧‧靶材
194‧‧‧電漿
200A‧‧‧電晶體
200B‧‧‧電晶體
204‧‧‧導電膜
205‧‧‧電容佈線
208‧‧‧金屬氧化物膜
208_1‧‧‧金屬氧化物膜
208_2‧‧‧金屬氧化物膜
209‧‧‧金屬氧化物膜
209_1‧‧‧金屬氧化物膜
209_2‧‧‧金屬氧化物膜
210‧‧‧導電膜
210_1‧‧‧導電膜
210_2‧‧‧導電膜
211‧‧‧開口
212a‧‧‧導電膜
212b‧‧‧導電膜
213‧‧‧導電膜
220a‧‧‧導電膜
220a_1‧‧‧導電膜
242a‧‧‧開口
242b‧‧‧開口
250‧‧‧電容器
250a‧‧‧電容器
331‧‧‧測定結果群
332‧‧‧測定結果群
341‧‧‧測定結果群
342‧‧‧測定結果群
501‧‧‧像素電路
502‧‧‧像素部
504‧‧‧驅動電路部
504a‧‧‧閘極驅動器
504b‧‧‧源極驅動器
506‧‧‧保護電路
507‧‧‧端子部
550‧‧‧電晶體
552‧‧‧電晶體
554‧‧‧電晶體
560‧‧‧電容器
562‧‧‧電容器
570‧‧‧液晶元件
572‧‧‧發光元件
601‧‧‧像素部
601_1‧‧‧區域
601_2‧‧‧區域
601_3‧‧‧區域
601_4‧‧‧區域
602‧‧‧負載
603‧‧‧源極驅動器
605‧‧‧閘極驅動器
607‧‧‧端子部
609‧‧‧佈線
611‧‧‧佈線
613‧‧‧佈線
621‧‧‧像素部
621_1‧‧‧區域
621_2‧‧‧區域
621_3‧‧‧區域
621_4‧‧‧區域
623‧‧‧像素
700‧‧‧顯示裝置
701‧‧‧基板
702‧‧‧像素部
704‧‧‧源極驅動電路部
705‧‧‧基板
706‧‧‧閘極驅動電路部
708‧‧‧FPC端子部
710‧‧‧信號線
711‧‧‧佈線部
712‧‧‧密封劑
716‧‧‧FPC
730‧‧‧絕緣膜
732‧‧‧密封膜
734‧‧‧絕緣膜
735‧‧‧絕緣膜
736‧‧‧彩色膜
738‧‧‧遮光膜
750‧‧‧電晶體
752‧‧‧電晶體
760‧‧‧連接電極
770‧‧‧絕緣膜
772‧‧‧導電膜
773‧‧‧絕緣膜
774‧‧‧導電膜
775‧‧‧液晶元件
776‧‧‧液晶層
778‧‧‧結構體
780‧‧‧異方性導電膜
782‧‧‧發光元件
786‧‧‧EL層
788‧‧‧導電膜
791‧‧‧觸控面板
792‧‧‧絕緣膜
793‧‧‧電極
794‧‧‧電極
795‧‧‧絕緣膜
796‧‧‧電極
797‧‧‧絕緣膜
800‧‧‧顯示裝置
810‧‧‧顯示單元
815‧‧‧控制器IC
820‧‧‧觸控感測器單元
840‧‧‧主體
843‧‧‧光感測器
844‧‧‧開閉感測器
845‧‧‧光
850‧‧‧介面
851‧‧‧圖框記憶體
852‧‧‧解碼器
853‧‧‧感測器控制器
854‧‧‧控制器
855‧‧‧時脈生成電路
860‧‧‧影像處理部
861‧‧‧伽瑪校正電路
862‧‧‧調光電路
863‧‧‧調色電路
864‧‧‧校正電路
870‧‧‧記憶體
873‧‧‧時序控制器
875‧‧‧暫存器
875A‧‧‧掃描器鏈暫存器部
875B‧‧‧暫存器部
884‧‧‧觸控感測器控制器
890‧‧‧區域
902‧‧‧控制部
903‧‧‧單元陣列
904‧‧‧感測放大器電路
905‧‧‧驅動器
906‧‧‧主放大器
907‧‧‧輸入輸出電路
908‧‧‧週邊電路
909‧‧‧記憶單元
930‧‧‧暫存器
931‧‧‧暫存器
947‧‧‧保持電路
948‧‧‧選擇器
949‧‧‧正反器電路
950‧‧‧反相器
955‧‧‧反相器
957‧‧‧類比開關
958‧‧‧類比開關
961‧‧‧反相器
963‧‧‧反相器
964‧‧‧時脈反相器
965‧‧‧類比開關
966‧‧‧緩衝器
1500‧‧‧廣播系統
1500A‧‧‧廣播系統
1501‧‧‧電子裝置系統
1501A‧‧‧電子裝置系統
1510‧‧‧攝影機
1511‧‧‧發送器
1512‧‧‧接收器
1513‧‧‧顯示裝置
1520‧‧‧影像感測器
1521‧‧‧影像處理器
1522‧‧‧編碼器
1522A‧‧‧編碼器
1522B‧‧‧編碼器
1523‧‧‧調變器
1530‧‧‧影像生成裝置
1540‧‧‧Raw資料
1541‧‧‧視頻資料
1541A‧‧‧視頻資料
1541B‧‧‧視頻資料
1542‧‧‧編過碼的資料
1542A‧‧‧編過碼的資料
1542B‧‧‧編過碼的資料
1543‧‧‧廣播信號
1560‧‧‧TV
1561‧‧‧廣播電臺
1562‧‧‧人造衛星
1563‧‧‧電波塔
1564‧‧‧天線
1565‧‧‧天線
1566A‧‧‧電波
1566B‧‧‧電波
1567A‧‧‧電波
1567B‧‧‧電波
1571‧‧‧接收器
1572‧‧‧無線裝置
1573‧‧‧無線裝置
1574‧‧‧接收器
1575‧‧‧連接器部
7000‧‧‧顯示模組
7001‧‧‧上蓋
7002‧‧‧下蓋
7006‧‧‧顯示面板
7009‧‧‧框架
7010‧‧‧印刷電路板
7011‧‧‧電池
7015‧‧‧發光部
7016‧‧‧受光部
7017a‧‧‧導光部
7017b‧‧‧導光部
7018‧‧‧光
8000‧‧‧攝影機
8001‧‧‧外殼
8002‧‧‧顯示部
8003‧‧‧操作按鈕
8004‧‧‧快門按鈕
8006‧‧‧鏡頭
8100‧‧‧取景器
8101‧‧‧外殼
8102‧‧‧顯示部
8103‧‧‧按鈕
8200‧‧‧頭戴顯示器
8201‧‧‧安裝部
8202‧‧‧透鏡
8203‧‧‧主體
8204‧‧‧顯示部
8205‧‧‧電纜
8206‧‧‧電池
8300‧‧‧頭戴顯示器
8301‧‧‧外殼
8302‧‧‧顯示部
8304‧‧‧固定工具
8305‧‧‧透鏡
9000‧‧‧外殼
9001‧‧‧顯示部
9003‧‧‧揚聲器
9005‧‧‧操作鍵
9006‧‧‧連接端子
9007‧‧‧感測器
9008‧‧‧麥克風
在圖式中:圖1A1、圖1A2、圖1B1及圖1B2是說明顯示裝置的剖面圖;圖2A和圖2B是說明顯示裝置的俯視圖;圖3是金屬氧化物的構成的示意圖;圖4A1、圖4A2、圖4B1及圖4B2是說明顯示裝置的剖面圖;圖5A1、圖5A2、圖5A3、圖5B1、圖5B2及圖5B3是說明顯示裝置的製造方法的剖面圖;圖6A1、圖6A2、圖6B1及圖6B2是說明顯示裝置的製造方法的剖面圖;圖7A1、圖7A2、圖7B1及圖7B2是說明顯示裝置的製造方法的剖面圖;圖8A1、圖8A2、圖8B1及圖8B2是說明顯示裝置的剖面圖;圖9A和圖9B是說明顯示裝置的俯視圖;圖10A1、圖10A2、圖10B1及圖10B2是說明顯示裝置的剖面圖;圖11A1、圖11A2、圖11B1及圖11B2是說明顯示裝置的製造方法的剖面圖;圖12A1、圖12A2、圖12B1及圖12B2是說明顯示裝置的製造方法的剖面圖;圖13A1和圖13B1是說明顯示裝置的製造方法的剖面圖;圖14A至圖14C是說明電晶體的俯視圖及剖面圖;圖15A至圖15C是說明電晶體的俯視圖及剖面圖;圖16A和圖16B是示出擴散到金屬氧化物膜中的氧或過量氧的擴散路徑的示意圖;圖17A至圖17C是說明電晶體的俯視圖及剖面圖;圖18是說明樣本的XRD譜的測定結果的圖;圖19A至圖19L是說明樣本的TEM像及電子束繞射圖案的圖; 圖20A至圖20C是樣本的EDX面分析影像;圖21是說明使用橫向電場模式的液晶元件的顯示裝置的製程的圖;圖22是示出顯示裝置的一個實施方式的俯視圖;圖23是示出顯示裝置的一個實施方式的剖面圖;圖24是示出顯示裝置的一個實施方式的剖面圖;圖25是示出顯示裝置的一個實施方式的剖面圖;圖26是示出顯示裝置的一個實施方式的剖面圖;圖27是示出顯示裝置的一個實施方式的剖面圖;圖28是示出顯示裝置的一個實施方式的剖面圖;圖29A至圖29C是說明顯示裝置的方塊圖及電路圖;圖30是示出控制器IC的結構實例的方塊圖;圖31A至圖31C是說明參數的圖;圖32A和圖32B是示出圖框記憶體的結構實例的圖;圖33是示出暫存器的結構實例的方塊圖;圖34是示出暫存器的結構實例的電路圖;圖35是說明顯示模組的圖;圖36A至圖36E是說明電子裝置的圖;圖37A至圖37G是說明電子裝置的圖;圖38是示出廣播系統的結構實例的方塊圖;圖39是示出廣播系統的結構實例的方塊圖;圖40是示出廣播系統的資料傳輸的示意圖;圖41A至圖41D是示出接收器的結構實例的圖;圖42A和圖42B是有關實施例的方塊圖;圖43是示出有關實施例的顯示器的驅動可能範圍的圖; 圖44A和圖44B是說明有關實施例的電晶體的Id-Vg特性的圖;圖45A和圖45B是說明有關實施例的電晶體特性的變化的圖;圖46A和圖46B是有關實施例的方塊圖;圖47是說明有關實施例的電晶體的GBT測試的結果的圖;圖48A和圖48B是說明有關實施例的電晶體特性的變化的圖;圖49是有關實施例的方塊圖;圖50是有關實施例的電路圖;圖51是有關實施例的方塊圖;圖52是有關實施例的時序圖;圖53是說明有關實施例的移動率及寫入時間的關係的圖;圖54A和圖54B是說明有關實施例的電晶體的Id-Vg特性的圖;圖55是說明有關實施例的電晶體的GBT測試的結果的圖;圖56A和圖56B是說明有關實施例的電晶體特性的變化的圖;圖57是說明有關實施例的電晶體特性的變化的圖;圖58A和圖58B是有關實施例的ESR分析結果。
下面,參照圖式對實施方式進行說明。注意,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。
在本說明書中使用的“第一”、“第二”、“第三”等序數詞是為了避免組件的混淆而附加的,而不是為了在數目方面上進行限定的。
在本說明書中,為方便起見,使用“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區,並且電流能夠藉由通道區流過汲極與源極之間。注意,在本說明書等中,通道區是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以相互調換。
在本說明書等中,“電連接”包括藉由“具有某種電作用的元件”連接的情況。在此,“具有某種電作用的元件”只要可以進行連接目標間的 電信號的授收,就對其沒有特別的限制。例如,“具有某種電作用的元件”不僅包括電極和佈線,而且還包括電晶體等的切換元件、電阻元件、電感器、電容器、其他具有各種功能的元件等。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“垂直”是指兩條直線形成的角度為80°以上且100°以下的狀態。因此也包括該角度為85°以上且95°以下的角度的狀態。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,在沒有特別的說明的情況下,關態電流(off-state current)是指電晶體處於關閉狀態(也稱為非導通狀態、遮斷狀態)的汲極電流。在沒有特別的說明的情況下,在n通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs低於臨界電壓Vth的狀態,在p通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs高於臨界電壓Vth的狀態。例如,n通道電晶體的關態電流有時是指閘極與源極間的電壓Vgs低於臨界電壓Vth時的汲極電流。
電晶體的關態電流有時取決於Vgs。因此,“電晶體的關態電流為I以下”有時是指存在使電晶體的關態電流成為I以下的Vgs的值。電晶體的關態電流有時是指:當Vgs為預定的值時的關閉狀態;當Vgs為預定的範圍 內的值時的關閉狀態;或者當Vgs為能夠獲得充分低的關態電流的值時的關閉狀態等。
作為一個例子,設想一種n通道電晶體,該n通道電晶體的臨界電壓Vth為0.5V,Vgs為0.5V時的汲極電流為1×10-9A,Vgs為0.1V時的汲極電流為1×10-13A,Vgs為-0.5V時的汲極電流為1×10-19A,Vgs為-0.8V時的汲極電流為1×10-22A。在Vgs為-0.5V時或在Vgs為-0.5V至-0.8V的範圍內,該電晶體的汲極電流為1×10-19A以下,所以有時稱該電晶體的關態電流為1×10-19A以下。由於存在使該電晶體的汲極電流成為1×10-22A以下的Vgs,因此有時稱該電晶體的關態電流為1×10-22A以下。
在本說明書等中,有時以每通道寬度W的電流值表示具有通道寬度W的電晶體的關態電流。另外,有時以每預定的通道寬度(例如1μm)的電流值表示具有通道寬度W的電晶體的關態電流。在為後者時,關態電流的單位有時以具有電流/長度的次元的單位(例如,A/μm)表示。
電晶體的關態電流有時取決於溫度。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示在室溫、60℃、85℃、95℃或125℃下的關態電流。或者,有時表示在保證包括該電晶體的半導體裝置等的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下的關態電流。“電晶體的關態電流為I以下”有時是指在室溫、60℃、85℃、95℃、125℃、保證包括該電晶體的半導體裝置的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下存在使電晶體的關態電流成為I以下的Vgs的 值。
電晶體的關態電流有時取決於汲極與源極間的電壓Vds。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V或20V時的關態電流。或者,有時表示保證包括該電晶體的半導體裝置等的可靠性的Vds時或者包括該電晶體的半導體裝置等所使用的Vds時的關態電流。“電晶體的關態電流為I以下”有時是指:在Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、保證包括該電晶體的半導體裝置的可靠性的Vds或包括該電晶體的半導體裝置等被使用的Vds下存在使電晶體的關態電流成為I以下的Vgs的值。
在上述關態電流的說明中,可以將汲極換稱為源極。也就是說,關態電流有時指電晶體處於關閉狀態時流過源極的電流。
在本說明書等中,有時將關態電流記作洩漏電流。在本說明書等中,關態電流例如有時指在電晶體處於關閉狀態時流在源極與汲極間的電流。
在本說明書等中,電晶體的臨界電壓是指在電晶體中形成通道時的閘極電壓(Vg)。明確而言,電晶體的臨界電壓有時是指:在以橫軸表示閘極電壓(Vg)且以縱軸表示汲極電流(Id)的平方根,而標繪出的曲線(Vg-Id特性)中,在將具有最大傾斜度的切線外推時的直線與汲極電流(Id)的平方根為0(Id為0A)處的交叉點的閘極電壓(Vg)。或者,電晶體的臨界電壓有時是指在以L為通道長度且以W為通道寬度,Id[A]×L[μm]/W[μm]的值 為1×10-9[A]時的閘極電壓(Vg)。
注意,在本說明書等中,例如在導電性充分低時,有時即便在表示為“半導體”時也具有“絕緣體”的特性。此外,“半導體”與“絕緣體”的邊境不清楚,因此有時不能精確地區別。由此,有時可以將本說明書等所記載的“半導體”換稱為“絕緣體”。同樣地,有時可以將本說明書等所記載的“絕緣體”換稱為“半導體”。或者,有時可以將本說明書等所記載的“絕緣體”換稱為“半絕緣體”。
另外,在本說明書等中,例如在導電性充分高時,有時即便在表示為“半導體”時也具有“導電體”的特性。此外,“半導體”和“導電體”的邊境不清楚,因此有時不能精確地區別。由此,有時可以將本說明書所記載的“半導體”換稱為“導電體”。同樣地,有時可以將本說明書所記載的“導電體”換稱為“半導體”。
注意,在本說明書等中,半導體的雜質是指構成半導體膜的主要成分之外的元素。例如,濃度低於0.1atomic%的元素是雜質。當包含雜質時,有可能在半導體中形成DOS(Density of States:態密度),載子移動率有可能降低或結晶性有可能降低。在半導體包含氧化物半導體時,作為改變半導體特性的雜質,例如有第1族元素、第2族元素、第13族元素、第14族元素、第15族元素或主要成分之外的過渡金屬等,尤其是,有氫(包含於水中)、鋰、鈉、矽、硼、磷、碳、氮等。在是氧化物半導體的情況下,有時例如由於氫等雜質的混入導致氧缺陷的產生。此外,當半導體是矽時,作為改變半導體特性的雜質,例如有氧、除氫之外的第1族元素、第2族元 素、第13族元素、第15族元素等。
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的活性層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,在金屬氧化物具有放大作用、整流作用和開關作用中的至少一個的情況下,可以將該金屬氧化物稱為金屬氧化物半導體(metal oxide semiconductor),或者可以將其簡稱為OS。另外,可以將OS FET稱為包含金屬氧化物或氧化物半導體的電晶體。
在本說明書等中,有時將包含氮的金屬氧化物稱為金屬氧化物(metal oxide)。另外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
實施方式1
在本實施方式中,參照圖1A1至圖16B說明本發明的一個實施方式的顯示裝置及其製造方法。
〈1-1.顯示裝置的結構實例1〉
圖2A和圖2B是本發明的一個實施方式的顯示裝置所包括的驅動電路及顯示部中的電晶體的俯視圖。圖2A為包括在驅動電路中的電晶體100A的俯視圖,圖2B為包括在像素部中的電晶體200A的俯視圖。圖1A1相當 於沿著圖2A所示的點劃線X1-X2的剖面圖,圖1A2相當於沿著圖2A所示的點劃線Y1-Y2的剖面圖。圖1B1相當於沿著圖2B所示的點劃線X3-X4的剖面圖,圖1B2相當於沿著圖2B所示的點劃線Y3-Y4的剖面圖。注意,在圖2A和圖2B中,為了方便起見,省略電晶體100A、200A的組件的一部分(被用作閘極絕緣膜的絕緣膜等)。此外,有時在各電晶體中將點劃線X1-X2方向及X3-X4方向稱為通道長度方向,將點劃線Y1-Y2方向及Y3-Y4方向稱為通道寬度方向。注意,有時在後面的電晶體的俯視圖中也與圖2A和圖2B同樣地省略組件的一部分。
如圖1A1和圖1A2所示,驅動電路包括電晶體100A。
電晶體100A包括:基板102上的導電膜104;基板102及導電膜104上的絕緣膜106;絕緣膜106上的金屬氧化物膜108;金屬氧化物膜108上的導電膜112a;以及金屬氧化物膜108上的導電膜112b。此外,在電晶體100A上,明確而言,在金屬氧化物膜108、導電膜112a及導電膜112b上形成有絕緣膜114、絕緣膜114上的絕緣膜116以及絕緣膜116上的絕緣膜118。
絕緣膜106、114、116包括開口142a。導電膜120a藉由開口142a與導電膜104電連接。
電晶體100A為所謂的通道蝕刻型電晶體,具有雙閘極結構。
如圖1B1及圖1B2所示,像素部包括電晶體200A、被用作像素電極的 導電膜220a及被用作電容佈線的導電膜213及電容器250a。
電晶體200A包括:基板102上的導電膜204;基板102及導電膜204上的絕緣膜106;絕緣膜106上的金屬氧化物膜208;金屬氧化物膜208上的導電膜212a;以及金屬氧化物膜208上的導電膜212b。此外,在電晶體200A上,明確而言,在金屬氧化物膜208、導電膜212a及導電膜212b上形成有絕緣膜114、絕緣膜114上的絕緣膜116以及絕緣膜116上的絕緣膜118。
絕緣膜114、116包括開口242a。被用作像素電極的導電膜220a藉由開口242a與導電膜212b電連接。另外,被用作電容佈線的導電膜213形成在絕緣膜106上。導電膜213與導電膜112a、112b、212a、212b同時形成,但是也可以與導電膜104、204同時形成。另外,導電膜213、絕緣膜114、116及導電膜220a等構成電容器250a。
電晶體200A為所謂的通道蝕刻型電晶體,具有單閘極結構。
電晶體100A所包括的導電膜120a與被用作像素電極的導電膜220a在同一製程中形成。因此,導電膜120a、220a較佳為後述的氧化物導電膜(OC)。藉由將氧化物導電膜用於導電膜120a、220a,可以對絕緣膜114、116添加氧。添加到絕緣膜114、116的氧移動到金屬氧化物膜108、208,可以填補金屬氧化物膜108、208中的氧缺陷。其結果是,可以提高電晶體100A、200A的可靠性。導電膜120a、220a可以使用用於導電膜104、112a、112b、204、212a、212b的材料相同的材料形成。
絕緣膜106具有電晶體100A、200A的第一閘極絕緣膜的功能,絕緣膜114、116具有電晶體100A的第二閘極絕緣膜的功能,絕緣膜118具有電晶體100A、200A的保護絕緣膜的功能。此外,在電晶體100A中,導電膜104具有第一閘極電極的功能,導電膜112a具有源極電極的功能,導電膜112b具有汲極電極的功能。此外,在電晶體100A中,導電膜120a具有第二閘極電極的功能。在電晶體200A中,導電膜204具有閘極電極的功能,導電膜212a具有源極電極的功能,導電膜212b具有汲極電極的功能。
在電晶體100A中,如圖1A2所示,導電膜120a藉由開口142a與導電膜104電連接。
如圖1A2所示,金屬氧化物膜108位於與導電膜104及導電膜120a相對的位置,夾在兩個被用作閘極電極的導電膜之間。導電膜120a的通道長度方向上的長度及導電膜120a的通道寬度方向上的長度分別比金屬氧化物膜108的通道長度方向上的長度及金屬氧化物膜108的通道寬度方向上的長度長,並且導電膜120a隔著絕緣膜114、116覆蓋金屬氧化物膜108整體。
換言之,導電膜104及導電膜120a藉由形成在絕緣膜106、114、116中的開口彼此連接且包括位於金屬氧化物膜108的側端部的外側的區域。
藉由採用上述結構,可以利用導電膜104及導電膜120a的電場電圍繞電晶體100A所包括的金屬氧化物膜108。可以將如電晶體100A那樣利用第一閘極電極及第二閘極電極的電場電圍繞形成有通道區的金屬氧化物膜的 電晶體的裝置結構稱為Surrounded channel(S-channel:圍繞通道)結構。
因為電晶體100A具有S-channel結構,所以可以使用被用作第一閘極電極的導電膜104對金屬氧化物膜108有效地施加用來引起通道的電場。由此,電晶體100A的電流驅動能力得到提高,從而可以得到高通態電流特性。此外,由於可以提高通態電流,所以可以使電晶體100A微型化。另外,由於金屬氧化物膜108被用作第一閘極電極的導電膜104與用作第二閘極電極的導電膜120a圍繞,所以可以提高電晶體100A的機械強度。
此外,在電晶體100A中,金屬氧化物膜108包括:絕緣膜106上的金屬氧化物膜108_1;以及金屬氧化物膜108_1上的金屬氧化物膜108_2。另外,在電晶體200A中,金屬氧化物膜208包括:絕緣膜106上的金屬氧化物膜208_1;以及金屬氧化物膜208_1上的金屬氧化物膜208_2。此外,金屬氧化物膜108_1、108_2、208_1、208_2都包含相同的元素。例如,金屬氧化物膜108_1、108_2、208_1、208_2較佳為獨立地包含In、M(M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂)和Zn。
此外,金屬氧化物膜108_1、108_2、208_1、208_2較佳為獨立地包括In的原子個數比大於M的原子個數比的區域。例如,較佳為將金屬氧化物膜108_1、108_2、208_1、208_2的In、M和Zn的原子個數比設定為In:M:Zn=4:2:3或其附近。在此,“附近”包括:當In為4時,M為1.5以上且2.5以下,並且Zn為2以上且4以下的情況。或者,較佳為將金屬氧化物膜108_1、108_2、208_1、208_2的In、M和Zn的原子個數比設定為 In:M:Zn=5:1:6或其附近。如此,當金屬氧化物膜108_1、108_2、208_1、208_2的組成大致相同時,可以使用相同的濺射靶材,所以可以抑制製造成本。另外,在使用相同的濺射靶材的情況下,可以在同一處理室中在真空中連續地形成金屬氧化物膜108_1、108_2、208_1、208_2,所以可以抑制雜質混入金屬氧化物膜108_1與金屬氧化物膜108_2的介面和金屬氧化物膜208_1與金屬氧化物膜208_2的介面。
另外,金屬氧化物膜108_1、108_2、208_1、208_2較佳為具有CAC(Cloud-Aligned Composite)構成的金屬氧化物。參照圖3對該金屬氧化物進行說明。
圖3示出具有CAC構成的金屬氧化物的示意圖。注意,在本說明書中,在本發明的一個實施方式的金屬氧化物具有半導體的功能的情況下,定義為CAC-MO(Metal Oxide Semiconductor)或CAC-OS(Oxide Semiconductor)。
例如,如圖3所示,在CAC-MO或CAC-OS中包含在金屬氧化物中的元素不均勻地分佈,以各元素為主要成分的區域001及區域002混合而成為或分散為馬賽克(mosaic)狀。換言之,CAC-OS是包含在金屬氧化物中的元素不均勻地分佈的構成,其中包含不均勻地分佈的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或附近的尺寸。注意,在下面也將在金屬氧化物中一個或多個金屬元素不均勻地分佈且包含該金屬元素的區域混合的狀態稱為馬賽克狀或補丁(patch)狀,該區域的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或附近的尺寸。
另外,CAC-MO或CAC-OS在材料的一部分中具有導電性的功能,在材料的另一部分中具有絕緣性的功能,作為材料的整體具有半導體的功能。此外,在將CAC-MO或CAC-OS用於電晶體的通道的情況下,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使被用作載子的電子流過的功能。藉由導電性的功能和絕緣性的功能的互補作用,可以使CAC-MO或CAC-OS具有開關功能(開啟/關閉的功能)。藉由在CAC-MO或CAC-OS中使各功能分離,可以最大限度地提高各功能。
在本說明書等中,CAC-MO或CAC-OS包括導電性區域及絕緣性區域。例如,圖3所示的區域001及區域002中的一個可以是導電性區域,另一個可以是絕緣性區域。導電性區域具有上述導電性的功能,絕緣性區域具有上述絕緣性的功能。在材料中,導電性區域和絕緣性區域有時以奈米粒子級分離。另外,導電性區域和絕緣性區域有時在材料中不均勻地分佈。此外,有時觀察到其邊緣模糊而以雲狀連接的導電性區域。
CAC-MO或CAC-OS由具有不同能帶間隙的成分構成。例如,CAC-MO或CAC-OS由具有起因於絕緣性區域的寬隙的成分及具有起因於導電性區域的窄隙的成分構成。在該構成中,當使載子流過時,載子主要在具有窄隙的成分中流過。此外,具有窄隙的成分與具有寬隙的成分互補作用,與具有窄隙的成分聯動地在具有寬隙的成分中載子流過。因此,在將上述CAC-MO或CAC-OS用於電晶體的通道區時,在電晶體的導通狀態中可以得到高電流驅動力,亦即大通態電流及高場效移動率。
就是說,也可以將CAC-MO或CAC-OS稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。關於CAC-MO或CAC-OS,將在實施方式2中進行詳細的說明。
藉由使金屬氧化物膜108_1、108_2、208_1、208_2獨立地包括其In的原子個數比大於M的原子個數比的區域且具有CAC構成,可以提高電晶體100A、200A的場效移動率。明確而言,電晶體100A、200A的場效移動率可以超過40cm2/Vs,較佳為超過50cm2/Vs,更佳為超過100cm2/Vs。
具有S-channel結構的電晶體100A具有高場效移動率及高驅動能力,因此藉由將電晶體100A用於驅動電路,典型的是用於生成閘極信號的閘極驅動器,可以提供一種邊框寬度窄(也稱為窄邊框)的顯示裝置。此外,藉由將電晶體100A用於顯示裝置所包括的供應來自信號線的信號的源極驅動器(尤其是,與源極驅動器所包括的移位暫存器的輸出端子連接的解多工器),可以提供一種與顯示裝置連接的佈線數較少的顯示裝置。
另外,由於電晶體100A、200A為通道蝕刻結構的電晶體,因此與使用低溫多晶矽的電晶體相比,製程數較少。另外,由於電晶體100A、200A的通道使用金屬氧化物膜,因此電晶體100A、200A不需要使用低溫多晶矽的電晶體所需要的雷射晶化製程。因此,即使是使用大面積基板的顯示裝置,也可以降低製造成本。再者,藉由在Ultra High Definition(“4K解析度”、“4K2K”、“4K”)和Super High Definition(“8K解析度”、“8K4K”、“8K”)等高解析度的大型顯示裝置中將如電晶體100A、200A那樣場效移動率高的電晶體用於驅動電路及顯示部,可以實現短時間的寫入及顯示不良的降低,所以是較佳的。
〈1-2.顯示裝置的組件〉
接著,對本實施方式的顯示裝置所包括的組件進行詳細的說明。
[基板]
雖然對基板102的材料等沒有特別的限制,但是至少需要能夠承受後續的加熱處理的耐熱性。例如,作為基板102,可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,還可以使用以矽或碳化矽為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI(Silicon On Insulator:絕緣層上覆矽)基板等,並且也可以將設置有半導體元件的上述基板用作基板102。當作為基板102使用玻璃基板時,藉由使用第六代(1500mm×1850mm)、第七代(1870mm×2200mm)、第八代(2200mm×2400mm)、第九代(2400mm×2800mm)、第十代(2950mm×3400mm)等的大面積基板,可以製造大型顯示裝置。
作為基板102,也可以使用撓性基板,並且在撓性基板上直接形成電晶體100A、200A。或者,也可以在基板102與電晶體100A、200A之間設置剝離層。剝離層可以在如下情況下使用,亦即在剝離層上製造半導體裝置的一部分或全部,然後將其從基板102分離並轉置到其他基板上的情況。此時,也可以將電晶體100A、200A轉置到耐熱性低的基板或撓性基板上。
[導電膜]
被用作閘極電極的導電膜104、204、120a、被用作源極電極的導電膜112a、212a及被用作汲極電極的導電膜112b、212b可以使用選自鉻(Cr)、 銅(Cu)、鋁(Al)、金(Au)、銀(Ag)、鋅(Zn)、鉬(Mo)、鉭(Ta)、鈦(Ti)、鎢(W)、錳(Mn)、鎳(Ni)、鐵(Fe)、鈷(Co)中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等形成。
另外,作為導電膜104、112a、112b、120a、204、212a、212b,可以使用包含銦和錫的氧化物(In-Sn氧化物)、包含銦和鎢的氧化物(In-W氧化物)、包含銦、鎢及鋅的氧化物(In-W-Zn氧化物)、包含銦和鈦的氧化物(In-Ti氧化物)、包含銦、鈦及錫的氧化物(In-Ti-Sn氧化物)、包含銦和鋅的氧化物(In-Zn氧化物)、包含銦、錫及矽的氧化物(In-Sn-Si氧化物)、包含銦、鎵及鋅的氧化物(In-Ga-Zn氧化物)等金屬氧化物。作為金屬氧化物,也可以使用氧化物導電體或氧化物半導體。
在此,說明氧化物導電體。在本說明書等中,也可以將氧化物導電體稱為OC(Oxide Conductor)。例如,在金屬氧化物中形成氧缺陷,對該氧缺陷添加氫而在導帶附近形成施體能階。其結果是,金屬氧化物的導電性增高,而成為導電體。可以將成為導電體的金屬氧化物稱為氧化物導電體。 一般而言,由於金屬氧化物的能隙大,因此對可見光具有透光性。另一方面,氧化物導電體是在導帶附近具有施體能階的金屬氧化物。因此,在氧化物導電體中,起因於施體能階的吸收的影響小,而對可見光具有與金屬氧化物大致相同的透光性。
氧化物導電體的氫濃度比被用作通道的金屬氧化物(例如,氧化物半導體)高,典型的是8×1019atoms/cm3以上,較佳為1×1020atoms/cm3以上,較佳為5×1020atoms/cm3以上。
氧化物導電體在具有缺陷且包含雜質時具有導電性。包含氧化物導電體的導電膜的電阻率為1×10-3Ωcm以上且低於1×104Ωcm,進一步較佳為1×10-3Ωcm以上且低於1×10-1Ωcm。
另外,較佳為包含氧化物導電體的導電膜的導電率典型的是1×10-2S/m以上且1×105S/m以下,或者1×103S/m以上且1×105S/m以下。
氧化物導電體包含雜質及缺陷。典型的是,包含氧化物導電體的導電膜是藉由稀有氣體的添加而生成缺陷的膜。或者,藉由電漿的暴露而生成缺陷的膜。
另外,作為氧化物導電體較佳為使用具有CAC構成的金屬氧化物。
另外,作為導電膜104、112a、112b、120a、204、212a、212b,也可以應用Cu-X合金膜(X為Mn、Ni、Cr、Fe、Co、Mo、Ta或Ti)。藉由使用Cu-X合金膜,可以以濕蝕刻製程進行加工,從而可以抑制製造成本。由於Cu-X合金膜的電阻低,所以藉由使用Cu-X合金膜形成導電膜104、112a、112b、120a、204、212a、212b,可以抑制佈線延遲。因此,在製造大型顯示裝置時使用Cu-X合金膜作為佈線是較佳的。
此外,導電膜112a、112b、212a、212b尤其較佳為包含上述金屬元素中的銅、鈦、鎢、鉭和鉬中的一個或多個。尤其是,作為導電膜112a、112b、212a、212b,較佳為使用氮化鉭膜。該氮化鉭膜具有導電性且對銅或氫具有 高阻擋性。此外,因為氮化鉭膜的氫的釋放量少,所以氮化鉭膜最適合用於與金屬氧化物膜108、208接觸的導電膜或金屬氧化物膜108、208附近的導電膜。此外,當作為導電膜112a、112b、212a、212b使用銅膜時,可以降低導電膜112a、112b、212a、212b的電阻,所以是較佳的。
可以藉由無電鍍法形成導電膜112a、112b、212a、212b。作為藉由該無電鍍法可形成的材料,例如可以使用選自Cu、Ni、Al、Au、Sn、Co、Ag和Pd中的一個或多個。尤其是,由於在使用Cu或Ag時,可以降低導電膜的電阻,所以是較佳的。
[被用作閘極絕緣膜的絕緣膜]
作為被用作電晶體100A、200A的閘極絕緣膜的絕緣膜106,可以藉由電漿增強化學氣相沉積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法、濺射法等形成包括氧化矽膜、氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜和氧化釹膜中的一種以上的絕緣層。注意,絕緣膜106也可以具有兩層或三層以上的疊層結構。
此外,較佳的是,與被用作電晶體100A、200A的通道區的金屬氧化物膜108、208接觸的絕緣膜106為氧化物絕緣膜,更佳的是,該氧化物絕緣膜具有氧含量超過化學計量組成的區域(過量氧區域)。換言之,絕緣膜106能夠釋放氧。為了在絕緣膜106中形成過量氧區域,例如可以在氧氛圍下形成絕緣膜106或者在氧氛圍下對成膜之後的絕緣膜106進行加熱處理。
此外,當絕緣膜106使用氧化鉿時發揮如下效果。氧化鉿的相對介電常數比氧化矽或氧氮化矽高。因此,藉由使用氧化鉿,與使用氧化矽的情況相比,可以使絕緣膜106的厚度變大,由此,可以減少穿隧電流引起的洩漏電流。亦即,可以實現關態電流小的電晶體。再者,與具有非晶結構的氧化鉿相比,具有結晶結構的氧化鉿具有高相對介電常數。因此,為了形成關態電流小的電晶體,較佳為使用具有結晶結構的氧化鉿。作為結晶結構的例子,可以舉出單斜晶系或立方晶系等。注意,本發明的一個實施方式不侷限於此。
注意,不侷限於上述結構,作為接觸於金屬氧化物膜108、208的絕緣膜106也可以使用氮化物絕緣膜。例如,可以舉出藉由形成氮化矽膜並對該氮化矽膜的表面進行氧電漿處理等來使氮化矽膜的表面氧化的結構。注意,在對氮化矽膜的表面進行氧電漿處理等的情況下,氮化矽膜的表面有可能在原子級上被氧化,因此有時藉由電晶體的剖面觀察等觀察不到氧化膜。換言之,當觀察電晶體的剖面時,有時觀察到氮化矽膜接觸於金屬氧化物。注意,氧電漿處理是指將被照射物暴露於在包含氧氣體的氛圍中產生的電漿的處理。氧氣體是指氧、臭氧、一氧化二氮等包含氧的氣體。
與氧化矽膜相比,氮化矽膜的相對介電常數較高且為了得到與氧化矽膜相等的靜電容量所需要的厚度較大,因此,藉由使電晶體的閘極絕緣膜包括氮化矽膜,可以增加絕緣膜106的厚度。因此,可以藉由抑制電晶體的絕緣耐壓的下降並提高絕緣耐壓來抑制電晶體的靜電破壞。
在本實施方式中,作為絕緣膜106形成氮化矽膜與氧化矽膜的疊層膜。
[金屬氧化物膜]
作為金屬氧化物膜108、208可以使用上述材料。
當金屬氧化物膜108、208為In-M-Zn氧化物時,用來形成In-M-Zn氧化物的濺射靶材的金屬元素的原子個數比較佳為滿足In>M。作為這種濺射靶材的金屬元素的原子個數比,可以舉出In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等。
另外,當使用In-M-Zn氧化物形成金屬氧化物膜108、208時,作為濺射靶材較佳為使用包含多晶的In-M-Zn氧化物的靶材。藉由使用包含多晶的In-M-Zn氧化物的靶材,容易形成具有結晶性的金屬氧化物膜108、208。注意,所形成的金屬氧化物膜108、208的原子個數比分別包含上述濺射靶材中的金屬元素的原子個數比的±40%的範圍內。例如,在被用於金屬氧化物膜108、208的濺射靶材的組成為In:Ga:Zn=4:2:4.1[原子個數比]時,所形成的金屬氧化物膜108、208的組成有時為In:Ga:Zn=4:2:3[原子個數比]或其附近。
金屬氧化物膜108、208的能隙為2eV以上,較佳為2.5eV以上。如此,藉由使用能隙較寬的氧化物半導體,可以降低電晶體100A、200A的關態電流。
金屬氧化物膜108、208較佳為具有非單晶結構。非單晶結構例如包括下述CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶 氧化物半導體)、多晶結構、微晶結構或非晶結構。在非單晶結構中,非晶結構的缺陷態密度最高,而CAAC-OS的缺陷態密度最低。
即使金屬氧化物膜108_1、108_2、208_1、208_2獨立地包含In的原子個數比比M的原子個數比多的區域,如果金屬氧化物膜108_1、108_2、208_1、208_2的結晶性高,場效移動率則有可能降低。
因此,金屬氧化物膜108_1可以包含其結晶性比金屬氧化物膜108_2低的區域。金屬氧化物膜208_1可以包含其結晶性比金屬氧化物膜208_2低的區域。例如可以使用X射線繞射(XRD:X-Ray Diffraction)或穿透式電子顯微鏡(TEM:Transmission Electron Microscope)對金屬氧化物膜108_1、108_2、208_1、208_2的結晶性進行分析。
在金屬氧化物膜108_1、208_1包括結晶性低的區域的情況下,發揮如下優異的效果。
首先,對在金屬氧化物膜108中可能形成的氧缺陷進行說明。
另外,形成在金屬氧化物膜108中的氧缺陷對電晶體特性造成負面影響而引起問題。例如,當在金屬氧化物膜108中形成有氧缺陷時,該氧缺陷與氫鍵合,而成為載子供應源。當在金屬氧化物膜108中產生載子供應源時,具有金屬氧化物膜108的電晶體100A的電特性發生變動,典型為臨界電壓的漂移。因此,在金屬氧化物膜108中,氧缺陷越少越好。
於是,在本發明的一個實施方式中,位於金屬氧化物膜108附近的絕緣膜,明確而言,形成在金屬氧化物膜108上方的絕緣膜114、116包含過量氧。藉由使氧或過量氧從絕緣膜114、116移動到金屬氧化物膜108,能夠減少金屬氧化物膜中的氧缺陷。
在此,參照圖16A和圖16B對擴散到金屬氧化物膜108中的氧或過量氧的路徑進行說明。圖16A和圖16B是表示擴散到金屬氧化物膜108中的氧或過量氧的擴散路徑的示意圖,圖16A是通道長度方向上的示意圖,圖16B是通道寬度方向上的示意圖。在此,使用金屬氧化物膜108進行說明,但是在金屬氧化物膜208中氧也與金屬氧化物膜108同樣地擴散。
絕緣膜114、116所包含的氧或過量氧從上方,亦即經過金屬氧化物膜108_2而擴散到金屬氧化物膜108_1中(圖16A和圖16B所示的Route 1)。
或者,絕緣膜114、116所包含的氧或過量氧從金屬氧化物膜108_1及金屬氧化物膜108_2的側面擴散到金屬氧化物膜108中(圖16B所示的Route 2)。
例如,在圖16A和圖16B所示的Route 1中,在金屬氧化物膜108_2的結晶性高時,有時妨礙氧或過量氧的擴散。另一方面,在圖16B所示的Route 2中,可以將氧或過量氧從金屬氧化物膜108_1及金屬氧化物膜108_2的側面擴散到金屬氧化物膜108_1及金屬氧化物膜108_2中。
此外,在圖16B所示的Route 2中,當金屬氧化物膜108_1包括其結晶 性比金屬氧化物膜108_2低的區域時,該區域成為過量氧的擴散路徑,可以將過量氧擴散到其結晶性高於金屬氧化物膜108_1的金屬氧化物膜108_2中。此外,雖然圖16A和圖16B未圖示,但是在絕緣膜106包含氧或過量氧的情況下,氧或過量氧有可能從絕緣膜106還擴散到金屬氧化物膜108中。
如此,採用結晶性不同的金屬氧化物膜的疊層結構,將結晶性低的區域用作過量氧的擴散路徑,由此可以提供一種可靠性高的電晶體。
此外,在只使用結晶性低的金屬氧化物膜構成金屬氧化物膜108的情況下,雜質(例如,氫或水分等)附著於或者混入到背後通道一側,亦即相當於金屬氧化物膜108_2的區域中,有時導致可靠性的下降。
混入到金屬氧化物膜108中的氫或水分等雜質對電晶體特性造成負面影響,所以成為問題。因此,在金屬氧化物膜108中,氫或水分等雜質越少越好。
於是,藉由提高金屬氧化物膜108的上層的金屬氧化物膜的結晶性,可以抑制可能混入到金屬氧化物膜108中的雜質。尤其是,藉由提高金屬氧化物膜108_2的結晶性,可以抑制對導電膜112a、112b進行加工時的損傷。當對導電膜112a、112b進行加工時,金屬氧化物膜108的表面,亦即金屬氧化物膜108_2的表面暴露於蝕刻劑或蝕刻氣體。當金屬氧化物膜108_2包括結晶性高的區域時,其蝕刻耐性高於結晶性低的金屬氧化物膜108_1。因此,金屬氧化物膜108_2被用作蝕刻停止膜。
藉由作為金屬氧化物膜108使用雜質濃度低且缺陷態密度低的金屬氧化物膜,可以製造具有優良的電特性的電晶體,所以是較佳的。這裡,將雜質濃度低且缺陷態密度低(氧缺陷少)的狀態稱為“高純度本質”或“實質上高純度本質”。作為金屬氧化物膜中的雜質,典型地可以舉出水、氫等。在本說明書等中,有時將降低或去除金屬氧化物膜中的水及氫的處理稱為脫水化、脫氫化。另外,有時將對金屬氧化物膜或氧化物絕緣膜添加氧的處理稱為加氧化,有時將被加氧化且包含超過化學計量組成的氧的狀態稱為過氧化狀態。
因為高純度本質或實質上高純度本質的金屬氧化物膜的載子發生源較少,所以可以降低載子密度。因此,在該金屬氧化物膜中形成有通道區的電晶體很少具有負臨界電壓的電特性(也稱為常開啟特性)。因為高純度本質或實質上高純度本質的金屬氧化物膜具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。高純度本質或實質上高純度本質的金屬氧化物膜的關態電流顯著小,即便是通道寬度為1×106μm、通道長度L為10μm的元件,當源極電極與汲極電極間的電壓(汲極電壓)在1V至10V的範圍時,關態電流也可以為半導體參數分析儀的測量極限以下,亦即1×10-13A以下。
此外,在金屬氧化物膜108_1具有其結晶性低於金屬氧化物膜108_2的區域時,載子密度有時得到提高。
此外,當金屬氧化物膜108_1的載子密度較高時,費米能階有時相對地高於金屬氧化物膜108_1的導帶。由此,金屬氧化物膜108_1的導帶底變低,金屬氧化物膜108_1的導帶底與可能形成在閘極絕緣膜(在此,絕緣膜106) 中的陷阱能階的能量差有時變大。當該能量差變大時,在閘極絕緣膜中被俘獲的電荷變少,有時可以減少電晶體的臨界電壓變動。此外,當金屬氧化物膜108_1的載子密度得到提高時,可以提高金屬氧化物膜108的場效移動率。
[被用作保護絕緣膜的絕緣膜1]
絕緣膜114、116被用作電晶體100A、200A的保護絕緣膜。另外,絕緣膜114、116具有對金屬氧化物膜108、208供應氧的功能。亦即,絕緣膜114、116包含氧。另外,絕緣膜114是能夠使氧透過的絕緣膜。注意,絕緣膜114還被用作在後面形成絕緣膜116時緩解對金屬氧化物膜108、208造成的損傷的膜。
作為絕緣膜114,可以使用厚度為5nm以上且150nm以下,較佳為5nm以上且50nm以下的氧化矽膜、氧氮化矽膜等。
此外,較佳為使絕緣膜114中的缺陷量較少,典型的是,藉由電子自旋共振(ESR:Electron Spin Resonance)測得的起因於矽懸空鍵且在g=2.001處出現的信號的自旋密度較佳為3×1017spins/cm3以下。若絕緣膜114的缺陷密度高,氧則與該缺陷鍵合,而使絕緣膜114中的氧的透過性減少。
在絕緣膜114中,有時從外部進入絕緣膜114的氧不是全部移動到絕緣膜114的外部,而是其一部分殘留在絕緣膜114內部。另外,有時在氧從外部進入絕緣膜114的同時,絕緣膜114所含有的氧移動到絕緣膜114的外部,由此在絕緣膜114中發生氧的移動。在形成能夠使氧透過的氧化物絕緣膜 作為絕緣膜114時,可以使從設置在絕緣膜114上的絕緣膜116脫離的氧經過絕緣膜114而移動到金屬氧化物膜108、208中。
此外,絕緣膜114可以使用起因於氮氧化物的態密度低的氧化物絕緣膜形成。注意,該起因於氮氧化物的態密度有時會形成在金屬氧化物膜的價帶頂的能量(EV_OS)與金屬氧化物膜的導帶底的能量(EC_OS)之間。作為上述氧化物絕緣膜,可以使用氮氧化物的釋放量少的氧氮化矽膜或氮氧化物的釋放量少的氧氮化鋁膜等。
此外,在熱脫附譜分析法(TDS:Thermal Desorption Spectroscopy)中,氮氧化物的釋放量少的氧氮化矽膜是氨釋放量比氮氧化物的釋放量多的膜,典型的是氨的釋放量為1×1018分子/cm3以上且5×1019分子/cm3以下。注意,該氨釋放量是在進行膜表面溫度為50℃以上且650℃以下,較佳為50℃以上且550℃以下的加熱處理時的釋放量。
氮氧化物(NOx,x大於0且為2以下,較佳為1以上且2以下),典型的是NO2或NO在絕緣膜114等中形成能階。該能階位於金屬氧化物膜108、208的能隙中。由此,當氮氧化物擴散到絕緣膜114與金屬氧化物膜108、208的介面時,有時該能階在絕緣膜114一側俘獲電子。其結果是,被俘獲的電子留在絕緣膜114與金屬氧化物膜108、208的介面附近,由此使電晶體的臨界電壓向正方向漂移。
另外,當進行加熱處理時,氮氧化物與氨及氧起反應。當進行加熱處理時,絕緣膜114所包含的氮氧化物與絕緣膜116所包含的氨起反應,由此 絕緣膜114所包含的氮氧化物減少。因此,在絕緣膜114與金屬氧化物膜108、208的介面處不容易俘獲電子。
藉由作為絕緣膜114使用上述氧化物絕緣膜,可以降低電晶體的臨界電壓的漂移,從而可以降低電晶體的電特性變動。
另外,上述氧化物絕緣膜的利用二次離子質譜(SIMS:Secondary Ion Mass Spectrometry)測得的氮濃度為6×1020atoms/cm3以下。
藉由在基板溫度為220℃以上且350℃以下的情況下利用使用矽烷及一氧化二氮的PECVD法形成上述氧化物絕緣膜,可以形成緻密且硬度高的膜。
絕緣膜116為氧含量超過化學計量組成的氧化物絕緣膜。上述氧化物絕緣膜由於被加熱而其一部分的氧脫離。另外,在TDS中,上述氧化物絕緣膜包括氧釋放量為1.0×1019atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的區域。注意,上述氧釋放量是在TDS中的加熱處理的溫度為50℃以上且650℃以下或者50℃以上且550℃以下的範圍內被釋放的氧的總量。此外,上述氧釋放量為在TDS中換算為氧原子的總量。
作為絕緣膜116可以使用厚度為30nm以上且500nm以下,較佳為50nm以上且400nm以下的氧化矽膜、氧氮化矽膜等。
此外,較佳為使絕緣膜116中的缺陷量較少,典型的是,藉由ESR測 得的起因於矽懸空鍵且在g=2.001處出現的信號的自旋密度低於1.5×1018spins/cm3,更佳為1×1018spins/cm3以下。由於絕緣膜116與絕緣膜114相比離金屬氧化物膜108、208更遠,所以絕緣膜116的缺陷密度也可以高於絕緣膜114。
另外,因為絕緣膜114、116可以使用相同種類的材料形成,所以有時無法明確地確認到絕緣膜114與絕緣膜116的介面。因此,在本實施方式中,以虛線示出絕緣膜114與絕緣膜116的介面。注意,在本實施方式中,雖然說明絕緣膜114與絕緣膜116的兩層結構,但是不侷限於此,例如,也可以採用絕緣膜114的單層結構或三層以上的疊層結構。
[被用作保護絕緣膜的絕緣膜2]
絕緣膜118被用作電晶體100A、200A的保護絕緣膜。
絕緣膜118包含氫和/或氮。或者,絕緣膜118包含氮及矽。絕緣膜118具有阻擋氧、氫、水、鹼金屬、鹼土金屬等的功能。藉由設置絕緣膜118,能夠防止氧從金屬氧化物膜108、208擴散到外部並能夠防止絕緣膜114、116所包含的氧擴散到外部,還能夠抑制氫、水等從外部侵入金屬氧化物膜108、208中。
作為絕緣膜118,例如可以使用氮化物絕緣膜。作為該氮化物絕緣膜,有氮化矽膜、氮氧化矽膜、氮化鋁膜、氮氧化鋁膜等。
雖然上述所記載的導電膜、絕緣膜、金屬氧化物膜及金屬膜等各種膜 可以利用濺射法或PECVD法形成,但是例如也可以利用其它方法,例如熱CVD(Chemical Vapor Deposition:化學氣相沉積)法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法等。
由於熱CVD法是不使用電漿的成膜方法,因此具有不產生因電漿損傷引起的缺陷的優點。此外,可以以如下方法進行熱CVD法:將源氣體供應到處理室內,將處理室內的壓力設定為大氣壓或減壓而在基板上沉積膜。
此外,可以以如下方法進行ALD法:將源氣體供應到處理室內,將處理室內的壓力設定為大氣壓或減壓而在基板上沉積膜。
〈1-3.顯示裝置的結構實例2〉
接著,參照圖4A1至圖4B2對保護絕緣膜的疊層結構不同的顯示裝置進行說明。
圖4A1相當於沿著圖2A所示的點劃線X1-X2的剖面圖,圖4A2相當於沿著圖2A所示的點劃線Y1-Y2的剖面圖。圖4B1相當於沿著圖2B所示的點劃線X3-X4的剖面圖,圖4B2相當於沿著圖2B所示的點劃線Y3-Y4的剖面圖。
圖4A1至圖4B2所示的顯示裝置在設置在像素部中的電晶體200A上包括絕緣膜114、絕緣膜116,在絕緣膜116上包括被用作平坦化膜的絕緣膜119。另外,在絕緣膜114、絕緣膜116、絕緣膜119中形成有開口242b。在 絕緣膜119上形成有被用作像素電極的導電膜220a。導電膜220a藉由開口242b與導電膜212b電連接。另外,在絕緣膜119及導電膜220a上設置有絕緣膜118。絕緣膜118也可以包括開口且在該開口中導電膜220a的一部分露出。
絕緣膜119使用具有平坦化絕緣膜的功能的有機材料形成。絕緣膜119可以使用聚醯亞胺樹脂或丙烯酸樹脂等有機材料藉由旋塗法或印刷法等濕處理形成。除了上述有機材料以外,也可以使用低介電常數材料(low-k材料)等。此外,也可以藉由層疊多個由這些材料形成的絕緣膜,來形成平坦化絕緣膜。作為絕緣膜119,較佳為使用具有透光性的有機樹脂,典型的是聚醯亞胺。藉由作為絕緣膜119使用具有透光性的有機樹脂,在使用透射型液晶顯示裝置的情況下,可以提高背光的透過性。
在圖4A1至圖4B2所示的顯示裝置中,被用作平坦化膜的絕緣膜119不形成在驅動電路中。因此,藉由作為導電膜120a使用氧化物導電膜,可以對絕緣膜114、116添加氧。添加到絕緣膜114、116的氧移動到金屬氧化物膜108,由此可以填補金屬氧化物膜108中的氧缺陷,而可以提高電晶體100A的可靠性。
另外,在圖4A1至圖4B2所示的顯示裝置的像素部中,被用作平坦化膜的絕緣膜119形成在絕緣膜116上。另外,被用作像素電極的導電膜220a形成在絕緣膜119上。由於導電膜220a的平坦性高,所以在使用液晶顯示裝置的情況下,可以抑制液晶層的配向不良。另外,可以利用絕緣膜119擴大被用作閘極佈線的導電膜204與導電膜220a之間的間隔及被用作信號 線的導電膜212a與導電膜220a之間的間隔,而可以抑制佈線延遲。
〈1-4.顯示裝置的結構實例3〉
接著,參照圖8A1至圖9B對被用作像素電極的導電膜的形狀不同的顯示裝置進行說明。
圖9A和圖9B是設置在本發明的一個實施方式的顯示裝置中的驅動電路及顯示部所包括的電晶體的俯視圖。圖9A為包括在驅動電路中的電晶體100A的俯視圖,圖9B為包括在像素部中的電晶體200B的俯視圖。圖8A1相當於沿著圖9A所示的點劃線X1-X2的剖面圖,圖8A2相當於沿著圖9A所示的點劃線Y1-Y2的剖面圖。圖8B1相當於沿著圖9B所示的點劃線X3-X4的剖面圖,圖8B2相當於沿著圖9B所示的點劃線Y3-Y4的剖面圖。
如圖8A1及圖8A2所示,驅動電路包括電晶體100A。
另外,如圖8B1及圖8B2所示,像素部包括電晶體200B、被用作像素電極的導電膜210及電容器250。
電晶體200B與圖1A1至圖1B2及圖4A1至圖4B2所示的電晶體200A的不同之處在於與被用作像素電極的導電膜之間的連接。電晶體200B在絕緣膜106與導電膜212b之間與被用作像素電極的導電膜210連接。
導電膜210與電晶體100A的金屬氧化物膜108及電晶體200B的金屬氧化物膜208同時形成。作為導電膜210,依次層疊島狀導電膜210_1及島 狀導電膜210_2。導電膜210_1與金屬氧化物膜108_1、208_1同時形成,導電膜210_2與金屬氧化物膜108_2、208_2同時形成。
在圖8B1中,絕緣膜118包括開口211,在該開口211中導電膜210露出。另外,如圖10B1所示,絕緣膜118也可以覆蓋導電膜210的頂面。例如,在使用液晶顯示裝置的情況下,較佳為不在被用作像素電極的導電膜210上設置絕緣膜118。然而,根據施加到液晶層的電壓,也可以設置絕緣膜118。
作為導電膜210,較佳為使用氧化物導電膜(OC)。因此,與包括在電晶體100A、200B中的金屬氧化物膜108、208相比,導電膜210的氫濃度更高。
〈1-5.電晶體的變形例子〉
接著,對可用於本實施方式中所示的電晶體的電晶體的變形例子進行說明。圖14A是電晶體100C的俯視圖,圖14B相當於沿著圖14A所示的點劃線X1-X2的剖面圖,圖14C相當於沿著圖14A所示的點劃線Y1-Y2的剖面圖。在此,作為電晶體100A的變形例子對電晶體100C進行說明,但是也可以將電晶體100C的結構應用於電晶體200A、200B。
電晶體100C的與上述電晶體100A之間的不同之處在於導電膜112a、112b都具有三層結構。
電晶體100C的導電膜112a包括:導電膜112a_1;導電膜112a_1上的 導電膜112a_2;以及導電膜112a_2上的導電膜112a_3。此外,電晶體100C的導電膜112b包括:導電膜112b_1;導電膜112b_1上的導電膜112b_2;以及導電膜112b_2上的導電膜112b_3。
例如,導電膜112a_1、導電膜112b_1、導電膜112a_3及導電膜112b_3較佳為包含鈦、鎢、鉭、鉬、銦、鎵、錫和鋅中的一個或多個。此外,導電膜112a_2及導電膜112b_2較佳為包含銅、鋁和銀中的一個或多個。
明確而言,作為導電膜112a_1、導電膜112b_1、導電膜112a_3及導電膜112b_3可以使用In-Sn氧化物或In-Zn氧化物,作為導電膜112a_2及導電膜112b_2可以使用銅。
藉由採用上述結構,可以降低導電膜112a、112b的佈線電阻,且抑制對金屬氧化物膜108的銅的擴散,所以是較佳的。此外,藉由採用上述結構,可以降低導電膜112b與接觸於導電膜112b的導電膜之間的接觸電阻,所以是較佳的。另外,在將上述結構用於像素部的電晶體200A等的情況下,可以降低導電膜212b與導電膜220a的接觸電阻,所以是較佳的。另外,電晶體100C的其他結構與上述電晶體100A同樣,發揮同樣的效果。
此外,圖15A是可用於本實施方式中所示的電晶體的電晶體100D的俯視圖,圖15B相當於沿著圖15A所示的點劃線X1-X2的剖面圖,圖15C相當於沿著圖15A所示的點劃線Y1-Y2的剖面圖。
電晶體100D的與上述電晶體100A之間的不同之處在於導電膜112a、 112b都具有三層結構。此外,電晶體100D與上述電晶體100C之間的不同之處在於導電膜112a、112b的形狀。
電晶體100D的導電膜112a包括:導電膜112a_1;導電膜112a_1上的導電膜112a_2;以及導電膜112a_2上的導電膜112a_3。此外,電晶體100D的導電膜112b包括:導電膜112b_1;導電膜112b_1上的導電膜112b_2;以及導電膜112b_2上的導電膜112b_3。此外,作為導電膜112a_1、導電膜112a_2、導電膜112a_3、導電膜112b_1、導電膜112b_2及導電膜112b_3,可以使用上述材料。
此外,導電膜112a_1的端部具有位於導電膜112a_2的端部的外側的區域,導電膜112a_3覆蓋導電膜112a_2的頂面及側面且包括與導電膜112a_1接觸的區域。此外,導電膜112b_1的端部具有位於導電膜112b_2的端部的外側的區域,導電膜112b_3覆蓋導電膜112b_2的頂面及側面且包括與導電膜112b_1接觸的區域。
藉由採用上述結構,可以降低導電膜112a、112b的佈線電阻,且抑制對金屬氧化物膜108的銅的擴散,所以是較佳的。另外,與上述電晶體100C相比,電晶體100D所示的結構可以更有效地抑制銅的擴散。此外,藉由採用上述結構,可以降低導電膜112b與接觸於導電膜112b的導電膜之間的接觸電阻,所以是較佳的。此外,電晶體100D的其他結構與上述電晶體同樣,發揮同樣的效果。
為了製造電晶體100A、100C、200A、200B,使用6張光罩。另一方面, 在電晶體100D中,為了形成導電膜112a、112b而使用2張光罩,因此電晶體100D的製造需要7張光罩。
此外,圖17A是可用於本實施方式中所示的電晶體的電晶體100E的俯視圖,圖17B相當於沿著圖17A所示的點劃線X1-X2的剖面圖,圖17C相當於沿著圖17A所示的點劃線Y1-Y2的剖面圖。
圖17A至圖17C所示的電晶體100E與上述電晶體100D的不同之處在於絕緣膜118與導電膜120a的疊層順序。在電晶體100E中,在絕緣膜116上設置有絕緣膜118。在絕緣膜118上設置有導電膜120a。在絕緣膜106、絕緣膜114、絕緣膜116及絕緣膜118的開口142a中,導電膜104與導電膜120a電連接。
可以自由地組合本實施方式的電晶體結構。
〈1-6.顯示裝置的製造方法1〉
下面,參照圖5A1至圖7B2對包括在本發明的一個實施方式的顯示裝置的電晶體100A、200A的製造方法進行說明。
圖5A1至圖7B2是說明顯示裝置的製造方法的剖面圖。在圖5A1至圖7B2中,圖5A1至圖5A3、圖6A1和圖6A2及圖7A1和圖7A2是電晶體100A的通道長度方向的剖面圖,圖5B1至圖5B3、圖6B1和圖6B2及圖7B1和圖7B2是電晶體200A的通道長度方向的剖面圖。
首先,在基板102上形成導電膜,藉由光微影製程及蝕刻製程對該導電膜進行加工,來形成被用作電晶體100A的第一閘極電極的導電膜104及被用作電晶體200A的閘極電極的導電膜204。接著,在導電膜104上形成用作第一閘極絕緣膜的絕緣膜106(參照圖5A1、圖5B1)。
在本實施方式中,作為基板102使用玻璃基板。作為導電膜104、204,藉由濺射法形成厚度為50nm的鈦膜和厚度為200nm的銅膜。作為絕緣膜106,藉由PECVD法形成厚度為400nm的氮化矽膜和厚度為50nm的氧氮化矽膜。
另外,上述氮化矽膜具有包括第一氮化矽膜、第二氮化矽膜及第三氮化矽膜的三層結構。該三層結構例如可以如下所示那樣形成。
可以在如下條件下形成厚度為50nm的第一氮化矽膜:例如,作為源氣體使用流量為200sccm的矽烷、流量為2000sccm的氮以及流量為100sccm的氨氣體,向PECVD設備的反應室內供應該源氣體,將反應室內的壓力控制為100Pa,使用27.12MHz的高頻電源供應2000W的功率。
可以在如下條件下形成厚度為300nm的第二氮化矽膜:作為源氣體使用流量為200sccm的矽烷、流量為2000sccm的氮以及流量為2000sccm的氨氣體,向PECVD設備的反應室內供應該源氣體,將反應室內的壓力控制為100Pa,使用27.12MHz的高頻電源供應2000W的功率。
可以在如下條件下形成厚度為50nm的第三氮化矽膜:作為源氣體使用 流量為200sccm的矽烷以及流量為5000sccm的氮,向PECVD設備的反應室內供應該源氣體,將反應室內的壓力控制為100Pa,使用27.12MHz的高頻電源供應2000W的功率。
另外,可以將形成上述第一氮化矽膜、第二氮化矽膜及第三氮化矽膜時的基板溫度設定為350℃以下。
藉由作為氮化矽膜採用上述三層結構,例如在作為導電膜104使用包含銅的導電膜的情況下,能夠發揮如下效果。
第一氮化矽膜可以抑制銅從導電膜104、204擴散。第二氮化矽膜具有釋放氫的功能,可以提高被用作閘極絕緣膜的絕緣膜的耐壓。第三氮化矽膜是氫的釋放量少且可以抑制從第二氮化矽膜釋放的氫擴散的膜。
接著,在絕緣膜106上形成金屬氧化物膜108_1_0及金屬氧化物膜108_2_0(參照圖5A2、圖5B2)。
圖5A1及圖5B1是在絕緣膜106上形成金屬氧化物膜108_1_0及金屬氧化物膜108_2_0時的成膜裝置內的剖面示意圖。圖5A1及圖5B1示意性地示出:作為成膜裝置的濺射裝置;在該濺射裝置中設置的靶材191;形成在靶材191的下方的電漿192。
在圖5A1及圖5B1中,以虛線的箭頭示意性地表示添加到絕緣膜106的氧或過量氧。例如,在形成金屬氧化物膜108_1_0時使用氧氣體的情況下, 可以有效地對絕緣膜106添加氧。
首先,在絕緣膜106上形成金屬氧化物膜108_1_0。金屬氧化物膜108_1_0的厚度可以為1nm以上且25nm以下,較佳為5nm以上且20nm以下。此外,金屬氧化物膜108_1_0使用惰性氣體(典型的是,Ar氣體)和氧氣體中的任一個或兩個形成。此外,形成金屬氧化物膜108_1_0時的沉積氣體整體中所佔的氧氣體的比率(以下,也稱為氧流量比)為0%以上且低於30%,較佳為5%以上且15%以下。
藉由以上述範圍的氧流量比形成金屬氧化物膜108_1_0,可以使金屬氧化物膜108_1_0的結晶性低於金屬氧化物膜108_2_0的結晶性。
接著,在金屬氧化物膜108_1_0上形成金屬氧化物膜108_2_0。當形成金屬氧化物膜108_2_0時,在包含氧氣體的氛圍下進行電漿放電。此時,對成為金屬氧化物膜108_2_0的被形成面的金屬氧化物膜108_1_0添加氧。形成金屬氧化物膜108_2_0時的氧流量比為30%以上且100%以下,較佳為50%以上且100%以下,更佳為70%以上且100%以下。
金屬氧化物膜108_2_0的厚度為20nm以上且100nm以下,較佳為20nm以上且50nm以下。
如上所述,用來形成金屬氧化物膜108_2_0的氧流量比較佳為高於用來形成金屬氧化物膜108_1_0的氧流量比。換言之,金屬氧化物膜108_1_0較佳為在比金屬氧化物膜108_2_0低的氧分壓下形成。
形成金屬氧化物膜108_1_0及金屬氧化物膜108_2_0時的基板溫度可以為室溫(25℃)以上且200℃以下,較佳為室溫以上且130℃以下。上述範圍的基板溫度適合用於使用大面積玻璃基板(例如,上述第8世代至第10世代的玻璃基板)的情況。尤其是,藉由將金屬氧化物膜108_1_0及金屬氧化物膜108_2_0的成膜時的基板溫度設定為室溫,可以抑制基板的變形或彎曲。此外,在想要提高金屬氧化物膜108_2_0的結晶性的情況下,較佳為提高形成金屬氧化物膜108_2_0時的基板溫度。
藉由在真空中連續地形成金屬氧化物膜108_1_0及金屬氧化物膜108_2_0,可以防止雜質混入各介面,所以是更佳的。
另外,需要進行濺射氣體的高度純化。例如,作為被用作濺射氣體的氧氣體或氬氣體,使用露點為-40℃以下,較佳為-80℃以下,更佳為-100℃以下,進一步較佳為-120℃以下的高純度氣體,由此可以儘可能地防止水分等混入金屬氧化物膜。
另外,在藉由濺射法形成金屬氧化物膜的情況下,較佳為使用低溫泵等吸附式真空抽氣泵對濺射裝置的處理室進行高真空抽氣(抽空到5×10-7Pa至1×10-4Pa左右)以儘可能地去除對金屬氧化物膜來說是雜質的水等。尤其是,在濺射裝置的待機時處理室內的相當於H2O的氣體分子(相當於m/z=18的氣體分子)的分壓較佳為1×10-4Pa以下,更佳為5×10-5Pa以下。
在本實施方式中,金屬氧化物膜108_1_0使用In-Ga-Zn金屬氧化物靶材 (In:Ga:Zn=4:2:4.1[原子個數比])並利用濺射法形成。此外,將形成金屬氧化物膜108_1_0時的基板溫度設定為室溫,作為沉積氣體使用流量為180sccm的氬氣體及流量為20sccm的氧氣體(氧流量比為10%)。
此外,金屬氧化物膜108_2_0使用In-Ga-Zn金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])並利用濺射法形成。此外,將形成金屬氧化物膜108_2_0時的基板溫度設定為室溫,作為沉積氣體使用流量為200sccm的氧氣體(氧流量比為100%)。
藉由使金屬氧化物膜108_1_0的成膜時的氧流量比與金屬氧化物膜108_2_0的成膜時的氧流量比不同,可以形成結晶性不同的疊層膜。
雖然在此說明利用濺射法的製造方法,但是不侷限於此,也可以使用脈衝雷射沉積(PLD)法、電漿增強化學氣相沉積(PECVD)法、熱CVD(Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法、真空蒸鍍法等。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法。
接著,藉由將金屬氧化物膜108_1_0及金屬氧化物膜108_2_0加工為所希望的形狀,來形成島狀金屬氧化物膜108_1、島狀金屬氧化物膜108_2、島狀金屬氧化物膜208_1及島狀金屬氧化物膜208_2。在本實施方式中,金屬氧化物膜108_1及金屬氧化物膜108_2構成島狀金屬氧化物膜108(參照圖5A3)。另外,金屬氧化物膜208_1及金屬氧化物膜208_2構成島狀金屬氧化物膜208(參照圖5B3)。
在形成金屬氧化物膜108及金屬氧化物膜208之後,也可以對金屬氧化物膜108及金屬氧化物膜208進行氧電漿處理。其結果是,可以對金屬氧化物膜108及金屬氧化物膜208的表面添加氧,而可以減少金屬氧化物膜108及金屬氧化物膜208的氧缺陷。尤其是,藉由減少金屬氧化物膜108及金屬氧化物膜208的側面的氧缺陷,可以抑制電晶體的洩漏電流的發生,所以是較佳的。
此外,較佳的是,在形成金屬氧化物膜108、208之後進行加熱處理(以下,稱為第一加熱處理)。藉由進行第一加熱處理,可以減少包含在金屬氧化物膜108、208中的氫、水等。另外,以氫、水等的減少為目的的加熱處理也可以在將金屬氧化物膜108_1_0及108_2_0加工為島狀之前進行。注意,第一加熱處理是金屬氧化物膜的高度純化處理之一。
第一加熱處理的溫度例如為150℃以上且小於基板的應變點,較佳為200℃以上且450℃以下,更佳為250℃以上且350℃以下。
第一加熱處理可以使用電爐、RTA(Rapid Thermal Anneal:快速熱退火)裝置等進行。藉由使用RTA裝置,可只在短時間內以基板的應變點以上的溫度進行加熱處理。由此,可以縮短加熱時間。第一加熱處理可以在氮、氧、超乾燥空氣(含水量為20ppm以下,較佳為1ppm以下,更佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。此外,在氮或稀有氣體氛圍下進行加熱處理之後,也可以在氧或超乾燥空氣氛圍下進行加熱。其結果是, 在可以使金屬氧化物膜中的氫、水等脫離的同時,可以將氧供應到金屬氧化物膜中。其結果是,可以減少金屬氧化物膜中的氧缺陷。
接著,在絕緣膜106及金屬氧化物膜108、208上形成導電膜。接著,藉由將該導電膜加工為所希望的形狀,形成導電膜112a、導電膜112b、導電膜212a、導電膜212b及導電膜213。
在本實施方式中,作為導電膜112a和導電膜112b、導電膜212a和導電膜212b及導電膜213,藉由濺射法依次形成厚度為30nm的鈦膜、厚度為200nm的銅膜、厚度為10nm的鈦膜。
在本實施方式中,使用濕蝕刻裝置對導電膜進行加工。但是,導電膜的加工方法不侷限於此,例如也可以使用乾蝕刻裝置。
此外,也可以在形成導電膜112a、112b、212a、212b、213之後洗滌金屬氧化物膜108、208(更明確而言,金屬氧化物膜108_2、208_2)的表面(背後通道一側)。作為洗滌方法,例如可以舉出使用磷酸等化學溶液的洗滌。藉由使用磷酸等化學溶液進行洗滌,可以去除附著於金屬氧化物膜108_2、208_2表面的雜質(例如,包含在導電膜112a、112b、212a、212b中的元素等)。注意,不一定必須進行該洗滌,根據情況可以不進行該洗滌。
另外,在導電膜112a、112b、212a、212b、213的形成過程和/或上述洗滌製程中,有時金屬氧化物膜108、208的從導電膜112a、112b、212a、212b露出的區域有時變薄。
此外,從導電膜112a、112b、212a、212b露出的區域,就是說,金屬氧化物膜108_2、208_2較佳為其結晶性得到提高的金屬氧化物膜。結晶性高的金屬氧化物膜具有雜質,尤其是用於導電膜112a、112b、212a、212b的構成元素不容易擴散到膜中的結構。因此,可以製造一種可靠性高的電晶體。
此外,在圖5A3及圖5B3中,雖然示出從導電膜112a、112b、212a、212b露出的金屬氧化物膜108、208的表面,亦即金屬氧化物膜108_2、208_2的表面具有凹部的情況,但是不侷限於此,從導電膜112a、112b、212a、212b露出的金屬氧化物膜108、208的表面也可以不具有凹部。
接著,在金屬氧化物膜108、208及導電膜112a、112b、212a、212b、213上形成絕緣膜114及絕緣膜116(參照圖6A1、圖6B1)。
在此,較佳為在形成絕緣膜114之後以不暴露於大氣的方式連續地形成絕緣膜116。藉由在形成絕緣膜114之後以不暴露於大氣的方式調整源氣體的流量、壓力、高頻功率和基板溫度中的一個以上來連續地形成絕緣膜116,可以降低絕緣膜114與絕緣膜116的介面處的來自大氣成分的雜質濃度。
例如,作為絕緣膜114,可以藉由PECVD法形成氧氮化矽膜。此時,作為源氣體,較佳為使用含有矽的沉積氣體及氧化性氣體。含有矽的沉積氣體的典型例子為矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體, 有一氧化二氮、二氧化氮等。另外,在相對於上述沉積氣體流量的氧化性氣體流量為20倍以上且500倍以下,較佳為40倍以上且100倍以下。
在本實施方式中,作為絕緣膜114,在如下條件下利用PECVD法形成氧氮化矽膜:保持基板102的溫度為220℃,作為源氣體使用流量為50sccm的矽烷及流量為2000sccm的一氧化二氮,處理室內的壓力為20Pa,並且,供應到平行板電極的高頻功率為13.56MHz、100W(功率密度為1.6×10-2W/cm2)。
作為絕緣膜116,在如下條件下形成氧化矽膜或氧氮化矽膜:將設置於進行了真空抽氣的PECVD設備的處理室內的基板溫度保持為180℃以上且350℃以下,將源氣體引入處理室中並將處理室內的壓力設定為100Pa以上且250Pa以下,較佳為100Pa以上且200Pa以下,並且,對設置於處理室內的電極供應0.17W/cm2以上且0.5W/cm2以下,較佳為0.25W/cm2以上且0.35W/cm2以下的高頻功率。
在絕緣膜116的成膜中,對具有上述壓力的反應室供應具有上述功率密度的高頻功率,由此在電漿中源氣體的分解效率得到提高,氧自由基增加,且促進源氣體的氧化,使得絕緣膜116中的氧含量超過化學計量組成。另一方面,在以上述基板溫度形成的膜中,由於矽與氧的鍵合力較弱,因此,藉由後面製程的加熱處理而使膜中的氧的一部分脫離。其結果是,可以形成氧含量超過化學計量組成且由於被加熱而其一部分的氧脫離的氧化物絕緣膜。
在絕緣膜116的形成製程中,絕緣膜114被用作金屬氧化物膜108、208的保護膜。因此,可以在減少對金屬氧化物膜108、208造成的損傷的同時使用功率密度高的高頻功率形成絕緣膜116。
另外,在絕緣膜116的成膜中,藉由增加相對於氧化性氣體的包含矽的沉積氣體的流量,可以減少絕緣膜116中的缺陷量。典型的是,能夠形成缺陷量較少的氧化物絕緣膜,其中藉由ESR測得的起因於矽懸空鍵且在g=2.001處出現的信號的自旋密度低於6×1017spins/cm3,較佳為3×1017spins/cm3以下,更佳為1.5×1017spins/cm3以下。其結果是,能夠提高電晶體100A、200A的可靠性。
較佳為在形成絕緣膜114、116之後進行加熱處理(以下,稱為第二加熱處理)。藉由第二加熱處理,可以降低包含於絕緣膜114、116中的氮氧化物。藉由第二加熱處理,可以將包含於絕緣膜114、116中的氧的一部分移動到金屬氧化物膜108、208中以減少金屬氧化物膜108、208中的氧缺陷。
將第二加熱處理的溫度典型地設定為低於400℃,較佳為低於375℃,進一步較佳為150℃以上且350℃以下。第二加熱處理可以在氮、氧、超乾燥空氣(含水量為20ppm以下,較佳為1ppm以下,較佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。較佳為在上述氮、氧、超乾燥空氣或稀有氣體中不含有氫、水等。該加熱處理可以使用電爐、RTA裝置等進行。
接著,在絕緣膜114、116的所希望的區域中形成開口142a、242a。
在本實施方式中,開口142a、242a使用乾蝕刻裝置形成。開口142a到達導電膜104,開口242a到達導電膜212b。
接著,在絕緣膜116上形成導電膜120(參照圖6A2及圖6B2)。
圖6A1及圖6B1是在絕緣膜116上形成導電膜120時的成膜裝置內的剖面示意圖。圖6A1及圖6B1示意性地示出:作為成膜裝置的濺射裝置;在該濺射裝置中設置的靶材193;形成在靶材193的下方的電漿194。
首先,在形成導電膜120時,在包含氧氣體的氛圍下進行電漿放電。此時,對被形成導電膜120的絕緣膜116添加氧。形成導電膜120時的氛圍除了氧氣體以外還可以混有惰性氣體(例如,氦氣體、氬氣體、氙氣體等)。
氧氣體至少包含在形成導電膜120時的沉積氣體中即可,在形成導電膜120時的沉積氣體整體中,氧氣體所佔的比率高於0%且為100%以下,較佳為10%以上且100%以下,更佳為30%以上且100%以下。
在圖6A1及圖6B1中,以虛線箭頭示意性地示出添加到絕緣膜116的氧或過量氧。
在本實施方式中,藉由濺射法利用In-Ga-Zn金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])形成導電膜120。另外,也可以使用ITO靶材且作為沉積氣體使用100%的氧氣體利用濺射法形成導電膜120。
注意,雖然本實施方式示出在形成導電膜120時對絕緣膜116添加氧的方法,但是不侷限於此。例如,也可以在形成導電膜120之後還對絕緣膜116添加氧。
為了對絕緣膜116添加氧,例如可以使用包含銦、錫、矽的氧化物(In-Sn-Si氧化物,也稱為ITSO)靶材(In2O3:SnO2:SiO2=85:10:5[重量%])形成厚度為5nm的ITSO膜。此時,當ITSO膜的厚度為1nm以上且20nm以下,或者2nm以上且10nm以下時,可以適當地透過氧且抑制氧的釋放,所以是較佳的。然後,隔著ITSO膜對絕緣膜116添加氧。作為氧的添加方法,可以舉出離子摻雜法、離子植入法、電漿處理法等。當添加氧時,藉由對基板一側施加偏壓,可以有效地將氧添加到絕緣膜116。當施加偏壓時,例如使用灰化裝置,可以將施加到該灰化裝置的基板一側的偏壓的功率密度設定為1W/cm2以上且5W/cm2以下。此外,藉由將添加氧時的基板溫度設定為室溫以上且300℃以下,較佳為100℃以上且250℃以下,可以高效地對絕緣膜116添加氧。
接著,藉由將導電膜120加工為所希望的形狀,形成導電膜120a_1、220a_1(參照圖7A1及圖7B1)。
在本實施方式中,使用濕蝕刻裝置對導電膜120進行加工,來形成導電膜120a_1、220a_1。
接著,在絕緣膜116、導電膜120a_1、220a_1上形成絕緣膜118(參照 圖7A2及圖7B2)。
絕緣膜118包含氫和/或氮。作為絕緣膜118,例如較佳為使用氮化矽膜。絕緣膜118例如可以藉由濺射法或PECVD法形成。例如,當藉由PECVD法形成絕緣膜118時,使基板溫度低於400℃,較佳為低於375℃,進一步較佳為180℃以上且350℃以下。藉由將絕緣膜118的成膜時的基板溫度設定為上述範圍,可以形成緻密的膜,所以是較佳的。另外,藉由將絕緣膜118的成膜時的基板溫度設定為上述範圍,可以將絕緣膜114、116中的氧或過量氧移動到金屬氧化物膜108、208。
例如,當作為絕緣膜118利用PECVD法形成氮化矽膜時,作為源氣體較佳為使用包含矽的沉積氣體、氮及氨。藉由使用少於氮的氨,在電漿中氨離解而產生活性種。該活性種將包括在包含矽的沉積氣體中的矽與氫之間的鍵合及氮分子之間的三鍵切斷。其結果是,可以促進矽與氮的鍵合,而可以形成矽與氫的鍵合少、缺陷少且緻密的氮化矽膜。另一方面,在氨量比氮量多時,包含矽的沉積氣體及氮的分解不進展,矽與氫的鍵合會殘留下來,而導致形成缺陷增加且不緻密的氮化矽膜。由此,在源氣體中,將相對於氨的氮流量比設定為5倍以上且50倍以下,較佳為10倍以上且50倍以下。
在本實施方式中,作為絕緣膜118,藉由利用PECVD設備並使用矽烷、氮及氨作為源氣體,形成厚度為50nm的氮化矽膜。矽烷的流量為50sccm,氮的流量為5000sccm,氨的流量為100sccm。將處理室的壓力設定為100Pa,將基板溫度設定為350℃,用27.12MHz的高頻電源對平行板電極供應1000W 的高頻功率。PECVD設備是電極面積為6000cm2的平行板型PECVD設備,並且,將所供應的功率的換算為每單位面積的功率(功率密度)為1.7×10-1W/cm2
此外,在作為導電膜120a_1、220a_1使用In-Ga-Zn金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])形成導電膜的情況下,當形成絕緣膜118時,絕緣膜118所包含的氫和/或氮有時進入導電膜120a_1、220a_1。此時,氫和/或氮鍵合到導電膜120a_1、220a_1中的氧缺陷而降低導電膜120a_1、220a_1的電阻。由此可以形成低電阻的導電膜120a、220a。低電阻的導電膜是氧化物導電體膜。由於絕緣膜118所包含的氫和/或氮移動到導電膜120a、220a,因此導電膜120a、220a的氫濃度和/或氮濃度比金屬氧化物膜108、208高。
此外,也可以在形成絕緣膜118之後進行與上述第一加熱處理及第二加熱處理同等的加熱處理(以下,稱為第三加熱處理)。
藉由進行第三加熱處理,絕緣膜116所包含的氧移動到金屬氧化物膜108、208,填補金屬氧化物膜108、208中的氧缺陷。
藉由上述製程,可以製造圖1A1至圖1B2所示的顯示裝置。
〈1-7.顯示裝置的製造方法2〉
對圖4A1至圖4B2所示的顯示裝置的製造方法進行說明。圖4A1至圖4B2所示的顯示裝置與圖1A1至圖1B2所示的顯示裝置同樣地進行直到形 成絕緣膜116為止的製程。接著,在像素部中形成絕緣膜119。在絕緣膜116上塗佈感光樹脂,進行曝光及顯影,由此可以形成絕緣膜119。或者,在絕緣膜116上塗佈非感光樹脂,然後進行燒成。接著,形成光阻遮罩,使用該光阻遮罩對燒成之後的非感光樹脂進行蝕刻,由此可以形成絕緣膜119。
接著,與圖1A1至圖1B2所示的顯示裝置同樣地在絕緣膜116及絕緣膜119上形成導電膜120a_1、220a_1。當形成導電膜120a_1時,可以對絕緣膜114及絕緣膜116添加氧。因此,可以減少電晶體100A的金屬氧化物膜108及電晶體200A的金屬氧化物膜208的氧缺陷。
接著,在絕緣膜116、絕緣膜119、導電膜120a_1及導電膜220a_1上形成絕緣膜118。絕緣膜118所包含的氫和/或氮有時進入導電膜120a_1、220a_1。此時,氫和/或氮鍵合到導電膜120a_1、220a_1中的氧缺陷而降低導電膜120a_1、220a_1的電阻。由此可以形成低電阻的導電膜120a、220a。由於絕緣膜118所包含的氫和/或氮移動到導電膜120a、220a,因此導電膜120a、220a的氫濃度和/或氮濃度比金屬氧化物膜108、208高。
然後,可以對絕緣膜118中的與導電膜220a重疊的部分進行蝕刻。
藉由上述製程,可以形成圖4A1至圖4B2所示的顯示裝置。
〈1-8.顯示裝置的製造方法3〉
對圖8A1至圖8B2所示的顯示裝置的製造方法進行說明。首先,在基板102上形成導電膜,藉由光微影製程及蝕刻製程對該導電膜進行加工, 來形成被用作電晶體100A的第一閘極電極的導電膜104、被用作電晶體200A的閘極電極的導電膜204及電容佈線205。接著,在導電膜104上形成被用作第一閘極絕緣膜的絕緣膜106。接著,在絕緣膜106上形成金屬氧化物膜108、208、209(參照圖11A1、圖11B1)。金屬氧化物膜209_1及金屬氧化物膜209_2構成島狀金屬氧化物膜209。
另外,也可以在形成金屬氧化物膜108、208、209之後進行第一加熱處理。
接著,在金屬氧化物膜108上形成導電膜112a及導電膜112b,在金屬氧化物膜208上形成導電膜212a,在金屬氧化物膜208及209上形成導電膜212b(參照圖11A2、圖11B2)。
接著,在金屬氧化物膜108、208、209及導電膜112a、112b、212a、212b上形成絕緣膜114及絕緣膜116(參照圖12A1、圖12B1)。絕緣膜114及絕緣膜116包括開口117。在開口117中金屬氧化物膜209露出。
接著,在絕緣膜116上形成導電膜120a。接著,在絕緣膜114、絕緣膜116、導電膜120a、導電膜212b及金屬氧化物膜209上形成絕緣膜118(參照圖12A2、圖12B2)。注意,絕緣膜118所包含的氫和/或氮有時進入金屬氧化物膜209。在此情況下,氫和/或氮鍵合到金屬氧化物膜209中的氧缺陷而降低金屬氧化物膜的電阻,形成導電膜210。導電膜210_1及導電膜210_2構成導電膜210。由於絕緣膜118所包含的氫和/或氮移動到導電膜210,因此導電膜210的氫濃度和/或氮濃度比金屬氧化物膜108、208高。
然後,也可以對絕緣膜118中的與導電膜210重疊的部分進行蝕刻(參照圖13A1、圖13B1)。
藉由上述製程,可以製造圖8A1至圖8B2所示的顯示裝置。
另外,進行直到圖12A2、圖12B2為止的製程,可以製造圖10A1至圖10B2所示的顯示裝置。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式2
在本實施方式中,參照圖18至圖20C對本發明的一個實施方式的金屬氧化物膜進行說明。
〈CAC-OS的構成〉
以下說明可以用於本發明的一個實施方式所公開的電晶體的具有CAC構成的金屬氧化物的詳細內容。在此,作為具有CAC構成的金屬氧化物的典型例子使用CAC-OS進行說明。
例如,如圖3所示,在CAC-OS中包含在金屬氧化物中的元素不均勻地分佈,以各元素為主要成分的區域001及區域002混合而形成為或分散為 馬賽克(mosaic)狀。換言之,CAC-OS是包含在金屬氧化物中的元素不均勻地分佈的構成,其中包含不均勻地分佈的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下或近似的尺寸。
包含不均勻地分佈的特定的元素的區域的物理特性由該元素所具有的性質決定。例如,包含不均勻地分佈的包含在金屬氧化物中的元素中更趨於成為絕緣體的元素的區域成為電介質區域。另一方面,包含不均勻地分佈的包含在金屬氧化物中的元素中更趨於成為導體的元素的區域成為導電體區域。當導電體區域及電介質區域以馬賽克狀混合時,該材料具有半導體的功能。
換言之,本發明的一個實施方式中的金屬氧化物是物理特性不同的材料混合的基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)的一種。
氧化物半導體較佳為至少包含銦。尤其較佳為包含銦及鋅。除此之外,也可以還包含元素M(M是選自鎵、鋁、矽、硼、釔、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種)。
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,尤其可以將In-Ga-Zn氧化物稱為CAC-IGZO)是指材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))等以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數)) 等而成為馬賽克狀,且馬賽克狀的InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In與元素M的原子個數比大於第二區域的In與元素M的原子個數比時,第一區域的In濃度高於第二區域。
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1x01,m0為任意數)表示的結晶性化合物。
上述結晶性化合物具有單晶結構、多晶結構或CAAC結構。CAAC結構是多個IGZO的奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指如下構成:在包含In、Ga、Zn及O的材料構成中,一部分中觀察到以Ga為主要成分的奈米粒子狀區域,一部分中觀察到以In為主要成分的奈米粒子狀區域,並且,這些區域分別以馬賽克狀無規律地分散。因此,在CAC-OS中,結晶結構是次要因素。
CAC-OS不包含組成不同的二種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為主要成分的膜的兩層構成的結構。
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。
在CAC-OS中包含選自鋁、矽、硼、釔、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下結構:一部分中觀察到以該元素為主要成分的奈米粒子狀區域,一部分中觀察到以In為主要成分的奈米粒子狀區域,並且,這些區域以馬賽克狀無規律地分散。
〈CAC-OS的分析〉
接著,說明使用各種測定方法對在基板上形成的氧化物半導體進行測定的結果。
〈〈樣本的結構及製造方法〉〉
以下,對本發明的一個實施方式的九個樣本進行說明。各樣本在形成氧化物半導體時的基板溫度及氧氣體流量比上不同。各樣本包括基板及基板上的氧化物半導體。
對各樣本的製造方法進行說明。
作為基板使用玻璃基板。使用濺射裝置在玻璃基板上作為氧化物半導體形成厚度為100nm的In-Ga-Zn氧化物。成膜條件為如下:將處理室內的壓力設定為0.6Pa,作為靶材使用氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])。 另外,對設置在濺射裝置內的氧化物靶材供應2500W的AC功率。
在形成氧化物時採用如下條件來製造九個樣本:將基板溫度設定為不進行意圖性的加熱時的溫度(以下,也稱為室溫或R.T.)、130℃或170℃。另外,將氧氣體對Ar和氧的混合氣體的流量比(以下,也稱為氧氣體流量比)設定為10%、30%或100%。
〈〈X射線繞射分析〉〉
在本節中,說明對九個樣本進行X射線繞射(XRD:X-ray diffraction)測定的結果。作為XRD裝置,使用Bruker公司製造的D8 ADVANCE。測定條件為如下:利用Out-of-plane法進行θ/2θ掃描,掃描範圍為15deg.至50deg.,步進寬度為0.02deg.,掃描速度為3.0deg./分。
圖18示出利用Out-of-plane法測定XRD譜的結果。在圖18中,最上行示出成膜時的基板溫度為170℃的樣本的測定結果,中間行示出成膜時的基板溫度為130℃的樣本的測定結果,最下行示出成膜時的基板溫度為R.T.的樣本的測定結果。另外,最左列示出氧氣體流量比為10%的樣本的測定結果,中間列示出氧氣體流量比為30%的樣本的測定結果,最右列示出氧氣體流量比為100%的樣本的測定結果。
在圖18所示的XRD譜中,成膜時的基板溫度越高或成膜時的氧氣體流量比越高,2θ=31°附近的峰值強度則越大。另外,已知2θ=31°附近的峰值來源於在大致垂直於被形成面或頂面的方向上具有c軸配向性的結晶性IGZO化合物(也稱為CAAC(c-axis aligned crystalline)-IGZO)。
另外,如圖18的XRD譜所示,成膜時的基板溫度越低或氧氣體流量比越低,峰值則越不明顯。因此,可知在成膜時的基板溫度低或氧氣體流量比低的樣本中,觀察不到測定區域的a-b面方向及c軸方向的配向。
[電子顯微鏡分析]
在本節中,說明對在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本利用HAADF-STEM(High-Angle Annular Dark Field Scanning Transmission Electron Microscope:高角度環形暗場-掃描穿透式電子顯微鏡)進行觀察及分析的結果(以下,也將利用HAADF-STEM取得的影像稱為TEM影像)。
說明對利用HAADF-STEM取得的平面影像(以下,也稱為平面TEM影像)及剖面影像(以下,也稱為剖面TEM影像)進行影像分析的結果。利用球面像差校正功能觀察TEM影像。在取得HAADF-STEM影像時,使用日本電子株式會社製造的原子解析度分析電子顯微鏡JEM-ARM200F,將加速電壓設定為200kV,照射束徑大致為0.1nmΦ的電子束。
圖19A為在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的平面TEM影像。圖19B為在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面TEM影像。
[電子繞射圖案的分析]
在本節中,說明藉由對在成膜時的基板溫度為R.T.且氧氣體流量比為 10%的條件下製造的樣本照射束徑為1nm的電子束(也稱為奈米束),來取得電子繞射圖案的結果。
觀察圖19A所示的在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的平面TEM影像中的黑點a1、黑點a2、黑點a3、黑點a4及黑點a5的電子繞射圖案。電子繞射圖案的觀察以固定速度照射電子束35秒鐘的方式進行。圖19C示出黑點a1的結果,圖19D示出黑點a2的結果,圖19E示出黑點a3的結果,圖19F示出黑點a4的結果,圖19G示出黑點a5的結果。
在圖19C、圖19D、圖19E、圖19F及圖19G中,觀察到如圓圈那樣的(環狀的)亮度高的區域。另外,在環狀區域內觀察到多個斑點。
觀察圖19B所示的在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面TEM影像中的黑點b1、黑點b2、黑點b3、黑點b4及黑點b5的電子繞射圖案。圖19H示出黑點b1的結果,圖19I示出黑點b2的結果,圖19J示出黑點b3的結果,圖19K示出黑點b4的結果,圖19L示出黑點b5的結果。
在圖19H、圖19I、圖19J、圖19K及圖19L中,觀察到環狀的亮度高的區域。另外,在環狀區域內觀察到多個斑點。
例如,當對包含InGaZnO4結晶的CAAC-OS在平行於樣本面的方向上入射束徑為300nm的電子束時,可以獲得包含起因於InGaZnO4結晶的(009) 面的斑點的繞射圖案。換言之,CAAC-OS具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,當對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子束時,確認到環狀繞射圖案。換言之,CAAC-OS不具有a軸配向性及b軸配向性。
當使用大束徑(例如,50nm以上)的電子束對具有微晶的氧化物半導體(nano crystalline oxide semiconductor,以下稱為nc-OS)進行電子繞射時,觀察到類似光暈圖案的繞射圖案。另外,當使用小束徑(例如,小於50nm)的電子束對nc-OS進行奈米束電子繞射時,觀察到亮點(斑點)。另外,在nc-OS的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,有時在環狀區域內觀察到多個亮點。
在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的電子繞射圖案具有環狀的亮度高的區域且在該環狀區域內出現多個亮點。因此,在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本呈現與nc-OS類似的電子繞射圖案,在平面方向及剖面方向上不具有配向性。
如上所述,成膜時的基板溫度低或氧氣體流量比低的氧化物半導體的性質與非晶結構的氧化物半導體膜及單晶結構的氧化物半導體膜都明顯不同。
〈〈元素分析〉〉
在本節中,說明使用能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得EDX面分析影像且進行評價,由此進行在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的元素分析的結果。在EDX測定中,作為元素分析裝置使用日本電子株式會社製造的能量色散型X射線分析裝置JED-2300T。在檢測從樣本發射的X射線時,使用矽漂移探測器。
在EDX測定中,對樣本的分析目標區域的各點照射電子束,並測定此時發生的樣本的特性X射線的能量及發生次數,獲得對應於各點的EDX譜。在本實施方式中,各點的EDX譜的峰值歸屬於In原子中的向L殼層的電子躍遷、Ga原子中的向K殼層的電子躍遷、Zn原子中的向K殼層的電子躍遷及O原子中的向K殼層的電子躍遷,並算出各點的各原子的比率。藉由在樣本的分析目標區域中進行上述步驟,可以獲得示出各原子的比率分佈的EDX面分析影像。
圖20A至圖20C示出在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面的EDX面分析影像。圖20A示出Ga原子的EDX面分析影像(在所有的原子中Ga原子所佔的比率為1.18至18.64[atomic%])。圖20B示出In原子的EDX面分析影像(在所有的原子中In原子所佔的比率為9.28至33.74[atomic%])。圖20C示出Zn原子的EDX面分析影像(在所有的原子中Zn原子所佔的比率為6.69至24.99[atomic%])。另外,圖20A、圖20B及圖20C示出在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面中的相同區域。在EDX面分析影像中,由明暗表示元素的比率:該區域內的測定元素越多該區域越亮,測定元素越少該區域就越暗。圖20A至圖20C所示的EDX面分析影像的倍率為720萬倍。
在圖20A、圖20B及圖20C所示的EDX面分析影像中,確認到明暗的相對分佈,在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本中確認到各原子具有分佈。在此,著眼於圖20A、圖20B及圖20C所示的由實線圍繞的區域及由虛線圍繞的區域。
在圖20A中,在由實線圍繞的區域內相對較暗的區域較多,在由虛線圍繞的區域內相對較亮的區域較多。另外,在圖20B中,在由實線圍繞的區域內相對較亮的區域較多,在由虛線圍繞的區域內相對較暗的區域較多。
換言之,由實線圍繞的區域為In原子相對較多的區域,由虛線圍繞的區域為In原子相對較少的區域。在圖20C中,在由實線圍繞的區域內,右側是相對較亮的區域,左側是相對較暗的區域。因此,由實線圍繞的區域為以InX2ZnY2OZ2或InOX1等為主要成分的區域。
另外,由實線圍繞的區域為Ga原子相對較少的區域,由虛線圍繞的區域為Ga原子相對較多的區域。在圖20C中,在由虛線圍繞的區域內,左上方的區域為相對較亮的區域,右下方的區域為相對較暗的區域。因此,由虛線圍繞的區域為以GaOX3或GaX4ZnY4OZ4等為主要成分的區域。
如圖20A、圖20B及圖20C所示,In原子的分佈與Ga原子的分佈相比更均勻,以InOX1為主要成分的區域看起來像是藉由以InX2ZnY2OZ2為主要成分的區域互相連接的。如此,以InX2ZnY2OZ2或InOX1為主要成分的區域以雲 狀展開形成。
如此,可以將具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的構成的In-Ga-Zn氧化物稱為CAC-OS。
CAC-OS的結晶結構具有nc結構。在具有nc結構的CAC-OS的電子繞射圖案中,除了起因於包含單晶、多晶或CAAC結構的IGZO的亮點(斑點)以外,還出現多個亮點(斑點)。或者,該結晶結構定義為除了出現多個亮點(斑點)之外,還出現環狀的亮度高的區域。
另外,如圖20A、圖20B及圖20C所示,以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域的尺寸為0.5nm以上且10nm以下或者1nm以上且3nm以下。在EDX面分析影像中,以各元素為主要成分的區域的直徑較佳為1nm以上且2nm以下。
如上所述,CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,其具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1 為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。
另一方面,以GaOX3等為主要成分的區域的絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域在氧化物半導體中分佈時,可以抑制洩漏電流而實現良好的切換工作。
因此,當將CAC-OS用於半導體元件時,藉由起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。
另外,使用CAC-OS的半導體元件具有高可靠性。因此,CAC-OS適用於顯示器等各種半導體裝置。
〈具有金屬氧化物膜的電晶體〉
下面,說明將上述金屬氧化物膜用於電晶體的情況。
藉由將上述金屬氧化物膜用於電晶體可以實現載子移動率高且開關特性高的電晶體。另外,可以實現可靠性高的電晶體。
另外,較佳為將載子密度低的金屬氧化物膜用於電晶體。例如,金屬氧化物膜的載子密度可以低於8×1011/cm3,較佳為低於1×1011/cm3,更佳為低於1×1010/cm3且為1×10-9/cm3以上。
在降低金屬氧化物膜的載子密度的情況下,降低金屬氧化物膜中的雜質濃度而降低缺陷態密度。在本說明書等中,將雜質濃度低且缺陷態密度低的狀態稱為“高純度本質”或“實質上高純度本質”。因為高純度本質或實質上高純度本質的金屬氧化物膜的載子發生源較少,所以有可能降低載子密度。另外,因為高純度本質或實質上高純度本質的金屬氧化物膜具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。
此外,被金屬氧化物膜的陷阱能階俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,有時在陷阱態密度高的氧化物半導體中形成有通道區的電晶體的電特性不穩定。
因此,為了使電晶體的電特性穩定,降低金屬氧化物膜中的雜質濃度是有效的。為了降低金屬氧化物膜中的雜質濃度,較佳為還降低附近膜中的雜質濃度。作為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
在此,說明金屬氧化物膜中的各雜質的影響。
在金屬氧化物膜包含第14族元素之一的矽或碳時,氧化物半導體中形成缺陷能階。因此,氧化物半導體中或氧化物半導體的介面附近的矽或碳的濃度(藉由SIMS測得的濃度)為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當金屬氧化物膜包含鹼金屬或鹼土金屬時,有時形成缺陷能階而形成載子。因此,使用包含鹼金屬或鹼土金屬的金屬氧化物膜的電晶體 容易具有常開啟特性。由此,較佳為降低金屬氧化物膜中的鹼金屬或鹼土金屬的濃度。明確而言,利用SIMS分析測得的金屬氧化物膜中的鹼金屬或鹼土金屬的濃度為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當金屬氧化物膜包含氮時,產生作為載子的電子,並載子密度增加,而氧化物半導體容易被n型化。其結果是,將含有氮的氧化物半導體用於半導體的電晶體容易具有常開啟型特性。因此,較佳為儘可能地減少氧化物半導體中的氮,例如,利用SIMS分析測得的氧化物半導體中的氮濃度為小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。
包含在金屬氧化物膜中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧缺陷(Vo)。當氫進入該氧缺陷(Vo)時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物半導體中的氫。明確而言,利用SIMS分析測得氧化物半導體中的氫濃度為低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將氧引入金屬氧化物膜中,可以降低金屬氧化物膜中的氧缺陷(Vo)。換言之,當金屬氧化物膜中的氧缺陷(Vo)被氧填補時,氧缺陷(Vo)消失。因此,藉由使氧擴散到金屬氧化物膜中,可以減少電晶體的氧缺陷(Vo),從而可以提高電晶體的可靠性。
作為將氧引入金屬氧化物膜的方法,例如,可以以與氧化物半導體接觸的方式設置包含超過化學計量組成的氧的氧化物。也就是說,較佳為在上述氧化物中形成包含超過化學計量組成的氧的區域(以下,也稱為氧過量區域)。尤其是,當將金屬氧化物膜用於電晶體時,藉由對電晶體附近的基底膜或層間膜等設置具有氧過量區域的氧化物,可以降低電晶體的氧缺陷,由此可以提高電晶體的可靠性。
藉由將雜質被充分降低的金屬氧化物膜用於電晶體的通道形成區,可以使電晶體具有穩定的電特性。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式3
在本實施方式中,參照圖21對作為顯示元件使用橫向電場模式(也稱為水平電場模式)的液晶元件的顯示裝置進行說明。
圖21是說明使用橫向電場模式的液晶元件的顯示裝置的製程的流程圖。在圖21中,示出將氧化物半導體(尤其是CAC-OS)、低溫多晶矽(LTPS:Low Temperature Poly-Silicon)和氫化非晶矽(a-Si:H)用於電晶體的通道的情況的製程的一個例子。
〈3-1.CAC-OS〉
對將CAC-OS用於電晶體的情況進行說明。首先,使用濺射裝置(SP)形成閘極電極(GE:Gate Electrode)。在進行閘極電極的加工時,使用1張遮罩。
接著,在閘極電極上使用PECVD設備形成閘極絕緣膜(GI:Gate Insulator)。然後,在閘極絕緣膜上使用濺射裝置形成用作活性層的氧化物半導體(OS)膜。在將氧化物半導體膜加工為島狀時,使用1張遮罩。
接著,對閘極絕緣膜的一部分進行加工,來形成到達閘極電極的開口。在形成該開口時,使用1張遮罩。
接著,在閘極絕緣膜及氧化物半導體膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成源極電極及汲極電極(S/D電極)。在形成源極電極及汲極電極時,使用1張遮罩。
接著,在氧化物半導體膜、源極電極及汲極電極上使用PECVD設備形成鈍化膜。
接著,對鈍化膜的一部分進行加工,來形成到達源極電極及汲極電極的開口。在形成該開口時,使用1張遮罩。
接著,以覆蓋形成在鈍化膜中的開口的方式在鈍化膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成共用電極。在形成共用電極時, 使用1張遮罩。
接著,在鈍化膜及共用電極上使用PECVD設備形成絕緣膜。然後,對該絕緣膜的一部分進行開口,來形成到達源極電極及汲極電極的開口。在形成絕緣膜時(在絕緣膜的一部分中形成開口時),使用1張遮罩。
接著,在絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成像素電極。在形成像素電極時,使用1張遮罩。
藉由上述製程,可以製造橫向電場模式的液晶顯示裝置。在使用CAC-OS的情況下,橫向電場模式的液晶顯示裝置的遮罩數為8。
〈3-2.LTPS〉
對將LTPS用於電晶體的情況進行說明。首先,使用濺射裝置形成遮光膜。在進行遮光膜的加工時,使用1張遮罩。
接著,在遮光膜上使用PECVD設備形成基底絕緣膜。然後,在基底絕緣膜上使用PECVD設備形成用作活性層的Si。然後,為了使該Si晶化,進行準分子雷射退火(ELA:Excimer Laser Annealing)。在ELA製程之後,活性層的Si成為多晶矽(p-Si:poly-Silicon)。為了對大面積進行ELA,需要大型設備。另外,有時發生ELA特有的線狀不均勻等。
接著,將p-Si加工為島狀。在將p-Si加工為島狀時,使用1張遮罩。
接著,在p-Si上使用PECVD設備形成閘極絕緣膜(GI)。然後,在閘極絕緣膜上使用濺射裝置形成閘極電極(GE)。在形成閘極電極時,使用1張遮罩。另外,在形成閘極電極時,閘極絕緣膜的一部分也被去除。
接著,為了在p-Si中形成n+區域,使用離子摻雜(ID:Ion Doping)裝置注入雜質。在形成n+區域時,使用1張遮罩。接著,為了在p-Si中形成n-區域,使用離子摻雜裝置注入雜質。在形成n-區域時,對整個面進行摻雜,而不使用遮罩。接著,為了在p-Si中形成p+區域,使用離子摻雜裝置注入雜質。在形成p+區域時,使用1張遮罩。
接著,進行熱活化。熱活化可以使用退火爐或RTA裝置等進行。
接著,在p-Si及閘極電極上使用PECVD設備形成層間絕緣膜。然後,對該層間絕緣膜及閘極絕緣膜的一部分進行加工,來形成到達n+區域及p+區域的開口。在形成該開口時,使用1張遮罩。
接著,在形成有開口的層間絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成源極電極及汲極電極(S/D電極)。在形成源極電極及汲極電極時,使用1張遮罩。
接著,在源極電極及汲極電極上使用塗佈裝置形成平坦化絕緣膜。作為平坦化絕緣膜例如可以使用有機樹脂膜等。在形成平坦化絕緣膜時,使用1張遮罩。
接著,在平坦化絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成共用電極。在形成共用電極時,使用1張遮罩。
接著,在共用電極上使用PECVD設備形成絕緣膜。然後,對該絕緣膜的一部分進行開口,來形成到達源極電極及汲極電極的開口。在形成絕緣膜時(在絕緣膜的一部分中形成開口時),使用1張遮罩。
接著,在絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成像素電極。在形成像素電極時,使用1張遮罩。
藉由上述製程,可以製造橫向電場模式的液晶顯示裝置。在使用LTPS的情況下,橫向電場模式的液晶顯示裝置的遮罩數為11。
〈3-3.a-Si:H〉
對將a-Si:H用於電晶體的情況進行說明。首先,使用濺射裝置形成閘極電極(GE)。在進行閘極電極的加工時,使用1張遮罩。
接著,在閘極電極上使用PECVD設備形成閘極絕緣膜(GI)。然後,在閘極絕緣膜上使用PECVD設備形成用作活性層的矽(Si)膜。在將該矽膜加工為島狀時,使用1張遮罩。
接著,對閘極絕緣膜的一部分進行加工,來形成到達閘極電極的開口。在形成該開口時,使用1張遮罩。
接著,在閘極絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成電容器的電極。在進行電容器的電極的加工時,使用1張遮罩。
接著,在閘極絕緣膜及矽膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成源極電極及汲極電極(S/D電極)。在形成源極電極及汲極電極時,使用1張遮罩。
接著,在源極電極及汲極電極上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成共用電極。在形成共用電極時,使用1張遮罩。
接著,在共用電極上使用PECVD設備形成絕緣膜。然後,對該絕緣膜的一部分進行開口,來形成到達源極電極及汲極電極的開口。在形成絕緣膜時(在絕緣膜的一部分中形成開口時),使用1張遮罩。
接著,在絕緣膜上使用濺射裝置形成導電膜,對該導電膜進行加工,來形成像素電極。在形成像素電極時,使用1張遮罩。
藉由上述製程,可以製造橫向電場模式的液晶顯示裝置。在使用a-Si:H的情況下,橫向電場模式的液晶顯示裝置的遮罩數為8。
在CAC-OS、LTPS及a-Si:H的各流程圖中,形成共用電極的製程、在共用電極上形成絕緣膜的製程及形成像素電極的製程是為了形成橫向電場模式的液晶顯示裝置而需要的製程,因此,在形成作為液晶元件使用垂直電場模式(例如,VA模式等)的液晶顯示裝置的情況下或者作為顯示元件 使用有機EL元件的情況下,進行不同製程即可。
如圖21所示,藉由使用CAC-OS形成用於橫向電場模式的液晶元件的電晶體,可以使製程變得比LTPS簡易。另外,使用CAC-OS的電晶體可以以與使用a-Si:H的電晶體相同的遮罩數製造,並且,其移動率比使用s-Si:H的電晶體高。因此,可以在顯示裝置中利用使用CAC-OS的電晶體安裝驅動電路(閘極驅動器或源極驅動器)的一部分或全部。
表1示出各製程的特性。
如表1所示,當使用CAC-OS時,遮罩數與使用a-Si:H時同等,並且其電特性(場效移動率(有時簡單地稱為移動率)或開關比等)比a-Si:H高。因此,藉由使用CAC-OS,可以形成顯示品質高的顯示裝置。另外,如表1所示,在使用CAC-OS的情況下,與LTPS相比,製程最高溫度低且裝置成本及生產設備成本低。因此,可以實現製造成本低的顯示裝置。
另外,使用以CAC-OS為典型的氧化物半導體的電晶體與使用矽的電晶體相比具有如下效果:1.關態電流低;2.沒有或者幾乎沒有短通道效應;3.耐壓高;4.溫度特性的變化少。另外,使用氧化物半導體的電晶體具有與使用矽的電晶體同等的切換速度或者同等的頻率特性(也稱為f特性),因此可以進行高速工作。因此,包括使用氧化物半導體的電晶體的顯示裝置具有高顯示品質及高可靠性。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式4
在本實施方式中,使用圖22至圖28說明包括前面的實施方式中例示出的電晶體的顯示裝置的一個例子。
圖22是示出顯示裝置的一個例子的俯視圖。圖22所示的顯示裝置700包括:設置在第一基板701上的像素部702;設置在第一基板701上的源極驅動電路部704及閘極驅動電路部706;以圍繞像素部702、源極驅動電路 部704及閘極驅動電路部706的方式設置的密封劑712;以及以與第一基板701對置的方式設置的第二基板705。注意,由密封劑712貼合第一基板701及第二基板705。也就是說,像素部702、源極驅動電路部704及閘極驅動電路部706被第一基板701、密封劑712及第二基板705密封。注意,雖然在圖22中未圖示,但是在第一基板701與第二基板705之間設置有顯示元件。
另外,在顯示裝置700中,在第一基板701上的不由密封劑712圍繞的區域中設置有分別電連接於像素部702、源極驅動電路部704及閘極驅動電路部706的FPC(Flexible printed circuit:軟性印刷電路板)端子部708。另外,FPC端子部708連接於FPC716,並且藉由FPC716對像素部702、源極驅動電路部704及閘極驅動電路部706供應各種信號等。另外,像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708各與信號線710連接。由FPC716供應的各種信號等是藉由信號線710供應到像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708的。
另外,也可以在顯示裝置700中設置多個閘極驅動電路部706。另外,作為顯示裝置700,雖然示出將源極驅動電路部704及閘極驅動電路部706形成在與像素部702相同的第一基板701上的例子,但是並不侷限於該結構。例如,可以只將閘極驅動電路部706形成在第一基板701上,或者可以只將源極驅動電路部704形成在第一基板701上。此時,也可以採用將形成有源極驅動電路或閘極驅動電路等的基板(例如,由單晶半導體膜、多晶半導體膜形成的驅動電路基板)形成於第一基板701的結構。另外,對另行形成的驅動電路基板的連接方法沒有特別的限制,而可以採用COG(Chip On Glass:晶粒玻璃接合)方法、打線接合方法等。
另外,顯示裝置700所包括的像素部702、源極驅動電路部704及閘極驅動電路部706包括多個電晶體。
另外,顯示裝置700可以包括各種元件。作為該元件,例如可以舉出電致發光(EL)元件(包含有機物及無機物的EL元件、有機EL元件、無機EL元件、LED等)、發光電晶體元件(根據電流發光的電晶體)、電子發射元件、液晶元件、電子墨水元件、電泳元件、電濕潤(electrowetting)元件、電漿顯示面板(PDP)、MEMS(微機電系統)、顯示器(例如柵光閥(GLV)、數位微鏡裝置(DMD)、數位微快門(DMS)元件)、壓電陶瓷顯示器等。
此外,作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display,表面傳導電子發射顯示器)等。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射式液晶顯示器、半透射式液晶顯示器、反射式液晶顯示器、直觀式液晶顯示器、投射式液晶顯示器)等。作為使用電子墨水元件或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射式液晶顯示器或反射式液晶顯示器時,使像素電極的一部分或全部具有反射電極的功能。例如,使像素電極的一部分或全部包含鋁、銀等。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。由此,可以進一步降低功耗。
作為顯示裝置700的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。另外,作為當進行彩色顯示時在像素中控制的顏色要素,不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,可以由R像素、G像素、B像素及W(白色)像素的四個像素構成。或者,如PenTile排列,也可以由RGB中的兩個顏色構成一個顏色要素,並根據顏色要素選擇不同的兩個顏色來構成。或者可以對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種以上的顏色。另外,各個顏色要素的點的顯示區域的大小可以不同。但是,所公開的發明不侷限於彩色顯示的顯示裝置,而也可以應用於黑白顯示的顯示裝置。
另外,為了將白色光(W)用於背光(有機EL元件、無機EL元件、LED、螢光燈等)使顯示裝置進行全彩色顯示,也可以使用彩色層(也稱為濾光片)。作為彩色層,例如可以適當地組合紅色(R)、綠色(G)、藍色(B)、黃色(Y)等而使用。藉由使用彩色層,可以與不使用彩色層的情況相比進一步提高顏色再現性。此時,也可以藉由設置包括彩色層的區域和不包括彩色層的區域,將不包括彩色層的區域中的白色光直接用於顯示。藉由部分地設置不包括彩色層的區域,在顯示明亮的影像時,有時可以減少彩色層所引起的亮度降低而減少功耗兩成至三成左右。但是,在使用有機EL元件或無機EL元件等自發光元件進行全彩色顯示時,也可以從具有各發光顏色的元件發射R、G、B、Y、W。藉由使用自發光元件,有時與使用彩色層的情況相比進一步減少功耗。
此外,作為彩色化的方式,除了經過濾色片將來自上述白色光的發光的一部分轉換為紅色、綠色及藍色的方式(濾色片方式)之外,還可以使 用分別使用紅色、綠色及藍色的發光的方式(三色方式)以及將藍色光的一部分轉換為紅色或綠色的方式(顏色轉換方式或量子點方式)。
在本實施方式中,使用圖23至圖28說明作為顯示元件使用液晶元件及EL元件的結構。圖23至圖25及圖27是沿著圖22所示的點劃線Q-R的剖面圖,作為顯示元件使用液晶元件的結構。另外,圖26及圖28是沿著圖22所示的點劃線Q-R的剖面圖,作為顯示元件使用EL元件的結構。
下面,首先說明圖23至圖28所示的共同部分,接著說明不同的部分。
〈4-1.顯示裝置的共同部分的說明〉
圖23至圖28所示的顯示裝置700包括:引線配線部711;像素部702;源極驅動電路部704;以及FPC端子部708。另外,引線配線部711包括信號線710。另外,像素部702包括電晶體750及電容器(未圖示)。另外,源極驅動電路部704包括電晶體752。
電晶體750及電晶體752具有與上述電晶體100D同樣的結構。注意,電晶體750不包括第二閘極電極。電晶體750及電晶體752也可以具有使用上述實施方式所示的其他電晶體的結構。
在本實施方式中使用的電晶體包括高度純化且氧缺陷的形成被抑制的金屬氧化物膜。該電晶體可以降低關態電流。因此,可以延長影像信號等電信號的保持時間,在供電狀態下也可以延長寫入間隔。因此,可以降低更新工作的頻率,由此可以發揮抑制功耗的效果。
另外,在本實施方式中使用的電晶體能夠得到較高的場效移動率,因此能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於液晶顯示裝置,可以在同一基板上形成像素部的切換電晶體及用於驅動電路部的驅動電晶體。也就是說,因為作為驅動電路不需要另行使用由矽晶圓等形成的半導體裝置,所以可以縮減半導體裝置的構件數。另外,在像素部中也可以藉由使用能夠進行高速驅動的電晶體提供高品質的影像。
在圖23至圖28中示出像素部702所包括的電晶體750及源極驅動電路部704所包括的電晶體752使用相同的結構的電晶體的結構,但是不侷限於此。例如,像素部702及源極驅動電路部704也可以使用不同電晶體。明確而言,可以舉出像素部702使用交錯型電晶體,且源極驅動電路部704使用實施方式1所示的反交錯型電晶體的結構,或者像素部702使用實施方式1所示的反交錯型電晶體,且源極驅動電路部704使用交錯型電晶體的結構等。此外,也可以將上述源極驅動電路部704置換為閘極驅動電路部。
信號線710與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。例如,當使用包含銅元素的材料形成信號線710時,起因於佈線電阻的信號延遲等較少,而可以實現大螢幕的顯示。
另外,FPC端子部708包括連接電極760、異方性導電膜780及FPC716。連接電極760與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。另外,連接電極760與FPC716所包括的端子藉由異方性導電膜780電連接。
另外,作為第一基板701及第二基板705,例如可以使用玻璃基板。另外,作為第一基板701及第二基板705,也可以使用具有撓性的基板。作為該具有撓性的基板,例如可以舉出塑膠基板等。
另外,在第一基板701與第二基板705之間設置有結構體778。結構體778是藉由選擇性地對絕緣膜進行蝕刻而得到的柱狀間隔物,用來控制第一基板701與第二基板705之間的距離(液晶盒厚(cell gap))。另外,作為結構體778,也可以使用球狀間隔物。
另外,在第二基板705一側,設置有被用作黑矩陣的遮光膜738、被用作濾色片的彩色膜736、與遮光膜738及彩色膜736接觸的絕緣膜734。
〈4-2.使用液晶元件的顯示裝置的結構實例〉
圖23所示的顯示裝置700包括液晶元件775。液晶元件775包括導電膜772、導電膜774及液晶層776。導電膜774設置在第二基板705一側並被用作相對電極。圖23所示的顯示裝置700可以藉由由施加到導電膜772與導電膜774之間的電壓改變液晶層776的配向狀態,由此控制光的透過及非透過而顯示影像。
導電膜772電連接到電晶體750所具有的被用作源極電極及汲極電極的導電膜。導電膜772形成在電晶體750的閘極絕緣膜上並被用作像素電極,亦即顯示元件的一個電極。此外,導電膜772被用作反射電極。圖23所示的顯示裝置700是由導電膜772反射外光並經過彩色膜736進行顯示的所謂 的反射型彩色液晶顯示裝置。
另外,作為導電膜772,可以使用對可見光具有透光性的導電膜或對可見光具有反射性的導電膜。作為對可見光具有透光性的導電膜,例如,較佳為使用包含選自銦(In)、鋅(Zn)、錫(Sn)中的一種的材料。作為對可見光具有反射性的導電膜,例如,較佳為使用包含鋁或銀的材料。在本實施方式中,作為導電膜772使用對可見光具有反射性的導電膜。
另外,如圖24所示,也可以在像素部702中形成被用作平坦化膜的絕緣膜770。另外,在絕緣膜770上形成有導電膜772。另外,在導電膜772上形成有包括開口的絕緣膜735。
此外,圖23和圖24所示的顯示裝置700示出反射型彩色液晶顯示裝置,但是不侷限於此。例如,作為導電膜772使用對可見光具有透光性的導電膜,可以實現透射型彩色液晶顯示裝置。另外,可以實現組合反射型彩色液晶顯示裝置和透射型彩色液晶顯示裝置的所謂的半透射型彩色液晶顯示裝置。
在此,圖25示出透射型彩色液晶顯示裝置。圖25是沿著圖22所示的點劃線Q-R的剖面圖,且圖25示出作為顯示元件使用液晶元件的結構。此外,圖25所示的顯示裝置700是作為液晶元件的驅動方式使用水平電場方式(例如,FFS(Fringe Field Switching:邊緣電場切換)模式)的結構的一個例子。在圖25所示的結構的情況下,被用作像素電極的導電膜772上設置有絕緣膜773,絕緣膜773上設置有導電膜774。此時,導電膜774具有 共用電極的功能,可以由隔著絕緣膜773在導電膜772與導電膜774之間產生的電場控制液晶層776的配向狀態。
注意,雖然在圖23至圖25中未圖示,但是也可以分別在導電膜772和/或導電膜774的與液晶層776接觸的一側設置配向膜。此外,雖然在圖23至圖25中未圖示,但是也可以適當地設置偏振構件、相位差構件、抗反射構件等光學構件(光學基板)等。例如,也可以使用利用偏振基板及相位差基板的圓偏振。此外,作為光源,也可以使用背光、側光等。
在作為顯示元件使用液晶元件的情況下,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。這些液晶材料根據條件呈現出膽固醇相、層列相、立方相、手性向列相、均質相等。
此外,在採用橫向電場方式的情況下,也可以使用不使用配向膜的呈現藍相的液晶。藍相是液晶相的一種,是指當使膽固醇型液晶的溫度上升時即將從膽固醇相轉變到均質相之前出現的相。因為藍相只在較窄的溫度範圍內出現,所以將其中混合了幾wt%以上的手性試劑的液晶組合物用於液晶層,以擴大溫度範圍。由於包含呈現藍相的液晶和手性試劑的液晶組成物的回應速度快,並且其具有光學各向同性。由此,包含呈現藍相的液晶和手性試劑的液晶組成物不需要配向處理。另外,因不需要設置配向膜而不需要摩擦處理,因此可以防止由於摩擦處理而引起的靜電破壞,由此可以降低製程中的液晶顯示裝置的不良和破損。此外,呈現藍相的液晶材料的視角依賴性小。
另外,當作為顯示元件使用液晶元件時,可以使用:TN(Twisted Nematic:扭曲向列)模式、IPS(In-Plane-Switching:平面內切換)模式、FFS模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optical Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式以及AFLC(AntiFerroelectric Liquid Crystal:反鐵電性液晶)模式等。
另外,顯示裝置700也可以使用常黑型液晶顯示裝置,例如採用垂直配向(VA)模式的透射型液晶顯示裝置。作為垂直配向模式,可以舉出幾個例子,例如可以使用MVA(Multi-Domain Vertical Alignment:多域垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:超視覺)模式等。
〈4-3.使用發光元件的顯示裝置〉
圖26所示的顯示裝置700包括發光元件782。發光元件782包括導電膜772、EL層786及導電膜788。圖26所示的顯示裝置700藉由使發光元件782所包括的EL層786發光,可以顯示影像。此外,EL層786包含有機化合物或量子點等無機化合物。
作為可以用於有機化合物的材料,可以舉出螢光性材料或磷光性材料等。此外,作為可以用於量子點的材料,可以舉出膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。另外,也可以使用包含第12族與第16族、第13族與第15族或第14族與第 16族的元素群的材料。或者,可以使用包含鎘(Cd)、硒(Se)、鋅(Zn)、硫(S)、磷(P)、銦(In)、碲(Te)、鉛(Pb)、鎵(Ga)、砷(As)、鋁(Al)等元素的量子點材料。
在圖26所示的顯示裝置700中,在電晶體750上設置有絕緣膜730。絕緣膜730覆蓋導電膜772的一部分。發光元件782採用頂部發射結構。因此,導電膜788具有透光性且使EL層786發射的光透過。注意,雖然在本實施方式中例示出頂部發射結構,但是不侷限於此。例如,也可以應用於向導電膜772一側發射光的底部發射結構或向導電膜772一側及導電膜788一側的兩者發射光的雙面發射結構。
另外,在與發光元件782重疊的位置上設置有彩色膜736,並在與絕緣膜730重疊的位置、引線配線部711及源極驅動電路部704中設置有遮光膜738。與圖23同樣,彩色膜736及遮光膜738也可以被絕緣膜734覆蓋。由密封膜732填充發光元件782與彩色膜736之間。注意,雖然例示出在圖26所示的顯示裝置700中設置彩色膜736的結構,但是並不侷限於此。例如,在藉由分別塗佈來形成EL層786時,也可以採用不設置彩色膜736的結構。
作為絕緣膜730,可以使用聚醯亞胺樹脂、丙烯酸樹脂、聚醯亞胺醯胺樹脂、苯并環丁烯樹脂、聚醯胺樹脂、環氧樹脂等具有耐熱性的有機材料。此外,也可以藉由層疊多個使用上述材料形成的絕緣膜形成絕緣膜730。
〈4-4.在顯示裝置中設置輸入輸出裝置的結構實例〉
另外,也可以在圖25及圖26所示的顯示裝置700中設置輸入輸出裝置。作為該輸入輸出裝置例如可以舉出觸控面板等。
圖27示出對圖25所示的顯示裝置700設置觸控面板791的結構。圖28示出對圖26所示的顯示裝置700設置觸控面板791的結構。
圖27是在圖25所示的顯示裝置700中設置觸控面板791的剖面圖,圖28是在圖26所示的顯示裝置700中設置觸控面板791的剖面圖。
首先,以下說明圖27及圖28所示的觸控面板791。
圖27及圖28所示的觸控面板791是設置在第二基板705與彩色膜736之間的所謂的In-Cell型觸控面板。觸控面板791在形成彩色膜736之前形成在第二基板705一側即可。
觸控面板791包括遮光膜738、絕緣膜792、電極793、電極794、絕緣膜795、電極796、絕緣膜797。例如,當手指或觸控筆等檢測物件靠近觸控面板時,可以檢測出電極793與電極794之間的電容的變化。
此外,在圖27及圖28所示的電晶體750的上方示出電極793、電極794的交叉部。電極786藉由設置在絕緣膜795中的開口與夾住電極794的兩個電極793電連接。此外,在圖27及圖28中示出設置有電極786的區域設置在像素部702中的結構,但是不侷限於此,例如也可以形成在源極驅動電路部704中。
電極793及電極794設置在與遮光膜738重疊的區域。此外,如圖27所示,電極793較佳為以不與液晶元件775重疊的方式設置。此外,如圖28所示,電極793較佳為以不與發光元件782重疊的方式設置。換言之,電極793在與發光元件782及液晶元件775重疊的區域具有開口。也就是說,電極793具有網格形狀。藉由採用這種結構,電極793可以具有不遮斷發光元件782所發射的光的結構。或者,電極793也可以具有不遮斷透過液晶元件775的光的結構。因此,由於因配置觸控面板791而導致的亮度下降極少,所以可以實現可見度高且功耗得到降低的顯示裝置。此外,電極794也可以具有相同的結構。
電極793及電極794由於不與發光元件782重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。或者,電極793及電極794由於不與液晶元件775重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。
因此,與使用可見光的穿透率高的氧化物材料的電極相比,可以降低電極793及電極794的電阻,由此可以提高觸控面板的感測器靈敏度。
例如,電極793、794、796也可以使用導電奈米線。該奈米線的直徑平均值可以為1nm以上且100nm以下,較佳為5nm以上且50nm以下,更佳為5nm以上且25nm以下。此外,作為上述奈米線可以使用Ag奈米線、Cu奈米線、Al奈米線等金屬奈米線或碳奈米管等。例如,在作為電極793、794、796中的任一個或全部使用Ag奈米線的情況下,能夠實現89%以上的可見 光穿透率及40Ω/平方以上且100Ω/平方以下的片電阻值。
雖然在圖27及圖28中示出In-Cell型觸控面板的結構,但是不侷限於此。例如,也可以採用形成在顯示裝置700上的所謂的On-Cell型觸控面板或貼合於顯示裝置700而使用的所謂的Out-Cell型觸控面板。
如此,本發明的一個實施方式的顯示裝置可以與各種方式的觸控面板組合而使用。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式5
在本實施方式中,使用圖29A至圖29C說明本發明的一個實施方式的顯示裝置。
〈顯示裝置的電路結構〉
圖29A所示的顯示裝置包括:具有顯示元件的像素的區域(以下稱為像素部502);配置在像素部502的外側並具有用來驅動像素的電路的電路部(以下稱為驅動電路部504);具有保護元件的功能的電路(以下稱為保護電路506);以及端子部507。此外,也可以不設置保護電路506。
驅動電路部504的一部分或全部與像素部502較佳為形成在同一基板上。 由此,可以減少構件的數量及端子的數量。當驅動電路部504的一部分或全部與像素部502不形成在同一基板上時,驅動電路部504的一部分或全部可以藉由COG或TAB(Tape Automated Bonding:捲帶自動接合)安裝。
像素部502包括用來驅動配置為X行(X為2以上的自然數)Y列(Y為2以上的自然數)的多個顯示元件的電路(以下稱為像素電路501),驅動電路部504包括輸出用來選擇像素的信號(掃描信號)的電路(以下稱為閘極驅動器504a)以及供應用來驅動像素中的顯示元件的信號(資料信號)的電路(以下稱為源極驅動器504b)等驅動電路。
閘極驅動器504a具有移位暫存器等。閘極驅動器504a藉由端子部507接收用來驅動移位暫存器的信號並輸出信號。例如,閘極驅動器504a被輸入啟動脈衝信號、時脈信號等並輸出脈衝信號。閘極驅動器504a具有控制被供應掃描信號的佈線(以下稱為掃描線GL_1至GL_X)的電位的功能。另外,也可以設置多個閘極驅動器504a,並藉由多個閘極驅動器504a各別控制掃描線GL_1至GL_X。或者,閘極驅動器504a具有供應初始化信號的功能。但是,不侷限於此,閘極驅動器504a也可以供應其他信號。
源極驅動器504b具有移位暫存器等。源極驅動器504b藉由端子部507接收用來驅動移位暫存器的信號和從其中得出資料信號的信號(影像信號)。源極驅動器504b具有根據影像信號生成寫入到像素電路501的資料信號的功能。另外,源極驅動器504b具有依照由於啟動脈衝信號、時脈信號等的輸入產生的脈衝信號來控制資料信號的輸出的功能。另外,源極驅動器504b具有控制被供應資料信號的佈線(以下稱為資料線DL_1至DL_Y)的電位 的功能。或者,源極驅動器504b具有供應初始化信號的功能。但是,不侷限於此,源極驅動器504b可以供應其他信號。
源極驅動器504b例如使用多個類比開關等來構成。源極驅動器504b藉由依次使多個類比開關開啟而可以輸出對影像信號進行時間分割所得到的信號作為資料信號。此外,也可以使用移位暫存器等構成源極驅動器504b。
脈衝信號及資料信號分別藉由被供應掃描信號的多個掃描線GL之一及被供應資料信號的多個資料線DL之一被輸入到多個像素電路501的每一個。另外,閘極驅動器504a控制多個像素電路501的每一個中的資料信號的寫入及保持。例如,脈衝信號藉由掃描線GL_m(m是X以下的自然數)從閘極驅動器504a被輸入到第m行第n列的像素電路501,資料信號根據掃描線GL_m的電位藉由資料線DL_n(n是Y以下的自然數)從源極驅動器504b被輸入到第m行第n列的像素電路501。
圖29A所示的保護電路506例如連接於作為閘極驅動器504a和像素電路501之間的佈線的掃描線GL。或者,保護電路506連接於作為源極驅動器504b和像素電路501之間的佈線的資料線DL。或者,保護電路506可以連接於閘極驅動器504a和端子部507之間的佈線。或者,保護電路506可以連接於源極驅動器504b和端子部507之間的佈線。此外,端子部507是指設置有用來從外部的電路對顯示裝置輸入電力、控制信號及影像信號的端子的部分。
保護電路506是在對與其連接的佈線供應一定範圍之外的電位時使該佈線與其他佈線之間導通的電路。
如圖29A所示,藉由對像素部502和驅動電路部504設置保護電路506,可以提高顯示裝置對因ESD(Electro Static Discharge:靜電放電)等而產生的過電流的耐性。但是,保護電路506的結構不侷限於此,例如,也可以採用將閘極驅動器504a與保護電路506連接的結構或將源極驅動器504b與保護電路506連接的結構。或者,也可以採用將端子部507與保護電路506連接的結構。
另外,雖然在圖29A中示出由閘極驅動器504a和源極驅動器504b形成驅動電路部504的例子,但不侷限於此。例如,也可以只形成閘極驅動器504a並安裝形成有另外準備的源極驅動電路的基板(例如,由單晶半導體膜或多晶半導體膜形成的驅動電路基板)。
另外,圖29A所示的多個像素電路501例如可以採用圖29B所示的結構。
圖29B所示的像素電路501包括液晶元件570、電晶體550以及電容器560。可以將前面的實施方式所示的電晶體用於電晶體550。
根據像素電路501的規格適當地設定液晶元件570的一對電極中的一個的電位。根據被寫入的資料設定液晶元件570的配向狀態。此外,也可以對多個像素電路501的每一個所具有的液晶元件570的一對電極中的一個供 應共用電位。此外,對一個行內的像素電路501所具有的液晶元件570的一對電極之一供應的電位可以不同於對另一行內的像素電路501所具有的液晶元件570的一對電極之一供應的電位。
例如,作為包括液晶元件570的顯示裝置的驅動方法也可以使用如下模式:TN模式;STN模式;VA模式;ASM模式;OCB模式;FLC模式;AFLC模式;MVA模式;PVA模式;IPS模式;FFS模式或TBA(Transverse Bend Alignment:橫向彎曲配向)模式等。另外,作為顯示裝置的驅動方法,除了上述驅動方法之外,還有ECB(Electrically Controlled Birefringence:電控雙折射)模式、PDLC(Polymer Dispersed Liquid Crystal:聚合物分散液晶)模式、PNLC(Polymer Network Liquid Crystal:聚合物網路液晶)模式、賓主模式等。但是,不侷限於此,作為液晶元件及其驅動方式可以使用各種液晶元件及驅動方式。
在第m行第n列的像素電路501中,電晶體550的源極電極和汲極電極中的一個與資料線DL_n電連接,源極電極和汲極電極中的另一個與液晶元件570的一對電極中的另一個電極電連接。電晶體550的閘極電極與掃描線GL_m電連接。電晶體550具有控制資料信號的寫入的功能。
電容器560的一對電極中的一個電極與被供應電位的佈線(以下,稱為電位供應線VL)電連接,另一個電極與液晶元件570的一對電極中的另一個電極電連接。此外,根據像素電路501的規格適當地設定電位供應線VL的電位。電容器560具有儲存被寫入的資料的儲存電容器的功能。
例如,在包括圖29B所示的像素電路501的顯示裝置中,藉由圖29A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體550開啟而寫入資料信號。
當電晶體550被關閉時,被寫入資料的像素電路501成為保持狀態。藉由按行依次進行上述步驟,可以顯示影像。
圖29A所示的多個像素電路501例如可以採用圖29C所示的結構。
圖29C所示的像素電路501包括電晶體552、554、電容器562以及發光元件572。可以將前面的實施方式所示的電晶體應用於電晶體552和/或電晶體554。
電晶體552的源極電極和汲極電極中的一個電連接於被供應資料信號的佈線(以下,稱為信號線DL_n)。並且,電晶體552的閘極電極電連接於被供應閘極信號的佈線(以下,稱為掃描線GL_m)。
電晶體552具有控制資料信號的寫入的功能。
電容器562的一對電極中的一個電極電連接於被供應電位的佈線(以下,稱為電位供應線VL_a),另一個電極電連接於電晶體552的源極電極和汲極電極中的另一個。
電容器562具有儲存被寫入的資料的儲存電容器的功能。
電晶體554的源極電極和汲極電極中的一個電連接於電位供應線VL_a。並且,電晶體554的閘極電極電連接於電晶體552的源極電極和汲極電極中的另一個。
發光元件572的陽極和陰極中的一個電連接於電位供應線VL_b,另一個電連接於電晶體554的源極電極和汲極電極中的另一個。
作為發光元件572,例如可以使用有機電致發光元件(也稱為有機EL元件)等。注意,發光元件572並不侷限於有機EL元件,也可以使用由無機材料構成的無機EL元件。
此外,電位供應線VL_a和電位供應線VL_b中的一個被供應高電源電位VDD,另一個被供應低電源電位VSS。
例如,在包括圖29C所示的像素電路501的顯示裝置中,藉由圖29A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體552開啟而寫入資料信號。
當電晶體552被關閉時,被寫入資料的像素電路501成為保持狀態。並且,流過電晶體554的源極電極與汲極電極之間的電流量根據寫入的資料信號的電位被控制,發光元件572以對應於流過的電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式6
圖30是示出顯示裝置800的結構實例的方塊圖。顯示裝置800包括顯示單元810、觸控感測器單元820、控制器IC815及主體840。另外,根據需要,也可以在顯示裝置800中設置光感測器843及開閉感測器844。顯示單元810包括像素部502、閘極驅動器504a及源極驅動器504b。
〈〈控制器IC〉〉
在圖30中,控制器IC815包括介面850、圖框記憶體851、解碼器852、感測器控制器853、控制器854、時脈生成電路855、影像處理部860、記憶體870、時序控制器873、暫存器875及觸控感測器控制器884。
控制器IC815與主體840的通訊藉由介面850進行。影像資料、各種控制信號等從主體840發送到控制器IC815。此外,觸控感測器控制器884所取得的觸摸位置等資訊從控制器IC815發送到主體840。此外,控制器IC815所包括的每個電路根據主體840的規格、顯示裝置800的規格等適當地取捨。
圖框記憶體851是用來儲存輸入到控制器IC815的影像資料的記憶體。當從主體840發送被壓縮的影像資料時,圖框記憶體851能夠儲存被壓縮的影像資料。解碼器852是使被壓縮的影像資料解壓縮的電路。當不需要使 影像資料解壓縮時,解碼器852不進行處理。或者,也可以將解碼器852配置於圖框記憶體851與介面850之間。
影像處理部860具有對影像資料進行各種影像處理的功能。例如,影像處理部860包括伽瑪校正電路861、調光電路862及調色電路863。
另外,在作為顯示裝置800的顯示元件使用有機EL或LED等利用電流的流動發光的顯示元件的情況下,影像處理部860也可以包括校正電路864。在此情況下,源極驅動器504b較佳為包括檢測流過顯示元件的電流的電路。校正電路864具有根據從源極驅動器504b發送的信號調節顯示元件的亮度的功能。
在影像處理部860中處理的影像資料經過記憶體870輸出到源極驅動器504b。記憶體870是暫時儲存影像資料的記憶體。源極驅動器504b具有處理被輸入的影像資料,且將該影像資料寫入到像素部502的源極線的功能。注意,對源極驅動器504b的個數沒有限制,根據像素部502的像素數設置即可。
時序控制器873具有生成在源極驅動器504b、觸控感測器控制器884、閘極驅動器504a中使用的時序信號的功能。
觸控感測器控制器884具有控制觸控感測器單元820的驅動電路的功能。包括從觸控感測器單元820讀出的觸摸資訊的信號被觸控感測器控制器884處理,藉由介面850發送到主體840。主體840生成反映觸摸資訊的影像資 料而將其發送到控制器IC815。此外,也可以採用利用控制器IC815將觸摸資訊反映到影像資料的結構。
時脈生成電路855具有生成在控制器IC815中使用的時脈信號的功能。控制器854具有對藉由介面850從主體840發送的各種控制信號進行處理,控制控制器IC815中的各種電路的功能。此外,控制器854具有控制對控制器IC815中的各種電路供應電源的功能。以下,將暫時停止對沒有使用的電路供應電源的技術稱為電源閘控。在圖30中,省略電源供應線。
暫存器875儲存用於控制器IC815的工作的資料。暫存器875所儲存的資料有在影像處理部860進行校正處理時使用的參數、在時序控制器873生成各種時序信號的波形時使用的參數等。暫存器875具備由多個暫存器構成的掃描器鏈暫存器。
感測器控制器853與光感測器843電連接。光感測器843檢測出光845而生成檢測信號。感測器控制器853根據檢測信號生成控制信號。感測器控制器853所生成的控制信號例如輸出到控制器854。
影像處理部860可以根據使用光感測器843及感測器控制器853測定的光845的亮度調節像素的亮度。換言之,在光845的亮度低的環境下,藉由降低像素的亮度來減少刺眼且降低功耗。另外,在光845的亮度高的環境下,藉由提高像素的亮度來獲得可見性高的顯示品質。可以基於使用者所設定的亮度進行上述調整。將上述調整稱為調光或調光處理。另外,將進行該處理的電路稱為調光電路。
另外,也可以使光感測器843及感測器控制器853具有測定光845的色調的功能來對色調進行校正。例如,在黃昏時的紅色的環境下,顯示裝置800的使用者的眼睛因顏色適應而看紅色時感覺為白色。在此情況下,產生顯示裝置800的顯示的顏色蒼白的感覺,因此藉由強調顯示裝置800的R(紅色)成分,可以進行色調校正。將上述校正稱為調色或調色處理。另外,將進行該處理的電路稱為調色電路。
影像處理部860有時根據顯示裝置800的規格包括RGB-RGBW轉換電路等其他處理電路。RGB-RGBW轉換電路是具有將RGB(紅色、綠色、藍色)影像資料轉換為RGBW(紅色、綠色、藍色、白色)影像資料的功能的電路。就是說,當顯示裝置800包括RGBW四種顏色的像素時,藉由使用W(白色)像素顯示影像資料中的W(白色)成分,可以降低功耗。注意,在顯示裝置800包括RGBY(紅色、綠色、藍色、黃色)4個顏色的像素的情況下,例如可以使用RGB-RGBY轉換電路。
〈參數〉
伽瑪校正、調光、調色等影像校正處理相當於根據輸入影像資料X生成輸出校正資料Y的處理。在影像處理部860中使用的參數是用來將影像資料X轉換為校正資料Y的參數。
參數的設定方式有表格方式、函數近似方式。在圖31A所示的表格方式中,將對於影像資料Xn的校正資料Yn作為參數儲存於表格中。在表格方式中,需要多個儲存對應於該表格的參數的暫存器,但是校正的彈性較 高。另一方面,在可以在經驗上預先決定對於影像資料X的校正資料Y時,如圖31B所示,採用函數近似方式的結構是有效的。a1、a2、b2等是參數。這裡,示出在每個區域進行線性近似的方法,但是也可以採用以非線性函數近似的方法。在函數近似方式中,校正的彈性較低,但是儲存定義函數的參數的暫存器較少。
在時序控制器873中使用的參數例如表示如圖31C所示那樣時序控制器873的生成信號對於基準信號成為“L”(或“H”)的時序。參數Ra(或Rb)表示對於基準信號成為“L”(或“H”)的時序相當於幾個時脈週期。
上述用於校正的參數可以儲存於暫存器875中。此外,作為上述以外的能夠儲存於暫存器875中的參數有顯示裝置800的亮度、色調、節省能量設定(到顯示變暗或關閉顯示的時間)、觸控感測器控制器884的靈敏度等。
〈電源閘控〉
當從主體840發送的影像資料沒有變化時,控制器854可以對控制器IC815中的一部分的電路進行電源閘控。明確而言,例如,可以暫時停止區域890中的電路(圖框記憶體851、解碼器852、影像處理部860、記憶體870、時序控制器873、暫存器875)。此外,可以採用將示出影像資料沒有變化的控制信號從主體840發送到控制器IC815且在控制器854檢測出該控制信號時進行電源閘控的結構。
當影像資料沒有變化時,例如,也可以藉由在控制器854中組裝計時器功能,根據使用計時器測量的時間決定再次開始對區域890中的電路供 電的時序。
除了區域890內的電路以外,還可以對源極驅動器504b進行上述電源閘控。
在圖30的結構中,也可以將源極驅動器504b包括在控制器IC815中。換言之,也可以將源極驅動器504b及控制器IC815設置在同一晶片上。
下面,對圖框記憶體851及暫存器875的具體電路結構實例進行說明。
〈圖框記憶體851〉
在圖32A中示出圖框記憶體851的結構實例。圖框記憶體851包括控制部902、單元陣列903、週邊電路908。週邊電路908包括感測放大器電路904、驅動器905、主放大器906、輸入輸出電路907。
控制部902具有控制圖框記憶體851的功能。例如,控制部902控制驅動器905、主放大器906及輸入輸出電路907。
驅動器905與多個佈線WL、CSEL電連接。驅動器905生成輸出到多個佈線WL、CSEL的信號。
單元陣列903包括多個記憶單元909。記憶單元909與佈線WL、LBL(或LBLB)、BGL電連接。佈線WL是字線,佈線LBL、LBLB是局部位元線。在圖32A的例子中,單元陣列903的結構是折疊位元線方式,也可 以是開放位元線方式。
在圖32B中示出記憶單元909的結構實例。記憶單元909包括電晶體NW1、電容器CS1。記憶單元909具有與DRAM(動態隨機存取記憶體)的記憶單元相同的電路結構。這裡,電晶體NW1是包括背閘極的電晶體。電晶體NW1的背閘極與佈線BGL電連接。佈線BGL被輸入電壓Vbg_w1。
電晶體NW1是在形成通道的半導體層中使用金屬氧化物之一的氧化物半導體的電晶體(也稱為“OS電晶體”)。由於OS電晶體的關態電流極小,藉由由OS電晶體構成記憶單元909,可以抑制從電容器CS1洩漏電荷,所以可以降低圖框記憶體851的更新工作的頻率。此外,即使停止電源供應,圖框記憶體851也能夠長時間保持影像資料。此外,藉由使電壓Vbg_w1為負電壓,可以使電晶體NW1的臨界電壓向正電位一側漂移,且可以延長記憶單元909的保持時間。
在此,“關態電流”是指在電晶體處於關閉狀態時流在源極和汲極之間的電流。在電晶體為n通道型的情況下,例如當臨界電壓為0V至2V左右時,可以將對於源極的閘極的電壓為負電壓時流在源極和汲極之間的電流稱為關態電流。另外,“關態電流極小”意味著例如每通道寬度1μm的關態電流為100zA(z:介,10-21)以下的情況。由於關態電流越小越好,所以該標準化關態電流較佳為10zA/μm以下或者1zA/μm以下,更佳為10yA/μm(y:攸,10-24)以下。
由於單元陣列903所包括的多個記憶單元909的電晶體NW1是OS電 晶體,所以其他電路的電晶體例如可以是形成在矽晶圓上的Si電晶體。由此,可以將單元陣列903層疊在感測放大器電路904上。因此,可以縮小圖框記憶體851的電路面積,由此實現控制器IC815的小型化。
單元陣列903層疊在感測放大器電路904上。感測放大器電路904包括多個感測放大器SA。感測放大器SA與相鄰的佈線LBL、LBLB(局部位元線對)、佈線GBL、GBLB(全域位元線對)、多個佈線CSEL電連接。感測放大器SA具有放大佈線LBL與佈線LBLB的電位差的功能。
在感測放大器電路904中,對四個佈線LBL設置有一個佈線GBL,對四個佈線LBLB設置有一個佈線GBLB,但是感測放大器電路904的結構不侷限於圖32A的結構實例。
主放大器906與感測放大器電路904及輸入輸出電路907連接。主放大器906具有放大佈線GBL與佈線GBLB的電位差的功能。此外,可以省略主放大器906。
輸入輸出電路907具有如下功能:將對應於寫入資料的電位輸出到佈線GBL及佈線GBLB或主放大器906;以及讀出佈線GBL及佈線GBLB的電位或主放大器906的輸出電位,將該電位作為資料輸出到外部。可以根據佈線CSEL的信號選擇讀出資料的感測放大器SA及寫入資料的感測放大器SA。因此,由於輸入輸出電路907不需要多工器等選擇電路,所以可以使電路結構簡化,可以縮小佔有面積。
〈暫存器875〉
圖33是示出暫存器875的結構實例的方塊圖。暫存器875包括掃描器鏈暫存器部875A及暫存器部875B。掃描器鏈暫存器部875A包括多個暫存器930。由多個暫存器930構成掃描器鏈暫存器。暫存器部875B包括多個暫存器931。
暫存器930是即使停止供電,資料也不消失的非揮發性暫存器。由於暫存器930是非揮發性暫存器,所以暫存器930包括使用OS電晶體的保持電路。
另一方面,暫存器931是揮發性暫存器。對暫存器931的電路結構沒有特別的限制,是能夠儲存資料的電路即可,也可以由閂鎖電路、正反器電路等構成。影像處理部860及時序控制器873存取暫存器部875B,從對應的暫存器931提取資料。或者,影像處理部860及時序控制器873根據從暫存器部875B供應的資料控制處理內容。
當使儲存於暫存器875中的資料更新時,首先改變掃描器鏈暫存器部875A的資料。在改寫掃描器鏈暫存器部875A的各暫存器930的資料之後,將掃描器鏈暫存器部875A的各暫存器930的資料同時載入到暫存器部875B的各暫存器931中。
由此,影像處理部860及時序控制器873等可以使用同時更新的資料進行各種處理。由於資料的更新保持同時性,可以實現控制器IC815的穩定工作。藉由設置掃描器鏈暫存器部875A及暫存器部875B,在影像處理部860 及時序控制器873工作中也可以更新掃描器鏈暫存器部875A的資料。
當進行控制器IC815的電源閘控時,在暫存器930中,在保持電路中儲存(保存)資料之後停止供電。在再次開始供電之後,將暫存器930的資料恢復(載入)到暫存器931中再次開始正常工作。此外,當儲存於暫存器930中的資料及儲存於暫存器931中的資料不一致時,較佳為在將暫存器931的資料儲存於暫存器930中之後,重新在暫存器930的保持電路中儲存資料。例如,在掃描器鏈暫存器部875A中插入更新資料時,產生資料不匹配。
圖34示出暫存器930、暫存器931的電路結構實例。在圖34中示出掃描器鏈暫存器部875A的兩級暫存器930及對應於這些暫存器930的兩個暫存器931。暫存器930被輸入信號Scan In且輸出信號Scan Out。
暫存器930包括保持電路947、選擇器948、正反器電路949。由選擇器948及正反器電路949構成掃描正反器電路。選擇器948被輸入信號SAVE1。
保持電路947被輸入信號SAVE2、LOAD2。保持電路947包括電晶體T1至T6、電容器C4、C6。電晶體T1、T2是OS電晶體。電晶體T1、T2也可以是與記憶單元909的電晶體NW1(參照圖32B)同樣的包括背閘極的OS電晶體。
由電晶體T1、T3、T4及電容器C4構成3電晶體型增益單元。同樣地, 由電晶體T2、T5、T6及電容器C6構成3電晶體型增益單元。兩個增益單元儲存正反器電路949所保持的互補資料。由於電晶體T1、T2是OS電晶體,保持電路947即使停止供電也可以在長時間保持資料。在暫存器930中,電晶體T1、T2以外的電晶體可以由Si電晶體構成。
保持電路947根據信號SAVE2儲存正反器電路949所保持的互補資料,根據信號LOAD2將所保持的資料載入到正反器電路949中。
正反器電路949的輸入端子與選擇器948的輸出端子電連接,資料輸出端子與暫存器931的輸入端子電連接。正反器電路949包括反相器950至955、類比開關957、958。類比開關957、958的導通狀態被掃描時脈(記為Scan Clock)信號控制。正反器電路949不侷限於圖34的電路結構,可以使用各種正反器電路949。
選擇器948的兩個輸入端子的一個與暫存器931的輸出端子電連接,另一個與上一級正反器電路949的輸出端子電連接。此外,對掃描器鏈暫存器部875A的第一級的選擇器948的輸入端子從暫存器875的外部輸入資料。
暫存器931包括反相器861至863、時脈反相器964、類比開關965、緩衝器866。暫存器931根據信號LOAD1載入正反器電路949的資料。暫存器931的電晶體可以由Si電晶體構成。
〈〈工作例子〉〉
關於顯示裝置800的控制器IC815及暫存器875的工作例子,分類為出貨前、包括顯示裝置800的電子裝置的啟動時以及正常工作時而進行說明。
〈出貨前〉
在出貨前,將有關顯示裝置800的規格等的參數儲存於暫存器875中。這些參數例如有像素數、觸控感測器數、時序控制器873用來生成各種時序信號波形的參數等。在影像處理部860包括校正電路864的情況下,將該校正資料作為參數儲存於暫存器875中。這些參數除了存儲在暫存器875中以外,也可以存儲在專用ROM中。
〈啟動時〉
在包括顯示裝置800的電子裝置的啟動時,將從主體840發送的使用者設定等的參數儲存於暫存器875中。這些參數例如有顯示的亮度或色調、觸控感測器的靈敏度、節省能量設定(到顯示變暗或關閉顯示的時間)、伽瑪校正的曲線或表格等。此外,在將該參數儲存於暫存器875中時,從控制器854對暫存器875發送掃描時脈信號及與該掃描時脈信號同步的相當於該參數的資料。
〈正常工作〉
正常工作可以分為顯示動態影像等的狀態、顯示靜態影像的狀態(能夠進行IDS驅動的狀態)及不進行顯示的狀態等。在顯示動態影像等的狀態下,影像處理部860及時序控制器873等工作,但是暫存器875的資料改變對掃描器鏈暫存器部875A進行,所以不影響到影像處理部860等。在改變掃描器鏈暫存器部875A的資料之後,藉由將掃描器鏈暫存器部875A的 資料同時載入到暫存器部875B中,暫存器875的資料改變結束。此外,影像處理部860等的工作切換為對應於該資料的工作。
在顯示靜態影像且能夠進行IDS驅動的狀態中,例如可以與區域890中的其他電路同樣地對暫存器875進行電源閘控。此時,在進行電源閘控之前,在掃描器鏈暫存器部875A所包括的暫存器930中根據信號SAVE2將正反器電路949所保持的互補資料儲存於保持電路947。
在從電源閘控恢復時,根據信號LOAD2將保持電路947所保持的資料載入到正反器電路949中,根據信號LOAD1將正反器電路949的資料載入到暫存器931中。如此,與在電源閘控之前相同的狀態下暫存器875的資料是有效的。此外,即使處於電源閘控的狀態,在主體840要求暫存器875的參數改變時,可以解除暫存器875的電源閘控,改變參數。
在不進行顯示的狀態下,例如,可以對區域890中的電路(包括暫存器875)進行電源閘控。此時,有時主體840也停止工作,但是由於圖框記憶體851及暫存器875是非揮發性,所以在從電源閘控恢復時,可以進行電源閘控之前的顯示(靜態影像)而不需要等待主體840的恢復。
例如,在對折疊式資訊終端的顯示部使用顯示裝置800時,在藉由開閉感測器844的信號檢測出資訊終端被折疊且顯示裝置800的顯示面不被使用時,除了區域890中的電路以外可以對感測器控制器853及觸控感測器控制器884等進行電源閘控。
在使資訊終端折疊時,有時根據主體840的規格,主體840停止工作。在主體840停止工作的狀態下,再次使資訊終端展開,由於圖框記憶體851及暫存器875是非揮發性,所以可以在從主體840發送影像資料、各種控制信號等之前顯示圖框記憶體851中的影像資料。
如此,藉由在暫存器875中設置掃描器鏈暫存器部875A及暫存器部875B,對掃描器鏈暫存器部875A進行資料改變,可以順利地進行資料改變而不影響到影像處理部860及時序控制器873等。此外,掃描器鏈暫存器部875A的各暫存器930包括保持電路947,因此可以順利地轉移到電源閘控狀態以及從電源閘控狀態恢復。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施方式7
在本實施方式中,參照圖35至圖37G對包括本發明的一個實施方式的顯示裝置的顯示模組及電子裝置進行說明。
〈7-1.顯示模組〉
圖35是包括光學式觸控感測器的顯示模組7000的剖面示意圖。圖35所示的顯示模組7000在上蓋7001與下蓋7002之間包括連接於FPC的顯示面板7006、背光(未圖示)、框架7009、印刷電路板7010、電池7011。
例如可以將本發明的一個實施方式的顯示裝置用於顯示面板7006。
上蓋7001及下蓋7002可以根據顯示面板7006的尺寸適當地改變形狀或尺寸。
雖然未圖示,但是背光具有光源。可以採用在背光上配置光源的結構或者在背光的端部設置光源並使用光擴散板的結構。當使用有機EL元件等自發光型發光元件時,或者當使用反射型面板等時,可以採用不設置背光的結構。
框架7009除了具有保護顯示面板7006的功能以外還具有用來遮斷因印刷電路板7010的工作而產生的電磁波的電磁屏蔽的功能。此外,框架7009也可以具有散熱板的功能。
印刷電路板7010具有電源電路以及用來輸出視訊信號及時脈信號的信號處理電路。作為對電源電路供應電力的電源,既可以採用外部的商業電源,又可以採用利用另行設置的電池7011的電源。當使用商業電源時,可以省略電池7011。
此外,在顯示模組7000中還可以設置偏光板、相位差板、稜鏡片等構件。
顯示模組7000包括設置在印刷電路板7010上的發光部7015及受光部7016。另外,由上蓋7001與下蓋7002圍繞的區域設置有一對導光部(導光 部7017a、導光部7017b)。
作為上蓋7001和下蓋7002例如可以使用塑膠。上蓋7001和下蓋7002的厚度可以為薄(例如0.5mm以上且5mm以下)。因此,可以使顯示模組7000的重量極輕。另外,可以用很少的材料製造上蓋7001和下蓋7002,因此可以降低製造成本。
顯示面板7006隔著框架7009與印刷電路板7010、電池7011重疊。顯示面板7006及框架7009固定在導光部7017a、導光部7017b。
從發光部7015發射的光7018經過導光部7017a、顯示面板7006的頂部及導光部7017b到達受光部7016。例如,當光7018被指頭或觸控筆等被檢測體阻擋時,可以檢測觸摸操作。
例如,多個發光部7015沿著顯示面板7006的相鄰的兩個邊設置。多個受光部7016配置在與發光部7015對置的位置。由此,可以取得觸摸操作的位置的資訊。
作為發光部7015例如可以使用LED元件等光源。尤其是,作為發光部7015,較佳為使用發射不被使用者看到且對使用者無害的紅外線的光源。
作為受光部7016可以使用接收發光部7015所發射的光且將其轉換為電信號的光電元件。較佳為使用能夠接收紅外線的光電二極體。
作為導光部7017a、導光部7017b可以使用至少透過光7018的構件。藉由使用導光部7017a及導光部7017b,可以將發光部7015及受光部7016配置在顯示面板7006中的下側,可以抑制外光到達受光部7016而導致觸控感測器的錯誤工作。尤其較佳為使用吸收可見光且透過紅外線的樹脂。由此,更有效地抑制觸控感測器的錯誤工作。
在圖35中,示出包括光學觸控感測器的顯示模組,但是也可以適當地將電阻膜式觸控面板或電容式觸控面板重疊於顯示面板7006。此外,也可以使顯示面板7006的相對基板(密封基板)具有觸控面板的功能。另外,也可以在顯示面板7006的各像素內設置光感測器,而形成光學觸控面板。
〈7-2.電子裝置1〉
圖36A至圖36E示出電子裝置的一個例子。
圖36A是安裝有取景器8100的照相機8000的外觀圖。
照相機8000包括外殼8001、顯示部8002、操作按鈕8003、快門按鈕8004等。另外,照相機8000安裝有可裝卸的鏡頭8006。
在此,照相機8000具有能夠從外殼8001拆卸下鏡頭8006而交換的結構,鏡頭8006和外殼也可以被形成為一體。
藉由按下快門按鈕8004,照相機8000可以進行成像。另外,顯示部8002被用作觸控面板,也可以藉由觸摸顯示部8002進行成像。
照相機8000的外殼8001包括具有電極的嵌入器,除了可以與取景器8100連接以外,還可以與閃光燈裝置等連接。
取景器8100包括外殼8101、顯示部8102以及按鈕8103等。
外殼8101包括嵌合到照相機8000的嵌入器的嵌入器,可以將取景器8100安裝到照相機8000。另外,該嵌入器包括電極,可以將從照相機8000利用該電極接收的影像等顯示到顯示部8102上。
按鈕8103被用作電源按鈕。藉由利用按鈕8103,可以切換顯示部8102的顯示或非顯示。
本發明的一個實施方式的顯示裝置可以用於照相機8000的顯示部8002及取景器8100的顯示部8102。
另外,在圖36A中,照相機8000與取景器8100是分開且可拆卸的電子裝置,但是也可以在照相機8000的外殼8001中內置有具備顯示裝置的取景器。
圖36B是頭戴顯示器8200的外觀圖。
頭戴顯示器8200包括安裝部8201、透鏡8202、主體8203、顯示部8204以及電纜8205等。另外,在安裝部8201中內置有電池8206。
藉由電纜8205,將電力從電池8206供應到主體8203。主體8203具備無線接收器等,能夠將所接收的影像資料等的影像資訊顯示到顯示部8204上。另外,藉由利用設置在主體8203中的相機捕捉使用者的眼球及眼瞼的動作,並根據該資訊算出使用者的視點的座標,可以利用使用者的視點作為輸入方法。
另外,也可以對安裝部8201的被使用者接觸的位置設置多個電極。主體8203也可以具有藉由檢測出根據使用者的眼球的動作而流過電極的電流,識別使用者的視點的功能。此外,主體8203可以具有藉由檢測出流過該電極的電流來監視使用者的脈搏的功能。安裝部8201可以具有溫度感測器、壓力感測器、加速度感測器等各種感測器,也可以具有將使用者的生物資訊顯示在顯示部8204上的功能。另外,主體8203也可以檢測出使用者的頭部的動作等,並與使用者的頭部的動作等同步地使顯示在顯示部8204上的影像變化。
可以將本發明的一個實施方式的顯示裝置用於顯示部8204。
圖36C、圖36D及圖36E是頭戴顯示器8300的外觀圖。頭戴顯示器8300包括外殼8301、顯示部8302、帶狀固定工具8304以及一對透鏡8305。
使用者可以藉由透鏡8305看到顯示部8302上的顯示。較佳的是,彎曲配置顯示部8302。藉由彎曲配置顯示部8302,使用者可以感受高真實感。注意,在本實施方式中,例示出設置一個顯示部8302的結構,但是不侷限 於此,例如也可以採用設置兩個顯示部8302的結構。此時,在將每個顯示部配置在使用者的每個眼睛一側時,可以進行利用視差的三維顯示等。
可以將本發明的一個實施方式的顯示裝置用於顯示部8302。因為本發明的一個實施方式的顯示裝置具有極高的解析度,所以即使如圖36E那樣地使用透鏡8305放大,也可以不使使用者看到像素而可以顯示現實感更高的影像。
〈7-3.電子裝置2〉
接著,圖37A至圖37G示出與圖36A至圖36E所示的電子裝置不同的電子裝置的例子。
圖37A至圖37G所示的電子裝置包括外殼9000、顯示部9001、揚聲器9003、操作鍵9005(包括電源開關或操作開關)、連接端子9006、感測器9007(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風9008等。
圖37A至圖37G所示的電子裝置具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;藉由利用各種軟體(程式)控制處理的功能;進行無線通訊的功能;藉由利用無線通訊功能來連接到各種電腦網路的功能;藉由利用無線通訊功能,進行各種 資料的發送或接收的功能;讀出儲存在存儲介質中的程式或資料來將其顯示在顯示部上的功能;等。注意,圖37A至圖37G所示的電子裝置可具有的功能不侷限於上述功能,而可以具有各種功能。另外,雖然在圖37A至圖37G中未圖示,但是電子裝置可以包括多個顯示部。此外,也可以在該電子裝置中設置照相機等而使其具有如下功能:拍攝靜態影像的功能;拍攝動態影像的功能;將所拍攝的影像儲存在存儲介質(外部存儲介質或內置於照相機的存儲介質)中的功能;將所拍攝的影像顯示在顯示部上的功能;等。
接著,對使用電子裝置的廣播系統進行說明。在此,尤其是對發送廣播信號的系統進行說明。
〈7-4.廣播系統〉
圖38為示意性地示出廣播系統的結構實例的方塊圖。廣播系統1500包括攝影機1510、發送器1511、電子裝置系統1501。電子裝置系統1501包括接收器1512及顯示裝置1513。攝影機1510包括影像感測器1520及影像處理器1521。發送器1511包括編碼器1522及調變器1523。
接收器1512及顯示裝置1513由電子裝置系統1501所包括的天線、解調器、解碼器、邏輯電路、影像處理器及顯示器單元構成。明確而言,例如,接收器1512包括天線、解調器、解碼器及邏輯電路。顯示裝置1513包括影像處理器及顯示器單元。另外,解碼器及邏輯電路也可以不包括在接收器1512中,而包括在顯示裝置1513中。
在攝影機1510能夠拍攝8K視頻的情況下,影像感測器1520具有能夠拍攝8K的彩色影像的像素數。例如,在一個像素由一個紅色(R)子像素、兩個綠色(G)子像素及一個藍色(B)子像素構成的情況下,影像感測器1520至少需要7680×4320×4[R、G+G、B]個像素,而在為4K攝影機的情況下,影像感測器1520的像素數至少為3840×2160×4,在為2K攝影機的情況下,像素數至少為1920×1080×4。
影像感測器1520生成未加工的Raw資料1540。影像處理器1521對Raw資料1540進行影像處理(雜訊去除、插補處理等)並生成視頻資料1541。視頻資料1541被輸出到發送器1511。
發送器1511對視頻資料1541進行處理來生成適合廣播頻帶的廣播信號1543(有時將廣播信號稱為載波)。編碼器1522對視頻資料1541進行處理來生成編過碼的資料1542。編碼器1522進行將視頻資料1541編碼的處理、對視頻資料1541附加廣播控制資料(例如,認證資料)的處理、加密處理以及加擾處理(用於展頻的資料排序處理)等。
調變器1523藉由對編過碼的資料1542進行IQ調變(正交調幅)來生成並輸出廣播信號1543。廣播信號1543為具有I(同相)成分和Q(正交成分)成分的資料的複合信號。TV廣播電臺取得視頻資料1541並供應廣播信號1543。
電子裝置系統1501所包括的接收器1512接收廣播信號1543。
圖39示出包括其他的電子裝置系統的廣播系統1500A。
廣播系統1500A包括攝影機1510、發送器1511、電子裝置系統1501A及影像生成裝置1530。電子裝置系統1501A包括接收器1512及顯示裝置1513。攝影機1510包括影像感測器1520及影像處理器1521。發送器1511包括編碼器1522A、編碼器1522B及調變器1523。
接收器1512及顯示裝置1513由電子裝置系統1501A所包括的天線、解調器、解碼器、影像處理器及顯示器單元構成。明確而言,例如,接收器1512包括天線、解調器及解碼器,顯示裝置1513包括影像處理器及顯示器單元。另外,解碼器也可以不包括在接收器1512中,而包括在顯示裝置1513中。
關於攝影機1510、攝影機1510所包括的影像感測器1520及影像處理器1521,參照上述說明。影像處理器1521生成視頻資料1541A。視頻資料1541A輸出到發送器1511。
影像生成裝置1530是生成對影像處理器1521中生成的影像資料附加的文字、圖形、圖案等的影像資料的裝置。文字、圖形或圖案等的影像資料作為視頻資料1541B發送到發送器1511。
發送器1511對視頻資料1541A及視頻資料1541B進行處理來生成適合廣播頻帶的廣播信號1543(有時將廣播信號稱為載波)。編碼器1522A對視頻資料1541A進行處理來生成編過碼的資料1542A。另外,編碼器1522B 對視頻資料1541B進行處理來生成編過碼的資料1542B。編碼器1522A及編碼器1522B進行將視頻資料1541A及視頻資料1541B編碼的處理、對視頻資料1541A及視頻資料1541B附加廣播控制資料(例如,認證資料)的處理、加密處理以及加擾處理(用於展頻的資料排序處理)等。
另外,廣播系統1500A也可以如圖38所示的廣播系統1500那樣由一個編碼器對視頻資料1541A及視頻資料1541B進行處理。
編過碼的資料1542A及編過碼的資料1542B發送到調變器1523。調變器1523藉由對編過碼的資料1542A及編過碼的資料1542B進行IQ調變來生成並輸出廣播信號1543。廣播信號1543為具有I成分和Q成分的資料的複合信號。TV廣播電臺取得視頻資料1541並供應廣播信號1543。
電子裝置系統1501A所包括的接收器1512接收廣播信號1543。
圖40示意性地示出廣播系統中的資料傳輸。圖40示出從廣播電臺1561發送的電波(廣播信號)傳送到各家庭的電視機(TV)1560的路徑。TV1560具備接收器1512及顯示裝置1513。作為人造衛星1562,例如可以舉出CS衛星和BS衛星等。作為天線1564,例如可以舉出BS/110°CS天線和CS天線等。作為天線1565,例如可以舉出特高頻(UHF:Ultra High Frequency)天線等。
電波1566A、1566B為衛星廣播信號。人造衛星1562在接收電波1566A後向地面發送電波1566B。各家庭藉由用天線1564接收電波1566B,就可以 用TV1560收看衛星TV廣播。或者,其他的廣播電臺的天線接收電波1566B並用廣播電臺內的接收器將其加工為能藉由光纜傳輸的信號。廣播電臺利用光纜網發送廣播信號至各家庭的TV1560的輸入部。電波1567A、1567B為地面廣播信號。電波塔1563放大所接收的電波1567A並發送電波1567B。各家庭藉由用天線1565接收電波1567B,就可以用TV1560收看地面TV廣播。
本實施方式的視頻傳輸系統不侷限於TV廣播系統。此外,所發送的視頻資料可以為動態影像資料,也可以為靜態影像資料。
圖41A至圖41D示出接收器的方式的例子。TV1560可以由接收器接收廣播信號而將其顯示在TV1560上。圖41A示出將接收器1571設置在TV1560的外側的情況。另外,作為其他的例子,圖41B示出天線1564、1565與TV1560之間藉由無線裝置1572及無線裝置1573進行資料傳輸的情況。在此情況下,無線裝置1572或者無線裝置1573還具有接收器的功能。另外,TV1560也可以內置有無線裝置1573(參照圖41C)。
接收器可以做成小到可隨身攜帶的尺寸。圖41D所示的接收器1574包括連接器部1575。在顯示裝置及資訊終端(例如,個人電腦、智慧手機、行動電話、平板終端等)等電子裝置具備可連接到連接器部1575的端子的情況下,可以用這些電子裝置收看衛星廣播或地面廣播。
在圖38的廣播系統1500中,可以將半導體裝置用於編碼器1522。另外,可以組合專用IC或處理器(例如,GPU、CPU)等來構成編碼器1522。 另外,也可以將編碼器1522集成在一個專用IC晶片。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式或其他實施例適當地組合而實施。
實施例1
在本實施例中,驗證藉由利用包含本發明的一個實施方式的金屬氧化物的電晶體,可以使高解析度的大型顯示器模組進行工作。
[8K顯示器]
有關8K顯示器的國際規格有Recommendation ITU-R BT.2020-2。在該規格中,水平解析度為7680,垂直解析度為4320,驅動方法為逐行掃描方式,最大圖框頻率為120Hz。
圖42A示出理想的顯示器模組的方塊圖。圖42A所示的結構具備形成在基板上的一個像素部(Pixel Area)、一個源極驅動器(Source Driver)及一對閘極驅動器(Gate Driver)。一對閘極驅動器較佳為藉由與像素所包括的電晶體相同的製程形成且安裝在顯示器模組中的所謂的Gate On Array(GOA)方式形成。另外,被用作源極驅動器的IC較佳為藉由COG(Chip On Glass)法等安裝在基板上。
驅動這種高解析度顯示器模組的電晶體需要極高場效移動率。尤其是在大型顯示面板中,包含非晶矽等的半導體的場效移動率低的電晶體不能 在圖框期間中完成影像改寫工作,而不能驅動顯示器模組。
因此,在使用包含非晶矽的電晶體的情況下,如圖42B所示,可以將像素部分成四個區域且在對各區域分別配置源極驅動器及閘極驅動器。在上述結構中,藉由同時對四個像素部進行改寫,即使使用場效移動率低的電晶體,也可以在圖框期間內完成影像改寫。另外,在由於電晶體的場效移動率低而不能藉由GOA方式安裝閘極驅動器的情況下,如圖42B所示,較佳為與源極驅動器同樣地安裝被用作閘極驅動器的IC。
然而,圖42B所示的結構有如下憂慮:源極驅動器或閘極驅動器等IC或這些驅動器附帶的構件的增大所引起的成本的增大;佈線數的增大所引起的開口率的下降;IC的安裝所引起的邊框面積的增大;需要另行設置使被分割的像素部同步的電路;被分割的像素部的邊界部被看到而導致的可見度的下降;等。另外,需要用來將被輸入的影像資料分成4個部分的影像處理等,因此需要高速且大規模的影像處理電路。
[驗證模型]
下面,驗證是否能夠利用包含本發明的一個實施方式的金屬氧化物的電晶體使大型8K液晶顯示器模組進行工作。為了比較,還驗證利用使用非晶矽的電晶體的情況。
以下示出用於驗證的液晶顯示器模組的規格。像素部的尺寸為65英寸,有效像素數為7680×RGB(H)×4320(V),像素尺寸為187.5μm×187.5μm,液晶模式為VA模式,灰階級數為12bit。另外,源極驅動器IC的資料電壓 為3.5V至14.5V,1個水平期間為1.92μs,驅動方法為點反轉驅動。閘極驅動器的時脈頻率為260.16kHz,電壓為-6.0V至22.0V。液晶元件的共用電位為9.0V。
一個子像素包括一個電晶體及一個電容器。用於像素的電晶體具有通道蝕刻型單閘極結構,通道長度為4μm,通道寬度為8μm。用於閘極驅動器的電晶體具有通道蝕刻型雙閘極結構(S-channel結構),通道長度為4μm,通道寬度為4000μm。各電晶體的半導體層包含本發明的一個實施方式的金屬氧化物(CAC-OS)。
另外,作為比較,還驗證將氫化非晶矽(a-Si:H)用於上述電晶體的半導體層的情況。
[驗證]
在驗證中,評估直到閘極線的電位完全下降為止的時間(閘極電位下降時間)和直到源極線的電位達到最大輸入電壓的95%為止的時間(源極線電位充電時間)的總時間。以下示出驗證結果。
在使用CAC-OS的情況下,閘極電位下降時間與源極線電位充電時間的總和為1.91μs,短於以120Hz驅動時的1個水平期間1.92μs,估計能夠使顯示器模組進行工作。該結果示出該顯示器模組能夠內置閘極驅動器。此時,閘極驅動器一側的邊框寬度估計為3.85mm,可知能夠實現邊框極窄的顯示器模組。
另一方面,在使用氫化非晶矽的情況下,閘極電位下降時間超過1個水平期間,因此可知該顯示器模組不能內置閘極驅動器。在驗證中,假設閘極線及源極線等的負載相同而進行計算,但是在使用氫化非晶矽的情況下,配置在像素中的電晶體的尺寸較大,所以負載也變更大。
接著,驗證在使用CAC-OS的情況和使用氫化非晶矽的情況下能夠內置閘極驅動器的面板尺寸(像素部的尺寸)與圖框頻率的關係。
圖43示出驗證結果。在圖43中,縱軸表示面板尺寸,橫軸表示圖框頻率。藉由使用CAC-OS,可以實現最大尺寸為70英寸的內置有閘極驅動器的解析度8K、圖框頻率120Hz且12bit灰階級的顯示面板。
藉由上述驗證可知藉由使用本發明的一個實施方式的金屬氧化物,可以實現高解析度的大型顯示器模組。
實施例2
在本實施例中,製造本發明的一個實施方式的電晶體。此外,對電晶 體的Id-Vg特性進行測定而評價可靠性。
[電晶體的製造]
首先,製造相當於上述電晶體100E的電晶體,對該電晶體的電特性進行評價。在本實施例中,製造以下樣本A1及樣本A2。
樣本A1及樣本A2是形成有電晶體的樣本,各電晶體的通道長度L都是3μm,通道寬度W都是50μm。
[樣本A1及樣本A2的製造方法]
首先,使用濺射裝置在玻璃基板上形成厚度為100nm的鎢膜。接著,利用光微影法對該導電膜進行加工,來形成被用作第一閘極電極的導電膜104。
接著,在基板及導電膜104上層疊四層絕緣膜,來形成被用作第一閘極絕緣膜的絕緣膜106。絕緣膜106使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜106,從下層依次形成厚度為50nm的氮化矽膜、厚度為300nm的氮化矽膜、厚度為50nm的氮化矽膜、厚度為50nm的氧氮化矽膜。
接著,在絕緣膜106上依次形成兩層的金屬氧化物膜(第一金屬氧化物膜、第二金屬氧化物膜)。接著,藉由將金屬氧化物膜的疊層加工為島狀,來形成金屬氧化物膜108。
樣本A1與樣本A2的金屬氧化物膜的形成條件不同。
[樣本A1的金屬氧化物膜的形成]
在樣本A1中,第一金屬氧化物膜使用厚度為20nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為25nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為130℃,將流量為180sccm的氬氣體和流量為20sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])施加2.5kW的交流電力。注意,有時將沉積氣體整體中氧所佔的比率稱為“氧流量比”。形成第一金屬氧化物膜時的氧流量比為10%。
第二金屬氧化物膜的成膜條件除了濺射氣體的流量以外與第一金屬氧化物膜的成膜條件相同。明確而言,停止對處理室引入氬氣體,將流量為200sccm的氧氣體引入濺射裝置的處理室內。此外,形成第二金屬氧化物膜時的氧流量比為100%。
[樣本A2的金屬氧化物膜的形成]
在樣本A2中,第一金屬氧化物膜使用厚度為20nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為25nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為170℃,將流量為140sccm的氬氣體和流量為60sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個 數比])施加2.5kW的交流電力。形成第一金屬氧化物膜時的氧流量比為30%。
第二金屬氧化物膜在如下條件下形成:基板溫度為170℃,將流量為100sccm的氬氣體和流量為100sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2.5kW的交流電力。形成第二金屬氧化物膜時的氧流量比為50%。
藉由上述製程形成樣本A1及樣本A2的金屬氧化物膜108。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理,然後在氮和氧的混合氣體氛圍下進行1小時的加熱處理。
接著,在絕緣膜106及金屬氧化物膜108上形成導電膜,對該導電膜進行加工,由此形成導電膜112a、112b。在此,作為導電膜,使用濺射裝置依次形成厚度為30nm的第一鈦膜和厚度為200nm的銅膜。接著,藉由光微影法對銅膜進行蝕刻,然後使用濺射裝置形成厚度為50nm的第二鈦膜。接著,藉由光微影法對第一鈦膜及第二鈦膜進行蝕刻,由此形成導電膜112a、112b。
接著,使用磷酸對露出的金屬氧化物膜108的表面(背後通道一側)進行洗滌。
接著,在絕緣膜106、金屬氧化物膜108及導電膜112a、112b上形成絕緣膜114,在絕緣膜114上形成絕緣膜116。絕緣膜114及絕緣膜116使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜114使用厚度為30nm的氧氮化矽膜,作為絕緣膜116使用厚度為400nm的氧氮化矽膜。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理。
接著,在絕緣膜116上形成導電膜。作為導電膜,使用濺射裝置形成厚度為6nm的ITSO膜。
接著,藉由電漿處理法將氧經由導電膜添加到絕緣膜116。在電漿處理中,在包含氧氣體的氛圍下進行電漿放電。
接著,對導電膜進行蝕刻。
接著,在絕緣膜116上形成絕緣膜118。作為絕緣膜118,使用電漿增強化學氣相沉積(PECVD)裝置形成厚度為100nm的氮化矽膜。
接著,在絕緣膜的所希望的區域中形成開口。作為開口的形成方法,利用乾蝕刻法。
接著,以填充開口的方式形成導電膜,將該導電膜加工為島狀,由此 形成被用作第二閘極電極的導電膜120a。作為導電膜120a,使用濺射裝置形成厚度為100nm的ITSO膜。
接著,在絕緣膜118及導電膜120a上形成絕緣膜。作為絕緣膜,使用厚度為1.5μm的丙烯酸樹脂類感光性樹脂。
藉由上述步驟製造樣本A1及樣本A2。
[電晶體的Id-Vg特性]
接著,測定上面製造的樣本A1及樣本A2的電晶體的Id-Vg特性。電晶體的Id-Vg特性的測定條件為如下:將施加到被用作第一閘極電極的導電膜的電壓(以下,也稱為閘極電壓(Vg))以及施加到被用作第二閘極電極的導電膜的電壓(以下,也稱為背閘極電壓(Vbg))從-15V每隔0.25V變化到+20V。另外,將施加到被用作源極電極的導電膜的電壓(以下,也稱為源極電壓(Vs))設定為0V(comm),將施加到被用作汲極電極的導電膜的電壓(以下,也稱為汲極電壓(Vd))設定為0.1V和20V。
圖44A和圖44B分別示出樣本A1及樣本A2的Id-Vg特性結果。在圖44A和圖44B中,第一縱軸表示Id(A),第二縱軸表示場效移動率(μFE(cm2/Vs)),橫軸表示Vg(V)。注意,場效移動率表示Vd為20V時的值。
[場效移動率]
在此,說明場效移動率。作為電晶體的電流驅動力的指標,使用場效移動率。電晶體的導通區域分類為線性區域及飽和區域。可以從各個區域 的特性,根據Gradual channel近似的汲極電流的分析式算出電晶體的場效移動率。若需要區分,分別稱為線性移動率(Linear mobility)及飽和移動率(Saturation mobility)。飽和移動率以如下公式(1)表示。
在本說明書等中,將從公式(1)算出的曲線稱為移動率曲線。在圖44A和圖44B中,示出根據式(1)從Id-Vg特性估計的飽和移動率的移動率曲線。
如圖44A和圖44B所示,不管在哪一個條件下,也可以製造場效移動率高且具有優良的開關特性的電晶體。
[閘極偏置熱應力測試]
接著,圖47示出樣本A1的應力測試結果。作為應力測試,使用閘極偏置應力測試(GBT測試)。GBT測試為加速測試的一種,可以在短時間內評價由於長時間的使用而發生的電晶體的特性變化。在此,在GBT測試中,將形成有電晶體的基板保持為60℃且對電晶體的源極和汲極施加0V的電壓,對閘極施加30V或-30V的電壓,保持該狀態3600秒鐘。此時,將對閘極施加正電壓的測試記為PBTS,將對閘極施加負電壓的測試記為NBTS。另外,在照射10000lx的白色LED光的狀態下對閘極施加30V或-30V的電 壓且保持該狀態3600秒鐘。此時,將對閘極施加正電壓的測試記為PBITS,將對閘極施加負電壓的測試記為NBITS。
圖47示出GBT測試的結果。在圖47中,臨界值的變動量(△Vth)良好,為±1V以下。在GBT測試中獲得良好結果的原因被推測為:由於包括在樣本A1中的電晶體作為金屬氧化物膜108包含CAC-OS膜及CAAC-OS膜的疊層,因此形成有埋入通道,並且背後通道一側的金屬氧化物膜108與絕緣膜114的介面的缺陷或損傷的影響得到緩和等。
[可靠性評價1]
接著,對上述樣本A1、A2進行可靠性評價。
在可靠性評價中,藉由對電晶體反復施加脈衝電壓來驅動電晶體,並且評價通態電流的變化率。
測試條件為如下:在對源極電極施加-8V的恆電位的狀態下,對第一閘極電極、第二閘極電極及汲極電極施加高位準電壓為20V且低位準電壓為-8V的脈衝電壓。在脈衝電壓中,施加20V的電壓的期間為20%,施加-8V的電壓的期間為80%(換言之,工作比為20%),頻率大約為17.1kHz。
另外,在施加脈衝電壓一定期間之後,對電晶體的通態電流進行測定。通態電流的測定條件為如下:將閘極電壓(Vg)及背閘極電壓(Vbg)設定為15V,將源極電壓(Vs)設定為0V(comm),將汲極電壓(Vd)設定為5V。另外,測定中的取樣期間為7.5毫秒(工作比為7.5%)。
用於評價的樣本A1及樣本A2的通道長度都是4μm,通道寬度都是1000μm。
圖45A示出從所測定的Id-Vg特性評估的樣本A1及樣本A2的通態電流的變化率。在圖45A中,橫軸表示時間,縱軸表示通態電流的變化率。
圖45B示出直到通態電流降低50%為止的時間。在樣本A2中,大約為4.2小時,在樣本A1中,大約為55.5小時。
從上述結果可知,包含本發明的一個實施方式的金屬氧化物的電晶體具有高可靠性。
[可靠性評價2]
接著,改變上述可靠性評價的測試條件而進行可靠性評價。對以與樣本A1相同的條件製造的三個電晶體進行可靠性評價。該三個電晶體的通道長度分別為3μm、4μm及6μm,通道寬度都是1000μm。注意,在可靠性評價1與可靠性評價2之間測定物件的樣本彼此不同,因此可靠性評價的結果稍微不同。
測試條件為如下:在對源極電極施加-9V的恆電位的狀態下,對第一閘極電極、第二閘極電極及汲極電極施加高位準電壓為20V且低位準電壓為-9V的脈衝電壓。在脈衝電壓中,施加20V的電壓的期間為20%,施加-9V的電壓的期間為80%(換言之,工作比為20%)。
另外,在施加脈衝電壓一定期間之後,對電晶體的通態電流進行測定。通態電流的測定條件為如下:將閘極電壓(Vg)及背閘極電壓(Vbg)設定為15V,將源極電壓(Vs)設定為0V(comm),將汲極電壓(Vd)設定為5V。另外,測定中的取樣期間為7.5毫秒(工作比為7.5%)。
圖48A和圖48B示出測定結果。圖48A以半對數圖表示出測定結果,圖48B以雙對數圖表示出測定結果。在圖48A和圖48B中,橫軸示出測定時間,縱軸示出可靠性評價中的通態電流的變化率。從圖48B可估計通態電流因劣化而下降到70%需要125,000秒鐘左右。從上述結果可知,包含本發明的一個實施方式的金屬氧化物的電晶體具有高可靠性。
[電晶體的製造]
接著,製造相當於上述電晶體100A的電晶體,對該電晶體的電特性進行評價。在本實施例中,製造以下樣本A3及樣本A4。注意,樣本A3及樣本A4的電晶體中的導電膜120a與絕緣膜118的疊層順序與電晶體100A不同。
樣本A3及樣本A4是形成有電晶體的樣本,各電晶體的通道長度L都是2μm,通道寬度W都是50μm。
[樣本A3及樣本A4的製造方法]
首先,使用濺射裝置在玻璃基板上形成厚度為100nm的鎢膜。接著,利用光微影法對該導電膜進行加工,來形成被用作第一閘極電極的導電膜 104。
接著,在樣本A3及A4中形成彼此不同的絕緣膜106。
在樣本A3中,在基板及導電膜104上層疊四層絕緣膜,來形成被用作第一閘極絕緣膜的絕緣膜106。樣本A3的絕緣膜106使用PECVD設備在真空中連續地形成。作為樣本A3的絕緣膜106,從下層依次形成厚度為50nm的氮化矽膜、厚度為300nm的氮化矽膜、厚度為50nm的氮化矽膜、厚度為50nm的氧氮化矽膜。
在樣本A4中,在基板及導電膜104上層疊三層絕緣膜,來形成被用作第一閘極絕緣膜的絕緣膜106。樣本A4的絕緣膜106使用PECVD設備在真空中連續地形成。作為樣本A4的絕緣膜106,從下層依次形成厚度為50nm的氮化矽膜、厚度為300nm的氮化矽膜、厚度為50nm的氮化矽膜。另外,在樣本A4中,在形成絕緣膜106之後對絕緣膜106的表面進行氧電漿處理。
接著,在絕緣膜106上依次形成兩層的金屬氧化物膜(第一金屬氧化物膜、第二金屬氧化物膜)。接著,藉由將金屬氧化物膜的疊層加工為島狀,來形成金屬氧化物膜108。
第一金屬氧化物膜使用厚度為10nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為25nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為130℃,將流量為 180sccm的氬氣體和流量為20sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])施加2.5kW的交流電力。形成第一金屬氧化物膜時的氧流量比為10%。
第二金屬氧化物膜的成膜條件除了濺射氣體的流量以外與第一金屬氧化物膜的成膜條件相同。明確而言,停止對處理室引入氬氣體,將流量為200sccm的氧氣體引入濺射裝置的處理室內。此外,形成第二金屬氧化物膜時的氧流量比為100%。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理,然後在氮和氧的混合氣體氛圍下進行1小時的加熱處理。
接著,在絕緣膜106及金屬氧化物膜108上形成導電膜,對該導電膜進行加工,由此形成導電膜112a、112b。在此,作為導電膜,使用濺射裝置依次形成厚度為50nm的鎢膜、厚度為400nm的鋁膜和厚度為100nm的鈦膜。接著,藉由光微影法對該導電膜進行蝕刻,由此形成導電膜112a、112b。
接著,使用磷酸對露出的金屬氧化物膜108的表面(背後通道一側)進行洗滌。
接著,在絕緣膜106、金屬氧化物膜108及導電膜112a、112b上形成絕緣膜114,在絕緣膜114上形成絕緣膜116。絕緣膜114及絕緣膜116使用PECVD設備在真空中連續地形成。作為絕緣膜114使用厚度為30nm的氧氮 化矽膜,作為絕緣膜116使用厚度為400nm的氧氮化矽膜。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理。
接著,在絕緣膜116上形成導電膜。作為導電膜,使用濺射裝置形成厚度為6nm的ITSO膜。
接著,藉由電漿處理法將氧經由導電膜添加到絕緣膜116。在電漿處理中,在包含氧氣體的氛圍下進行電漿放電。
接著,對導電膜進行蝕刻。
接著,在絕緣膜116上形成絕緣膜118。作為絕緣膜118,使用PECVD設備形成厚度為100nm的氮化矽膜。
接著,在絕緣膜的所希望的區域中形成開口。作為開口的形成方法,利用乾蝕刻法。
接著,以填充開口的方式形成導電膜,將該導電膜加工為島狀,由此形成被用作第二閘極電極的導電膜120a。作為導電膜120a,使用濺射裝置形成厚度為100nm的ITSO膜。
接著,在絕緣膜118及導電膜120a上形成絕緣膜。作為絕緣膜,使用 厚度為1.5μm的丙烯酸樹脂類感光性樹脂。
藉由上述步驟製造樣本A3及樣本A4。
[電晶體的Id-Vg特性]
接著,測定上面製造的十個樣本A3及十個樣本A4的電晶體的Id-Vg特性。電晶體的Id-Vg特性的測定條件為如下:將Vg及Vbg從-15V每隔0.25V變化到+15V。另外,將Vs設定為0V(comm),將Vd設定為0.1V和20V。
圖54A示出十個樣本A3的電晶體的Id-Vg特性。圖54B示出十個樣本A4的電晶體的Id-Vg特性。在圖54A和圖54B中,橫軸示出Vg。在圖54A和圖54B中,縱軸以對數示出汲極電流(Id)。圖54A中的測定結果群331示出Vd為0.1V時的樣本A3的電晶體的Id-Vg特性。圖54A中的測定結果群332示出Vd為20V時的樣本A3的電晶體的Id-Vg特性。圖54B中的測定結果群341示出Vd為0.1V時的樣本A4的電晶體的Id-Vg特性。圖54B中的測定結果群342示出Vd為20V時的樣本A4的電晶體的Id-Vg特性。
從圖54A和圖54B可知,樣本A3的電晶體及樣本A4的電晶體的關態電流都少,電晶體之間的偏差也少。因此,樣本A3的電晶體及樣本A4的電晶體都具有良好的電特性。
[閘極偏置熱應力測試]
接著,對樣本A3的電晶體及樣本A4的電晶體進行GBT測試。各電晶 體的通道長度L都是3μm,通道寬度W都是50μm。在此,在GBT測試中,將形成有電晶體的基板保持為60℃且對電晶體的源極和汲極施加0V的電壓,對閘極施加30V或-30V的電壓,保持該狀態3600秒鐘。此時,將對閘極施加正電壓的測試記為PBTS,將對閘極施加負電壓的測試記為NBTS。另外,在照射10000lx的白色LED光的狀態下對閘極施加30V或-30V的電壓且保持該狀態3600秒鐘。此時,將對閘極施加正電壓的測試記為PBITS,將對閘極施加負電壓的測試記為NBITS。
圖55示出GBT測試的結果。樣本A3的電晶體的臨界值的變動量(△Vth)在PBTS中為0.49V,在NBTS中為0.04V,在PBITS中為0.06V,在NBITS中為-0.50V。樣本A4的電晶體的△Vth在PBTS中為0.74V,在NBTS中為0.05V,在PBITS中為0.11V,在NBITS中為-1.96V。樣本A3的電晶體及樣本A4的電晶體的GBT測試中的Vth的變化量都低於2V。由此可知樣本A3的電晶體及樣本A4的電晶體都具有良好的可靠性。
一般而言,在將氫化非晶矽層用於形成通道的半導體層的電晶體(也稱為“a-Si:H電晶體”)中,作為閘極絕緣層使用氮化矽層。根據本發明的一個實施方式,作為OS電晶體的閘極絕緣層可以使用氮化矽層。換言之,在將a-Si:H電晶體的生產線轉換為OS電晶體的生產線的情況下,不需要大幅度地改變設備。因此,比較容易將a-Si:H電晶體的生產線轉換為OS電晶體的生產線。
實施例3
在本實施例中,對設想8K顯示器的工作驗證用顯示器模組進行說明。作為構成顯示器模組的電晶體,可以使用使用本發明的一個實施方式的金屬氧化物的電晶體。
藉由在2K或4K顯示器模組的像素部中作為設想8K顯示器的工作環境設置與8K顯示器同等的負載,可以製造設想8K顯示器的工作驗證用顯示器模組。
圖46A示出工作驗證用顯示器模組的方塊圖。圖46A所示的結構具有形成在基板上的一個像素部601、一個源極驅動器603及一對閘極驅動器605。 一對閘極驅動器605較佳為藉由與像素所包括的電晶體相同的製程形成且安裝在顯示器模組中的所謂的Gate On Array方式形成。源極驅動器603較佳為藉由COG法等安裝在基板上。
另外,基板上設置有與FPC連接的端子部607、設置在端子部607與閘極驅動器605之間的佈線609、與閘極驅動器605連接的佈線611以及與源極驅動器603連接的佈線613。佈線609具有閘極驅動器605用信號線及電源線的功能。佈線611具有閘極佈線的功能。佈線613具有信號線的功能。
像素部601包括區域601_1、601_2、601_3、601_4。對區域601_1與區域601_2之間、區域601_1與區域601_3之間、區域601_2與區域601_4之間、區域601_3與區域601_4之間以及一對閘極驅動器605之間的佈線分別設置負載602。負載602是佈線負載,電阻元件、電容器等設置在佈線。
藉由適當地在像素部601及驅動電路中設置負載602,可以在顯示器模組的各區域中實現不同的工作。
例如,在區域601_1與源極驅動器603之間及區域601_1與閘極驅動器605之間不設置負載。因此,區域601_1的信號線及閘極佈線的信號波形的失真小,在像素部601中,對像素寫入信號的條件最寬容。
雖然在區域601_2與源極驅動器603之間不設置負載,但是在區域601_2與閘極驅動器605之間設置有負載602。因此,在區域601_2中,信號線的信號波形的失真小,但是閘極佈線的信號波形的失真大。
雖然在區域601_3與源極驅動器603之間設置有負載,但是在區域601_3與閘極驅動器605之間不設置負載。因此,在區域601_3中,信號線的信號波形的失真大,但是閘極佈線的信號波形的失真小。
在區域601_4與源極驅動器603之間及區域601_4與閘極驅動器605之間設置有負載602。因此,區域601_4的信號線及閘極佈線的信號波形的失真大,在像素部601中,對像素寫入信號的條件最嚴格。
圖46B示出實際的8K顯示器模組的方塊圖。像素部621設置有像素623。像素623相當於圖46A的負載602。圖46A的區域601_1相當於圖46B的像素部621的區域621_1。圖46A的區域601_2相當於圖46B的像素部621的區域621_2。圖46A的區域601_3相當於圖46B的像素部621的區域621_3。圖46A的區域601_4相當於圖46B的像素部621的區域621_4。
如圖46A所示,藉由在像素部601中設置負載602,可以在一個顯示器模組中進行四個條件的像素寫入工作的驗證。另外,可以進行能夠驅動與8K顯示器同等的負載的源極驅動器及閘極驅動器的工作的驗證。如上所述,可以使用2K或4K顯示器模組進行8K顯示器模組的工作驗證。
實施例4
在本實施例中,說明為了探討使用本發明的一個實施方式的電晶體來實現大型8K液晶顯示裝置的可能性進行模擬的結果。
[驗證模型]
表3示出探討的液晶顯示裝置的規格。液晶顯示裝置的螢幕尺寸為65英寸,像素具有將RGB的3種子像素配置為條紋狀的結構。像素電路具有一個單元內包括一個電晶體及一個電容器的結構。作為像素電路所包括的電晶體,設想包含CAC-OS膜的通道蝕刻結構的電晶體。閘極驅動器是內置的,源極驅動器利用IC設置在外部。藉由模擬確認以120Hz的圖框頻率使液晶顯示裝置進行工作時的視訊信號的寫入所需要的時間。
圖49示出探討的液晶顯示裝置的示意圖。尤其是在大型顯示器中,像素區域內的時間常數越小越好。因此,將閘極驅動器配置在像素區域的兩側,將閘極選擇信號從閘極線的兩側輸入。藉由採用這種結構,與僅在像素區域的一側配置閘極驅動器的結構相比,可以將閘極線的時間常數降低到4分之1,所以可以縮短閘極線的充放電時間。另外,為了儘可能地延長能夠用於視訊信號的寫入的期間,也可以將兩個行的閘極線連接到緩衝器,同時選擇兩個行的閘極線,由此同時寫入兩個行的視訊信號。由此,可以將閘極驅動器的移位暫存器的級數從一般的4320級減少到一半的2160級,可以將1個水平選擇期間從1.92μs延長到3.83μs。
圖50示出液晶顯示裝置所包括的像素的電路圖。一個像素包括分別對應於紅色(R)、綠色(G)及藍色(B)的三個子像素。每個子像素包括電晶體M1、電容器Cs及液晶元件LC。在被用作選擇電晶體的電晶體M1中,閘極與閘極線GL連接,源極和汲極中的一個與源極線SL連接。電容器Cs設置在電晶體M1的源極和汲極中的另一個與共用電位線CsCOM之間。液晶元件LC設置在電晶體M1的源極和汲極中的另一個與共用電位線TCOM之間。各子像素具有一個單元內包括一個電晶體及一個電容器的最簡單的結構,但是為了同時寫入兩個行的視訊信號,採用對一個列的像素設置兩 個源極線的結構(也稱為雙源極線結構)。在奇數行的像素中,一個源極線(例如,SL11)與電晶體M1連接,在偶數行的像素中,另一個源極線(例如,SL12)與電晶體M1連接。
圖51示出用於模擬的結構的方塊圖。基於包含CAC-OS膜的電晶體的實測值抽出像素電路及閘極驅動器的電晶體的模型參數。作為源極驅動器,使用行為模型。另外,作為像素區域的閘極線與源極線的寄生電容及閘極驅動器的CLK線的寄生成分使用RC負載模型。寄生電容及寄生電阻利用邊界元法抽出。算出在像素區域內RC負載最大的像素的視訊信號的寫入所需要的時間。
圖52示出像素的寫入工作的時序圖。在對像素寫入視訊信號時,在使上一個行的電晶體M1處於關閉狀態之後寫入視訊信號。換言之,像素寫入所需要的時間(c)為直到CLK信號輸入到閘極驅動器之後電晶體M1成為關閉狀態為止的時間((a)閘極電位下降時間)及直到輸入視訊信號之後像素內的電位實際上達到視訊信號的電位為止的時間((b)源極線電位上升時間)的總和。在此,閘極電位下降時間為達到目標幅度的75%為止的時間,源極線電位上升時間為達到目標電位的95%為止的時間,根據這些時間的總和算出像素寫入所需要的時間。如果像素寫入所需要的時間(c)短於1個水平選擇期間(在此,為3.83μs),就可以判斷為液晶顯示裝置能夠進行工作。
[計算結果]
表4示出閘極線、源極線、閘極驅動器的CLK線的寄生電阻和寄生電 容的抽出結果。另外,示出像素電容的抽出結果。另外,使用這些抽出結果進行瞬態分析。
表5示出藉由瞬態分析獲得的閘極電位下降時間及源極線電位上升時間的計算結果。
如果閘極電位下降時間與源極線電位上升時間的總時間短於1個水平選擇期間(3.83μs),液晶顯示裝置就能夠進行工作。如表5所示,像素寫入所需要的時間(3.51μs)短於1個水平選擇期間(3.83μs),因此確認到液晶顯示裝置能夠進行工作。
圖53示出計算電晶體的場效移動率與像素寫入所需要的時間的關係的結果。縱軸示出像素寫入所需要的時間,橫軸示出以包括CAC-OS膜的電晶體的場效移動率為1時的場效移動率的值。確認到場效移動率越低,像素寫入所需要的時間越長。另外,當場效移動率的參數小於0.75倍左右時,像素寫入所需要的時間變得比1個水平選擇期間長,因此液晶顯示裝置不能進行工作。
確認到藉由使用包括CAC-OS膜的電晶體,即使具有8K的高解析度的65英寸的大型顯示面板,也可以以120Hz的高圖框頻率驅動。
實施例5
在本實施例中,製造本發明的一個實施方式的電晶體並進行可靠性評價。
[電晶體的製造]
首先,製造相當於上述電晶體100A的電晶體。在本實施例中,製造以下樣本B。注意,樣本B的電晶體中的導電膜120a和絕緣膜118的疊層順序與電晶體100A不同。
樣本B是形成有電晶體的樣本,該電晶體的通道長度L是4μm,通道寬度W是1000μm。
[樣本B的製造方法]
首先,使用濺射裝置在玻璃基板上形成厚度為100nm的鎢膜。接著,利用光微影法對該導電膜進行加工,來形成被用作第一閘極電極的導電膜104。
接著,在基板及導電膜104上層疊四層絕緣膜,來形成被用作第一閘極絕緣膜的絕緣膜106。絕緣膜106使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜106,從下層依次形成厚度為50nm的氮化矽膜、厚度為300nm的氮化矽膜、厚度為50nm的氮化矽膜、厚度為15nm的氧氮化矽膜。
接著,在絕緣膜106上依次形成兩層的金屬氧化物膜(第一金屬氧化物膜、第二金屬氧化物膜)。接著,藉由將金屬氧化物膜的疊層加工為島狀,來形成金屬氧化物膜108。
第一金屬氧化物膜使用厚度為20nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為25nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為130℃,將流量為180sccm的氬氣體和流量為20sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])施加2.5kW的交流電力。形成第一金屬氧化物膜時的氧流量比為10%。
第二金屬氧化物膜的成膜條件除了濺射氣體的流量以外與第一金屬氧化物膜的成膜條件相同。明確而言,停止對處理室引入氬氣體,將流量為200sccm的氧氣體引入濺射裝置的處理室內。此外,形成第二金屬氧化物膜時的氧流量比為100%。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理,然後在氮和氧的混合氣體氛圍下進行1小時的加熱處理。
接著,在絕緣膜106及金屬氧化物膜108上形成導電膜,對該導電膜進行加工,由此形成導電膜112a、112b。在此,作為導電膜,使用濺射裝置依次形成厚度為50nm的鎢膜、厚度為400nm的鋁膜和厚度為100nm的鈦膜。接著,藉由光微影法對該導電膜進行蝕刻,由此形成導電膜112a、112b。
接著,使用磷酸對露出的金屬氧化物膜108的表面(背後通道一側)進行洗滌。
接著,在絕緣膜106、金屬氧化物膜108及導電膜112a、112b上形成絕緣膜114,在絕緣膜114上形成絕緣膜116。絕緣膜114及絕緣膜116使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜114使用厚度為30nm的氧氮化矽膜,作為絕緣膜116使用厚度為400nm的氧氮化矽膜。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理。
接著,在絕緣膜116上形成導電膜。作為導電膜,使用濺射裝置形成厚度為6nm的ITSO膜。
接著,藉由電漿處理法將氧經由導電膜添加到絕緣膜116。在電漿處理中,在包含氧氣體的氛圍下進行電漿放電。
接著,對導電膜進行蝕刻。
接著,在絕緣膜116上形成絕緣膜118。作為絕緣膜118,使用電漿增強化學氣相沉積(PECVD)裝置形成厚度為100nm的氮化矽膜。
接著,在絕緣膜的所希望的區域中形成開口。作為開口的形成方法,利用乾蝕刻法。
接著,以填充開口的方式形成導電膜,將該導電膜加工為島狀,由此形成被用作第二閘極電極的導電膜120a。作為導電膜120a,使用濺射裝置形成厚度為100nm的ITSO膜。
接著,在絕緣膜118及導電膜120a上形成絕緣膜。作為絕緣膜,使用厚度為1.5μm的丙烯酸樹脂類感光性樹脂。
藉由上述步驟製造樣本B。
[可靠性評價]
接著,對樣本B的電晶體進行可靠性評價。在可靠性評價中,藉由對電晶體反復施加脈衝電壓來驅動電晶體,並且評價通態電流的變化率。
測試條件為如下:在室溫(25℃)環境下,在對源極電極施加-8V的恆電位的狀態下,對第一閘極電極、第二閘極電極及汲極電極施加高位準電壓為20V且低位準電壓為-8V的脈衝電壓。在脈衝電壓中,週期為58.4μsec,施加20V的電壓的期間為20%(每1週期為11.68μsec),施加-8V的電壓的期間為80%(換言之,工作比為20%)。源極電流(Is)的上限為10mA。
另外,在施加脈衝電壓一定期間之後,對電晶體的通態電流進行測定。通態電流的測定條件為如下:將閘極電壓(Vg)及背閘極電壓(Vbg)設定為15V,將源極電壓(Vs)設定為0V(comm),將汲極電壓(Vd)設定為5V。另外,測定中的取樣期間為7.5毫秒(工作比為7.5%)。
圖56A和圖56B示出測定結果。圖56A以半對數圖表示出測定結果,圖56B以雙對數圖表示出測定結果。在圖56A和圖56B中,橫軸示出測定時間,縱軸示出可靠性評價中的通態電流的變化率。從圖56B可估計通態電流因劣化而下降到70%需要364小時左右。從上述結果可知,包含本發明的一個實施方式的金屬氧化物的電晶體具有高可靠性。
實施例6
在本實施例中,製造本發明的一個實施方式的電晶體並進行可靠性評 價。
[電晶體的製造]
首先,製造相當於上述電晶體100A的電晶體。在本實施例中,製造以下樣本C。
樣本C是形成有電晶體的樣本,該電晶體的通道長度L是3μm,通道寬度W是50μm。
[樣本C的製造方法]
首先,使用濺射裝置在玻璃基板上形成厚度為100nm的鎢膜。接著,利用光微影法對該導電膜進行加工,來形成被用作第一閘極電極的導電膜104。
接著,在基板及導電膜104上層疊四層絕緣膜,來形成被用作第一閘極絕緣膜的絕緣膜106。絕緣膜106使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜106,從下層依次形成厚度為50nm的氮化矽膜、厚度為300nm的氮化矽膜、厚度為50nm的氮化矽膜、厚度為15nm的氧氮化矽膜。
接著,在絕緣膜106上依次形成兩層的金屬氧化物膜(第一金屬氧化物膜、第二金屬氧化物膜)。接著,藉由將金屬氧化物膜的疊層加工為島狀,來形成金屬氧化物膜108。
第一金屬氧化物膜使用厚度為10nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為25nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為130℃,將流量為180sccm的氬氣體和流量為20sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])施加2.5kW的交流電力。形成第一金屬氧化物膜時的氧流量比為10%。
第二金屬氧化物膜的成膜條件除了濺射氣體的流量以外與第一金屬氧化物膜的成膜條件相同。明確而言,停止對處理室引入氬氣體,將流量為200sccm的氧氣體引入濺射裝置的處理室內。此外,形成第二金屬氧化物膜時的氧流量比為100%。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理,然後在氮和氧的混合氣體氛圍下進行1小時的加熱處理。
接著,在絕緣膜106及金屬氧化物膜108上形成導電膜,對該導電膜進行加工,由此形成導電膜112a、112b。在此,作為導電膜,使用濺射裝置依次形成厚度為50nm的鎢膜、厚度為400nm的鋁膜和厚度為100nm的鈦膜。接著,藉由光微影法對該導電膜進行蝕刻,由此形成導電膜112a、112b。
接著,使用磷酸對露出的金屬氧化物膜108的表面(背後通道一側)進行洗滌。
接著,在絕緣膜106、金屬氧化物膜108及導電膜112a、112b上形成絕緣膜114,在絕緣膜114上形成絕緣膜116。絕緣膜114及絕緣膜116使用電漿增強化學氣相沉積(PECVD)裝置在真空中連續地形成。作為絕緣膜114使用厚度為30nm的氧氮化矽膜,作為絕緣膜116使用厚度為300nm的氧氮化矽膜。
在形成絕緣膜116之後,連續地在真空中藉由電漿處理法對絕緣膜116添加氧。在電漿處理中,在包含氧氣體的氛圍下進行電漿放電。
接著,進行加熱處理。將加熱溫度設定為350℃,在氮氛圍下進行1小時的加熱處理。
接著,形成兩層的金屬氧化物膜,將該兩層的金屬氧化物膜加工為島狀,由此形成被用作第二閘極電極的導電膜120a。
第一金屬氧化物膜使用厚度為10nm的In-Ga-Zn膜,第二金屬氧化物膜使用厚度為90nm的In-Ga-Zn膜。
第一金屬氧化物膜在如下條件下形成:基板溫度為170℃,將流量為200sccm的氧氣體引入濺射裝置的處理室內,壓力為0.6Pa,對包含銦、鎵和鋅的金屬氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])施加2.5kW的交流電力。形成第一金屬氧化物膜時的氧流量比為100%。
第二金屬氧化物膜的成膜條件除了濺射氣體的流量以外與上述第一金屬氧化物膜的成膜條件相同。明確而言,將流量為180sccm的氬氣體及流量為20sccm的氧氣體引入濺射裝置的處理室內。此外,形成第二金屬氧化物膜時的氧流量比為10%。
接著,在導電膜120a上形成絕緣膜118。作為絕緣膜118,使用電漿增強化學氣相沉積(PECVD)裝置形成厚度為100nm的氮化矽膜。
接著,在絕緣膜118上形成絕緣膜。作為絕緣膜,使用厚度為1.5μm的丙烯酸樹脂類感光性樹脂。
藉由上述步驟製造樣本C。
[電晶體的Id-Vg特性]
接著,測定上面製造的樣本C的電晶體的Id-Vg特性。電晶體的Id-Vg特性的測定條件為如下:將Vg及Vbg從-15V每隔0.25V變化到+20V。另外,將Vs設定為0V(comm),將Vd設定為0.1V和20V。
圖57示出樣本C的Id-Vg特性結果。在圖57中,第一縱軸表示Id(A),第二縱軸表示場效移動率(μFE(cm2/Vs)),橫軸表示Vg(V)。注意,場效移動率表示Vd為20V時的值。
如圖57所示,確認到可以製造場效移動率高且具有優良的開關特性的電晶體。
實施例7
在電晶體的製程中,金屬氧化物膜(氧化物半導體膜)在各種製程中受到損傷。明確而言,在源極電極及汲極電極的成膜製程、源極電極及汲極電極的蝕刻製程(尤其是乾蝕刻製程)及鈍化膜的成膜製程等中,金屬氧化物膜有時受到損傷。
在本實施例中,藉由對在金屬氧化物膜上形成鈍化膜或者源極電極及汲極電極的樣本進行ESR分析,來評價成膜所帶來的損傷。
在本實施例的ESR分析中,著眼於g值為1.9附近的信號。該ESR信號可認為是起因於金屬氧化物膜中的施體的進入氧缺陷(Vo)中的氫的傳導電子自旋共振所帶來的。
圖58A和圖58B示出從本實施例的樣本的ESR分析定量的自旋密度。在本實施例中,作為金屬氧化物使用nc-IGZO和CAAC-IGZO的兩個。圖58A為在金屬氧化物膜上形成鈍化膜(SiON膜)的樣本的結果。圖58B為在金屬氧化物膜上形成源極電極及汲極電極(W膜)的樣本的結果。
如圖58A和圖58B所示,與nc-IGZO相比,CAAC-IGZO的起因於進入氧缺陷中的氫的ESR信號小。換言之,CAAC-IGZO尤其是在電晶體的製程中不容易受到損傷且不容易低電阻化。

Claims (20)

  1. 一種顯示裝置,包括:像素部;以及驅動該像素部的驅動電路,其中,該驅動電路包括第一電晶體,該像素部包括第二電晶體及與該第二電晶體電連接的像素電極,該第一電晶體包括第一閘極電極、該第一閘極電極上的被用作通道的第一金屬氧化物膜以及該第一金屬氧化物膜上的第二閘極電極,該第一閘極電極及該第二閘極電極彼此電連接,該第二電晶體包括被用作通道的第二金屬氧化物膜,該像素電極包括第三金屬氧化物膜,該第三金屬氧化物膜包括氫濃度比該第二金屬氧化物膜高的區域,該第一金屬氧化物膜、該第二金屬氧化物膜及該第三金屬氧化物膜的每一個包括In、Zn及元素M,該第一金屬氧化物膜、該第二金屬氧化物膜及該第三金屬氧化物膜的每一個包括第一區域及第二區域,該第一區域包括In或者Zn、以及氧,該第二區域包括In或者該元素M、以及氧,並且,該第一區域及該第二區域以馬賽克狀分散或者分佈。
  2. 根據申請專利範圍第1項之顯示裝置,其中在該第一金屬氧化物膜及該第二電晶體上設置有絕緣膜,該第二金屬氧化物膜位於閘極絕緣膜上,該第三金屬氧化物膜及該第二閘極電極位於該絕緣膜上,並且該第三金屬氧化物膜在該絕緣膜的開口中與該第二電晶體電連 接。
  3. 根據申請專利範圍第1項之顯示裝置,其中在該第二電晶體上依次層疊有第一絕緣膜及第二絕緣膜,該第一絕緣膜位於該第一金屬氧化物膜上,該第一絕緣膜及該第二絕緣膜的每一個在該第二電晶體上包括開口,該第二金屬氧化物膜位於閘極絕緣膜上,該第二閘極電極位於該第一絕緣膜上,該第三金屬氧化物膜位於該第二絕緣膜上,並且,該第三金屬氧化物膜在該第一絕緣膜及該第二絕緣膜的開口中與該第二電晶體電連接。
  4. 根據申請專利範圍第3項之顯示裝置,其中該第一絕緣膜包括無機絕緣膜,並且該第二絕緣膜包括有機樹脂膜。
  5. 根據申請專利範圍第1項之顯示裝置,其中該第二電晶體包括第三閘極電極及該第三閘極電極與該第二金屬氧化物膜之間的閘極絕緣膜,並且該第二金屬氧化物膜及該第三金屬氧化物膜位於該閘極絕緣膜上。
  6. 根據申請專利範圍第1項之顯示裝置,其中該第三金屬氧化物膜的氫濃度為1×10 20atoms/cm 3以上。
  7. 根據申請專利範圍第1項之顯示裝置,其中該第一金屬氧化物膜、該第二金屬氧化物膜及該第三金屬氧化物膜的每一個包括In、M及Zn原子的總和中In的含量為40%以上且50%以下的區域及In、M及Zn原子的總和中M的含量為5%以上且30%以下的區 域,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  8. 根據申請專利範圍第1項之顯示裝置,其中在該第一金屬氧化物膜、該第二金屬氧化物膜及該第三金屬氧化物膜中,In、M及Zn的原子個數比為4:x:y,其中x為1.5以上且2.5以下且y為2以上且4以下,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  9. 根據申請專利範圍第1項之顯示裝置,其中在該第一金屬氧化物膜、該第二金屬氧化物膜及該第三金屬氧化物膜中,In、M及Zn的原子個數比為5:x:y,其中x為0.5以上且1.5以下且y為5以上且7以下,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  10. 根據申請專利範圍第1項之顯示裝置,其中該第一電晶體具有雙閘極結構,並且該第二電晶體具有單閘極結構。
  11. 一種電子裝置,包括:申請專利範圍第1項之顯示裝置;以及接收器。
  12. 一種顯示裝置,包括:像素部;以及驅動該像素部的驅動電路, 其中該驅動電路包括第一電晶體,該像素部包括第二電晶體及與該第二電晶體電連接的像素電極,在該第二電晶體上依次設置有第一絕緣膜及第二絕緣膜,該第一絕緣膜及該第二絕緣膜的每一個在該第二電晶體上包括開口,該第一電晶體包括第一閘極電極、該第一閘極電極上的被用作通道的第一金屬氧化物膜、該第一金屬氧化物膜上的該第一絕緣膜以及該第一絕緣膜上的第二閘極電極,該第一閘極電極及該第二閘極電極彼此電連接,該第二電晶體包括被用作通道的第二金屬氧化物膜,該像素電極位於該第二絕緣膜上,該像素電極在該第一絕緣膜和該第二絕緣膜的開口中與該第二電晶體電連接,該第一金屬氧化物膜及該第二金屬氧化物膜的每一個包括In、Zn及元素M,該第一金屬氧化物膜及該第二金屬氧化物膜的每一個包括第一區域及第二區域,該第一區域包括In或者Zn、以及氧,該第二區域包括In或者該元素M、以及氧,並且,該第一區域及該第二區域以馬賽克狀分散或者分佈。
  13. 申請專利範圍第12項之顯示裝置,其中該像素電極包括第三金屬氧化物膜,該第三金屬氧化物膜包括In、Zn及該元素M,並且該第三金屬氧化物膜包括氫濃度比該第二金屬氧化物膜高的區域。
  14. 根據申請專利範圍第13項之顯示裝置,其中該第三金屬氧化物膜的氫濃度為1×10 20atoms/cm 3以上。
  15. 申請專利範圍第12項之顯示裝置,其中該第一絕緣膜包括無機絕緣膜,並且該第二絕緣膜包括有機樹脂膜。
  16. 根據申請專利範圍第12項之顯示裝置,其中該第一金屬氧化物膜及該第二金屬氧化物膜的每一個包括In、M及Zn原子的總和中In的含量為40%以上且50%以下的區域及In、M及Zn原子的總和中M的含量為5%以上且30%以下的區域,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  17. 根據申請專利範圍第12項之顯示裝置,其中在該第一金屬氧化物膜及該第二金屬氧化物膜中,In、M及Zn的原子個數比為4:x:y,其中x為1.5以上且2.5以下且y為2以上且4以下,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  18. 根據申請專利範圍第12項之顯示裝置,其中在該第一金屬氧化物膜及該第二金屬氧化物膜中,In、M及Zn的原子個數比為5:x:y,其中x為0.5以上且1.5以下且y為5以上且7以下,並且該元素M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個或多個。
  19. 根據申請專利範圍第12項之顯示裝置,其中該第一電晶體具有雙閘極結構,並且該第二電晶體具有單閘極結構。
  20. 一種電子裝置,包括:申請專利範圍第12項之顯示裝置;以及接收器。
TW106130878A 2016-09-12 2017-09-08 顯示裝置及電子裝置 TWI743187B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016178106 2016-09-12
JP2016-178106 2016-09-12
JP2016183322 2016-09-20
JP2016-183322 2016-09-20
JP2016-233577 2016-11-30
JP2016233577 2016-11-30
JP2017-099483 2017-05-19
JP2017099483 2017-05-19

Publications (2)

Publication Number Publication Date
TW201826509A true TW201826509A (zh) 2018-07-16
TWI743187B TWI743187B (zh) 2021-10-21

Family

ID=61560992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130878A TWI743187B (zh) 2016-09-12 2017-09-08 顯示裝置及電子裝置

Country Status (7)

Country Link
US (1) US10276594B2 (zh)
JP (2) JP7113602B2 (zh)
KR (1) KR102403389B1 (zh)
CN (2) CN115857237A (zh)
DE (1) DE112017004584T5 (zh)
TW (1) TWI743187B (zh)
WO (1) WO2018047067A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110116B2 (ja) * 2017-01-16 2022-08-01 株式会社半導体エネルギー研究所 半導体装置
US10460822B2 (en) * 2017-08-23 2019-10-29 Arm Limited Memory with a controllable I/O functional unit
CN108376695B (zh) * 2018-02-05 2021-01-08 惠科股份有限公司 一种显示面板和显示装置
JP7275112B2 (ja) 2018-04-20 2023-05-17 株式会社半導体エネルギー研究所 半導体装置
JP2020092222A (ja) * 2018-12-07 2020-06-11 日新電機株式会社 薄膜トランジスタ及びその製造方法
KR102557031B1 (ko) 2018-12-28 2023-07-19 삼성전자주식회사 금속 베젤을 이용하는 안테나 모듈 및 그것을 포함하는 전자 장치
JP7201508B2 (ja) * 2019-03-28 2023-01-10 株式会社ジャパンディスプレイ 半導体装置
US11036322B2 (en) * 2019-06-24 2021-06-15 Wuhan China Star Optoelectronics Technology Co., Ltd Array substrate and method of manufacturing same
KR20210028318A (ko) 2019-09-03 2021-03-12 삼성디스플레이 주식회사 표시 장치 및 제조 방법
CN111243540A (zh) * 2020-02-21 2020-06-05 合肥鑫晟光电科技有限公司 一种显示面板的驱动方法、其驱动电路及显示装置
JP7454971B2 (ja) * 2020-03-17 2024-03-25 東京エレクトロン株式会社 検出方法及びプラズマ処理装置
KR20220067651A (ko) * 2020-11-17 2022-05-25 삼성디스플레이 주식회사 표시 장치
KR20230155700A (ko) * 2022-05-04 2023-11-13 경희대학교 산학협력단 강유전성 박막 트랜지스터를 이용한 디스플레이 화소 회로 및 그 구동 방법
TWI825888B (zh) * 2022-08-02 2023-12-11 元太科技工業股份有限公司 觸控顯示裝置及其製作方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017244A1 (en) 2003-07-25 2005-01-27 Randy Hoffman Semiconductor device
WO2011007675A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI634642B (zh) 2009-08-07 2018-09-01 半導體能源研究所股份有限公司 半導體裝置和其製造方法
KR101460869B1 (ko) 2009-09-04 2014-11-11 가부시끼가이샤 도시바 박막 트랜지스터 및 그 제조 방법
WO2011046010A1 (en) 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
CN104681568B (zh) 2009-10-21 2017-11-21 株式会社半导体能源研究所 显示装置和包括显示装置的电子设备
TWI525818B (zh) 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
KR20230157542A (ko) 2012-04-13 2023-11-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102316107B1 (ko) 2012-05-31 2021-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI746200B (zh) 2012-09-24 2021-11-11 日商半導體能源研究所股份有限公司 半導體裝置
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
KR20160074514A (ko) 2013-10-22 2016-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP6625796B2 (ja) * 2013-10-25 2019-12-25 株式会社半導体エネルギー研究所 表示装置
JP6486660B2 (ja) 2013-11-27 2019-03-20 株式会社半導体エネルギー研究所 表示装置
DE112014005486T5 (de) 2013-12-02 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung
JP6506545B2 (ja) * 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 半導体装置
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN104867981B (zh) * 2014-02-21 2020-04-21 株式会社半导体能源研究所 半导体膜、晶体管、半导体装置、显示装置以及电子设备
US10043913B2 (en) 2014-04-30 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, display device, module, and electronic device
KR20150126272A (ko) 2014-05-02 2015-11-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물의 제작 방법
US20150318171A1 (en) * 2014-05-02 2015-11-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide
KR102333604B1 (ko) 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치를 포함하는 표시 장치
JP6758844B2 (ja) 2015-02-13 2020-09-23 株式会社半導体エネルギー研究所 表示装置
KR102653836B1 (ko) 2015-03-03 2024-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 또는 그를 포함하는 표시 장치
JP2016183322A (ja) 2015-03-25 2016-10-20 日本ポリプロ株式会社 電気電子機器部品搬送ケース用プロピレン系樹脂組成物及び電気電子機器部品搬送ケース
WO2017149413A1 (en) 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10516060B2 (en) 2016-03-11 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Composite and transistor
US9905579B2 (en) 2016-03-18 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US10388738B2 (en) 2016-04-01 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Composite oxide semiconductor and method for manufacturing the same
WO2017199130A1 (en) 2016-05-19 2017-11-23 Semiconductor Energy Laboratory Co., Ltd. Composite oxide semiconductor and transistor

Also Published As

Publication number Publication date
JP2022169523A (ja) 2022-11-09
JP7113602B2 (ja) 2022-08-05
US10276594B2 (en) 2019-04-30
CN115857237A (zh) 2023-03-28
KR20190045930A (ko) 2019-05-03
KR102403389B1 (ko) 2022-06-03
WO2018047067A1 (en) 2018-03-15
DE112017004584T5 (de) 2019-07-11
CN109643735A (zh) 2019-04-16
CN109643735B (zh) 2022-12-16
TWI743187B (zh) 2021-10-21
JP2018190949A (ja) 2018-11-29
US20180076231A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
TWI743187B (zh) 顯示裝置及電子裝置
TWI831743B (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
KR102662057B1 (ko) 표시 장치 및 전자 기기
JP2023129417A (ja) 表示装置
TWI753899B (zh) 半導體裝置及包括該半導體裝置的顯示裝置
CN111052396B (zh) 半导体装置及显示装置
JP2019024105A (ja) 半導体装置の作製方法
JPWO2019025917A1 (ja) 半導体装置、及び表示装置
CN112997335A (zh) 半导体装置
CN110226219B (zh) 半导体装置以及半导体装置的制造方法
CN112514079A (zh) 半导体装置
JP2023166508A (ja) 半導体装置の作製方法
CN111033757B (zh) 半导体装置及显示装置
JP2024037777A (ja) 半導体装置の作製方法
TWI778959B (zh) 半導體裝置及半導體裝置的製造方法
JP7293426B2 (ja) トランジスタ
TW202418581A (zh) 半導體裝置及包括該半導體裝置的顯示裝置