TW201822254A - 使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長 - Google Patents

使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長 Download PDF

Info

Publication number
TW201822254A
TW201822254A TW106126597A TW106126597A TW201822254A TW 201822254 A TW201822254 A TW 201822254A TW 106126597 A TW106126597 A TW 106126597A TW 106126597 A TW106126597 A TW 106126597A TW 201822254 A TW201822254 A TW 201822254A
Authority
TW
Taiwan
Prior art keywords
buffer layer
layer
ion
semiconductor
ion implantation
Prior art date
Application number
TW106126597A
Other languages
English (en)
Other versions
TWI663635B (zh
Inventor
丘卓 黃
布萊恩 舒茲
亞曼達 科爾
Original Assignee
美商雷森公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商雷森公司 filed Critical 美商雷森公司
Publication of TW201822254A publication Critical patent/TW201822254A/zh
Application granted granted Critical
Publication of TWI663635B publication Critical patent/TWI663635B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

方法包括在基材之表面上提供具有緩衝層之單晶基材。緩衝層於基材之結晶晶格結構與半導體層之結晶晶格結構之間提供過渡段,且藉由將摻雜劑離子植入該緩衝層而具有其電阻率提高;且於該離子植入之緩衝層上形成半導體層。該半導體層可為其內形成高電子移動率電晶體之寬能隙半導體層。

Description

使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長
本揭露大體上關於具有III族氮化物緩衝層之方法及結構且更特別的是關於具有高電阻率III族氮化物緩衝層之方法及結構。
如先前技藝所知的,許多半導體裝置中皆使用III族氮化物。該III族氮化物係包括氮化銦(InN)、氮化鎵(GaN)、氮化鋁(AlN)、氮化硼(BN)及包括Inx(AlyGa1-y)1-xN(其中0x1且0y1)及Bz(Inx(AlyGa1-y)1-x)1-zN(其中0x1且0y1且0z1)在內之其所有相關合金的材料之群組。電子裝置經常使用III族氮化物材料以利用當兩種不同II族氮化物材料磊晶鍵結在一起而於結果產生之異質接面處產生電活性載子(electrically active carriers)時發生之極化錯置(polarization mismatches)。
先前技藝中也知道,在許多應用中這些III族氮化物長在單晶基材如碳化矽(SiC)、矽(Si)或藍寶石(Al2O3)基材之頂部。由於該基材之結晶晶格結構與該III族氮化物之結晶晶格結構之間的結晶晶格結構錯置,於是在該III族氮化物之磊晶生長期間形成失配錯位(misfit dislocations)以使該磊晶層之應變降低且使該III族氮化物之面內晶格參數(in-plane lattice parameter)能朝其塊體晶格結構鬆弛。關於電氣應用,包含一或多種III族氮化物材料之緩衝層通常在長主動裝置區之前生長在基材上超出1微米之厚度使該材料能鬆弛且使整個生長程序儘可能減少缺陷。
該緩衝層係長在該基材與晶狀半導體裝置層之間的過渡層,其使得由進入該晶狀半導體裝置層之基材界面處的失配錯位引起之結晶缺陷的增長最小化。由該晶格錯置引起之緩衝層錯位的減少對隨後由該晶狀半導體裝置層裝配之電晶體的性能及可靠度很重要。
如先前技藝所知的,在許多應用中,該晶狀半導體裝置層包含寬能隙半導體材料(wide bandgap semiconductor material)。寬能隙表示把該半導體動作創作成兩個能階之間的電子開關之能階差。例如,矽及其他常見之非寬能隙材料具有0.5至1.5電子伏(eV)之等級的能隙,而對照之下寬能隙材料通常具有2至6.2eV之等級的能隙。寬能隙III族氮化物半導體材料之實例包括氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化銦鎵 (InGaN)及氮化銦鋁(InAlN)。
此外,由於介於該基材與該寬能隙半導體材料之間的結晶晶格結構錯置,於是使用緩衝層於該二晶格結構之間轉換。緩衝層能包括一或多個材料之層且可包括長在基材(像是,例如SiC、Si或藍寶石)之頂部上的層(像是,例如氮化鋁(AlN)、氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化銦鋁(InAlN)或氮化銦鎵(InGaN))。
於長出這些寬能隙材料之表面上的晶格匹配緩衝層之晶狀質對含有這些寬能隙材料之電力電路及裝置的性能及可靠度很重要。介於該基材與該寬能隙材料之間的晶格錯置造成晶體缺陷。緩衝材料長在該基材與該寬能隙材料之間作為過渡層,其使得由進入用於待建造之之主動電組件(如電晶體及二極體)的寬能隙材料之結晶缺陷的增長最小化。該緩衝層中之缺陷也會產生許多應用中所不欲之電活性載子。因此,生長防止該晶體缺陷長進該活性寬能隙材料層且具有高電阻率之緩衝層很重要。
先前技藝中也知道,若在該電晶體運作時該緩衝層沒有充分夠高之電阻率,低劣品質緩衝層可提供漏洩電流進入該寬能隙半導體之路徑。更特別的是,除了使該缺陷密度降低外,如上所示之緩衝層也必須對包括用於射頻(RF)應用之電晶體在內的許多應用具有高電阻率。如上所示,若在該電子裝置(如電晶體)運作時該緩衝層沒有充分夠高之電阻率,該緩衝層便能提供洩漏電流越過該晶狀半導體裝置層之途徑。有人試圖藉由在該緩衝層之磊晶 生長時將雜質摻雜劑(如Fe(鐵)、Be(鈹)及C(碳))加入該緩衝層而提供具有足夠電阻率之緩衝層。這些雜質能使該緩衝層之導電性降低,但是其也會藉由使該晶狀半導體裝置層中之載子濃度降低或透過裝置運作時之不想要的電荷俘獲(charge trapping)而負面地影響由該晶狀半導體裝置層所裝配之裝置的電氣性能。
該緩衝層及晶狀半導體層能藉由任何數目之製造磊晶晶狀材料層的技術生長,該技術包括分子束磊晶(MBE)、金屬有機物化學氣相沉積(MOCVD)及化學束磊晶(CBE)。應用MBE、MOCVD或CBE所需之生長條件如基材溫度、緩衝層組成、緩衝層厚度及雜質摻雜位準對生長可再現性高品質緩衝層材料很重要。
依據本揭露,提供一種方法,其包含:在基材之表面上提供具有緩衝層之單晶基材,該緩衝層具有電阻率程度;使該緩衝層之電阻率程度提高包含將摻雜劑離子植入該緩衝層;及於該離子植入之緩衝層上形成半導體層。
於一具體實例中,該半導體層係寬能隙半導體層。
於一具體實例中,該基材具有結晶晶格結構,且該半導體層具有結晶晶格結構,該緩衝層提供該基材之結晶晶格結構與該半導體層之結晶晶格結構之間的匹 配。
於一具體實例中,於該離子植入之前於該緩衝層上形成離子植入保護層,且該摻雜劑離子植入藉著使該摻雜劑通過該植入保護層(implantation protection layer)將該摻雜劑植入該緩衝層。
於一具體實例中,在該離子植入之後將該離子植入保護層移除且該半導體層形成於該暴露之緩衝層。
於一具體實例中,該緩衝層係III族氮化物。
於一具體實例中,該半導體層係寬能隙半導體層。
於一具體實例中,於該寬能隙半導體材料中形成高電子移動性電晶體。
於一具體實例中,提供一種半導體結構,其包含:單晶基材;於該基材之表面上的緩衝層,該緩衝層內具有離子植入之電阻性摻雜劑;及設置於該離子植入之緩衝層上的半導體層。
利用此方法,可藉由應用離子植入將緩衝層轉化成高電阻率材料。這特別有用於在將建造於寬能隙材料上之電晶體操作期間通過該緩衝材料的任何洩漏電流最小化。儘管目前離子植入技術係用以單離主動區,該主動區係為了建造主動電晶體且因為該離子植入之區變成高電阻性,所以防止主動電晶體之間的串音(cross talk)而形成,但是發明人了解應用在該電晶體下方之緩衝層的離子植入有效且提供將該緩衝層轉化成高電阻性晶格匹配層之 有益方法。發明人了解該III族氮化物之電阻率會隨著離子植入而顯著提高,不會明顯改變該III族氮化物之晶體結構,使單晶半導體層能磊晶生長在電絕緣性離子植入之III族氮化物材料的表面上。本文所揭示之方法在製造緩衝層時提供額外容耐性,因為不管該緩衝層材料是否具有高缺陷密度(如非所欲傳導性失配錯位(無離子植入)),該離子植入將該緩衝層材料轉化成高電阻性材料。儘管該離子植入可能損及該緩衝層之表面下方的緩衝層之材料,該緩衝層之頂面具有充分原子排序而容許其用於後繼磊晶生長。因此磊晶單晶III族氮化物膜(如AlN、GaN、AlGaN、InAlN或InGaN)能長在該緩衝層之頂部上。
利用此方法,採相對簡單之可再現性方法形成摻雜之緩衝層以產生高電阻率緩衝層,因為不管該緩衝層材料之品質,該離子植入將該緩衝層材料轉化成高電阻性。
在底下之附圖及說明中描述此技術揭露之一或多個具體實例的細節。由該說明及圖式及申請專利範圍將使該技術揭露之其他特徵、目的及優點顯而易見。
12‧‧‧單晶基材
14‧‧‧單晶緩衝層
14’‧‧‧離子植入之緩衝層
14A’‧‧‧AlN成核層
14B’‧‧‧沒用離子植入之GaN層
14C’‧‧‧經植入之應變鬆弛型GaN層
16‧‧‧離子植入保護層
17‧‧‧離子
18‧‧‧晶狀半導體層
18A‧‧‧GaN通道層
18B‧‧‧AlGaN阻障層
20‧‧‧場效電晶體
圖1A至1E係於根據該揭露之不同裝配階段,基材上具有半導體材料且於半導體材料與該基材之間設置緩衝層使該基材之結晶晶格結構轉換成該半導體層之結晶晶格結構之結構的截面示意圖; 圖1F係根據該揭露之圖1E所示的結構之更詳細的截面圖;及圖2A至2C係於根據該揭露之另一個具體實例的不同裝配階段,基材上具有半導體材料且於半導體材料與該基材之間設置緩衝層使該基材之結晶晶格結構轉換成該半導體層之結晶晶格結構之結構的截面示意圖。
在不同圖式中類似參考符號表示類似元件。
現在參照圖1A,單晶基材12,在此為例如,碳化矽(SiC)、矽(Si)或藍寶石(Al2O3)具有磊晶沉積於該單晶基材12之上表面上的單晶緩衝層14。該緩衝層14可包含一或多種III族氮化物材料如氮化鋁(AlN)、氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化銦鋁(InAlN)或氮化銦鎵(InGaN),且長在該單晶基材12之頂部上。該緩衝層14經常生長超出1微米之厚度使該材料能鬆弛且使整個生長程序儘可能減少缺陷。在此,該緩衝層14係,例如,具有例如1015至1016/cm3等級之背景電子載子濃度的氮化鎵(GaN)。
將離子植入保護層16沉積於該緩衝層14之上表面的表面上。該離子植入保護層16能在原地或易地生長且可能是能通過蝕刻程序選擇性移除之任何材料,在此為例如,該離子植入保護層16係氮化矽(SiNx)、氮化鋁(AlN)、氧化鋁(AlOx)或二氧化矽(SiO2)。該離子植入保護 層16能藉由任何沉積技術,例如,MBE、CVD、電子束、濺渡或ALD沉積。
現在參照圖1B,圖1A所示之結構的上表面進行離子植入程序(由箭頭表示)17以植入離子,在此為例如,N+或N++(氮離子),使該緩衝層14之電阻率提高成較高電阻率之緩衝層14’,在此例如藉由於該緩衝層中創造1020至1021/cm3之等級的電性補償缺陷。這將使該緩衝層14之電阻率提高多於1個數量級。例如,相同植入會使摻雜Si原子之100nm GaN緩衝劑在長在Si(111)基材上時的電阻率自40ohm/sq提高至高於30,000ohm/sq之片電阻率,其為因為來自Si(111)基材之電阻率貢獻所致的測量極限。極大部分之離子係通過該離子植入保護層16植入且進入該緩衝層14。藉由變化植入時之植入能量及氮劑量而於該緩衝層14之上方部中獲得均勻缺陷分佈。該植入之最大深度係由最大植入能量決定;在此例如,在此例中,將該離子均勻地植至該緩衝層14之表面下大約600nm的深度。該緩衝層14之植入區的電阻率由於該植入離子而提高且係該離子植入之劑量的函數。
要注意離子植入創造該III族氮化物緩衝層14中之缺陷及混亂且該晶格損壞隨著植入劑量而增加。預期該III族氮化物緩衝層14之表面也將因為該氮植入而歷經某程度之損壞;然而,損壞程度取決於植入條件,如離子大小、劑量及植入能量。輕元素像是氮且於數百keV等級之中等能級的植入不足以改變在該經植入之緩衝劑14’上磊 晶生長所需的長程結晶性或原子有序化(atomic ordering)。要注意該離子植入可自該緩衝層14’之頂部往下伸入該基材12,或僅部分自該緩衝層14’之頂部伸入該緩衝層14’內之區域。換一種方式,該緩衝層14’能藉由控制植入能量及離子植入技術而部分植入或完全植入。
要注意該離子植入在用以沉積該III族氮化物緩衝層14之生長系統易位發生。因此,缺乏該離子植入保護層16,利用此易地加工,該緩衝層14可能不經意暴露於烴類及空氣中之雜質,以及直接暴露於該離子植入束。然而,該離子植入程序能藉由將該離子植入1具裝設於材料生長室,如MBE、MOCVD或CBE而在原地完成。
要注意該緩衝層14表面暴露能藉由將該離子植入保護層16沉積於該緩衝層14之上表面上而減至最少。該離子植入保護層16能在原地或易地生長且可能是能通過蝕刻程序選擇性地移除之任何材料,在此例如,該離子植入保護層16係氮化矽(SiNx)、氮化鋁(AlN)、氧化鋁(AlOx)或二氧化矽(SiO2)。該離子植入保護層16之原地沉積提供比易地沉積對抗該緩衝層14之表面暴露於烴類及空氣中之雜質更佳的保護,而原地及易地沉積之離子植入保護層16皆藉由減少該緩衝層14之表面暴露於該離子植入束而在離子植入期間提供額外之保護。在離子植入之後,通過濕式或乾式蝕刻程序移除犧牲層以暴露出用於所述之晶狀半導體層的生長之下方III族氮化物緩衝層表面。
現在參照圖1C,通過濕式或乾式蝕刻程序移 除離子植入保護層16以暴露出該離子植入之高電阻性緩衝層14’的下方表面。
現在參照圖1D,晶狀半導體層18,在此為例如,用於形成主動裝置之寬能隙材料,在此為例如,圖1E之場效電晶體(FET)20。該晶狀半導體層18能例如包括一或多種III族氮化物材料,如,GaN通道層18A(圖1F)及AlGaN阻障層18B以形成圖1E及1F所示之高電子移動率電晶體(HEMT)結構20。該半導體層18具有與該離子植入之緩衝層14’之表面相同的面內晶格結構;在此,例如該半導體層18包括未摻雜之GaN通道層18A(圖1F)及AlGaN阻障層18B,且該緩衝層14’主要包括經植入之應變鬆弛型GaN層14C’(圖1F)且也包括一部分沒用離子植入之GaN層14B’及AlN成核層14A’,其全在SiC基材12上,如圖1F所示。該經植入之層14C’及該未摻雜之GaN通道層18A在此實施例中皆為相同材料且因此晶格匹配。後繼AlGaN阻障層18B有應變以具有與該GaN層18A及14C’相同之面內晶格參數。經常期望形成於該離子植入之緩衝層的表面上之半導體層18具有與該離子植入之緩衝層14’之面內晶格參數相同之面內晶格參數,從而降低晶格錯置所造成之額外缺陷對裝置性能的衝擊。
在此,在此實施例中,應用任何習用加工法在該晶狀半導體層18上形成如示具有歐姆源極接點和汲極接點及肖特基閘極接點(Schottky gate contact)之三端場效電晶體(FET)20。該高阻抗緩衝層14’之離子植入區具有足 夠電阻性以防止載子通過該高電阻性緩衝層14’運送電流(由圖1E之箭頭所示)且從而限制該載子於該晶狀半導體層18。
現在參照圖1F,顯示該結構更詳細之略圖。因此,更詳細地顯示該半導體層18包括,在此實施例中,未摻雜之GaN通道層18A及AlGaN阻障層18B。該緩衝層14’包括大約100nm至1000nm之已經植入氮離子而形成電阻性GaN層14C’的GaN層、沒植入離子之GaN層14B’及AlN成核層14A’,其全在SiC基材12上。在此構型中,該電阻性GaN層提供供該未摻雜之GaN通道層18A所含之電子用的電子局限(electrical confinement)。源極接點及汲極接點皆與層18採歐姆接觸之方式形成且閘極係應用任何習用程序而與層18B採肖特基接觸之方式形成。
要注意氮離子植入能創造具有AlGaN/GaN半導體層18之高電子移動率電晶體(HEMT)裝置中的高阻抗區。藉著氮離子植入,該氮創造III族氮化物材料中之缺陷,如空位及氮間隙,且使該材料成為電阻性。當提高該氮植入能量時,該缺陷之分佈變成中心更深入該材料,而較低氮植入能量創造更接近該材料之表面的缺陷。通過該材料之均勻缺陷分佈能藉由變化植入時之植入能量及氮劑量而達成。該植入之最大深度係藉由該最大植入能量決定。該緩衝劑之缺陷分佈伴著使該III族氮化物緩衝層14能被再加熱至標準寬能隙磊晶材料層生長溫度而不會退火超出植入所創造之高電阻率緩衝層的範圍外之溫度相對穩 定。由於生長引起之熱退火移除較少損傷,所以關於該晶狀半導體層18之較低生長溫度技術(如MBE)比較高生長溫度技術(如MOCVD)好。然而,任何技術皆適合,只要該緩衝層14’之植入層中的提高電阻率在該晶狀半導體層18生長之後保持在比植入之前緩衝層14中之相同層的電阻率高一個數量級即可。
於一具體實例中,在磊晶生長期間故意摻雜該GaN緩衝劑14’之底部部位(圖1F),例如藉由在該生長過程期間添加雜質如碳、鐵及鈹以在離子植入之前提高該緩衝劑之電阻率且僅有該GaN緩衝層14’之頂部500nm未摻雜。該植入深度自該緩衝層14C’之表面大於500nm且所以在植入之後整個緩衝層14’皆為電阻性,但是該緩衝層14C’之頂部部位係來自該離子植入且該底部那半邊係來自層14B’中之磊晶生長時的雜質摻雜。此具體實例之優點是該半導體層18中之GaN通道層18A能避開磊晶生長期間之所加摻雜雜質且此具體實例因此不須驅使經植入之離子通過整個緩衝層14以提高電阻率。
現在參照圖2A至2C,在此顯示沒使用圖1A中之離子植入保護層16的具體實例。因此,在此將該離子17直接植入該緩衝層14。接著將該晶狀半導體層18(圖2C)形成於關聯圖1C之上述離子植入之高阻抗緩衝層14’上。
現在應該了解根據本揭露形成半導體結構之方法包括:提供單晶基材,在該基材之表面上具有緩衝層,該緩衝層具有電阻率程度;使該緩衝層之電阻率程度 提高包含將摻雜劑離子植入該緩衝層;及於該離子植入之緩衝層上形成半導體層。該方法可包括,獨立地或聯合地,一或多個下列特徵:其中該半導體層係為寬能隙半導體層;其中該基材具有結晶晶格結構,且該半導體層具有結晶晶格結構,且其中該緩衝層提供該基材之結晶晶格結構與該半導體層之結晶晶格結構之間的匹配;其中該半導體層係形成於該離子植入之緩衝層的表面且其中該半導體層具有與該離子植入之緩衝層的表面相同的面內晶格結構;其中於該離子植入之前於該緩衝層上形成離子植入保護層;且其中該摻雜劑離子植入藉著使該摻雜劑通過該植入保護層而將該摻雜劑植入該緩衝層;其中在該離子植入之後將該離子植入保護層移除,及該半導體層形成於該暴露之緩衝層;其中該緩衝層係III族氮化物;其中該半導體層係寬能隙半導體層;其中該基材具有結晶晶格結構,且該半導體層具有結晶晶格結構,且其中該緩衝層提供該基材之結晶晶格結構與該半導體層之結晶晶格結構之間的匹配;其中於該離子植入之前於該緩衝層上形成離子植入保護層;且,其中該摻雜劑離子植入藉著使該摻雜劑通過該植入保護層而將該摻雜劑植入該緩衝層;其中在該離子植入之後將該離子植入保護層移除,及該半導體層形成於該暴露之緩衝層;或於該寬能隙半導體材料中形成高電子移動性電晶體。
現在亦應該了解一種用於形成根據本揭露之半導體結構之方法,其包括:提供單晶基材,在該基材之 表面上具有緩衝層,該緩衝層;使該緩衝層之電阻率提高包含將離子植入保護層提供於該緩衝層上;將摻雜劑離子植入該緩衝層;移除該離子植入保護層使該緩衝層暴露;於該離子植入之緩衝層上形成晶狀半導體層;及其中藉由該離子植入使該緩衝層之電阻率提高。
現在亦應該了解根據本揭露之半導體結構包括:單晶基材;於該基材之表面上的緩衝層,該緩衝層內具有離子植入之電阻性摻雜劑;及於該離子植入之緩衝層上的半導體層。該半導體結構可包括,獨立地或聯合地,一或多個下列特徵:其中該緩衝層係III族氮化物;其中該半導體層係為寬能隙半導體層;在該寬能隙半導體材料中高電子移動率電晶體;其中該緩衝層之上方部具有該離子植入之離子且於該離子沉積之前,該緩衝層之下方部具有其中提供的摻雜劑;或其中該緩衝層之下方部所提供的該摻雜劑係於該緩衝層形成期間提供。
頃已描述本揭露之許多具體實例。儘管如此,咸了解可完成不同修飾而不會悖離該技術揭露之精神及範疇。例如,該方法可用於將許多關聯圖1F描述之實施例所示者以外的其他裝置,像是例如,寬能隙二極體(如肖特基二極體、PN二極體及PIN二極體)形成於該離子植入之緩衝層14’上。此外,構成圖1F中之層14及18的層僅為III族氮化物層之眾多習用裝置及構型中之一實施例。此外,該方法能用在任何材料定向且不限於任何特定結晶定向或極性。此外,除氮以外還有許多元素能植入該III族氮 化物以提供較高電阻率同時充許在植入(像是例如,Be、C及Ar)之後接著磊晶生長。此外,在一些應用中,可能希望具有在生長期間沒加入額外雜質摻雜原子之緩衝層14且在一些應用中,可能希望具有在生長期間摻雜雜質原子之部分或整個緩衝層14。此外,咸應了解其他單一化合物基材12皆可使用,如獨立III族N基材或任何能沉積一或多個相對於該基材12晶體結構,具有單一定義明確之結晶定向的晶狀III族氮化物上覆層之晶狀基材。這包括藉由將一或多種晶狀材料沉積於另一種晶狀材料而形成,或藉由將一或多個層接合在一起以界定為晶狀且支援該一或多種III族氮化物材料之晶狀生長之表面區而形成之異質接面結構。因此,其他具體實例皆在下列申請專利範圍之範疇以內。

Claims (19)

  1. 一種用於形成半導體結構之方法,其包含:提供單晶基材,在該基材之表面上具有緩衝層,該緩衝層具有電阻率程度;使該緩衝層之電阻率程度提高包含將摻雜劑離子植入該緩衝層;及於該離子植入之緩衝層上形成半導體層。
  2. 如申請專利範圍第1項之方法,其中該半導體層係為寬能隙半導體層(wide bandgap semiconductor layer)。
  3. 如申請專利範圍第1項之方法,其中該基材具有結晶晶格結構,且該半導體層具有結晶晶格結構,且其中該緩衝層提供該基材之結晶晶格結構與該半導體層之結晶晶格結構之間的匹配。
  4. 如申請專利範圍第1項之方法,其中該半導體層係形成於該離子植入之緩衝層的表面且其中該半導體層具有與該離子植入之緩衝層的表面相同的面內(in-plane)晶格結構。
  5. 如申請專利範圍第1項之方法,其中於該離子植入之前於該緩衝層上形成離子植入保護層,且其中該摻雜劑離 子植入藉著使該摻雜劑通過該植入保護層而將該摻雜劑植入該緩衝層。
  6. 如申請專利範圍第5項之方法,其中在該離子植入之後將該離子植入保護層移除,及該半導體層形成於該暴露之緩衝層上。
  7. 如申請專利範圍第1項之方法,其中該緩衝層係III族氮化物。
  8. 如申請專利範圍第7項之方法,其中該半導體層係寬能隙半導體層。
  9. 如申請專利範圍第7項之方法,其中該基材具有結晶晶格結構,且該半導體層具有結晶晶格結構,且其中該緩衝層提供該基材之結晶晶格結構與該半導體層之結晶晶格結構之間的匹配。
  10. 如申請專利範圍第7項之方法,其中於該離子植入之前於該緩衝層上形成離子植入保護層;且,其中該摻雜劑離子植入藉著使該摻雜劑通過該植入保護層而將該摻雜劑植入該緩衝層。
  11. 如申請專利範圍第10項之方法,其中在該離子植入之 後將該離子植入保護層移除,及該半導體層形成於該暴露之緩衝層上。
  12. 如申請專利範圍第8項之方法,其包括於該寬能隙半導體材料中形成高電子移動性電晶體。
  13. 一種用於形成半導體結構之方法,其包含:提供單晶基材,在該基材之表面上具有緩衝層,該緩衝層;使該緩衝層之電阻率提高包含將離子植入保護層提供於該緩衝層上;將摻雜劑離子植入該緩衝層;移除該離子植入保護層使該緩衝層暴露;於該離子植入之緩衝層上形成晶狀半導體層;及其中藉由該離子植入使該緩衝層之電阻率提高。
  14. 一種半導體結構,其包含:單晶基材;於該基材之表面上的緩衝層,該緩衝層內具有離子植入之電阻性摻雜劑;及於該離子植入之緩衝層上的半導體層。
  15. 如申請專利範圍第14項之結構,其中該緩衝層係III族氮化物。
  16. 如申請專利範圍第15項之結構,其中該半導體層係寬能隙半導體層。
  17. 如申請專利範圍第6項之結構,包括在該寬能隙半導體材料中之高電子移動率電晶體。
  18. 如申請專利範圍第14項之結構,其中該緩衝層之上方部具有該離子植入之離子且於該離子沉積之前,該緩衝層之下方部具有提供於其中的摻雜劑。
  19. 如申請專利範圍第18項之結構,其中該緩衝層之下方部所提供的該摻雜劑係於該緩衝層形成期間提供。
TW106126597A 2016-08-18 2017-08-07 使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長 TWI663635B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662376722P 2016-08-18 2016-08-18
US62/376,722 2016-08-18

Publications (2)

Publication Number Publication Date
TW201822254A true TW201822254A (zh) 2018-06-16
TWI663635B TWI663635B (zh) 2019-06-21

Family

ID=59582049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126597A TWI663635B (zh) 2016-08-18 2017-08-07 使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長

Country Status (7)

Country Link
US (1) US11127596B2 (zh)
EP (1) EP3501033A1 (zh)
JP (1) JP6896063B2 (zh)
KR (1) KR102238369B1 (zh)
CN (1) CN109564855B (zh)
TW (1) TWI663635B (zh)
WO (1) WO2018034840A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086097B1 (fr) * 2018-09-18 2020-12-04 Commissariat Energie Atomique Procede de fabrication d'un dispositif electroluminescent
JP7382804B2 (ja) * 2019-11-22 2023-11-17 三菱電機株式会社 半導体装置、半導体装置の製造方法、及び、電界効果型トランジスタ
US11545566B2 (en) * 2019-12-26 2023-01-03 Raytheon Company Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement
CN111640650B (zh) * 2020-04-30 2023-10-13 西安电子科技大学 Si衬底AlN模板的制备方法及Si衬底GaN外延结构的制备方法
CN111613527A (zh) * 2020-05-20 2020-09-01 南京大学 一种基于Mg离子注入与高温退火工艺实现氮化镓p型掺杂的方法
CN114695506A (zh) * 2020-12-29 2022-07-01 苏州能讯高能半导体有限公司 一种半导体器件的外延结构及其制备方法、半导体器件
CN114530447B (zh) * 2022-04-24 2022-10-25 合肥晶合集成电路股份有限公司 半导体结构及其制作方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999717A (ja) * 1982-11-29 1984-06-08 Fujitsu Ltd 半導体装置の製造方法
JP3439111B2 (ja) * 1998-03-09 2003-08-25 古河電気工業株式会社 高移動度トランジスタ
JP3786544B2 (ja) * 1999-06-10 2006-06-14 パイオニア株式会社 窒化物半導体素子の製造方法及びかかる方法により製造された素子
JP3393602B2 (ja) * 2000-01-13 2003-04-07 松下電器産業株式会社 半導体装置
JP2005527102A (ja) * 2001-07-24 2005-09-08 クリー インコーポレイテッド 高電子移動度トランジスタ及びその製造方法
JP4792814B2 (ja) * 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
US7419892B2 (en) 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
US8853666B2 (en) * 2005-12-28 2014-10-07 Renesas Electronics Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
JP5064824B2 (ja) * 2006-02-20 2012-10-31 古河電気工業株式会社 半導体素子
US8823057B2 (en) * 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
US7732301B1 (en) * 2007-04-20 2010-06-08 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
KR101038836B1 (ko) * 2008-10-21 2011-06-03 삼성엘이디 주식회사 질화계 이종접합 전계효과 트랜지스터 제조방법
JP2010238752A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP5587564B2 (ja) * 2009-06-19 2014-09-10 ルネサスエレクトロニクス株式会社 電界効果トランジスタおよび電界効果トランジスタの製造方法
US20110315808A1 (en) 2010-06-23 2011-12-29 Zelinski Brian J Solid solution-based nanocomposite optical ceramic materials
JP2012033773A (ja) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd 半導体素子および半導体デバイス
KR101720533B1 (ko) 2010-08-31 2017-04-03 삼성디스플레이 주식회사 다결정 실리콘층의 제조 방법, 상기 다결정 실리콘층 제조 방법을 포함하는 박막 트랜지스터의 제조 방법, 상기 방법에 의해 제조된 박막 트랜지스터, 및 상기 박막 트랜지스터를 포함하는 유기 발광 디스플레이 장치
JP5711001B2 (ja) * 2011-02-17 2015-04-30 新日本無線株式会社 窒化物半導体装置の製造方法
JP5919626B2 (ja) * 2011-02-25 2016-05-18 富士通株式会社 化合物半導体装置及びその製造方法
JP2013004681A (ja) 2011-06-15 2013-01-07 Mitsubishi Electric Corp 窒化物半導体装置の製造方法
JP5433909B2 (ja) * 2012-05-22 2014-03-05 株式会社パウデック GaN系半導体素子の製造方法
KR20140013247A (ko) * 2012-07-23 2014-02-05 삼성전자주식회사 질화물계 반도체 소자 및 그의 제조 방법
TWI506788B (zh) * 2012-12-25 2015-11-01 Huga Optotech Inc 場效電晶體
US9525054B2 (en) * 2013-01-04 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
KR101977271B1 (ko) * 2013-04-05 2019-05-10 에스케이하이닉스 주식회사 반도체 장치의 제조 방법
WO2015123534A1 (en) * 2014-02-14 2015-08-20 Dow Corning Corporation Group iii-n substrate and transistor with implanted buffer layer
JP6283250B2 (ja) * 2014-04-09 2018-02-21 サンケン電気株式会社 半導体基板及び半導体素子
US9773898B2 (en) * 2015-09-08 2017-09-26 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising spatially patterned implanted species
US10128364B2 (en) * 2016-03-28 2018-11-13 Nxp Usa, Inc. Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
US10644142B2 (en) * 2017-12-22 2020-05-05 Nxp Usa, Inc. Semiconductor devices with doped regions functioning as enhanced resistivity regions or diffusion barriers, and methods of fabrication therefor

Also Published As

Publication number Publication date
JP6896063B2 (ja) 2021-06-30
CN109564855B (zh) 2023-08-22
CN109564855A (zh) 2019-04-02
WO2018034840A1 (en) 2018-02-22
KR102238369B1 (ko) 2021-04-08
EP3501033A1 (en) 2019-06-26
TWI663635B (zh) 2019-06-21
JP2019528571A (ja) 2019-10-10
US20210050216A1 (en) 2021-02-18
US11127596B2 (en) 2021-09-21
KR20190035885A (ko) 2019-04-03

Similar Documents

Publication Publication Date Title
TWI663635B (zh) 使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
US9166033B2 (en) Methods of passivating surfaces of wide bandgap semiconductor devices
US7626217B2 (en) Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US20110108885A1 (en) Semiconductor device and method of manufacturing a semiconductor device
US20110042719A1 (en) Semiconductor device and method of manufacturing a semiconductor device
US20060226412A1 (en) Thick semi-insulating or insulating epitaxial gallium nitride layers and devices incorporating same
US20040061129A1 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP6279296B2 (ja) エンハンスメントモードヘテロ接合トランジスタの製造方法
US11430875B2 (en) Method for manufacturing transistor
CN112133749A (zh) 一种p型帽层增强型hemt器件及其制备方法
US8283700B2 (en) Field effect transistor and manufacturing method thereof
JP2023527310A (ja) ベリリウムをドープしたショットキーコンタクト層を有する空乏モード高電子移動度電界効果トランジスタ半導体デバイス
CN111863957A (zh) 一种常闭型高电子迁移率晶体管及其制造方法
KR101038836B1 (ko) 질화계 이종접합 전계효과 트랜지스터 제조방법
JPWO2017221532A1 (ja) ヘテロ接合電界効果型トランジスタおよびその製造方法
JP6416705B2 (ja) 電界効果トランジスタおよびその製造方法
CN113178389A (zh) 氮化镓基器件及其制造方法
CN118281060A (zh) 一种半导体结构及其制作方法
CN111863958A (zh) 一种常开型高电子迁移率晶体管结构及其制造方法