TW201740161A - 多孔徑成像裝置、成像系統及用以拍攝標的區域之方法 - Google Patents

多孔徑成像裝置、成像系統及用以拍攝標的區域之方法

Info

Publication number
TW201740161A
TW201740161A TW106108146A TW106108146A TW201740161A TW 201740161 A TW201740161 A TW 201740161A TW 106108146 A TW106108146 A TW 106108146A TW 106108146 A TW106108146 A TW 106108146A TW 201740161 A TW201740161 A TW 201740161A
Authority
TW
Taiwan
Prior art keywords
optical
aperture imaging
beam deflecting
imaging device
deflecting member
Prior art date
Application number
TW106108146A
Other languages
English (en)
Other versions
TWI651544B (zh
Inventor
法蘭克 懷柏曼
安德列斯 布魯克納
安德列斯 布勞爾
Original Assignee
弗勞恩霍夫爾協會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弗勞恩霍夫爾協會 filed Critical 弗勞恩霍夫爾協會
Publication of TW201740161A publication Critical patent/TW201740161A/zh
Application granted granted Critical
Publication of TWI651544B publication Critical patent/TWI651544B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals

Abstract

一種多孔徑成像裝置包括:至少一個影像感測器;並置光學通道之一陣列,其中各光學通道包含用於將一標的區域之至少一個部分區域投影於該影像感測器之一影像感測器區域上的光學件;以及光束偏轉構件,其用於使該等光學通道之一光學路徑在該光束偏轉構件之光束偏轉區域中偏轉。該光束偏轉構件係形成為沿光學通道之該陣列之一線延伸方向配置的琢面之一陣列。一個琢面經分配至各光學通道。各琢面包含一光束偏轉區域。一雜散光抑制結構係配置於一第一琢面之一第一光束偏轉區域與一並置第二琢面之一第二光束偏轉區域之間,該雜散光抑制結構經組配以減少該第一光束偏轉區域與該第二光束偏轉區域之間的雜散光之轉變。

Description

多孔徑成像裝置、成像系統及用以拍攝標的區域之方法
發明領域 本發明係關於一種多孔徑成像裝置、一種具有至少一個多孔徑成像裝置之成像系統以及一種用於拍攝一標的區域之方法。另外,本發明係關於具有線性通道配置之多孔徑成像裝置中的雜散光抑制。
發明背景 習知攝影機在一個通道內傳輸全視場(標的區域)且關於小型化受限制。在智慧型手機中,使用兩個攝影機,其定向於顯示器之表面法線之方向上及相反方向上。在已知多孔徑成像系統中,連續的部分標的區域經分配至各通道,該部分標的區域被變換成連續的部分影像區域。
光束偏轉構件之個別鏡面琢面用於劃分視場且用於控制個別通道之檢視方向。鏡面琢面具有足夠大以用於防止傳輸實際上經分配至相鄰通道之錯誤影像區域的側向延伸。然而,此因此增加通道之距離且總體上導致攝影機沿通道配置之方向的大延伸。
因此,允許用於在確保高影像品質之同時拍攝全視場之小型化裝置的概念將合乎需要。
發明概要 因此,本發明之目標為提供一種多孔徑成像裝置、一種成像系統以及一種用於拍攝標的區域之方法,其允許多孔徑成像裝置之小型化組配及獲得具有高影像品質之影像。
該目標係藉由獨立請求項之標的物解決。
本發明之核心想法為如下發現:亦可減少光學通道之間的雜散光在光束偏轉構件處之轉變,此係因為雜散光抑制結構分別配置於兩個琢面之間及鄰近琢面之兩個鄰近光束偏轉區域之間,以使得可省去足夠大之側向間距,側向間距亦可被視為安全距離。此情形允許在維持高影像品質之同時減少光束偏轉構件之側向延伸且因此使多孔徑成像裝置小型化。
根據一實施例,一種多孔徑成像裝置包含:至少一個影像感測器;及並置光學通道之一陣列,其中各光學通道包含用於將一標的區域之至少一個部分區域投影於該影像感測器之一影像感測器區域上的光學件。該多孔徑成像裝置包括光束偏轉構件,其用於使該等光學通道之一光學路徑在該光束偏轉構件之光束偏轉區域中偏轉。該光束偏轉構件係形成為沿光學通道之該陣列之一線延伸方向配置的琢面之一陣列。一個琢面經分配至各光學通道。各琢面包含一光束偏轉區域。一雜散光抑制結構係配置於一第一琢面之一第一光束偏轉區域與一並置第二琢面之一第二光束偏轉區域之間,該雜散光抑制結構經組配以減少該第一光束偏轉區域與該第二光束偏轉區域之間的雜散光之轉變。此處,該減少係關於在未配置光束偏轉結構時將獲得之狀態。
根據另一實施例,一種成像系統包括根據本文中所描述之實施例的一多孔徑成像裝置。舉例而言,該成像系統可為用於拍攝影像之一設備,諸如一智慧型手機、一平板電腦或一行動音樂播放器。
根據另一實施例,一種用於拍攝一標的區域之方法包含:提供一影像感測器;藉由並置光學通道之一陣列投影一標的區域,其中各光學通道包含用於將一標的區域之至少一個部分區域投影於該影像感測器之一影像感測器區域上的光學件。另外,該方法包括使該等光學通道之一光學路徑在一光束偏轉構件之光束偏轉區域中偏轉,該光束偏轉構件係形成為沿光學通道之該陣列之一線延伸方向配置的琢面之一陣列,且其中一個琢面經分配至各光學通道且其中各琢面包含一光束偏轉區域。該方法包括藉由在一第一琢面之一第一光束偏轉區域與一第二琢面之一第二光束偏轉區域之間配置一雜散光抑制結構而減少該第一光束偏轉區域與該第二光束偏轉區域之間的雜散光之轉變。
其他有利實施係附屬請求項之標的物。
較佳實施例之詳細說明 在下文參看圖式詳細論述本發明之實施例之前,應注意,相同、功能上相等或相等的元件、物件及/或結構在不同圖中具備相同參考數字,以使得不同實施例中所說明之此等元件的描述可互換或相互應用。
下文所描述之一些實施例係關於拍攝一標的區域。下文所描述之其他實施例係關於拍攝一視場。標的區域/全標的區域及視場或全視場等詞被視為在下文中可互換。此意謂標的區域、全標的區域、視場或全視場等詞可在不改變本文中之陳述之含義的情況下進行互換。在相同程度上,部分視場及部分標的區域等詞可在不改變所分配描述之含義的情況下進行互換。
圖1展示根據實施例之多孔徑成像裝置1000之示意性俯視圖。多孔徑成像裝置1000可為經組配以拍攝呈若干部分標的區域(部分視場) 74a至74b之形式的標的區域(視場) 27的裝置。所拍攝之部分標的區域74a至74b可藉由裝置1000或下游計算裝置(諸如,處理器、場可規劃閘陣列(FPGA)、CPU (中央處理單元)、特定於方法之硬體,諸如ASIC等)組合成全影像。根據諸實施例,標的區域72係藉由多個部分標的區域74a至74b掃描。多個可為至少2個、至少3個、至少5個、至少9個或大於9個。
多孔徑成像裝置1000包括影像感測器12以及並置光學通道16a及16b之陣列14。各光學通道16a及16b包含分別用於將至少一個部分區域74a或74b投影於影像感測器12之影像感測器區域上的光學件64a及64b。多孔徑成像裝置1000包括光束偏轉構件18。光束偏轉構件18經組配以使光學通道16a及16b之光學路徑17a及17b偏轉。為此,光束偏轉構件包含琢面68a及68b。換言之,光束偏轉光束18係形成為琢面68a至68b之陣列。琢面68a及68b係沿線延伸方向146配置,其中線延伸方向146係關於光學通道16a及16b配置於陣列14中所沿之方向,亦即,在影像感測器前方。
一個琢面68a及68b分別經分配至各光學通道16a及16b。如下文將描述,若干光學路徑可經分配至一個琢面68a或68b。琢面68a經組配以使光學通道16a之光學路徑17a在光束偏轉區域1002a中朝向部分區域74a偏轉。以相同方式,琢面68b經組配以使光學通道16b之光學路徑17b在琢面68b之光束偏轉區域1002b中朝向部分區域74b偏轉。此意謂各琢面68a及68b包含光束偏轉區域1002a及1002b。光束偏轉區域1002a或1002b可分別為琢面68a及68b之經組配以使各別光學路徑偏轉的表面區域。
雜散光抑制結構1004係配置於光束偏轉區域1002a與1002b之間,該雜散光抑制結構經組配以減少或防止第一光束偏轉區域1002a與第二光束偏轉區域1002b之間的雜散光之轉變。較佳地,雜散光抑制結構1004包含至少部分不透明之材料。進一步較佳地,雜散光抑制結構1004包含相對於第一琢面68a及/或第二琢面68b之表面形貌升高的表面形貌。該表面形貌可意謂考慮琢面68a及68b以及雜散光抑制結構1004相對於鄰近結構之升高及/或曲率的表面輪廓。簡言之,雜散光抑制結構1004可在琢面68a及/或琢面68b之間至少部分地升高。
根據一實施例,雜散光抑制結構1004為配置於琢面68a與68b之間的分隔壁。光學路徑17a及/或17b中之在雜散光抑制結構不存在時將無意地分別進入鄰近光學通道16a及16b之光束偏轉區域1002a或1002b的散射可至少部分地被雜散光抑制結構1004截斷,以使得影像品質因雜散光轉變而僅在有限程度上實現或甚至根本不實現。此情形允許減少將在雜散光抑制結構1004a或1004b不存在時使用之光束偏轉區域之間的距離,以便減少雜散光轉變。
換言之,用於減少及/或防止雜散光之結構可配置於光束偏轉構件之個別琢面的轉變處。
圖2a展示包括影像感測器12、陣列14及光束偏轉構件18之多孔徑成像裝置2000之示意性俯視圖。舉例而言,各光學通道16a至16c包含兩個光學件(透鏡) 64a及64b、64c及64d或64e及64f,以便影響各別光學通道16a至16c之光學路徑17a至17c且將其引導至影像感測器區域58a至58c。根據實施例,一光學通道可具有任何數目個透鏡,諸如一個、兩個或大於兩個。光學通道16a至16c可具有不同數目個透鏡。雜散光抑制結構1004a係配置於琢面68a之光束偏轉區域1002a與琢面68b之光束偏轉區域1002a之間。雜散光抑制結構1004b係配置於光束偏轉區域1002b與光束偏轉構件18之琢面68c的光束偏轉區域1002c之間。
光束偏轉構件18之主要側面及個別琢面68a至68c可投影於藉由線延伸方向146及垂直於線延伸方向146配置之方向1006橫跨的平面上。舉例而言,所橫跨平面可本質上垂直於影像感測器區域58a至58c。線延伸方向146可平行於光束偏轉構件18之軸向延伸而配置,而方向1006可被稱作光束偏轉構件18之側向延伸方向。雜散光抑制結構1004a及/或1004b可平行於方向1006 (亦即,達至1006之程度)沿光束偏轉構件18之整個延伸配置,其中雜散光抑制結構突出超過光束偏轉構件18亦係可能的。此情形允許沿方向1006跨越光束偏轉構件18之整個延伸抑制分別在兩個鄰近光束偏轉區域1002a與1002b以及1002b與1002c之間的雜散光轉變。
圖2b展示圖2a之多孔徑成像裝置之示意性俯視圖,其中雜散光抑制結構1004a及1004b在光束偏轉構件18之主要側面上且沿方向1006以大約50%之程度延伸。舉例而言,雜散光抑制結構1004a及/或1004b可配置成在光束偏轉構件18之主要側面的背對光學件64a至64f的側開始朝向光學件64a至64f且可沿方向1006跨越大約50%之區域而延伸。根據其他實施例,雜散光抑制結構沿方向1006以至少10%、至少20%或至少30%之程度延伸。根據其他實施例,雜散光抑制結構1004a及/或1004b可配置成與光束偏轉構件18之側向邊緣隔開,亦即,可本質上配置於光束偏轉區域1004a至1004c之中心區域中。根據如圖2a之上下文中所描述的實施例,雜散光抑制結構沿方向1006之延伸亦可為至少50%、至少70%、至少90%或至少95%。雜散光抑制結構1004a或1004b亦有可能沿方向1006沿任意區域延伸,其中雜散光抑制結構分別相對於鄰近琢面68a及68b以及68b及68c之表面形貌僅部分地升高,亦即,升高(表面形貌)在區域內大約為零,其亦包括負值。
根據本文中所描述之實施例的兩個並置琢面68a至68c之間的雜散光抑制結構較佳由至少一種不透明材料形成。為此,可提供金屬材料、塑膠材料及/或半導體材料。此處,雜散光抑制之特性較佳與多孔徑成像裝置之有用波長範圍有關。以彼方式,例如,將半導體材料用於雜散光抑制結構在多孔徑成像裝置經組配以在可見波長範圍中拍攝影像時可為有利的。相比而言,當在紅外線波長範圍中拍攝影像時,當半導體材料在此波範圍內變得透明時,使用金屬材料可為較佳的。
圖3a展示多孔徑成像裝置3000之示意性側視截面圖,該多孔徑成像裝置相較於如圖2b中所說明之多孔徑成像裝置2000進一步包含至少部分透明之蓋罩36a及36b。舉例而言,至少部分透明之蓋罩36a及36b可為多孔徑成像裝置3000經配置所在的外殼之部分。光束偏轉構件18可經組配以取決於光束偏轉構件18相對於影像感測器12之相對位置而使光學通道之光學路徑偏轉穿過透明蓋罩36a或透明蓋罩36b。如下文將詳細描述,取決於光束偏轉構件18之位置,不同標的區域可由多孔徑成像裝置3000拍攝。就此而言,至少部分透明之蓋罩36a及36b分別允許保護多孔徑成像裝置3000免受外部影響,諸如污染或機械影響。為了可在第一位置與第二位置之間移動,光束偏轉構件18可(例如)藉助於旋轉軸線44移動。
雜散光抑制結構1004a係配置於琢面68a及68b之光束偏轉區域之間。舉例而言,雜散光抑制結構1004a係僅配置於光束偏轉構件18之第一主要側面1008a上。因此,在所說明之透視圖中,可看見琢面68b之側向邊緣。在光束偏轉構件18之對置第二主要側面1008b上,另一雜散光抑制結構1004c可配置於琢面68a及68b之光束偏轉區域之間,以便在光束偏轉構件18之第二隨後描述位置期間有效。因此,主要側面1008a及1008b可為反射性的。
在所說明之橫截面中,雜散光抑制結構1004a可具有多邊形表面形貌。亦可考慮此情形以使得雜散光抑制結構1004a具有多邊形形狀之橫截面。此意謂雜散光抑制結構1004a可具有任何橫截面,其可由相對於彼此任意配置之任何筆直或彎曲的片段裝配。雜散光抑制結構1004a之部分1002a可經配置以使得其本質上平行於至少部分透明之蓋罩36a的面向光束偏轉構件18之表面而配置於所說明之第一位置中。此情形同時允許高雜散光抑制以及至少部分透明之蓋罩36a與雜散光抑制結構1004a之間的短距離,以使得多孔徑成像裝置3000沿可配置成垂直於線延伸方向且垂直於圖2b中所描述之方向1006的方向1014之延伸為低的或甚至最小。多孔徑成像裝置3000在方向1014上之延伸亦可被視為裝設高度,其中取決於多孔徑成像裝置3000在空間中之位置,高度一詞顯然亦可與類似長度或寬度之其他術語互換且因此在本文中所描述之實施例的上下文中不具有任何限制效應。
圖3b展示多孔徑成像裝置3000之示意性側視截面圖,其中光束偏轉構件18在第二位置中,在該位置中,光束偏轉構件使光學通道之光學路徑偏轉穿過至少部分透明之蓋罩36b。舉例而言,雜散光抑制結構1004c係配置在與雜散光抑制結構1004a對置之第二主要側面1008b上。當光束偏轉構件18在第二位置中時,雜散光抑制結構1004c可具有配置成平行於至少部分透明之蓋罩36b的面向光束偏轉構件18之表面的部分1012b。
儘管多孔徑成像裝置3000之雜散光抑制結構1004a及1004c已經描述以使得其分別在同一琢面上配置於光束偏轉構件18的主要側面上,但根據其他實施例,對置之雜散光抑制結構1004a及1004c亦可配置於不同琢面上。舉例而言,雜散光抑制結構1004a可配置於琢面68a上且雜散光抑制結構1004c配置於琢面68b上,或雜散光抑制結構1004c可配置於琢面68a上且雜散光抑制結構1004a配置於琢面68b上。根據其他實施例,雜散光抑制結構1004a及1004c亦可一體地形成,且可(例如)經由琢面68a或68b之表面投影。光束偏轉構件18亦有可能包含在兩個琢面之間的區域,穿過該等區域,雜散光抑制結構朝向光束偏轉構件18之兩個主要側面投影。
上文已分別描述雜散光抑制結構1004a及1004b之部分1012a及1012b以使得當光束偏轉構件18在各別位置中時,該等部分分別平行於至少部分透明之蓋罩36a及36b。有可能將部分1012a與至少部分透明之蓋罩36a之間的距離減小為0,亦即,發生機械接觸。然而,維持兩個組件(雜散光抑制結構1004a及至少部分透明之蓋罩36a)之間的距離以便防止機械相互作用(亦即,鄰接或力之相互施加)係有利的。此意謂在第一位置中,雜散光抑制結構1004a係配置成與至少部分透明之蓋罩36a隔開(無接觸),且因此與多孔徑成像裝置3000之外殼隔開。相同情形適用於在光束偏轉構件18之第二位置中,雜散光抑制結構1004b之部分1012b相對於至少部分透明之蓋罩36b。
儘管已描述多孔徑成像裝置3000以使得琢面68a及68b各自具有分別在光束偏轉構件18之一個主要側面上的兩個反射性光束偏轉區域,但亦可考慮此情形以使得與琢面68a對置之另一琢面經配置,其包含配置成與琢面68a之光束偏轉區域對置的光束偏轉區域。簡言之,此意謂具有兩個對置之光束偏轉區域的琢面亦可被視為兩個對置琢面。雖然已描述光束偏轉構件以使得其可在第一位置與第二位置之間旋轉移動,但根據其他實施例,其亦可以平移方式(亦即,平行於旋轉軸線34)移位且可取決於位置而分別包含使光學路徑在第一方向上或在第二方向上偏轉的不同定向之琢面。
如下文將更詳細描述,可切換隔膜可配置於至少部分透明之蓋罩36a及/或36b上,該等可切換隔膜經組配以至少有時防止光朝向影像感測器進入以便進一步提高影像品質。
換言之,雜散光抑制結構1004a及/或1004b可經結構化以使得在光束偏轉構件之第一位置中,邊緣(部分1012a)經定向成大部分平行於光學路徑穿過之防護玻璃罩(至少部分透明之蓋罩36a)。在光束偏轉構件之第二位置中,第二邊緣(部分1012b)可經配置,其定向成幾乎平行於另一防護玻璃罩(至少部分透明之蓋罩36b)。雜散光抑制結構1004a及/或1004b之進一步塑形可經組配以使得獲得成像通道(光學通道)內之光學路徑的最大遮蔽,但同時在旋轉光束偏轉構件時防護玻璃罩中無一者被觸碰到。
圖4a展示多孔徑成像裝置4000之示意性側視截面圖,該多孔徑成像裝置相較於多孔徑成像裝置3000進一步包含配置於雜散光抑制結構之間的隆脊1014a及1014b。參看圖2a,例如,雜散光抑制結構1004a及1004b可藉由隆脊1014a連接。該隆脊可包含允許鄰近雜散光抑制結構1004a與1004b之間的特定機械穩定性的材料。舉例而言,此可為半導體材料、塑膠材料及/或金屬材料。在一項實施例中,隆脊1014可與配置於其上之雜散光抑制結構一體地形成。在一較佳實施例中,隆脊1014a係配置於雜散光抑制結構及/或光束偏轉構件18之指向光學件64a及64b的邊緣上。亦可考慮此情形以使得在一些實施例中,隆脊並不配置於其他邊緣上。當繞旋轉軸線將光束偏轉構件自第一位置切換至第二位置時,此配置實現無需至少部分透明之蓋罩36a與36b之間的額外裝設高度或距離,亦即,無需額外裝設高度。此情形進一步允許光束偏轉構件18之琢面在可能與背對光學件之側面無關的三個側面上的區域中由雜散光抑制結構包圍。
隆脊之配置允許多孔徑成像裝置4000之簡化製造及/或光束偏轉構件18上之雜散光抑制結構的簡化裝配。
換言之,隆脊可具有特定厚度以便為機械穩定的。舉例而言,例示性厚度在至少100 µm且至多10 mm、至少200 µm且至多1 mm或至少300 µm且至多500 µm之範圍內,其提供足夠大的穩定性,但並不導致裝置之裝設高度的不必要增大。隆脊可能僅配置於面向光學件之側面上,此係因為此情形不導致多孔徑成像裝置3000之裝設高度/厚度的任何增大或僅導致微小增大。然而,有可能將隆脊亦配置於琢面之背對光學件的側面上,但此情形可導致裝設高度/厚度之較大增大,且亦可獲得成像光學路徑之漸暈(朝向影像邊緣陰影化),此為非所要的。光束偏轉構件可關於其定向而改變,以使得攝影機之檢視方向至少朝向前方及朝向後方定向,其(例如)與成像系統(例如,行動電話)之表面有關。
光束偏轉構件經組配以使標的區域與影像感測器12以及包括光學件64a及64b之陣列之間的光學通道之光學路徑17偏轉。如圖3a至圖3b之上下文中所描述,光束偏轉構件可具有可變位置或定向以便使可變標的區域與影像感測器12之間的光學路徑偏轉。在光學件區域與光束偏轉構件18之間,光學路徑17穿過多孔徑成像裝置之射出區域(例如,分別為至少部分透明之蓋罩36a及36b或外殼中之開口)。
在光束偏轉構件18之第一定向或位置中,面向透鏡之隆脊1014a相對於成像通道16a之中心光學路徑17係配置於透鏡64a及64b之光學中心下方,如圖4a中所說明。根據其他實施例,亦可執行光束偏轉構件18之傾側以使得隆脊1014a處於透鏡64a及64b下方。舉例而言,「在......下方」一詞係關於如下事實:在所說明之定向中,光學通道16a之所說明光學路徑17及檢視方向在至少部分透明之蓋罩36a (光學路徑17所穿過的多孔徑成像裝置之射出側)與隆脊1014a之間穿過。「在......下方」一詞並不具有關於在空間中之定向的任何限制效應,而僅用於說明目的。此情形允許隆脊1014a對標的區域之部分區域的投影無影響,此係因為該隆脊配置於光學路徑17外。因此,隆脊不為多孔徑成像裝置4000'所見。在如(例如)圖3b中所說明之光束偏轉構件18的第二定向或位置中,面向透鏡之隆脊1014b係配置於透鏡64a及64b上方且不可見。在此上下文中,可考慮此情形以使得在第二定向中,光學通道16a之光學路徑17及檢視方向分別在至少部分透明之蓋罩36b (多孔徑成像裝置4000'之射出側)與隆脊1014b之間穿過。「在......上方」一詞在此上下文中亦僅說明性地考慮,而不具有關於空間定向頂部/底部/左方/右方之限制效應。
此配置防止配置於背對透鏡之側面上(例如,部分1012上)的隆脊1014a或1014b在兩個位置中之任一者中可見或被拍攝,或導致影像中之陰影。此效應可在結構之厚度或裝設高度增加至少隆脊厚度時被防止,然而,其將導致多孔徑成像裝置4000'之裝設高度增加,此將為不利的。
光束偏轉構件可具有在頂部及底部兩者上包含鏡射區域之反射琢面。具備孔隙之防護玻璃罩可安裝於光束偏轉構件上方及下方。
圖4b展示多孔徑成像裝置4000'之示意性俯視圖,該多孔徑成像裝置亦可被視為圖2a之經修改多孔徑成像裝置。相較於多孔徑成像裝置2000,多孔徑成像裝置4000'包含隆脊1014。舉例而言,若如圖4a之上下文中所描述,雜散光抑制結構1004a及1004b對光束偏轉構件18之兩個主要側面有效,則僅一個隆脊之配置可產生足夠的機械穩定性。個別隆脊可配置於兩個主要側面中之一者上。替代地,隆脊1014亦可配置於兩個主要側面上,例如,此係因為該隆脊係圍繞光束偏轉構件18之主要側面邊緣建置。隆脊1014及雜散光抑制結構1004a至1004d可經一體地結構化。舉例而言,配置於光束偏轉構件之一個或兩個主要側面上的雜散光抑制結構可藉助於隆脊1014連接至彼此,且可作為共同組件配置於光束偏轉構件18上。
圖5展示根據本文中所描述之實施例的用於對全標的區域或全視場成像的概念之示意性俯視圖。舉例而言,多孔徑成像裝置5000包括四個光學通道16a至16d,其各自投影全視場之部分區域。舉例而言,可藉由光束偏轉構件18之相對於彼此不同地傾斜的琢面68a至68b獲得成對的光學路徑17a之通道個別偏轉。光學通道16a至16d可具有傾斜光軸,以使得琢面68a及68b可由若干通道共用。琢面之傾側可沿角度分量(正交於光學通道16a至16d之線延伸方向)執行,其可導致光束偏轉構件18之簡化。
圖6a展示多孔徑成像裝置6000之區段之示意性俯視圖。多孔徑成像裝置6000包括影像感測器12以及各自分別包括光學件64a及64b之並置光學通道16a及16b的陣列14。
此意謂各光學通道16a及16b分別包含光學件64a及64b,其用於將標的區域26之至少一個部分區域74a至74c分別投影於影像感測器之影像感測器區域58a、58b及58c上。以彼方式,例如,光學件64a將部分區域74a投影於影像感測器區域58a上,其係藉由光學路徑17a說明。另外,光學件64a將部分區域74b投影於影像感測器區域58b上,其係藉由光學路徑17b說明。部分區域74a及74b在標的區域26中不相交,此意謂該等部分區域不重疊及/或完全不同。
與光束偏轉構件18組合之各光學通道16a至16b之部分視場的限制可導致多孔徑成像裝置1000之裝設高度(主要效應)降低。由於裝設高度係垂直於多孔徑成像裝置之檢視方向而實現,因此獲得此降低。另外,獲得各通道之光學件的簡化,此係因為每個通道可配置較少透鏡,因為對於拍攝部分視場,場像差之較簡單校正係可能的(次要效應)。
光學通道16b之光學件64b經組配以將部分區域74c投影於影像感測器區域58c上,如藉由光學路徑17c所說明。部分區域74c與部分區域74a及/或74b重疊,以使得藉由影像感測器區域58a、58b及58c之部分影像的影像處理,可獲得標的區域26之全影像。替代地,光學通道16b亦可與光學通道16a相當地經組配;此意謂影響兩個光學路徑以使得標的區域之兩個不相交的部分區域被引導至兩個影像感測器區域。
多孔徑成像裝置6000包含可選光束偏轉構件18,其經組配以使光學通道16a及16b之光學路徑偏轉以使得光學路徑被引導朝向標的區域26。光學路徑17a、17b及17c可在影像感測器區域58a至58c與可選光束偏轉構件18之間的共同平面中彼此傾斜而延行。此意謂光學通道及光學路徑之檢視方向分別可不同且可在共同平面中。藉由光束偏轉構件18進行之偏轉,沿第二方向之檢視方向可改變,以使得藉由使光學路徑偏轉,可拍攝標的區域26的彼此在兩個維度上分佈之多個部分區域。根據其他實施例,其他光學通道可配置於光學通道16a及16b旁側。替代地或另外,標的區域之其他部分區域係藉由光學件64a投影於影像感測器12之其他(未說明)影像感測器區域上,其中部分區域彼此各不相交。其他部分區域可沿方向142及/或方向144與部分區域74a偏移。光束偏轉構件18可使光學路徑17a及17b偏轉,以使得標的區域中之各別部分區域彼此不再不相交。然而,有利地,部分區域甚至在光學路徑之偏轉之後仍保持不相交。
簡言之,彼此傾斜定向之光學路徑17a及17b允許部分標的區域74a及74b彼此之側向偏移。多孔徑成像裝置1000之實施現可經執行以使得如所說明,部分標的區域74a及74b在標的區域26中沿第一方向142彼此偏移。替代地或另外,部分標的區域74a及74b亦有可能在標的區域26中沿第二方向144彼此側向地偏移,其中亦可組合兩個偏移方向。舉例而言,方向142及144可平行於待拍攝或已拍攝之影像的影像軸線。此意謂亦可在無光束偏轉構件18之情況下獲得在兩個維度上彼此偏移之部分區域74a至74c。
雖然影像感測器12經說明以使得其包括影像感測器區域58a、58b及58c,但根據其他實施例之多孔徑成像裝置包含至少兩個、三個或大於三個影像感測器,總體上提供影像感測器區域58a、58b及58c之總量。總量可為影像感測器區域之任何數目,諸如至少三個、至少六個或至少九個。因此,影像感測器可包括僅一個或若干影像感測器區域58a至58c。多孔徑成像裝置可包括一個或若干影像感測器。
在影像感測器區域58a至58c之間的區域中,可配置非光敏積體電路、電子組件(電阻器、電容器)及/或電連接元件(接合線、介層孔)等。
視情況,光學通道16a及16b可與鄰近光學通道之至少部分不透明之結構1016a至1016c及/或光學通道之環境至少部分地隔離,以便至少部分地防止雜散光進入至光學通道16a或16b中且以便獲得所拍攝影像之品質。
換言之,多孔徑成像裝置可包括各自傳輸標的區域之部分區域的若干成像通道(光學通道),其中部分區域彼此部分地覆蓋或重疊且光學通道中之至少一者投影至少兩個非連續標的區域。此意謂在此通道之影像中存在間隙。數個或總數個光學通道可完全傳輸全視場。
圖6b展示多孔徑成像裝置6000之示意性俯視圖,該多孔徑成像裝置進一步包含在標的區域之方向上配置於影像感測器上之影像感測器區域58a與58b之間的至少部分不透明之結構1018a。至少部分不透明之結構1018a可包括半導體材料、玻璃、陶瓷或玻璃陶瓷材料、塑膠材料及/或金屬材料,且可在波長範圍中為至少部分不透明的,在該波長範圍中,影像由多孔徑成像裝置6000拍攝。以彼方式,例如,在紅外線拍攝時,當半導體材料對紅外線輻射透明時,塑膠材料或金屬材料相較於半導體材料可為有利的。替代地,對於在可見光範圍中之波長,半導體材料或塑膠材料相較於金屬材料可為有利的,此係因為金屬材料有可能引起較高製造努力、較高重量及/或較高成本。
至少部分不透明之結構1018a允許抑制影像感測器區域58a與58b之間的雜散光,亦即,減少光學通道之部分影像之間的串擾。以相同或類似方式,光學通道16c包含可與至少部分不透明之結構1018a以相同或類似方式形成的至少部分不透明之結構1018b。
至少部分不透明之結構1018a及1018b可具有恆定或可變橫截面。橫截面可被視為沿線延伸方向146之尺寸。線延伸方向146可為陣列14中之光學通道配置所沿的方向及/或可平行於影像感測器12延行。至少部分不透明之結構1018a及1018b係配置於影像感測器12上或鄰近於其配置。在朝向陣列14之方向上,至少部分不透明之結構1018a及1018b的橫截面漸縮。此情形允許至少部分不透明之結構1018a及1018b之幾何形狀分別適合於光學路徑17a及17b以及17d及17e。因此,至少部分不透明之結構1018a及1018b係配置於影像感測器12之影像感測器區域之間,且允許光學通道16a至16d之間及影像感測器區域之間的改良通道分離。在影像感測器區域58a至58c之間的至少部分不透明之結構1004a及1004b後方的區域中,可配置非光敏積體電路、電子組件(電阻器、電容器)及/或電連接元件(接合線、介層孔)等。
圖6c展示多孔徑成像裝置6000之示意性俯視圖,其中光學通道16a及16c包含部分區域光學件1022a至1022d。舉例而言,部分區域光學件1022a至1022d可為透鏡、折射或繞射元件,其各自經排他地分配至一個部分區域。因此,例如,部分區域光學件1022a經組配以影響光學路徑17a但不影響光學路徑17b。舉例而言,光學路徑17a可用於投影部分區域74a,如圖1之上下文中所描述。部分區域光學件1022b可經組配以影響投影(例如)部分區域74b之光學路徑17b。部分區域光學件1022b經組配以不影響光學路徑17a。替代地,光學通道16a可僅包含部分區域光學件1022a或1022b中之一者,及/或僅經分配至光學路徑17a或17b之其他部分區域光學件。舉例而言,部分區域光學件1022a及/或1022b可以機械方式固定至至少部分不透明之結構1018a。替代地或另外,部分區域光學件1022a可以機械方式固定至結構1018a或1016a。以相同方式,部分區域光學件1022b可機械地固定至結構1018b及/或1016b。根據替代實施例,部分區域光學件1022a及/或1022b可以機械方式連接至光學件64a,且相對於影像感測器經由光學件懸置。根據另一實施例,光學件64a可以機械方式連接至部分區域光學件1022a及/或1022b,且相對於影像感測器12經由部分區域光學件懸置。
舉例而言,部分區域光學件1022a可製造為屋脊稜鏡。舉例而言,部分區域光學件1022a及1022b亦可為屋脊稜鏡之兩個部分,該屋脊稜鏡被分成兩個部分及/或鏡面對稱。舉例而言,屋脊稜鏡可關於平面1024鏡面對稱。
部分區域光學件1022c及1022d亦可各自經排他地分配至一個部分區域,且影響該部分區域在各別影像感測器區域上之投影。若光學通道16a或16c分別包含兩個部分區域光學件1022a及1022b以及1022c及1022d,則兩個部分區域光學件可經相同地結構化。舉例而言,部分區域光學件1022a及1022b可配置成圍繞對稱平面1024鏡面對稱。
對稱平面1024可配置於空間中以使得該平面包括由部分區域光學件1022a及1022b共用且垂直於陣列14之線延伸方向146延行的光學件64a之光軸1026。儘管對稱平面1024及軸線1026在圖7c中並不展示為彼此疊合,但平面1024及軸線1026疊合,此係因為平面1024包括軸線1026。非疊合說明僅用於較好說明。根據一實施例,光學件64a經組配以使得光學件64a之成像功能關於光學件64a之主要檢視方向旋轉對稱或關於對稱平面1024鏡面對稱。此情形允許光學路徑17a及17b對稱地受光學件64a影響。
部分區域光學件1022a及1022b之鏡面對稱配置或實施允許對稱地影響對光學路徑17a及17b以使得亦可對稱地組配光學件64a。此情形允許(例如)光學路徑朝向對稱地分佈之部分標的區域的對稱偏轉或影響。多孔徑成像裝置7000亦可經組配以使得光學件64a並非鏡面對稱,例如,在預期到標的區域內之部分區域的不規則分佈時。根據替代實施例,部分區域光學件1022a及1022b亦可關於平面1024不對稱,例如,在預期到兩個光學路徑17a及17b之非對稱或不對稱失真時。
換言之,分離結構1018a及1018b在部分區域之間在朝向標的之方向上漸縮。分離結構(至少部分不透明之結構) 1018a及1018b可經組配為關於光軸1026對稱。舉例而言,可配置透鏡,例如,各自僅由一個部分區域使用之部分區域光學件1022a及1022b。關於光學特性,此等透鏡可相同及/或可配置為關於光軸1026鏡面對稱。另外,可能不實施旋轉對稱性。
部分區域光學件1022a至1022d可經組配於若干層中,亦即,若干平面中,且可因此各自由超過僅一個透鏡、一折射或繞射表面組成。光學件16a及16c亦可以多層方式組配且可因此由超過僅一個透鏡、一折射或繞射表面組成。
圖7a展示包含第一多孔徑成像裝置1000a及第二多孔徑成像裝置1000b之成像系統7000之示意性俯視圖。替代地或另外,成像系統7000可包含本文中所描述之不同多孔徑成像裝置,諸如多孔徑成像裝置2000、3000、4000、5000或6000。舉例而言,多孔徑成像系統可實施為行動電話、智慧型手機、平板電腦或監視器。
多孔徑成像裝置1000a及1000b可各自被稱作模組。模組中之各者可經組配及配置以完全或幾乎完全拍攝全視場,以使得成像系統7000經實施以藉由模組1000a及1000b立體地拍攝全視場。此意謂成像系統7000包含(例如)立體結構。根據其他實施例,成像系統包含其他額外模組,諸如產生三重結構、四重結構或高階結構。
圖7b展示可被視為成像系統7000之經修改變化的成像系統7000'之示意性俯視圖。模組1000a及1000b可包含共同影像感測器12。替代地或另外,模組1000a及1000b可包含共同光束偏轉構件18。替代地或另外,模組1000a及1000b可包含並置光學通道16之共同陣列14。根據其他實施例,成像系統亦可包含其他共同組件。舉例而言,此可為共同聚焦構件,其包括用於共同地調整第一及第二多孔徑成像裝置之焦點的至少一個致動器。替代地或另外,其可為光學影像穩定器,其針對第一多孔徑成像裝置之至少一個光學路徑及針對第二多孔徑成像裝置之至少一個光學路徑具有聯合效應,以藉由產生影像感測器與第一或第二多孔徑成像裝置之陣列或光束偏轉構件之間的平移相對移動而用於沿第一影像軸線及第二影像軸線之影像穩定。替代地或另外,其可為光學影像穩定器,其針對第一多孔徑成像裝置之至少一個光學路徑及針對第二多孔徑成像裝置之至少一個光學路徑具有聯合效應,其中該光學影像穩定器經組配以產生影像感測器與陣列之間的平移相對移動以用於沿第一影像軸線之影像穩定及產生第一多孔徑成像裝置之光束偏轉構件或第二多孔徑成像裝置之光束偏轉構件的旋轉移動以用於沿第二影像軸線之影像穩定。下文將更詳細地論述此等組件。換言之,模組可連續且可產生單一共同模組。
在下文中,參考包括至少一個多孔徑成像裝置之裝置。該等裝置可為經組配以藉助於至少多孔徑成像裝置對標的區域進行成像之成像系統。舉例而言,如下文所描述之多孔徑成像裝置可為多孔徑成像裝置1000、2000、3000、4000、5000或6000。
圖8a展示根據實施例之在第一操作狀態下的裝置10之示意性側視截面圖。裝置10可為行動或不動裝置,諸如行動電話、智慧型手機、行動電腦(諸如,平板電腦)及/或行動音樂播放器。
裝置10包括多孔徑成像裝置11,諸如多孔徑成像裝置1000、2000、3000、4000、4000'、5000及/或6000,其包含影像感測器12、並置光學通道16之陣列14及光束偏轉構件18。光束偏轉構件18經組配以使光學通道16之光學路徑17偏轉且將在下文進行詳細地論述。裝置10包括外殼22,其具有圍封外殼體積24之外表面23。此意謂外殼體積24可包含外殼22之內部體積及外殼22之體積。因此,外殼體積亦包括由外殼壁佔用之體積且因此藉由外殼之外表面23圍封。外殼22可以透明或不透明方式形成且可包括(例如)塑膠材料及/或金屬材料。光束偏轉構件18具有在外殼體積24內部之第一位置。對於判定外殼體積24,可忽略外殼側面中之孔或開口(諸如,用於麥克風之聲學通道或用於裝置10之電接點)。外殼22及/或配置於外殼22內之部件可阻擋藉由光束偏轉構件18進行偏轉之後的光學通道16之光學路徑17,以使得待藉由多孔徑成像裝置11拍攝的配置於外殼22外部之視場26根本不可被拍攝或僅有限程度地被拍攝。該等部件可(例如)為蓄電池、印刷電路板、外殼22之不透明區域等。換言之,替代習知攝影機物鏡,不同的可能非光學裝置可配置於外殼上。
外殼22可包含開口28,經由該開口,外殼體積24連接至外殼22之外部體積25。有時,開口28可藉由蓋罩32完全或部分地封閉。裝置10之第一操作狀態可為多孔徑成像裝置11之非作用中操作狀態,其中光學通道16 (例如)在外殼22之內部側面上經引導或根本未經偏轉。
換言之,多孔徑成像裝置之結構的裝設高度至少部分地由光學通道16之光學件(透鏡)的直徑判定。在一種(可能最佳)狀況下,鏡面(光束偏轉構件)在此厚度方向上之延伸等於透鏡在此方向上之延伸。然而,此處光學通道16之光學路徑受鏡面18限制。此情形導致影像亮度之減小,其中此減小取決於場角。本發明實施例藉由如下操作來解決此問題:移動多通道攝影機結構之部分或整個多通道攝影機結構,以使得在攝影機之操作狀態下,相較於攝影機之未使用狀態,結構之部分突出超過(例如)智慧型手機之外殼。諸如光束偏轉構件之部分的移動可為旋轉(展開或打開)、平移(延伸)或混合形式。部分及整個系統之額外移動分別允許在攝影機之非使用模式下的最小結構形狀(類似於緊密型攝影機之已知物鏡)及在攝影機之使用模式下的大結構形狀,其經最佳化以用於實現技術功能。
圖8b展示在第二操作狀態下之裝置10之示意性側視截面圖。在第二操作狀態下,光束偏轉構件18具有在外殼體積24外部之第二位置。此情形使得光束偏轉構件18能夠在外殼體積24外部使光學通道16之光學路徑17以及視場26偏轉以使得其可在外殼22外部由多孔徑成像裝置11拍攝。蓋罩32可移動遠離圖1a中所展示之位置,以使得光束偏轉構件18可經由外殼22之開口28移出外殼體積24。光束偏轉構件18可在第一位置與第二位置之間以平移及/或旋轉方式移動。外殼22內部之部件及/或外殼22自身並不阻擋光學通道16之經偏轉光學路徑17係有利的。
多孔徑成像裝置11可配置於攝影機外殼中,該攝影機外殼再次至少部分地配置於外殼22內部。攝影機外殼可(例如)至少部分地藉由如圖12之上下文中所描述的行進托架形成。此情形與單通道攝影機藉助於摺疊機構而在不同方向上定向的概念的不同之處在於:在本發明狀況下,可防止影像感測器及/或成像光學件之旋轉或傾側。
全視場可由裝置10之構件拍攝,以使得光束偏轉構件自第一位置開始移動至第二位置中,在該第二位置處,光束偏轉構件至少部分地置放於外殼體積外部。當光束偏轉構件在第二位置中時,全視場可由多孔徑成像裝置之並置光學通道的陣列拍攝,該等光學通道之光學路徑係由光束偏轉構件偏轉。
圖9a展示在第一操作狀態下之根據另一實施例的裝置20之示意性側視截面圖。裝置20包含(例如)經由連接元件34a及/或經由可選連接元件34b在外殼22上樞轉的蓋罩23。連接元件34a及/或34b可經組配以允許光束偏轉構件18之蓋罩23相對於外殼22之傾側並因此允許其間之旋轉移動,且可(例如)形成為鉸鏈或滾輪軸承。
光束偏轉構件18可形成外殼之蓋罩或可為其部分。光束偏轉構件18之光束偏轉表面中之一者可為外殼的外部邊緣。光束偏轉構件18包含第一位置且部分地或完全地封閉外殼22。光束偏轉構件18可包含(例如)用於使光學路徑17偏轉之反射區域,且可包含經組配以在第一位置中形成與外殼22之機械接觸的接觸區域。簡言之,攝影機在不使用時可能不可見或僅很少可見。
圖9b展示在第二操作狀態下之裝置20之示意性側視截面圖。在第二操作狀態下,光束偏轉構件18可相對於外殼22以旋轉方式移動(亦即,展開)以使得外殼體積24開放。旋轉傾側允許光束偏轉構件18相對於在影像感測器12與光束偏轉構件18之間的光學通道16之光學路徑17之路線的傾斜或傾側定向,以使得光學路徑17在光束偏轉構件18處在第一方向19a上偏轉。
圖9c展示在第三位置中之裝置20之示意性側視截面圖。裝置20可在第二操作狀態下。相較於如圖9b中所說明之第二位置,光束偏轉構件18可使光學通道16之光學路徑17在不同方向19b上偏轉,以使得可拍攝不同視場或定位於不同部位處之視場。舉例而言,此可為裝置20及/或使用者之第一側及對置側(諸如,前側及後側、左方及右方或頂部及底部),光學路徑17經偏轉至該第一側及對置側中。連接元件34a及34b可與(例如)框架結構及光束偏轉構件18連接,以使得光束偏轉構件18可替代地包含第二或第三位置。藉由多孔徑成像裝置之可切換檢視方向,使用具有對正面及背面之檢視方向的兩個攝影機的習知解決方案(特定而言,在智慧型手機中)可由一個結構替換。
圖10a展示在第一操作狀態下之根據另一實施例的裝置30之示意性側視截面圖。相較於如圖3a至圖3c中所描述之設備20,裝置30包含配置於外殼22之外部邊緣23與多孔徑成像裝置11之間的至少部分透明之蓋罩36。至少部分透明之蓋罩連接至光束偏轉構件18且經組配以基於光束偏轉構件18之移動而移動。舉例而言,至少部分透明之蓋罩36可包含聚合物及/或玻璃材料。
換言之,允許囊封光學件以用於保護其以去污的裝置可具備改變經囊封體積(可移動防護玻璃罩)之選項。
圖10b展示在第二操作狀態下之裝置30之示意性側視截面圖。相較於圖9b中之裝置20,至少部分透明之蓋罩至少部分地移出外殼體積24。此移動可藉由光束偏轉構件繞連接元件34之旋轉移動而執行。光束偏轉構件18經組配以使光學通道16之光學路徑17偏轉,以使得光學通道穿過至少部分透明之蓋罩。蓋罩36經組配以減少或防止粒子、塵土及/或濕氣進入至外殼體積24中。此處,蓋罩36可以針對光學路徑17透明及/或部分不透明之方式形成。舉例而言,對於特定波長範圍之電磁輻射,蓋罩36可為不透明的。蓋罩36具有如下優點:歸因於粒子、塵土及/或濕氣之減少量,可獲得裝置之長操作壽命及/或持續高之影像品質,此係因為對光學通道之光學件的污染為少的。
圖10c展示裝置30之示意性側視截面圖,其中光束偏轉構件18可藉由可選致動器38沿方向y以平移方式移動,該方向垂直於影像感測器12與光學通道16之間的光學路徑17之方向x且垂直於方向z (垂直於光學通道16之陣列之線延伸方向)。光束偏轉構件18亦可基於(例如)繞導引件、桿等之旋轉移動而繞連接元件34以平移方式移動。摺疊(旋轉移動)可手動地或藉由使用致動器執行。可選致動器38可配置於光束偏轉構件18上。替代地,致動器38可配置於外殼22與光束偏轉構件18之間。舉例而言,致動器38可配置於外殼22與連接元件34a之間及/或連接元件34a與光束偏轉構件18之間。如下情況係優點:歸因於光束偏轉構件沿外殼之x方向的平移移動,待由外殼22所拍攝之視場的遮擋可減少。
圖11a展示在第一操作狀態下之根據實施例的裝置40之示意性側視截面圖,在第一位置中,光束偏轉構件18配置於外殼22之外殼體積內部且經組配以基於自第一位置至示意性地說明於圖11b中之第二位置的平移移動42而移動。如圖11a中所說明,外殼可包含蓋罩32,在第一操作狀態下,該蓋罩分別封閉外殼22及其中之開口。在第一操作狀態下,光束偏轉構件18可經定向以使得其具有垂直於方向x之由外殼22內部之光學路徑界定的最小延伸。
圖11b展示在第二操作狀態下之裝置40之示意性側視截面圖。光束偏轉構件基於(例如)沿x方向之平移移動42而移出外殼體積24。為此,光束偏轉構件18可移動穿過開口28。光束偏轉構件18可繞旋轉軸線44旋轉移動。在第一操作狀態與第二操作狀態之間的平移移動期間,光束偏轉構件18可執行繞旋轉軸線44之旋轉移動。光束偏轉構件之角定向相較於圖11a之第一操作狀態可經修改,以使得供多孔徑成像裝置之光學路徑使用的光束偏轉構件之區域相較於第一操作狀態增加。繞旋轉軸線44之旋轉移動46允許光束偏轉構件18相對於光學通道16與光束偏轉構件18之間的光學路徑17的可變傾斜,及因此光學通道16之光學路徑17偏轉所沿的可變方向。光學通道16可包含光學件64a至64b。
除光束偏轉構件18外,在第二操作狀態下,光學通道16之光學件64a至64b及/或影像感測器12亦可配置於外殼體積24外部。舉例而言,光學通道16之光學件64a至64b及/或影像感測器12可與光束偏轉構件18一起移動。此情形允許光學通道之光學件64a至64b與光束偏轉構件18之間的短距離至最小距離,詳言之在第二操作狀態中。短距離實現光束偏轉構件18之小表面積。距離增加將使光束偏轉構件18之較大面積成為必要以用於使光學通道16之散射光學路徑完全偏轉。歸因於短或最小距離,光束偏轉構件18亦可具有小面積,其係有利的,此係因為較小部件必須被移動且藉由旋轉移動,相對於未配置光束偏轉構件18之狀態,裝置之厚度僅必須稍微增加或根本不增加。小的大小對裝設空間要求(例如,在第一操作狀態下)亦具有有利影響。
換言之,具有線性通道配置之多孔徑攝影機包含並置且各自傳輸全視場之部分的若干光學通道。有利地,鏡面係安裝於成像透鏡前方,其可用於光束偏轉且有助於降低裝設高度。結合逐通道調適之鏡面(諸如,琢面鏡面),其中琢面為平面或以任意方式彎曲或具備自由形式之區域,基本上以相同方式結構化光學通道之成像光學件可能係有利的,而通道之檢視方向藉由鏡面陣列之個別琢面預定。光束偏轉構件之表面至少在經分配至光學通道之反射琢面處具有鏡射。亦有可能以不同方式實施通道之成像光學件,以使得由鏡面琢面之角度及各別光學通道之實施導致不同檢視方向。若干通道使用光束偏轉構件之同一區域且因此琢面之數目小於通道之數目係進一步可能的。此處,偏轉鏡面可經樞轉,其中旋轉軸線(例如)平行於通道之延伸方向而延行。偏轉鏡面在兩側均可為反射性的,其中可使用金屬或介電層(序列)。鏡面之旋轉沿一個/若干個方向可類似或穩定。基於旋轉移動,光束偏轉構件可在至少第一位置與第二位置之間可移動,其中在各位置中,光學路徑在不同方向上經偏轉。以類似於針對圖9至圖9c中之光束偏轉構件18的位置所描述的方式,光束偏轉構件亦可繞旋轉軸線移動。除外殼蓋罩32及光束偏轉構件18之平移移動外,多孔徑成像裝置之部分及所有額外組件亦分別可在同一方向上以平移方式共同移動,其中相同或不同行進範圍亦係可能的。
圖12a展示裝置50之示意性側視截面圖,其中蓋罩32係配置成可經由外殼22之外殼側面22b上的移動元件34旋轉移動。光束偏轉構件18可以機械方式連接至行進托架47。行進托架47可被視為用於至少移動光束偏轉構件18之機械輸送構件。裝置50可包括經組配以使行進托架47以平移方式移動之致動器33。該致動器可包括任何驅動器,諸如步進馬達、壓電驅動器或音圈驅動器。作為致動器33之替代或除致動器33外,裝置50亦可包括經組配以釋放將蓋罩32及外殼鎖定於至少一個外殼側面22a上之機械閂鎖35的致動器33'。當閂鎖33'被釋放時,光束偏轉構件或行進托架47可藉助於彈簧力而被驅動出外殼。此意謂閂鎖35可經組配以將光束偏轉構件18維持在第一位置中。行進托架47亦可配置於裝置40中。此意謂行進托架47亦可用於蓋罩32之平移移動。
圖12b展示裝置50之示意性側視截面圖,其中行進托架47沿移動42之平移方向移動以使得光束偏轉構件18移出外殼體積24。影像感測器12及/或光學通道16之光學件亦可以機械方式連接至行進托架47,且可與光束偏轉構件18一起相同程度地移動。替代地,相比光束偏轉構件18,影像感測器12及/或光學通道16之光學件可較小程度地可移動,以使得影像感測器12、光學件及/或光束偏轉構件18之間的距離在延伸期間增加。替代地或另外,影像感測器12及/或光學通道之光學件可定位成相對於外殼靜止,以使得僅光束偏轉構件18藉助於行進托架47移動。在延伸期間增加影像感測器12、光學件及/或光束偏轉構件18之間的距離允許在第一操作狀態下之組件的較小距離,以使得多孔徑成像裝置可在較少裝設空間要求之情況下容納於外殼22中。
圖12c展示在第二操作狀態下之裝置50之示意性側視截面圖。光束偏轉構件可經樞轉以用於執行旋轉移動46,如(例如)針對裝置40所描述。如在圖11b之上下文中所描述,光束偏轉構件18之角定向相較於圖12a之第一操作狀態或圖12b中之狀態可經修改,以使得供多孔徑成像裝置之光學路徑使用的光束偏轉構件之區域相較於第一操作狀態增加。光束偏轉構件18之分別面向光學通道16及影像感測器12的側面可具有垂直於移動42之平移方向(例如,沿y方向)的尺寸B,其大於影像感測器12及光學通道16分別沿此方向之尺寸A。舉例而言,尺寸B垂直於陣列之線延伸方向且平行於光學通道所照射的影像感測器之表面。此情形可具有如下效應:大量光可藉由光束偏轉構件18偏轉,且待拍攝之影像的亮度係高的。在圖12a中所展示之位置中,延伸或尺寸B小於圖12c中所展示之位置或光束偏轉構件18在另一檢視方向上引導光學路徑情況下的位置中的延伸或尺寸。
圖13a在第一操作狀態下之展示根據實施例的裝置60之示意性側視截面圖。光束偏轉構件18係在第一位置中。相較於裝置40及如圖4a及4b中所描述之裝置,裝置50包含至少部分透明之蓋罩36a及36b,其連接至蓋罩32且可與蓋罩32一起沿移動42之平移方向移動。至少部分透明之蓋罩36a及36b可各自配置於光束偏轉構件18的在其與外殼22之間的不同側面上。在第一操作狀態下,蓋罩36a及36b可配置為部分地或完全地在外殼體積24內部。舉例而言,蓋罩36a及36b可配置於圖12a至12c中所說明之行進托架47上,或可為行進托架47之透明區域。
圖13b展示裝置60之示意性側視截面圖,其中光束偏轉構件18在第一位置與第二位置之間的中間位置中。光束偏轉構件之中間位置可(例如)在光束偏轉構件18分別縮回至外殼體積24中或延伸出外殼體積24期間獲得。光束偏轉構件18部分地移出外殼體積24。
圖13c展示裝置60之示意性側視截面圖,其中光束偏轉構件18在第二位置中,亦即,光束偏轉構件18 (例如)完全延伸出外殼體積24。至少部分透明之蓋罩26a及36b彼此具有距離48,其小於外殼22a及22b之側面之間的比較距離。
圖13d展示裝置60之示意性側視截面圖,其中相較於圖13a至13c,至少部分透明之蓋罩36a及36b的距離經擴大。至少部分透明之蓋罩36a及/或36b可分別沿移動52a及52b之平移方向可移動,例如,分別沿背對各別其他至少部分透明之蓋罩36a及36b的正或負y方向。圖13a至圖13c中所說明的至少部分透明之蓋罩36a及36b之狀態可被視為縮回或摺疊狀態。圖13d中所說明之狀態可被視為延伸或展開狀態,其中至少部分透明之蓋罩36a及36b之間的距離48'相對於距離48分別被改變及擴大。舉例而言,距離48'可大於或等於外殼22之可比較側面之間的距離。光束偏轉構件18經組配以使光學通道之光學路徑偏轉,以使得光學路徑穿過至少部分透明之蓋罩36a及/或36b。如在圖11b、圖12a及圖12b之上下文中所描述,光束偏轉構件18之角定向相較於圖13a之第一操作狀態或圖13b或圖13c中之狀態可經修改,以使得供多孔徑成像裝置之光學路徑使用的光束偏轉構件之區域相較於第一操作狀態增加。替代地或另外,擴大之距離48'可允許增加旋轉移動46之程度。藉由旋轉移動46,光束偏轉構件18可至少在第一位置與另一位置之間可切換,其中各位置可經分配至多孔徑成像裝置之檢視方向。鏡面之旋轉沿一個/若干個方向可類似或穩定。用於改變多孔徑成像裝置之檢視方向的旋轉移動46可與光束偏轉構件18之旋轉移動組合以用於光學影像穩定,其描述於圖19之上下文中。蓋罩36a及/或36b可囊封多孔徑成像裝置之其他組件。
對置配置之蓋罩36a及/或36b及其透明區域分別可包含可切換隔膜,以使得可切換隔膜被引入(例如)光束偏轉構件上方及/或下方或沿光束偏轉構件之任何方向引入。隔膜可取決於攝影機之操作狀態及檢視方向而切換。舉例而言,未被使用之多孔徑成像裝置的檢視方向可至少部分地由隔膜封閉以用於減少雜散光進入。舉例而言,隔膜可以機械方式移動或可電致變色。受隔膜影響之區域可另外具備在未使用之狀況下覆蓋光學結構之可切換隔膜。該隔膜可為電可控制的且可包括電致變色層(序列)。該隔膜可包括機械移動部分。該移動可藉由使用氣動、液壓、壓電致動器、DC馬達、步進馬達、熱致動器、靜電致動器、電致伸縮及/或磁致伸縮致動器或驅動器而執行。在多孔徑成像裝置之一狀態(其中檢視方向穿透隔膜)下,可切換該隔膜以便使光學通道之光學路徑穿過。此意謂多孔徑成像裝置可具有第一操作狀態及第二操作狀態。光束偏轉構件可在第一操作狀態下使光學通道之光學路徑偏轉以使得該光學路徑穿過蓋罩36a之第一透明區域。在第二操作狀態下,光學通道之光學路徑可經偏轉,以使得光學路徑穿過蓋罩36b之第二透明區域。第一隔膜53a可經組配以在第二操作狀態下至少部分地光學封閉第一透明區域。第二隔膜53b可經組配以有時在第一操作狀態下至少部分地光學封閉第二透明區域。以彼方式,自並非多孔徑成像裝置之當前檢視方向的方向的雜散光進入可減少,其對影像品質具有有利影響。第一隔膜53a及/或第二隔膜53b對於至少一個光學通道、對於至少兩個光學通道或對於所有光學通道可有效。舉例而言,多孔徑成像裝置之至少一個光學通道、至少兩個光學通道或所有光學通道可在光學通道之光學路徑被引導穿過第一透明區域時穿過第一隔膜,且可在光學通道之光學路徑被引導穿過第二透明區域時穿過第二隔膜。
應注意,有可能組合根據圖2及圖3之用於展開光束偏轉構件之機構與用於平移移動之機構,亦即,可出現混合形式。展開外殼及/或延伸光束偏轉構件可經執行以使得成像模組(亦即,光學通道、其光學件及/或影像感測器)可能移出外殼體積。光束偏轉構件之角度改變可使得多孔徑成像裝置在厚度方向上之延伸為大的及/或光束偏轉構件可無阻礙地使光學路徑朝向「正面」及「背面」偏轉。諸如蓋罩36之防護玻璃罩亦可相對於經展開或延伸元件而固定。防護玻璃罩可具有任何平面或非平面表面。
圖14展示根據實施例之具有三個多孔徑成像裝置11a至11c的裝置70之示意性透視圖。多孔徑成像裝置11a至11c可沿各別平移移動方向42a至42c以平移方式可移動。多孔徑成像裝置11a至11c可配置於外殼22之次要側面22c至22f中。外殼可以扁平方式形成,此意謂外殼22沿第一外殼方向(例如,x方向)之第一延伸及外殼22沿第二外殼方向(例如,z方向)之第二延伸相較於外殼22沿第三外殼方向(諸如,y方向)之第三延伸可具有至少三倍之尺寸、至少五倍或至少七倍之尺寸。外殼22之主要側面22a及/或22b可具有第一尺寸及第二尺寸,且在空間中可(例如)平行於x/z平面而配置。次要側面22c至22f可連接主要側面22a及22b且可分別配置於該等主要側面之間。
多孔徑成像裝置11a及11b可配置於外殼22中之同一側面22d中或上,且彼此可具有(例如)基本距離BA,諸如用於立體觀測目的。大於兩個模組亦將係可能的。以此方式,全視場可(例如)藉由使用多孔徑成像裝置11c及至少一個其他多孔徑成像裝置11a及/或11b而以立體方式或更高階地拍攝。多孔徑成像裝置11a、11b及/或11c可個別地可移動。替代地,模組中之兩者或大於兩者亦可一起作為整體系統而可移動。
如下方將詳細地描述,裝置70可經組配以至少立體地拍攝全視場。舉例而言,全視場係配置於主要側面22a或22b中之一者上,但亦可配置於次要側面22c至22f上。舉例而言,多孔徑成像裝置11a至11c可各自拍攝全視場。雖然多孔徑成像裝置11a至11c係以在空間上彼此隔開之方式說明,但多孔徑成像裝置11a、11b及/或11c亦可配置成在空間上鄰近或組合。舉例而言,可能配置成單行之成像裝置11a及11b的陣列可以在彼此旁側之方式或彼此平行地配置,如描述於(例如)圖20b之上下文中。該等陣列可相對於彼此形成行,其中各多孔徑成像裝置11a及11b包含單行陣列。成像裝置11a及11b可包含共同光束偏轉構件及/或光學通道之光學件之共同載體及/或共同影像感測器。
圖15展示裝置70之區段以及多孔徑成像裝置11a及11b之放大透視圖。裝置70係在第二操作狀態下。舉例而言,多孔徑成像裝置11a及/或11b突出超過原始外殼側面。光束偏轉構件18a及18b至少部分地且基於移動42a及42b之平移方向而移出外殼體積。替代地,在第二操作狀態下,多孔徑成像裝置11a至11c之光束偏轉構件的僅部分可移出外殼22之外殼體積。
舉例而言,多孔徑成像裝置11a至11b各自包含四個光學通道16a至16d及16e至16h。光束偏轉構件18a及18b各自分別經組配以分別使光學通道16a至16d及16e至16h之光學路徑17a至17d及17e至17h偏轉。如下方將詳細地描述,其他多孔徑成像裝置可具有不同數目個光學通道。多孔徑成像裝置11a至11b可具有相同或不同數目個光學通道。
多孔徑成像裝置11a及11b各自分別包含照明構件54a及54b及照明構件54c及54d。照明構件54a至54d經組配以至少部分地照明待拍攝之全視場,且(例如)可各自經組配以照明待拍攝之全視場(標的區域)的中心。根據一實施例,照明構件54a或54b及54c或54d中之至少一者分別可經配置以使得其分別沿光學通道16a至16d及16e至16h之中心檢視方向照明全視場。全視場可包含不同的部分視場,該等部分視場各自分別藉由至少一個光學通道16a至16d及16e至16h拍攝。舉例而言,光學通道16a至16d或16e至16h之中心檢視方向可為檢視方向之幾何平均值或檢視方向之中位值。
照明構件54a至54b及54c至54d可操作為各別多孔徑成像裝置11a或11b之閃光燈且可包括任何光源。有利地,光源可經組配為(例如)發光二極體(LED),此係因為發光二極體具有低的絕緣空間要求及低的能量要求。根據其他實施例,多孔徑成像裝置可不包括照明構件,包括一個或大於兩個照明構件54a至54d,其中多孔徑成像裝置之照明構件54a至54d之數目可不同於裝置之其他多孔徑成像裝置的數目或可為相同的。照明構件54a至54d中之至少一者可經組配以照明若干標的區域。以彼方式,光可(例如)藉由照明構件在一個或若干方向上選擇性地發射。照明構件可沿多孔徑成像裝置之至少兩個檢視方向發射光。為此,照明構件可包含至少兩個光源。該等光源可在裝置之對置側面中發射光。舉例而言,一個光源各自可安裝於行進托架47之頂面及底面、正面及背面及/或左面及右面上,其中僅使用與待根據選定定向及因此光束偏轉構件18之操作狀態而拍攝的標的區域對置的彼側面之光源且該光源在其方向上發射光。上文所提及之前部、後部、頂部及底部以及詞左部或右部僅用於說明目的且並不在限制性意義上理解,此係因為該等詞可與空間中之各定向互換。舉例而言,此意謂光源54i可配置於行進托架47b之前部及後部上,且取決於光束偏轉構件18b之位置,可使用各別光源。其他對置光源可保持未使用。
舉例而言,照明構件54a及54b配置於多孔徑成像裝置11a之光束偏轉構件18a與影像感測器12a之間。光束偏轉構件18可經組配以使藉由照明構件54a及/或54b發射之照明輻射(例如,閃光)偏轉。在裝置70之第一操作狀態及第二操作狀態下,照明構件54a至54b可配置於外殼體積內部。照明輻射可至少部分地為光學路徑17a至17d之部分。如(例如)針對多孔徑成像裝置11b所說明,照明構件54c及/或54d可在行進托架47b上側向地配置於光束偏轉構件旁側。照明構件54c及54d可藉由平移移動42b而移動至外殼22中或移出外殼22。雖然照明構件描述於裝置70之上下文中,但本文中所描述之其他裝置或多孔徑成像裝置亦可包含照明構件。
照明構件54c及54d可以機械方式連接至行進托架47a,且可因此在第一操作狀態下配置於體積42內並因此以使用者不可見之方式配置。替代地及/或另外,照明構件54a及54b可以靜止方式配置於外殼22內部。行進托架47b之移動可實現照明構件54c及54d之移動。
分別連同光束偏轉構件18a及18b,光學件16a至16d或16e至16f及可能影像感測器12a及12b分別可分別藉由行進托架47a及47b之移動而移出外殼體積。
換言之,用於實現額外照明(閃光)之LED可安裝於可移動部分上。此處,LED可經配置以使得其在通道之中心方向上發出輻射,且光束偏轉構件可分別提供用於使輻射偏轉之其他區域。
圖16展示包含第二操作狀態之根據實施例的裝置90之示意性透視圖。光束偏轉構件18可藉助於安裝元件56a及56b連接至多孔徑成像裝置。安裝元件56a及56b可為行進托架之部分。
圖17a展示在第一操作狀態下之根據實施例的裝置100之示意性透視圖。蓋罩32可形成具有外殼主要側面及/或外殼次要側面(例如,外殼次要側面22c)之一個平面。蓋罩32與外殼側面22c之間可不配置間隙,或僅配置大致小於或等於1 mm、小於或等於0.5 mm或小於或等於0.1 mm的小間隙,以使得不可注意到或僅很少注意到蓋罩32與外殼側面22c之間的轉變。簡言之,蓋罩32可能不可見。
圖17b展示在第二操作狀態下之裝置100之示意圖。光束偏轉構件18包含在外殼體積外部之第二位置。自外部所見,延伸之多孔徑成像裝置可在所有側上藉由非作用中外殼框架圍封及/或可具有類似按鈕之外觀。舉例而言,裝置100可經組配以在對根據圖17a之蓋罩32施加機械壓力期間釋放機械閂鎖,以使得光束偏轉構件可(例如)基於彈簧力而移出外殼22。舉例而言,該機械壓力可藉由致動器及/或藉由使用者(諸如,藉由指壓)產生。光束偏轉構件可藉助於致動器或藉助於機械壓力自第二位置再次移動至第一位置且可在此處啟動閂鎖。舉例而言,致動器可為致動器33或33'。換言之,該移動亦可經手動地執行,以使得使用者自身分別將部分或整個系統縮回或延伸及摺疊或展開。特定而言,該移動可為手動操作與彈簧力實現之組合。以彼方式,使用者分別手動地將部分及整個系統摺疊或移位至裝置(諸如,智慧型手機)之外殼中以用於關閉攝影機,藉此壓縮彈簧且鎖定機構維持此位置。當在攝影機上(例如)藉助於智慧型手機上之合適軟體切換時,可切換鎖定機構藉由合適的可控制機構(諸如,繼電器)釋放,且彈簧之彈簧力分別實現攝影機之部分及整個系統(分別)之延伸及展開。另外,形成外殼之部分、可延伸及/或可傾側部分及/或基於其之另一機構的蓋罩可經實施以使得此蓋罩上之(手指)壓力釋放閂鎖,部分或整個系統分別擴展或展開且裝置上之影像拍攝軟體可能開始。可形成側面上之外殼之部分的共同移動之蓋罩可在所有側上藉由自外部可見之非作用中外殼圍封,或可跨越總高度(=外殼之厚度方向)使側面間斷。
圖17c展示圖17a之替代例之示意性說明,其中蓋罩32經形成以使得連續間隙形成於外殼22之主要側面之間的次要側面22c中。此情形實現可在外殼22中感知僅兩個間隙而非圖17a中所說明之四個間隙。可延伸或可摺疊蓋罩32及/或其他蓋罩可在扁平外殼之一個或若干側面上形成為外殼22之部分。
在下文中,參考如可根據實施例使用之多孔徑成像裝置之一些可能實施例。
圖18a至圖18c展示根據本發明之實施例的多孔徑成像裝置11。圖18a至圖18c之多孔徑成像裝置11包括並置光學通道16a至16d之單行陣列14。各光學通道16a至16d包括用於將裝置11之全視場72之各別部分視場74a至74d投影於影像感測器12之分別經分配影像感測器區域58a至58d上的光學件64a至64d。舉例而言,影像感測器區域58a至58d可各自由包括各別像素陣列之一個晶片形成,其中該等晶片可分別安裝於共同基體及共同印刷電路板62上,如圖18a至圖18c中所指示。替代地,以下情況亦將為有可能的:影像感測器區域58a至58d各自由跨越影像感測器區域58a至58d連續地延伸之共同像素陣列之部分形成,其中共同像素陣列形成於(例如)單一晶片上。舉例而言,僅在影像感測器區域58a至58d中讀出共同像素陣列之像素值。此等替代例之不同混合亦係可能的,諸如存在用於兩個或大於兩個通道之一個晶片及用於另外其他通道等之另一晶片。在影像感測器12之若干晶片之狀況下,該等晶片可安裝於(例如)一個或若干印刷電路板上,諸如一起或按群組等。
在圖18a至圖18c之實施例中,四個光學通道16a至16d在陣列14之線延伸方向上以在彼此旁側之方式配置成單行,但數目四僅為例示性的且亦可為大於一的任何其他數目。如上所述,陣列14亦可包含沿線延伸方向延伸之其他行。
光學通道16a至16d之光軸及光學路徑17a至17d分別在影像感測器區域58a至58d與光學件64a至64d之間平行於彼此而延行。為此,影像感測器區域58a至58d配置於(例如)共同平面中,且光學件64a至64d之光學中心亦配置於共同平面中。兩個平面彼此平行,亦即,平行於影像感測器區域58a至58d之共同平面。另外,在垂直地投影至影像感測器區域58a至58d之平面上的情況下,光學件64a至64d之光學中心與影像感測器區域58a至58d之中心重合。換言之,在此等平行平面中,一方面,光學件64a至64d以及影像感測器區域58a至58d在線延伸方向上以重複距離加以配置。
影像感測器區域58a至58d與經分配光學件64a至64d之間的影像側距離經調整,以使得影像感測器區域58a至58d上之投影被設定為所要標的距離。該距離(例如)在等於或大於光學件64a至64d之焦距的範圍內,或(例如)在為光學件64a至64d之焦距的一倍與兩倍之間(包括一倍與兩倍)的範圍內。影像感測器區域58a至58d與光學件64a至64d之間的沿光軸17a至17d之影像側距離亦可(諸如)藉由使用者手動地或經由自動聚焦控制件自動地調整。
在無額外措施之情況下,分別歸因於光學路徑及光軸17至17d之平行性,光學通道16a至16d之部分視場74a至74d基本上完全重疊。為覆蓋較大全視場72且使得部分視場74a至74d僅在空間中部分地重疊,提供光束偏轉構件18。光束偏轉構件18以通道個別偏差將光學路徑17a至17d及光軸分別偏轉至全視場方向76中。舉例而言,全視場方向76平行於垂直於陣列14之線延伸方向的平面且平行於分別在光束偏轉之前或在無光束偏轉之情況下的光軸17a至17d之路線而延行。舉例而言,全視場方向76藉由圍繞線延伸方向旋轉>0°且<180°並(例如)介於80°與100°之間且可(例如)為90°之角度而由光軸17a至17f產生。因此,對應於部分視場74a至74d之總覆蓋範圍的裝置11之全視場不在影像感測器12與陣列14在光軸17a至17d之方向上的串列連接之延伸的方向上,但歸因於光束偏轉,全視場在影像感測器12及陣列14在對裝置11之裝設高度進行量測所沿之方向(亦即,垂直於線延伸方向之側向方向)上的側上。另外,光束偏轉構件18分別使各光學路徑及各光學通道16a至16d之光學路徑以通道個別偏差自由上文所提及之方向76產生的偏轉而偏轉。為此,光束偏轉構件18包含用於各通道16a至16d之反射琢面68a至68d。該等反射琢面相對於彼此稍微傾斜。琢面68a至68d之相互傾側經選擇,以使得在藉由光束偏轉構件18使光束偏轉期間,部分視場74a至74d具備微小發散,以使得部分視場74a至74d僅部分地重疊。此處,如圖18a中例示性地指示,個別偏轉亦可經設計以使得部分視場74a至74d以二維方式覆蓋全視場72,亦即,以在兩個維度上分佈之方式配置於全視場72中。
應注意,僅已例示性地選擇至此關於裝置11所描述之許多細節。此已關於(例如)上文所提及數目個光學通道。光束偏轉構件18亦可以不同於上文所描述之方式形成。舉例而言,光束偏轉構件18未必為反射性的。其亦可不同於琢面鏡面之形式而實施,諸如呈透明楔形稜鏡之形式。在彼狀況下,例如,平均光束偏轉可為0°,亦即,在光束偏轉之前或在無光束偏轉之情況下,方向76可(例如)平行於光學路徑17a至17d,或換言之,不管光束偏轉構件18,裝置11仍可「向前平視」。藉由光束偏轉構件18進行之通道個別偏轉將再次具有部分視場74a至74d僅稍微重疊之效應,諸如關於部分視場74a至74d之空間角度範圍以重疊量<10%而成對。
又,光學路徑及光軸分別可偏離所描述之平行性,且光學通道之光學路徑之平行性仍可為獨特的,以使得分別藉由個別通道16a至16N覆蓋且投影於各別影像感測器區域58a至58d上的部分視場在無其他措施(即,光束偏轉)之情況下將大部分重疊,以使得為藉由多孔徑成像裝置11覆蓋更大的全視場,光束偏轉構件18將向光學路徑提供額外發散,以使得N個光學通道16a至16N之部分視場較少重疊。舉例而言,光束偏轉構件18具有如下效應:全視場具有大於光學通道16a至16N之個別部分視場之孔徑角之1.5倍的孔徑角。在具有光學路徑17a至17d之某種預發散的情況下,例如,並非所有琢面傾斜不同但一些通道群組具有(例如)具相同傾斜之琢面亦將係可能的。相同傾斜之琢面可接著一體地形成或分別連續地合併為經分配至在線延伸方向上鄰近的通道之此群組的實際上一個琢面。此等通道之光軸之發散可接著源自如藉由通道或稜鏡結構或偏心透鏡區段之光學件之光學中心與影像感測器區域之間的側向偏移獲得的此等光軸之發散。預發散可限於(例如)一個平面。分別在光束偏轉之前或在無光束偏轉之情況下,光軸可(例如)在共同平面中延行,但在共同平面內發散,且琢面僅實現在其他橫向平面中之額外發散,亦即,其均平行於線延伸方向且相對於彼此傾斜,僅與光軸之上文所提及之共同平面不同,其中此處若干琢面再次可具有相同傾斜或可一起經分配至一通道群組,其光軸(例如)分別在光束偏轉之前及在無光束偏轉之情況下在成對光軸之上文所提及之共同平面中已不同。
當省略光束偏轉構件或將光束偏轉構件實施為平面鏡面等時,可藉由光學件之光學中心(一方面)與影像感測器區域之中心(另一方面)之間的側向偏移或藉由稜鏡結構或偏心透鏡區段而獲得總發散。
可(例如)獲得可能存在的上文所提及之預發散,此係因為光學件之光學中心位於沿線延伸方向之直線上,而影像感測器區域之中心偏離光學中心沿影像感測器區域之平面之法線在影像感測器平面中之直線上之點上的投影而配置,諸如在沿線延伸方向及/或沿垂直於線延伸方向及影像感測器法線兩者的方向以通道個別方式偏離影像感測器平面中之上文所提及直線上之點的點上。替代地,可獲得預發散,此係因為影像感測器之中心在沿線延伸方向之直線上,而光學件之中心偏離影像感測器之光學中心沿光學件之光學中心的平面之法線在光學件中心平面中之直線上之點上的投影而配置,諸如在沿線延伸方向及/或沿垂直於線延伸方向及光學件中心平面之法線兩者的方向以通道個別方式偏離光學件中心平面中之上文所提及直線上之點的點上。此在與各別投影的上文所提及之通道個別偏差僅在線延伸方向上延行(亦即,僅共同平面中之光軸具備預發散)係較佳的。光學中心及影像感測器區域中心兩者接著在平行於線延伸方向之直線上但其間具有不同間隙。比較而言,透鏡與影像感測器之間的在垂直於線延伸方向之側向方向上的側向偏移將導致裝設高度的擴大。線延伸方向上之純平面內偏移不改變裝設高度,但可導致較少琢面及/或琢面僅具有一個角定向上之傾側,此簡化結構。
此針對固持於共同載體上之光學件的狀況而例示性地展示於圖18d及圖18e中,其中鄰近通道16a及16b (一方面)及鄰近通道16c及16d (另一方面)分別包含在共同平面中延行且關於彼此偏斜(亦即,具備預發散)之光軸17a及17b以及17c及17d。琢面68a及68b可由一個琢面形成,且琢面68c及68d可由另一琢面形成,如由各別對琢面之間的虛線所指示,且僅兩個琢面僅在一個方向上傾斜且皆平行於線延伸方向。個別琢面亦有可能僅包含在一空間方向上之一個傾側。
另外,可提供以下情形:諸如出於超解析度之目的,一些光學通道經分配至同一部分視場以用於增加解析度,藉此各別部分視場由此等通道掃描。此群組內之光學通道將接著(例如)在光束偏轉之前平行延行,且將藉由一個琢面偏轉於部分視場上。有利地,群組之通道的影像感測器之像素影像將處於此群組之不同通道的影像感測器之像素的影像之間的中間位置。
即使在無超解析度目的而僅出於立體觀測目的之情況下,以下實施將係可能的:緊鄰通道之群組在線延伸方向上藉由其部分視場完全覆蓋全視場,且緊鄰通道之另一群組亦完全覆蓋全視場,且兩個通道群組之光學路徑分別穿過該基體及載體66。此意謂多孔徑成像裝置可包含經組配以可能完全拍攝全視場之第一多個光學通道。多孔徑成像裝置之第二多個光學通道亦可經組配以可能完全拍攝全視場。以此方式,全視場可藉由第一多個光學通道及藉由第二多個光學通道至少立體地拍攝。第一多個光學通道及第二多個光學通道可照射於共同影像感測器上,可使用共同陣列(陣列光學件)及/或可藉由共同光束偏轉構件偏轉。與個別攝影機之陣列相反,形成連續陣列攝影機,其(例如)關於聚焦及/或影像穩定可作為一個裝置一起加以控制,此舉係有利的,此係因為所有通道同時且藉由使用相同致動器而受影響。另外,自單體結構,產生關於整個陣列之機械穩定性(特定而言,在溫度改變期間)的優點。此對於全影像自個別通道之部分影像的組合以及對於在立體、三重、四重等系統中在使用期間藉由用不同多個通道16對全視場進行多次掃描而獲得三維標的資料係有利的。
以下論述涉及光學件64a至64d,該等光學件之透鏡平面亦平行於影像感測器區域58a至58f之共同平面。如下文所描述,光學通道16a至16d之光學件64a至64d之透鏡係經由一個或若干透鏡固持器安裝於基體66之主要側面66a上且經由基體66以機械方式彼此連接。特定而言,多個光學通道16a至16d之光學路徑17a至17d穿過基體66。因此,基體66至少部分地由透明材料形成且為板狀,或(例如)具有平行六面體或具有平面主要側面66a及亦平面之對置主要側面66b的另一凸起主體之形狀。該等主要側面較佳定位成垂直於光學路徑17a至17d。如下文所描述,根據實施例,可出現與純平行六面體形狀之偏差,其係基於光學件之透鏡與基體之一體形成。
舉例而言,圖11a至圖11c之實施例中之扁平載體基體66為玻璃或聚合物基體。舉例而言,載體基體66可包括玻璃板。可根據高光學透明度及低溫度係數或諸如硬度、彈性或扭模之其他機械特性的態樣而選擇基體66之材料。
基體66可形成為光學路徑之簡單平面部分而無直接安裝於其上之任何額外透鏡。另外,諸如孔徑或雜散光隔膜或/及濾光片層(諸如,IR區塊濾光片)之隔膜可安裝於基體表面上,或可由不同基體之若干層組成,在不同基體之表面上,可安裝隔膜及濾光片層,其在通道間再次可為不同的(例如,關於其光譜吸收)。
基體66可由在可由影像感測器拍攝之電磁光譜的不同區域中具有不同特性(特定而言,非恆定吸收)的材料組成。
在圖18a至圖18c之實施例中,各光學件64a至64d包含三個透鏡。然而,可自由選擇透鏡之數目。該數目可為1、2或任何其他任意數目。該等透鏡可為凸起的,可包含僅一個光學投影功能區域(諸如,球形、非球形或自由區域)或兩個對置光學投影功能區域以(例如)導致凸透鏡或凹透鏡形狀。又,若干光學有效透鏡區域係可能的,諸如藉由結構化由若干材料形成之透鏡。
在圖18a至圖18c之實施例中,各光學通道16a至16d之第一透鏡78a至78d或光學件形成於主要側面66a上。透鏡78a至78d已(例如)藉由在基體66之主要側面66a上模製而製造且由(例如)諸如UV可固化聚合物之聚合物組成。該模製(例如)藉由模製工具而發生,且退火可(例如)經由溫度及/或經由UV輻射而發生。
在圖18a至圖18c之實施例中,各光學件64a至64d分別具有另一第二透鏡82a至82d及第三透鏡84a至84d。例示性地,此等透鏡經由各別透鏡固持器內之軸向延行之管狀透鏡固持器86a至86d而相互固定,且經由各別透鏡固持器(諸如,藉助於黏附或另一接合技術)而固定至主要側面66b。透鏡固持器86a至86d之開口88a至88d具備(例如)圓形橫截面,在該等開口之圓柱形內部中分別安裝有透鏡88a至88d及84a至84d。因此,對於各光學件64a至64d,透鏡係同軸地位於光學路徑17a至17d之各別光軸上。透鏡固持器86a至86d亦可分別具有跨越其長度且沿各別光軸變化之橫截面。此處,隨著距影像感測器12之距離減小,橫截面可具有愈來愈矩形或正方形特性。透鏡固持器之外部形狀因此亦可不同於開口之形狀。透鏡固持器之材料可係吸光的。根據上文在圖11d及圖11e之上下文中所描述的偏斜光學件,透鏡固持器亦可以非旋轉對稱及/或非同軸方式組配。
舉例而言,經由上文所提及之透鏡固持器的安裝發生以使得藉由透鏡固持器固持之透鏡之透鏡頂點與基體66隔開。
如上文已提及,基體66有可能在兩個側面上為平面的且因此不具有折射力效應。然而,基體66亦將有可能包含機械基體(諸如,凹口或突出物),以允許待連接之部件(例如,連接個別透鏡或外殼部分)的容易之形式配合及/或壓入配合對準。在圖18a至圖18c之實施例中,例如,基體66可在經安裝各別光學件64a至64d之透鏡固持器86a至86d的管之各別末端的位置處具有使安裝容易或使主要側面6b上之定向容易的結構。此等結構可(例如)為圓形凹口或具有不同形狀之凹口,該不同形狀對應於面向基體之各別透鏡固持器之側面的形狀,各別透鏡固持器84a至84d之側面可嚙合該凹口。應再次強調,其他開口橫截面及因此相應地,不同於圓形孔徑之可能其他透鏡孔徑係可能的。
因此,圖18a至圖18c之實施例不具有包含個別透鏡之攝影機模組的習知結構,且為固持個別透鏡,不透明之外殼載體完全圍封個別透鏡。確切而言,上文實施例使用透明主體66作為基體載體。該主體跨越若干鄰近光學通道16a至16d延伸以便被其投影光學路徑穿透。該主體不干擾投影,亦不增加裝設高度。
然而,應注意用於使圖18a至圖18c之實施例變化的不同選項。舉例而言,基體66未必跨越多孔徑成像裝置11之所有通道16a至16d延伸。與上文所描述之情況相反,各光學件64a至64d將有可能包含在兩個側面66a及66b上之由透鏡固持器固持的透鏡,如圖18f中所說明。
又,僅透鏡82e至82h存在於主要側面66a上(亦即,在另一側面66b上不具有透鏡82a至82d及/或84a至84d),以及在另一側面66a (亦即,基體66的背對影像感測器12之側面且並非面向影像感測器之側面,亦即,66a)上提供有透鏡82a至82d及/或84a至84d亦將為可能的。又,可自由選擇透鏡載體86a至86h中之透鏡之數目。因此,僅一個透鏡或大於兩個透鏡可存在於一個此載體86a至86h中。如圖18f中所展示,透鏡有可能分別經由各別透鏡載體86a至86d及86e至86h分別安裝在兩個側面66a及66b上(各別側面66a及66b上)。
圖19例示性地展示圖18a至圖18c之多孔徑成像裝置11可藉由下文所描述之額外構件中之一者或若干者來補充。
舉例而言,圖19展示可存在用於繞平行於陣列14之線延伸方向的旋轉軸線44旋轉光束偏轉構件18的構件92。舉例而言,旋轉軸線44在光學路徑17a至17d之平面內或與該平面遠離小於光學件64a至64d之直徑的四分之一。替代地,旋轉軸線亦將有可能進一步隔開,諸如小於一個光學件直徑或小於四個光學件直徑。舉例而言,可提供構件92以在僅小角度範圍內(諸如,在小於1°或小於10°或小於20°之範圍內)以短回應時間旋轉光束偏轉構件18,以便補償多孔徑成像裝置11藉由(例如)使用者進行之搖動。在此狀況下,構件92將由影像穩定控制件控制。
替代或另外地,構件92可經組配以藉由較大角度調整而改變由部分視場74a至圖74d (圖18a)之總覆蓋範圍界定的全視場之方向。此處,將進一步有可能藉由光束偏轉構件18之旋轉而獲得偏轉,其中(例如)藉由將光束偏轉構件18形成為在兩個側面上為發射性之鏡面陣列,全視場相對於裝置11而在相反方向上配置。
再次,替代地或另外,裝置11可包含用於藉助於基體66以平移方式移動光學件64a至64d及移動基體66自身且因此沿線延伸方向分別移動光學件64a至64d的構件94。舉例而言,構件94亦可藉由上文所提及之影像穩定控制件控制以便藉由沿線延伸方向之移動96獲得橫向於藉由鏡面偏轉裝置18之旋轉實現之影像穩定的影像穩定。
進一步另外或替代地,裝置11可包含用於分別改變影像感測器12與光學件64a至64d之間及影像感測器12與載體66之間的影像側距離以便獲得場深調整的構件98。構件98可分別藉由手動使用者控制件或藉由裝置11之自動聚焦控制件及聚焦構件而控制。
因此,構件94充當基體66之懸置件且如圖19中所指示,較佳沿線延伸方向側向地配置於基體66旁側以免增加裝設高度。對於構件92及98,如下情況亦適用:其較佳配置於光學路徑之平面中以免增加裝設高度。構件98亦可連接至光束偏轉構件18且可同時或幾乎同時移動光束偏轉構件,以使得在改變影像感測器12與光學件64a至64d之間的影像側距離時,光學件64a至64d與光束偏轉構件18之間的距離保持基本上恆定或保持恆定。構件92、94及/或98可基於氣動、液壓、壓電致動器、DC馬達、步進馬達、熱致動器、靜電致動器、電致伸縮及/或磁致伸縮致動器或驅動器而實施。
應注意,光學件64a至64d不僅可相互固持於恆定相對位置,諸如經由已提及之透明基體,而且相對於光束偏轉構件固持於恆定相對位置,諸如經由合適框架,其較佳不增加裝設高度且因此較佳分別在組件12、14及18之平面中及在光學路徑之平面中延行。相對位置之一致性可限於沿光軸的光學件與光束偏轉構件之間的距離,以使得構件98沿光軸以平動方式移動(例如)光學件64a至64d連同光束偏轉構件。光學件/光束偏轉距離可經設定成最小距離,以使得通道之光學路徑在側向上並不受光束偏轉構件18之片段限制,其降低裝設高度,此係因為否則片段68a至68d將必須關於側向延伸而經設定尺寸以達成最大光學件/光束偏轉構件距離以免限制光學路徑。另外,上文所提及之框架的相對位置之一致性可沿x軸以剛性方式將光學件及光束偏轉構件固持至彼此,以使得構件94將沿線延伸方向以平移方式移動光學件64a至64d連同光束偏轉構件。
上文所描述的用於使光學通道之光學路徑偏轉的光束偏轉構件18連同多孔徑成像裝置11之光學影像穩定控制件的用於產生光束偏轉構件18之旋轉移動的致動器92允許分別在兩個維度上之影像及全視場穩定,即,藉由基體66之平移移動,允許沿基本上平行於線延伸方向延行之第一影像軸線的影像穩定,及分別在光束偏轉之前或在無光束偏轉之情況下或在經偏轉光軸被視為垂直於光軸及線延伸方向時,藉由產生光束偏轉構件18之旋轉移動,允許沿基本上平行於光軸延行之第二影像軸線的影像穩定。另外,所描述配置可(諸如)藉由所描述致動器98實現光束偏轉構件及固定於所陳述框架中之陣列14垂直於線延伸方向的平移移動,該致動器可用於實現聚焦調整及因此實現自動聚焦功能。
作為用於獲得沿第二影像軸線之影像穩定的旋轉移動之替代或除該旋轉移動外,亦可實施影像感測器12與陣列14之間的平移相對移動。舉例而言,此相對移動可藉由構件94及/或構件98提供。
出於整體性起見,應注意,關於上文陳述,當經由影像感測器區域拍攝時,裝置各通道拍攝場景之一個影像,其已藉由通道投影在影像感測器區域上,且裝置可視需要具有處理器,該處理器將影像組合或接合成對應於全視場中之場景的全影像及/或提供額外資料,諸如用於產生深度圖及用於軟體實現(諸如,重新聚焦(在實際拍攝之後判定影像清晰度區)、全聚焦影像、虛擬綠色螢幕(前景及背景之分離)等)的標的場景之3D影像資料及深度資訊。後面任務亦可藉由該處理器執行或在外部執行。然而,該處理器亦可表示在多孔徑成像裝置外部之組件。
圖20a說明上文所描述之替代例之裝置11可裝設於(例如)攜帶型裝置130 (諸如,行動電話、智慧型手機或媒體播放器等)的扁平外殼中,其中接著例如,影像感測器12及影像感測器區域(分別)之平面以及光學通道16之光學件之透鏡平面分別垂直於扁平外殼之扁平延伸方向且平行於厚度方向而定向。以彼方式,例如,光束偏轉構件18將具有如下效應:多孔徑成像裝置11之全視場係在亦包含(例如)監視器之扁平外殼的正面102前方。替代地,偏轉亦將係可能的以使得視場在扁平外殼之與正面102對置的背面前方。裝置130之外殼22及裝置自身分別可為扁平的,此係因為歸因於裝置11在外殼內之所說明位置,裝置11之裝設高度(其平行於外殼之厚度)可保持為低的。亦可提供可切換性,此係因為窗經提供於與側面102對置的側面上,且例如,光束偏轉構件在兩個位置之間移動,其中光束偏轉構件係實施為(例如)在正面及背面上均具有鏡射之鏡面且自一個位置旋轉至另一位置,或實施為具有用於一個位置之一琢面集合及用於另一位置之另一琢面集合的琢面鏡面,其中該等琢面集合在線延伸方向上處於彼此旁側,且位置之間的切換藉由沿線延伸方向以平移方式來回移動光束偏轉構件而發生。將裝置11裝設至不同的可能非攜帶型裝置(諸如,汽車)中亦將係可能的。
若干模組11 (其通道之部分視場完全且視情況甚至一致地覆蓋同一視場)可沿線延伸方向彼此具有基本距離BA (參看圖14)而裝設於裝置130中,該基本距離對於兩個模組(諸如,出於立體觀測目的)為相同的。大於兩個模組亦將係可能的。模組11之線延伸方向亦可非共線且僅彼此平行。然而,應再次注意,如上文所提及,裝置11及模組亦分別可具備通道以使得其按群組完全覆蓋同一全視場。該等模組可配置成一行/若干行/列或配置於裝置之任何位置中。當若干模組經配置時,其可以相同方式或不同方式形成。舉例而言,第一模組可經組配以執行對全視場之立體拍攝。第二模組可經組配以執行簡單拍攝、立體拍攝或更高階拍攝。
應注意,在替代實施例中,相較於上文所描述之實施例,亦可省略光束偏轉構件。當僅需要部分使用視場之部分相互重疊時,此可(例如)經由影像感測器區域之中心與各別通道之光學件之光學中心之間的相互側向偏移而獲得。顯然,仍可使用根據圖19之致動器,其中作為構件92之替代物,例如,致動器94另外能夠用於以平移方式分別移動光學件及載體66。
再次,換言之,上文實施例展示具有並置光學通道之單行陣列的多孔徑成像裝置,其中在多孔徑成像裝置之光學路徑中某處,跨越通道延伸之由(例如)玻璃或聚合物形成的基體延伸以用於改良穩定性。另外,基體可包括在正面及/或背面上之透鏡。透鏡可由基體之材料製成(諸如,藉由熱壓印製造)或模製在基體上。不在基體上且經個別地安裝之其他透鏡可在基體前方及後方。若干基體可存在於一個結構中(沿線延伸方向以及垂直於線延伸方向兩者)。此處,亦將有可能沿光學路徑將若干基體與透鏡串列連接,亦即,以不同方式(諸如,經由框架而不必需任何接合動作)將基體及透鏡彼此保持預定位置關係。以彼方式,多達兩倍之主要側面將可用於提供或安裝透鏡,此係因為使用載體基體,諸如可裝載有根據上文實例(此處,例示性地根據圖18b)之透鏡的基體66,及亦可裝載有根據上文實施例之透鏡的基體,亦即,連同具有經由透鏡固持器安裝於主要側面66a及/或66b上但此處例示性地經說明為一體地製造(例如,藉由射出模製等)之透鏡以使得透鏡形成於兩個側面66a及66b上的基體,但由與平行六面體形基體66之材料不同的材料模製的透鏡以及透鏡僅在側面66a或66b中之一者上亦將係可能的。兩種基體均為透明的且藉由光學路徑穿過主要側面66a及66b而穿透。因此,上文實施例可以具有單行通道配置之多孔徑成像裝置之形式實施,其中各通道傳輸全視場之部分視場且該等部分視場部分地重疊。具有用於3D影像拍攝之立體、三重、四重等結構的若干此類多孔徑成像裝置的結構係可能的。此處,多個模組可實施為一個連續行。連續行可使用多個相同致動器及一共同光束偏轉元件。可能存在於光學路徑內之一個或若干機械實行基體可橫跨整行延伸,此可形成立體、三重、四重結構。可使用超解析度方法,其中若干通道投影相同的部分影像區域。光軸亦可在無光束偏轉構件之情況下以發散方式延行,以使得在光束偏轉單元上較少刻面為必要的。接著,琢面有利地僅具有一個角度分量。影像感測器可為一體式,可包含僅一個連續像素矩陣或若干間斷像素矩陣。影像感測器可由(例如)在印刷電路板上並置之許多部分感測器組成。可實施聚焦構件之自動聚焦驅動器,以使得光束偏轉元件與光學件同步地移動,或靜止。當不存在預發散時,實施例提供影像感測器12與光束偏轉構件18之間的基本上或完全平行地延行的光學路徑。
圖20b展示如可配置於(例如)裝置130中之包括第一多孔徑成像裝置11a及第二多孔徑成像裝置11b的示意性結構。兩個多孔徑成像裝置11a及11b可形成共同多孔徑成像裝置11,且可包含共同影像感測器12及/或共同陣列14。舉例而言,單行陣列14a及14b形成共同陣列14中之共同行。影像感測器12a及12b可形成共同影像感測器12,且可安裝於(例如)共同基體及共同電路載體(諸如,共同印刷電路板或共同撓性板)上。替代地,影像感測器12a及12b亦可包括不同基體。此等替代例之不同組合亦係可能的,諸如包括共同影像感測器、共同陣列及/或共同光束偏轉構件18之多孔徑成像裝置,以及包含單獨組件之其他多孔徑成像裝置。共同影像感測器、共同單行陣列及/或共同光束偏轉構件之優點為各別組件之移動可藉由控制少量致動器以高精確度獲得,且致動器之間的同步可得以減少或防止。另外,可獲得高熱穩定性。替代地或另外,其他多孔徑成像裝置亦可包含共同陣列、共同影像感測器及/或共同光束偏轉構件。舉例而言,多孔徑成像裝置11之結構可用於在不同的部分多孔徑成像裝置11a及11b之光學通道經引導於同一部分視場上時立體地拍攝全視場或部分視場。比較而言,其他部分多孔徑成像裝置可整合於共同多孔徑成像裝置中,以使得與立體相比之高階拍攝係可能的。
圖21展示根據本文中所描述之實施例的如可使用的3D多孔徑成像裝置140。該多孔徑成像裝置具有可分成分別如下兩個組件121 及122 之影像感測器:如圖21中之所指示,用於「右方」光學通道161 之組件121 及用於「左方」通道162 之另一組件122 。在圖21之實例中,右方光學通道161 及左方光學通道162 經相同地結構化,但配置成彼此側向地偏移基本距離BA以便獲得關於裝置140之視場內之場景的儘可能多的深度資訊。舉例而言,3D多孔徑成像裝置可由兩個或大於兩個多孔徑成像裝置11形成。因此,具備在自左方的第一位置具有索引1的參考數字的元件屬於裝置140之第一組件1或用於右方通道之第一模組(模組1),且具備在自左方的第一位置具有索引2的參考數字的元件屬於裝置140之第二組件2或用於左方通道之第二模組(模組2)。儘管圖21中之模組之數目為2,但裝置亦可具有彼此以各別基本距離配置之更多模組。
在圖21之例示性狀況下,各多個光學通道161 及162 包含四個並置之光學通道。個別「右方」通道係藉由第二下標索引進行區分。通道經自右向左索引化,亦即,由於出於清晰目的之部分省略而未說明於圖21中之光學通道1611 (例如)沿基本距離方向108 (左方及右方通道沿該基本距離方向配置為彼此偏離基本距離BA)配置於最外右邊緣處,亦即,最遠離多個左方通道162 ,其中其他右方通道1612 至1614 沿基本距離方向108跟隨。因此,通道1611 至1614 形成光學通道之單行陣列,其線延伸方向對應於基本距離方向108。左方通道162 係以相同方式結構化。左方通道亦藉由第二下標索引進行區分。左方通道1621 至1624 係以在彼此旁側之方式且類似於右方通道1611 至1614 在相同方向上彼此跟隨地配置,即,以使得通道1621 最接近右方通道且通道1624 離右方通道最遠。
右方通道1611 至1614 中之各者包括各別光學件,如圖21所指示,其可由一個透鏡系統組成。替代地,各通道可包含一透鏡。各光學通道1611 至1614 拍攝全視場72之重疊的部分視場74a至74d中之一者,該等部分視場如圖21a之上下文中所描述而重疊。舉例而言,通道1611 將部分視場7411 投影於影像感測器區域5811 上,光學通道1612 將部分視場7412 投影於影像感測器區域5812 上,光學通道1613 將經分配部分視場7413 投影於影像感測器12之在圖21中不可見的各別影像感測器區域5813 上,且光學通道1614 將經分配部分視場7414 投影於各別影像感測器區域5814 上,該各別影像感測器區域由於其被覆蓋而在圖21中亦未展示。
在圖21中,影像感測器12之影像感測器區域5811 至5814 及影像感測器12之組件121 分別配置於分別平行於基本距離方向BA及平行於線延伸方向108之一個平面中,且光學通道1611 至1614 之光學件之透鏡平面亦平行於此平面。另外,影像感測器區域5811 至5814 係以側向通道間距離110配置,光學通道1611 至1614 之光學件亦藉由該通道距離在此方向上配置,以使得光學通道1611 至1614 之光軸及光學路徑在影像感測器區域5811 至5814 與光學件1611 至1614 之間彼此平行地延行。舉例而言,影像感測器區域5811 至5814 之中心及光學通道1611 至1614 之光學件的光學中心係配置於垂直於影像感測器區域5811 至5814 之上文所提及之共同平面的各別光軸上。
光學通道1611 至1614 之光軸及光學路徑分別藉由光束偏轉構件181 偏轉且因此具備發散,其具有光學通道1611 至1614 之部分視場7411 至7414 僅部分地重疊之效應,以使得(例如)部分視場7411 至7414 在空間角度意義上重疊至多50%。如圖21中所指示,例如,光束偏轉構件181 可包含用於各光學通道1611 至1614 之反射琢面,該等反射琢面相對於彼此以在通道1611 至1614 間不同之方式傾側。反射琢面相對於影像感測器平面之平均傾斜使右方通道1611 至1614 之全視場在(例如)垂直於平面的方向上偏轉或與此垂直方向偏離小於10°,分別在藉由裝置181 進行光束偏轉之前及在無光束偏轉之情況下,光學通道1611 至1614 之光學件之光軸在該平面中延行。替代地,光束偏轉構件181 亦可使用稜鏡以分別用於光學通道1611 至1614 之個別光軸及光學路徑之光束偏轉。
光束偏轉構件181 向光學通道1611 至1614 之光學路徑提供發散,以使得實際上在方向108上以線性方式安置於彼此旁側之通道1611 至1614 以二維方式覆蓋全視場72。
應注意,光學路徑及光軸分別亦可偏離所描述之平行性,但光學通道之光學路徑之平行性仍可為獨特的,以使得分別藉由個別通道1611 至1614 覆蓋且投影於各別影像感測器區域5811 至5814 上的部分視場將大部分重疊而無需任何其他措施(諸如,光束偏轉),以使得為藉由多孔徑成像裝置140覆蓋更大的全視場,光束偏轉構件18向光學路徑提供額外發散,以使得通道1611 至1614 之部分視場較少重疊。光束偏轉構件181 (例如)具有如下效應:全視場具有分別遍及所有方位角及遍及所有橫向方向平均化的孔徑角,該孔徑角比光學通道1611 至1614 之部分視場之各別平均孔徑角大1.5倍。
左方通道1621 至1624 係以與右方通道1611 至1614 相同之方式結構化且相對於各別經分配之影像感測器區域5821 至5824 定位,其中光學通道1621 至1624 的在與通道1611 至1614 之光軸相同的平面中彼此平行地延行的光軸係藉由對應光束偏轉構件182 偏轉,以使得光學通道1621 至1624 幾乎一致地拍攝全視場72,即,以部分視場7421 至7424 ,全視場72係以二維方式分成該等部分視場,其且其中之各者與右方通道1611 至1614 中之各別通道的各別部分視場7411 至7414 幾乎完全重疊。舉例而言,部分視場7411 與部分視場7421 幾乎完全重疊,部分視場7412 與7422 等亦如此。舉例而言,影像感測器區域5811 至5824 可各自由一個晶片形成,如圖18中針對影像感測器12所描述。
除上文所提及之組件外,3D多孔徑成像裝置亦包含處理器112,其具有將在藉由3D多孔徑成像裝置10拍攝時已藉由右方光學通道1611 至1614 拍攝的影像合併成第一全影像的任務。必須解決之問題如下:歸因於右方通道1611 至1614 中之鄰近通道之間的通道間距離110,在影像區域5811 至5814 中的已在藉由通道1611 至1614 拍攝期間拍攝的影像無法相對於彼此簡單及以平移方式移動且置放於彼此之上。換言之,影像無法容易地接合。在拍攝同一場景時在影像感測器區域5811 至5814 之影像中分別沿方向B、108及110的對應於彼此但存留於不同影像中的側向偏移被稱作像差。對應影像內容之像差再次取決於場景內的此影像內容之距離(亦即,各別標的與裝置140之距離)。處理器112可嘗試評估影像感測器區域5811 至5814 之影像自身當中的像差以便將此等影像彼此合併成第一全影像(即,「右方全影像」)。然而,缺點為通道間距離110確實存在且因此導致問題,但通道間距離110亦相對較低以使得深度解析度及估計分別僅為不準確的。因此,(例如)藉助於相關性嘗試判定兩個影像之間的重疊區域中(諸如,影像感測器區域5811 至5812 之影像之間的重疊區域114中)的對應影像內容為困難的。
因此,為了合併,圖21之處理器使用在部分視場7411 及7412 之間的重疊區域114中的一對影像的像差,該對影像中之一者已藉由左方通道1621 或1622 中之一者拍攝,左方通道的經投影的第二部分視場(即,7421 及7422 )分別與重疊區域114重疊。舉例而言,用於合併影像感測器區域5811 及5812 之影像的處理器112評估影像之像差,該等影像中之一者已藉由影像感測器區域5821 或5822 中之一者拍攝且另一者藉由藉由重疊區域140中所涉及的通道拍攝,亦即,已藉由影像感測器區域5811 或5812 中之一者拍攝的影像。接著,此對具有自基本距離BA加上/減去一個基於通道之距離110或無基於通道之距離的基本距離。後一基本距離顯著大於單通道基本距離110,此為處理器112更容易判定重疊區域86中之像差之原因。因此,為合併右方通道之影像,處理器112評估由左方通道之影像產生且較佳(但非排他地)在右方通道中之一者及左方通道中之一者的影像之間的像差。
更具體而言,處理器112有可能採用部分視場7411 之部分,該視場不與大體上直接來自影像5811 的右方通道之其他部分視場中之任一者重疊,且基於影像感測器區域5812 至5814 之影像針對部分視場7412 、7413 及7414 之非重疊區域相同地執行,其中影像感測器區域5811 至5814 之影像已被(例如)同時拍攝。僅在鄰近部分視場(諸如,部分視場7411 及7412 )之重疊區域中,處理器112使用影像對之像差,該等影像對在全視場72中之重疊確實在重疊區域中重疊,但其中該等影像中之多個而非僅一個已藉由右方通道中之一者拍攝且另一者藉由左方通道中之一者拍攝(諸如,再次同時)。
然而,根據替代程序,處理器112亦將有可能根據影像對之間的像差之評估而使右方通道之所有影像扭曲,其中影像中之一者已藉由右方通道拍攝,且另一者藉由左方通道拍攝。以彼方式,例如,藉由處理器112針對右方通道之影像計算的全影像可實際上不僅在右方通道之部分視場7411 至7414 之重疊區域中而且關於焦點以虛擬方式在非重疊區域中扭曲(藉由亦由處理器85針對不重疊的部分視場7411 至7414 之彼等區域評估影像對之像差,其中一個影像已藉由右方通道中之一者拍攝,且另一影像藉由左方通道中之一者拍攝),該焦點(例如)側向地在右方通道1611 至1614 之間的中心中。
圖21之3D多孔徑成像裝置140不僅能夠自右方通道之影像產生全影像,而且除第一通道之全影像外,圖21之3D多孔徑成像裝置140亦能夠在一種操作模式下亦產生左方通道之影像的全影像及/或除右方通道之全影像外,亦產生深度圖。
根據第一替代例,處理器112 (例如)經組配以將由左方光學通道1621 至1624 及影像感測器區域5821 至5824 拍攝的影像合併成第二全影像(即,左方通道之全影像),且藉此使用在左方光學通道之部分視場7421 至7424 中的側向鄰近者之重疊區域中的一對影像之像差,該等影像中之多個但不僅一個已藉由右方光學通道1611 至1614 拍攝且與該對部分視場7421 至7424 之各別重疊區域重疊,且另一者較佳藉由左方光學通道中之一者拍攝,該另一者之部分視場與各別重疊區域重疊。
因此,根據第一替代例,處理器112針對一次拍攝輸出兩個全影像,即,右方光學通道一個全影像及左光學通道另一全影像。舉例而言,此等兩個全影像可單獨地經供應至使用者之雙眼,且因此產生所拍攝場景的三維視感。
根據另一上文所提及之替代例,除右方通道之全影像外,處理器112亦藉由至少針對右方通道1611 至1614 中之各者使用包含至少一對的影像對之像差亦產生深度圖,影像對包含藉由各別右方通道拍攝之一影像及藉由左方通道中之一者拍攝的另一影像。
在深度圖係由處理器112產生的一個實施例中,亦有可能基於深度圖針對已藉由右方通道拍攝之所有影像執行上文所提及之扭曲。由於深度圖包含跨越全視場72之深度資訊,因此有可能使已藉由右方通道拍攝之所有影像扭曲,亦即,不僅在影像之重疊區域中而且在非重疊區域中扭曲(分別關於虛擬共同孔徑點及虛擬光學中心)。
兩個替代例亦可皆由處理器112處理。如上文所描述,處理器可首先藉由以下步驟產生兩個全影像(即,右方光學通道一個影像及左方光學通道另一影像):在合併右方通道之影像之間的重疊區域中的右方通道之影像時,亦使用來自影像對(其中之一者屬於左方通道之影像)的像差;及在合併左方通道之影像之間的重疊區域中的左方通道之影像時,亦使用來自影像對(其中之一者屬於右方通道之影像)的像差,以便接著自以彼方式獲得的自不同視角表示全視場中之場景的全影像產生具有經分配深度圖之影像,諸如處於右方及左方光學通道之光學件的光學中心之間,但可能非排他地在右方及左方光學通道之光學件的中心中(分別對於虛擬視圖及虛擬光學中心)的全影像。為計算深度圖且為使兩個全影像中之一者扭曲或使虛擬視圖中之兩個全影像扭曲及合併,處理器85將接著使用右方及左方全影像實際上作為先前分別合併左方及右方個別影像之中間結果。此處,處理器評估兩個中間結果全影像之像差以便獲得深度圖及執行其扭曲或扭曲/合併。
應注意,處理器112 (例如)藉助於影像區域之交叉相關執行一對影像之像差之評估。
應注意,在一方面藉由左方通道之部分視場及另一方面藉由右方通道之部分視場對全視場72之不同覆蓋中,可能大於四個通道(無關於其針對左方通道或右方通道之分配)重疊,(例如)在先前實例的在排方向或行方向上鄰近的部分視場之重疊區域之間的相互重疊處亦係如此,其中右方通道之部分視場以及左方通道之部分視場各自配置成行及排。其通常適用於數目為之像差源,其中N係關於具有重疊部分視場的通道之數目。
除上文描述外,應注意,處理器112視情況亦執行各別通道之透視投影斷層(fault)的逐通道校正。
應注意,圖21之實施例在許多方面為例示性的。此(例如)涉及光學通道之數目。右方光學通道之數目可能並非四,但在某種程度上大於或等於2或在2與10之間(包括2及10),且就所有此等對之表面積而言,右方光學通道之部分視場之重疊區域(就各部分視場或各通道而言,考慮與各別部分視場具有最大重疊的對)可在藉由影像區域5811 至5814 (例如,在影像平面(亦即,影像感測器區域之平面)中量測)拍攝的影像之平均影像大小的1/2與1/1000之間。以上情形適用於(例如)左方通道。然而,在右方通道與左方通道之間,該數目可不同。此意謂左方光學通道之數目NL 及右方光學通道之數目NR 不必相同,且將全視場72劃分為左方通道之部分視場及右方通道之部分視場不必大致與圖21中之狀況相同。關於部分視場及其重疊,其可使得部分視場針對具有較大重疊的所有對彼此投影(但至少20個像素),只要考慮分別為10 m之影像距離及標的距離即可,其中此可應用於右方通道以及左方通道兩者。
與上文陳述相反,左方光學通道及右方光學通道不必要分別形成為單行。左方及/或右方通道亦可形成光學通道之二維陣列。另外,單行陣列不必要具有共線的線延伸方向。然而,圖21之配置為有利的,此係因為該配置導致垂直於平面的最小裝設高度,光學通道(亦即,右方通道及左方通道兩者)之光軸分別在光束偏轉之前及在無光束偏轉之情況下在該平面中延行。關於影像感測器12,已提及其可由一個、兩個或若干晶片形成。舉例而言,可每個影像感測器區域5811 至5814 及5821 至5824 提供一個晶片,其中在若干晶片之狀況下,其可安裝於一個或若干印刷電路板上,諸如分別地,一個印刷電路板用於左方通道及左方通道之影像傳感器,且一個印刷電路板用於右方通道之影像感測器。
因此,在圖21之實施例中,有可能將鄰近通道儘可能密集地置放於右方通道或左方通道之通道內,其中在最佳狀況下,通道距離110對應於透鏡直徑。此情形導致低通道距離且因此導致低像差。然而,一方面的右方通道及另一方面的左方通道可彼此以任何距離BA配置,以使得可實現較大像差。總之,存在假影減少或無假影的影像融合及藉由被動光學成像系統產生深度圖的選項。
相較於上文實例,將有可能使用通道161 及162 之大於僅兩個群組。群組之數目可由N指示。若在此狀況下,每群組之通道之數目相同且針對所有群組,全視場至部分視場的劃分亦相同,則像差源之數目將(例如)根據群組161 之部分視場之重疊區域產生。如上文已提及,通道群組之不同全視場劃分亦為可能的。
最後應注意,在上文描述中,僅已使用處理器112合併右方通道之影像的例示性狀況。如上文所提及,可藉由處理器112分別針對兩個及所有通道群組或亦針對左方通道群組等執行相同程序。
圖22a展示多孔徑成像裝置150之實施例。較佳地,影像感測器區域58a至58d分別配置於共同平面中,即,光學通道16及其光學件之影像平面中。在圖22a中,此平面例示性地平行於藉由圖22a中展示用於簡化以下描述並具備參考數字115的笛卡爾座標系統之x軸及y軸所橫跨的平面。
在光學通道之線性陣列中,多孔徑成像裝置150之如由影像感測器12及光學件64限制朝向底部的延伸沿線延伸方向大於透鏡之直徑。如由影像感測器12與光學件64沿z軸(亦即,沿光學通道16a至16d之光軸及光學路徑)的相互配置判定的多孔徑成像裝置150之最小延伸小於沿z軸之最小延伸,但歸因於光學通道16a至16d實施為單行陣列,上述最小延伸大於在垂直於線延伸方向z之側向方向y上的多孔徑成像裝置之最小擴展。多孔徑成像裝置之最小擴展係藉由各個別光學通道16a至16d之側向延伸給出,諸如沿y軸之光學件64a至64d (可能包括固持器66)的延伸。
如上文所描述,在圖22a之實施例中,分別在藉由光束偏轉構件18進行偏轉之前或在無該偏轉之情況下,光軸17a至17d彼此平行(例如,分別在光學件64a至64d處),如圖22a中所展示,或該等光軸僅稍微偏離。光學件64a至64d以及影像感測器區域58a至58d之對應中心定位易於產生且關於最小化裝設空間係有利的。光學通道之光學路徑的平行性亦具有如下效應:分別藉由個別通道16a至16d覆蓋且投影於各別影像感測器區域58a至58d上的部分視場在無任何其他措施(諸如,光束偏轉)之情況下將幾乎完全重疊。為藉由多孔徑成像裝置150覆蓋較大全視場,光束偏轉構件18之另一功能係向光學路徑提供發散以使得通道16a至16d之部分視場較少重疊。
舉例而言,假定光學通道16a至16d之光學路徑之光軸17a至17d分別在光束偏轉構件18之前或在無光束偏轉構件之情況下彼此平行,或相對於沿跨越所有通道平均化之對準的平行對準,偏離小於光學通道16a至16d的部分視場之最小孔徑角的十分之一。在無額外措施之情況下,部分視場將大部分地重疊。因此,圖22a之光束偏轉構件18包括用於各光學通道16a至16d之清楚地分配至此通道的反射琢面68a至68d,其各自為光學平面的且相對於彼此傾側,即,以使得光學通道之部分視場關於立體角較少重疊且覆蓋(例如)具有(例如)比光學通道16a至16d的個別部分視場之孔徑角大1.5倍的孔徑角的全視場。在圖22a之例示性狀況下,反射琢面68a至68d之相互傾斜具有(例如)如下效應:實際上沿z軸並置地線性配置之光學通道16a至16d根據部分視場74a至74d之二維配置而覆蓋全視場72。
若在圖22a之實施例中,光學通道16a至16d之光軸17a至17d的角度偏轉被視為一方面在藉由光軸在光束偏轉之前的平均方向及光軸在光束偏轉之後的平均方向所橫跨的平面中(亦即,在圖22a之實例中,在zy平面中),且另一方面在垂直於後一平面且平行於光軸在光束偏轉之後的平均方向而延行的平面中,則圖22a之實例對應於光束偏轉之後的平均方向對應於y軸之例示性狀況。因此,平均而言,光學通道之光軸在yz平面中繞z軸經偏轉90°,且平均而言,光軸並不傾側出yz平面。
舉例而言,指示琢面68a相對於xz平面之在xy平面中量測的傾角,亦即,琢面68a相對於xz平面的繞z軸之傾側,光軸17a至17d在平面xz中延行。=0°對應於平行於xz平面之琢面68a的對準。因此,適用。因此,定義琢面68a相對於平面之沿z軸所量測的傾角,該平面相對於xz平面具有傾角且平行於z軸延行。因此,相應地適用。相同定義適用於其他通道:。對於各光學通道,設定角度可大於經分配至此通道之反射琢面相對於載體基體(該等光學通道穿過其延行)的傾斜之傾角。此處,載體基體可平行於陣列14之線延伸方向而定位,且設定角度可在垂直於線延伸方向之平面中。
圖22b至圖22e分別展示根據實施例之光束偏轉裝置的側視圖,該光束偏轉裝置例示性地用於線性或單側地配置之四個光學通道。圖22b至圖229e之光束偏轉裝置18可用作圖18a之光束偏轉裝置,其中接著部分視場將不如圖18a所說明按順時針3、4、2、1覆蓋全視場,而是按順時針以4、2、1、3之次序覆蓋。琢面68a至68d之傾角指示於圖22b至圖22e中。該等傾角分別藉由上標索引1至4區分且經分配至各別通道。此處,兩者為0°。載體基體之背面(亦即,與具備琢面68a至68d之表面對置的側面)藉由121指示於圖22b至圖22e中。形成載體基體123之平行六面體形部分的材料在虛線125下方。顯而易見,被添加至載體基體之額外材料具有極小體積,以使得模製容易。
載體基體123經置放成相對於影像感測器12傾斜設定角度,即,繞軸線(亦即,圖22a中之z軸)傾斜,光學通道之光軸之平均方向繞該軸線偏轉。此設定角度具有如下效應:光束偏轉裝置18之面向影像感測器12的表面已實現光學通道之光學路徑的「粗略偏轉」。
對於藉由光束偏轉構件18使各光學通道之光學路徑偏轉的偏轉角度,此意謂該等偏轉角度各自係基於設定角度以及經分配至光學通道的反射琢面相對於載體基體123自身的各別傾角。如上文所描述,琢面68a至68d的此等所提及之琢面個別傾斜可藉由xy平面中之傾角及在垂直於載體基體123之平面中相對於載體基體之法線的傾角來定義。在應用以下情形時係較佳的:對於各通道,設定角度大於傾角,亦即,對於所有通道,。甚至在該不等式針對或甚至針對已滿足時為更佳的。換言之,在設定角度相較於琢面68a至68d之傾角為大的以使得相較於光束偏轉裝置18之純平行六面體形狀,額外材料為少時係較佳的。舉例而言,可位於30°與60° (30°及60°各自被包括)之間。
舉例而言,可執行圖22b至圖22e之光束偏轉構件18的製造,此係因為藉由模製工具將額外材料模製於載體基體123上。此處,載體基體123可(例如)為玻璃,而模製於其上之額外材料為聚合物。另一選項為藉由射出模製等一體地形成圖22b至圖22e之光束偏轉裝置18。此情形具有如下效應:光束偏轉構件之面向影像感測器的表面至少在經分配至光學通道之反射琢面上具有鏡射。載體基體可經樞轉,如(例如)在圖11b之上下文中所描述。
舉例而言,至此描述之多孔徑成像裝置的結構之一些態樣可謂係關於在拍攝全影像之前或在拍攝全影像時的所要或瞬時設定。舉例而言,圖22a之多孔徑成像裝置150包括諸如處理器112之處理器,其在上文所提及之設定下將已藉由影像感測器區域58a至58d拍攝的影像(例如)同時合併成表示全視場72中之場景的全影像。舉例而言,由處理器112使用以接合或合併藉由光學通道16a至16d投影於影像感測器區域58a至58d上且由該等影像感測器區域拍攝之影像的演算法經設計以使得應遵從關於維持多孔徑成像裝置150之上文所描述之組件的特定參數的假定,以使得全影像之品質滿足某些規格,或演算法可完全應用。舉例而言,演算法假定遵從以下假定中之一者或若干者: 1) 沿x軸之光學件至影像感測器區域距離對於所有光學通道16a至16d為相同的; 2) 部分視場74a至74d之相對部位且特定而言,部分視場之間的重疊對應於預定規格或與預定規格偏離小於預定最大偏差。
出於各種原因,可出現如下狀況:不遵從或不充分遵從上文所陳述之假定中的一者或若干者。舉例而言,不遵從假定之原因可為製造公差,諸如光學件64a至64d相對於彼此之部位及相對於影像感測器12之部位的不準確性。製造不準確性亦可包括光束偏轉裝置18之裝設及可能的在光束偏轉構件18包含琢面68a至68f時琢面68a至68d相對於彼此之部位的不準確性。除製造誘發之公差偏差外或作為公差偏差之替代,溫度變化亦可具有上文所陳述之假定中之一者或若干者並不適用或不充分遵從的效應。
在某種程度上,藉由處理器112執行的用於分別將影像感測器區域58a至58d之影像接合及合併成全影像的演算法可有可能補償與組件之最佳對準及配置的偏差,諸如全視場72內之部分視場74a至74d之位置與部分視場彼此之相對位置的設定群集的偏差。在分別接合及合併影像時,處理器112可在一定程度上補償(例如)此等偏差。然而,當超出特定偏差限制(不遵從假定2)時,處理器112將(例如)不能補償偏差。
製造多孔徑成像裝置150以使得上文所提及之假定(諸如)跨越特定溫度範圍始終被遵從具有增加多孔徑成像裝置150之製造成本的傾向。為了防止此情形,圖22a之多孔徑成像裝置150包括調整構件116,其用於通道個別地改變各別光學通道16i之影像感測器區域58i、各別光學通道16i之光學件64i與光束偏轉構件18及其各別片段68i之間的相對位置,或用於通道個別地改變光學特性16i或與偏轉各別光學通道之光學路徑相關的光束偏轉構件18之片段68i的光學特性。調整構件116係由預設值控制且根據預設值執行調整任務。預設值係由下文將論述之記憶體118及/或控制件122提供。
舉例而言,裝置150包含記憶體118,其具有用於調整構件116之通道個別控制的所儲存預設值。預設值可由製造商判定且可儲存於記憶體118中。另外,例如,如圖22a中由虛線124所指示,處理器112可能夠經由評估影像感測器區域58a至58d之所拍攝影像(諸如,待藉由處理器112分別接合及合併成全影像之影像)來改良及更新記憶體118中之所儲存預設值。舉例而言,處理器112藉由經由調整構件116運用當前所儲存預設值調整多孔徑成像裝置150而拍攝場景,如下文將更詳細地描述。為此,預設值係自記憶體118讀出且由用於通道個別調整之調整構件116使用。藉由分析以彼方式拍攝之影像感測器區域58a至58d的影像,處理器112獲得關於在記憶體118中將如何修改僅用於拍攝之所儲存預設值的資訊,以便導致在藉由使用此等改良或更新之預設值進行下一拍攝時更準確或改良地遵從上文假定。
所儲存預設值可包含調整值之全集,亦即,用於完全地調整裝置150之調整值的集合。如上文所描述而選擇且在下文更詳細地解釋預設值,以便減少或消除通道之光學特性與設定特定之特定通道個別偏差。
可出現以下狀況:預設值包括調整值之若干集合,諸如連續溫度間隔之每個序列一個集合,以使得為進行影像拍攝,始終使用實際上適合於當前情形之調整值集合。為此,控制件122可存取或查找記憶體118中的預設值集合與不同預定情形之間的分配之表。對於此存取,控制件122接收反映當前情形之感測器資料,諸如關於溫度、壓力、濕氣、裝置150在房間中之部位及/或裝置150之當前加速度或當前轉率的資料,且自此資料判定記憶體118中之若干預設值集合中之一者,即,經分配至最接近如藉由感測器資料所描述之當前情形的預定情形的一者。感測器資料亦可自影像感測器區域之影像感測器資料獲得。舉例而言,控制件122選擇經分配溫度間隔中之集合,在該間隔中當前溫度降低。當使用可選回饋124時,可接著再次更新由調整構件116自記憶體118選擇之用於特定影像拍攝的集合之預設值。
舉例而言,所儲存預設值可經組配,以使得一個或若干特性在光學通道當中的分佈之分散量測藉由藉助於所儲存預設值(即,部分視場與部分視場之常規分佈的橫向偏差、光學件之焦距或光學通道之場深距離)控制調整裝置來減少。
替代地,控制件122中之預設值可在無任何記憶體118之情況下判定,即,在(例如)當前感測器資料在合適預設值上之映射穩固地整合於控制件122中時。該映射可由感測器資料與預設值之間的功能上下文來描述。功能上下文可藉由參數調適。該等參數可經由回饋124調適。
舉例而言,記憶體118可為非依電性記憶體。其可能為唯讀記憶體,但可重寫記憶體亦係可能的。控制件122及處理器112可以軟體、硬體或以可規劃硬體來實施。此等可為在共同微處理器上執行之程式。用於提供用於控制件122之感測器資料的感測器可屬於裝置150 (諸如,影像感測器區域),或亦可為外部組件,諸如併入至如參看以下諸圖將論述之裝置中的設備之組件。
在下文中,將描述調整構件116之可能實施。此處,圖22a之調整構件116可應用於下文所描述之實施變化中的一者、若干者或全部。下文亦將論述特定組合。
在所展示之變化中,調整構件116 (例如)包含用於各通道16i之一個致動器126i,該致動器在沿光軸17i及沿光學路徑之軸向方向上及/或沿z軸及/或y軸橫向於光學路徑而移動各別通道16i之光學件64i。替代地,例如,致動器126i亦可移動影像感測器12或個別影像感測器區域58i。一般而言,致動器126i可實現影像感測器區域58i、光學件64i及/或光束偏轉構件24之各別片段64i的相對移動。
根據圖23a相關之變化,調整構件116包含用於各通道16i之相變光學元件及相變元件128i,如圖23a中所指示,該元件可整合於各別光學件64ai中(128i''),整合於片段61i中(128i'''),整合於影像感測器區域58i與光學件64i之間(128i')或可定位於光學件64i與光束偏轉片段68i之間(128i'''),其中上文所提及之選項的組合亦係可能的。舉例而言,相變光學元件128i可(諸如)藉由液晶實現折射率之部位相依改變,亦即,折射率之區域分佈。替代地或另外,相變光學元件128i (諸如)藉由使用對可撓性之固定透明材料具有機械效應且引起變形之壓電體或藉由使用電潤濕效應而引起光學活性表面之形狀改變。舉例而言,相變光學元件128i''可改變光學件64i之折射率。替代地,相變元件128i''可改變光學件64i之光學透鏡區域的形狀,且藉此改變光學件64i之有效折射力。舉例而言,相變元件128i'''可在片段68i之光學相關表面上(諸如,在反射琢面上)產生正弦相位光柵,以便實現各別表面之虛擬傾側。類似地,相變元件128i'或相變元件128i''可使光軸偏轉。
換言之,由相變光學元件128i實現之相位改變可幾乎旋轉對稱,諸如繞光軸17i旋轉對稱,且因此在128i'之狀況下,例如,實現光學件64i之焦距的改變。然而,藉由元件128i實現之相位改變可幾乎為線性的,諸如沿z軸或沿y軸為線性的,以便實現偏轉角之改變或光軸17i在各別方向上之偏轉。
旋轉對稱之相位改變可用於聚焦,且線性相位改變用於各別光學通道16i之部分視場的位置校正。
根據圖23b中所說明之另一變化,調整構件116包含用於各通道16i之一個致動器132i,其改變片段68i,諸如各別通道16i的在其相對於光軸17i之角定向(亦即,設定角度)上的反射琢面。此處應注意,片段68i不限於反射琢面。各片段68i亦可實施為稜鏡,其使光軸17i之方向在yz平面中偏轉,同時光學通道16i之光學路徑穿過稜鏡。
為分別藉由致動器126i及132i實現相對移動,亦即,為產生光學件68i的可(例如)以平移方式組配之移動,以及為藉由致動器132i及z軸使片段68i傾側,例如,可使用氣動、液壓、壓電、熱、靜電或電動驅動器或DC或步進馬達或另外音圈驅動器。
藉由重新參看圖22a,虛線指示除調整構件116外,多孔徑成像裝置150亦可視情況包括一個或若干致動器134,其用於產生影像感測器12、光學件陣列14及光束偏轉構件18之間的通道全域(亦即,對於所有光學通道16a至16d為相等的)相對移動。如圖22a中所指示,一個或若干額外致動器134可為多孔徑成像裝置的視情況存在之自動聚焦控制件136 (聚焦構件)及/或視情況存在之影像穩定控制件的部分。
由額外致動器補充的圖22a之裝置150的特定實例展示於圖24中。圖24展示圖22a之多孔徑成像裝置150,其中光學通道16a至16d之光學件64a至64d經由共同載體66以機械方式固定至彼此。經由此共同固持器,有可能(諸如)藉由載體66在z方向上(亦即,沿陣列14之線延伸方向)使光學件64a至64d經歷全域移動,其對於所有通道為相同的。為此,提供致動器134a。因此,致動器134a產生光學件64a至64d的對於所有光學通道16a至16d為相同的平移移動,此係因為致動器134a使共同載體66經歷沿x軸之平移移動。關於致動器134a之類型,參考已參看圖23a及圖23b提及之實例。另外,裝置150包含致動器134b,其用於分別沿x軸及沿光軸17i之影像感測器58i至光學件54i之距離的通道全域(亦即,對於所有光學通道16a至16d為相同的)改變。如圖24中所指示,例如,致動器134b使光學件64a至64d經歷沿z軸之平移移動以用於改變距經分配影像感測器部分58a至58d之距離(不經由載體66,但亦經由致動器134),其因此亦經歷沿x軸之平移移動且實際上充當載體66之懸置件。
另外,圖24之裝置150包含致動器134c,其用於使光束偏轉構件18繞平行於z軸且處於光軸17a至17d延行所在之平面中或並不遠隔該平面而延行的軸線旋轉。亦關於致動器134b及134c,參考上文關於可能實施實例而參看圖23a及圖23b提供的實例之清單。對於所有通道16a至16d,由致動器134c對光束偏轉構件18施加之旋轉移動對光束偏轉構件18上之片段68a至64d具有相同或相等效應,亦即,旋轉移動為通道全域的。
經由致動器134b,自動聚焦控制件136 (例如)能夠在通道全域意義上藉助於通道16a至16d控制由裝置150拍攝的影像之聚焦。影像穩定控制件138能夠藉助於致動器134c在第一方向142上及藉助於致動器134a在垂直於第一方向之方向144上使全視場72穩定以免受藉由使用者進行之搖動影響。第一方向142可藉由繞旋轉軸線44之旋轉移動而獲得。替代地或另外,如由第一方向142'所指示,光束偏轉構件18及/或陣列14之平移移動可藉由致動器134產生。此處,方向142、142'及144可在方向之一個平面中平行於影像軸線,或可對應於影像軸線。本文中所描述之影像穩定器可經組配以便對光學通道之兩個、多個或所有光學路徑共同地起作用。此意謂可省略通道個別穩定,此係有利的。
舉例而言,圖22a之裝置150包含用於各通道16a至16d之一致動器(諸如,用於各通道16i之致動器126i),以便以通道個別方式使影像感測器片段或區域58a至58d經歷沿z軸及/或沿y軸之平移移動,以便補償(例如)全視場內之部分視場的不準確性或溫度誘發漂移之降低。替代地或另外,圖22a之裝置150可包含致動器128i''以便補償由製造引起之不當地出現的光學件64a至64d之焦距差。另外或替代地,圖22a之裝置150可包含致動器128i'''以便補償所產生的由製造或溫度引起的片段68a至68d彼此間之相對傾斜的偏差,以使得相對傾斜導致部分視場74a至74d對全視場72之所要覆蓋。另外或替代地,裝置150接著可包含分別為類型128i'及128i'''之致動器。
再次概述,裝置150可包含致動器134c,其經組配以使光束偏轉構件18繞平行於陣列14之線延伸方向z的軸線旋轉。舉例而言,該旋轉軸線在光軸17a至17d之平面中,或與該平面隔開光學件64a至64d之直徑的四分之一。替代地,旋轉軸線亦有可能進一步隔開,諸如小於一個光學件直徑或小於四個光學件直徑。舉例而言,可提供致動器134c以在僅小角度範圍內(諸如,在小於5°或小於10°之跨度內)以短回應時間旋轉光束偏轉構件18,以便補償多孔徑成像裝置150在影像拍攝期間藉由(例如)使用者進行之搖動。在此狀況下,致動器134c將(例如)由影像穩定控制件138控制。
替代地或另外,致動器134c可經組配以在其方向上以較大角度偏移改變由部分視場74a至74d (圖22a)之總覆蓋界定的全視場72。此處,將進一步有可能亦藉由旋轉光束偏轉構件18而獲得偏轉,其中全視場相對於裝置150配置在相反方向上,例如,此係因為光束偏轉構件18經組配為在兩側上具有反射性之鏡面陣列。
再次,替代地或另外,裝置150可包含致動器134a,其經組配以藉助於基體66以平移方式移動光學件64a至64d及移動基體66自身且因此沿線延伸方向移動光學件64a至64d。舉例而言,致動器134a亦可藉由上文所提及之影像穩定控制件控制以便藉由沿線延伸方向之移動96獲得影像穩定,其橫向於藉由鏡面偏轉構件18之旋轉實現的影像穩定。
此外,另外或替代地,裝置150可包含致動器134b,其用於分別改變影像感測器12與光學件64a至64d之間及影像感測器12與主體66之間的影像側距離,以獲得場深調整(參看圖19)。構件98可藉由手動使用者控制件或藉由裝置150之自動聚焦控制件來控制。
致動器134a充當基體66之懸置件,且如圖22a中所指示,致動器較佳沿線延伸方向側向地配置於基體66旁側,以免增加裝設高度。如下情況對致動器134b及134c亦適用:致動器較佳配置在光學路徑之平面中以免增加裝設高度。
應注意,光學件64a至64d可不僅(諸如)經由上文所提及之透明基體相對於彼此固持,而且(諸如)經由合適框架相對於光束偏轉構件以恆定相對位置固持,該框架較佳不增加裝設高度且因此較佳分別在組件12、14及66之平面中及在光學路徑之平面中延行。相對位置之一致性可限於沿光軸的光學件與光束偏轉構件之間的距離,以使得致動器134b沿光軸以平動方式移動(例如)光學件64a至64d連同光束偏轉構件18。光學件至光束偏轉構件距離可經設定成最小距離,以使得通道之光學路徑在側向上並不受光束偏轉構件18之片段限制,其降低裝設高度,此係因為否則片段68i將必須關於側向延伸而經設定尺寸以達成最大光學件至光束偏轉構件距離以免限制光學路徑。另外,相對位置之一致性將意謂,上文所提及之框架將光學件及光束偏轉構件以剛性方式沿z軸固持至彼此,以使得致動器134a將沿線延伸方向以平移方式移動光學件64a至64d連同光束偏轉構件。
上文所描述的用於使光學通道之光學路徑偏轉的光束偏轉構件18連同多孔徑成像裝置150之光學影像穩定控制件的用於產生光束偏轉構件18及致動器134之旋轉移動的致動器134c允許分別在兩個維度上之影像及全影像場穩定,即,藉由基體66之平移移動,允許沿基本上平行於線延伸方向延行之第一影像軸線的影像穩定,及分別在光束偏轉之前及在無光束偏轉之情況下或在經偏轉光軸被視為垂直於光軸及線延伸方向時,藉由產生光束偏轉構件18之旋轉移動,允許沿基本上平行於光軸延行之第二影像軸線的影像穩定。另外,本文中所描述之配置可(諸如)藉由所描述致動器54實現固定於所陳述框架中之光束偏轉構件及陣列14的垂直於線延伸方向的平移移動,其可用於實現聚焦控制及因此實現自動聚焦功能。
圖25展示多孔徑成像裝置180之示意圖,其用於說明(諸如)用於影像穩定及/或用於調整焦點的致動器之有利配置。影像感測器12、陣列14及光束偏轉構件18在空間中可橫跨立方體。該立方體亦可被視為虛擬立方體,且可具有(例如)最小體積,且特定而言,具有沿分別平行於y方向及厚度方向之方向的最小垂直延伸,且可包括影像感測器12、單行陣列14及光束偏轉構件18。亦可考慮最小體積以使得該最小體積描述藉由影像感測器路線、陣列14及/或光束偏轉構件18之配置及/或操作移動而橫跨的立方體。陣列14可具有線延伸方向146,光學通道16a及16b沿該線延伸方向並置地配置,可能彼此平行。可在空間中靜止地配置線延伸方向146。
虛擬立方體可包含以對置方式延行之兩個側面,其彼此平行,平行於單行陣列14之線延伸方向146以及分別平行於影像感測器12與光束偏轉構件18之間的光學通道16a及16b之光學路徑17a及/或17b的部分。簡言之,但在無限制效應之情況下,此可(例如)為虛擬立方體之頂部及底部。兩個側面可橫跨第一平面148a及第二平面148b。此意謂立方體之兩個側面可各自分別為平面148a及148b之部分。多孔徑成像裝置之其他組件可完全但至少部分地配置於平面148a與148b之間的區域內,以使得多孔徑成像裝置180的沿平行於平面148a及/或148b之表面法線之方向的裝設空間要求為低的,此係有利的。多孔徑成像裝置之體積可具有平面148a與148b之間的低或最小裝設空間。沿平面148a及/或148b之側面或延伸方向,多孔徑成像裝置之裝設空間可為大的或具有任何大小。舉例而言,虛擬立方體之體積受影像感測器12、單行陣列14及光束偏轉構件18之配置影響,其中此等組件之配置可根據本文中所描述之實施例而執行以使得此等組件沿垂直於平面之方向的裝設空間且因此平面148a及148b彼此之距離變低或變為最小。相較於組件之其他配置,虛擬立方體之體積及/或其他側面之距離可擴大。
多孔徑成像裝置180包括用於產生影像感測器12、單行陣列14及光束偏轉構件18之間的相對移動的致動器構件152。致動器構件152至少部分地配置於平面148a與平面148b之間。致動器構件152可經組配以繞至少一個軸線以旋轉方式及/或沿一個或若干方向以平移方式移動影像感測器12、單行陣列14或光束偏轉構件18中之至少一者。為此,致動器構件152可包含諸如致動器128i、132i及134之至少一個致動器,其用於分別通道個別地改變各別光學通道16i之影像感測器區域58i、各別光學通道16i之光學件64i與光束偏轉構件18及其各別片段68i之間的相對位置,或用於通道個別地改變光學特性16i或與偏轉各別光學通道之光學路徑相關的光束偏轉構件18之片段68i的光學特性。替代或另外地,致動器構件可實施自動聚焦及/或光學影像穩定,如上文所描述。
致動器構件152可具有平行於厚度方向之尺寸或延伸154。至多50%、至多30%或至多10%之比例的尺寸154可自平面148a與148b之間的區域開始突出超過平面148a及/或148b,或可自該區域突出。此意謂致動器構件152至多亦不會顯著地突出超過平面148a及/或148b。根據實施例,致動器構件152並不突出超過平面148a及148b。多孔徑成像裝置180沿厚度方向之延伸不由致動器構件152擴大係有利的。
基於圖26a至圖26e,將描述光束偏轉構件18之有利實施。陳述展示可個別地或以任何組合執行之一系列優點,但不具有任何限制效應。
圖26a展示如可用於本文中所描述之光束偏轉構件(諸如,圖1、圖2、圖3a、圖3b、圖4a、圖4b、圖5、圖6b、圖6c之光束偏轉構件18或在根據圖7a及/或圖7b之裝置中的光束偏轉構件)的光束偏轉元件172之示意性側視截面圖。然而,該組配亦可與根據其他圖之光束偏轉構件之實施例組合。
光束偏轉元件172可對一個、多個或所有光學通道16a至16d有效,且可具有多邊形橫截面。儘管展示三角形橫截面,但其亦可為任何其他多邊形。替代地或另外,橫截面亦可具有至少一個彎曲表面,其中特定而言,在反射表面中,部分至少為平面以便防止成像誤差之組配可為有利的。
舉例而言,光束偏轉元件172包含第一側面174a、第二側面174b及第三側面174c。至少兩個側面(諸如,側面174a及174b)係形成為反射性的,以使得光束偏轉元件172在兩個側面上係反射性的。側面174a及174b可為光束偏轉元件172之主要側面,亦即,面積大於側面174c之側面。
換言之,光束偏轉元件172可為楔形且在兩個側面上可為反射性的。另一區域可配置成與區域174c對置,亦即,在區域174a與174b之間,然而,其顯著小於區域174c。換言之,由區域174a、174b及174c形成之楔形不以任何方式錐形化,但在尖側上具有區域且因此為截斷的。
圖26b展示光束偏轉元件172之示意性側視截面圖,其中描述了光束偏轉元件172之懸置或移置軸線176。移置軸線176 (光束偏轉元件172可圍繞其在光束偏轉構件18中旋轉及/或平移移動)可關於橫截面之質心178偏心地移置。質心亦可替代地為描述光束偏轉元件172沿厚度方向182及沿垂直於該方向之方向184之一半尺寸的點。
移置軸線可(例如)沿厚度方向182不變且可在垂直於其之方向上具有任何偏移。替代地,沿厚度方向182之偏移亦係可能的。舉例而言,可執行移置以使得當圍繞移置軸線176旋轉光束偏轉元件172時,獲得比圍繞質心178旋轉時大的致動器路徑。以此方式,藉由移置該移置軸線176,邊緣在旋轉期間藉以在側面174a與174b之間移動的路徑相較於以相同旋轉角度圍繞質心178之旋轉可增加。較佳地,光束偏轉元件172經配置以使得邊緣(亦即,楔形橫截面之尖側)面向側面174a與174b之間的影像感測器。各別不同側面174a或174b可藉由小旋轉移動而使光學通道之光學路徑偏轉。此處顯然,可執行旋轉以使得光束偏轉構件沿厚度方向182之空間要求為低的,此係因為移動光束偏轉元件172以使得主要側面垂直於影像感測器並非必要的。
側面174c亦可被稱為次要側面或背面。若干光束偏轉元件可連接至彼此以使得連接元件配置於側面174c上或穿過光束偏轉元件之橫截面,亦即,配置於光束偏轉元件內部,例如,配置於移置軸線176之區域中。特定而言,固持元件可經配置以使得其沿方向182不突出或僅小程度地突出(亦即,至多50%、至多30%或至多10%)超過光束偏轉元件172,以使得固持元件不增加或判定整個結構沿方向182之延伸。在厚度方向182上之延伸可替代地由光學通道之透鏡判定,亦即,透鏡具有界定最小厚度之尺寸。
光束偏轉元件172可由玻璃、陶瓷、玻璃陶瓷、塑膠、金屬或此等材料之組合及/或其他材料形成。
換言之,光束偏轉元件172可經配置以使得主要側面174a與174b之間的尖端(亦即,邊緣)指向影像感測器。光束偏轉元件之固持可使得其僅固持於背面上或光束偏轉元件內部,亦即,主要側面不被覆蓋。共同固持或連接元件可延伸超出背面174c。光束偏轉元件172之旋轉軸線可經離心地配置。
圖26c展示多孔徑成像裝置190之示意性透視圖,該多孔徑成像裝置包括影像感測器12及並置光學通道16a至16d之單行陣列14。光束偏轉構件18包括可對應於光學通道之數目的數目個光束偏轉元件172a至172d。替代地,例如,在至少一個光束偏轉元件供兩個光學通道使用時,可配置較低數目個光束偏轉元件。替代地,例如,在切換光束偏轉構件18之偏轉構件係藉由如描述於圖4a及圖4b之上下文中的平移移動執行時,可配置較高數目個光束偏轉元件。各光束偏轉元件172a至172d可經分配至一光學通道16a至16d。根據圖4c及圖4d,光束偏轉元件172a至172d可形成為多個元件172。替代地,至少兩個、若干或所有光束偏轉元件172a至172d可一體地形成。
圖26d展示光束偏轉元件172之示意性側視截面圖,其中橫截面形成為自由形式區域。以此方式,側面174c可包含允許安裝固持元件之凹口186,其中凹口186亦可形成為突出元件,諸如溝槽與舌片系統之舌片。另外,橫截面包含第四側面174d,該第四側面具有比主要側面174a及174b小的區域延伸且將此等側面彼此連接。
圖26e展示第一光束偏轉元件172a及在說明方向上處於第一光束偏轉元件後方之第二光束偏轉元件172的示意性側視截面圖。此處,凹口186a及186b可經配置以使得其本質上重合,以致實現連接元件在凹口中之配置。
圖26f展示光束偏轉構件18之示意性透視圖,該光束偏轉構件包括(例如)連接至連接元件188之四個光束偏轉元件172a至172d。可使用連接元件以便可藉由致動器平移及/或旋轉移動。連接元件188可一體地形成,且可在光束偏轉元件172a至172d上或中跨越延伸方向(例如,圖4e中之y方向)延行。替代地,例如,在光束偏轉元件172a至172d一體地形成時,連接元件188亦可僅連接至光束偏轉構件18之至少一個側面。替代地,亦可以任何其他方式(例如,藉助於黏附、結合或焊接)建立至致動器之連接及/或光束偏轉元件172a至172d之連接。
儘管已在設備之上下文中描述一些態樣,但顯然,此等態樣亦表示對應方法之描述,以使得設備之區塊或裝置亦對應於各別方法步驟或方法步驟之特徵。類似地,在方法步驟之上下文中描述的態樣亦表示對應設備之對應區塊或細節或特徵的描述。
上文所描述之實施例僅說明本發明之原理。應理解,對本文中所描述之配置及細節的修改及變化對於熟習此項技術者將為顯而易見的。因此,本發明意欲僅受隨附申請專利範圍之範疇限制且不受藉助於描述及解釋本文中之實施例而呈現的特定細節限制。
10、30、40、50、60、70、90、100‧‧‧裝置
11‧‧‧多孔徑成像裝置/模組
11a‧‧‧第一多孔徑成像裝置
11b‧‧‧第二多孔徑成像裝置
11c、180、190、1000、2000、3000、4000、4000'、5000、6000‧‧‧多孔徑成像裝置
12‧‧‧影像感測器/組件
12a、12b、12c、12d、12e、12f、12g、12h‧‧‧影像感測器
121 、122 ‧‧‧組件
14‧‧‧光學陣列/單行陣列/組件
14a、14b‧‧‧單行陣列
16、16a、16b、16c、16d、16e、16f、16g、16h、16i‧‧‧光學通道
161 ‧‧‧右方光學通道/群組
1611 、1612 、1613 、1614 ‧‧‧右方光學通道
162 、1621 、1622 、1623 、1624 ‧‧‧左方光學通道
17‧‧‧光學路徑
17a、17b、17c、17d‧‧‧光學路徑/光軸
17e、17f、17g、17f、17i‧‧‧光軸
18‧‧‧光束偏轉構件/鏡面/鏡面偏轉裝置/光束偏轉裝置/組件
18a、18b、182 ‧‧‧光束偏轉構件
181 ‧‧‧光束偏轉構件/裝置
19a、142'‧‧‧第一方向
19b、184、1006‧‧‧方向
20‧‧‧裝置/設備
22‧‧‧外殼
22a、22b‧‧‧外殼側面/主要側面
22c‧‧‧次要側面/外殼平面側面/外殼側面
22d、22e、22f‧‧‧次要側面
23‧‧‧外表面/蓋罩/外部邊緣
24‧‧‧外殼體積
25‧‧‧外部體積
26‧‧‧視場/部分標的區域
28、88a、88b、88c、88d‧‧‧開口
32‧‧‧外殼蓋罩
33、38、126i、132i、134a、134c‧‧‧致動器
33'‧‧‧致動器/閂鎖
34‧‧‧移動元件/連接元件
34a、34b‧‧‧連接元件
35‧‧‧機械閂鎖
36、36a、36b‧‧‧至少部分透明之蓋罩
42‧‧‧平移移動
42a‧‧‧移動/平移移動方向
42b‧‧‧平移移動/平移移動方向
42c‧‧‧平移移動方向
44‧‧‧旋轉軸線
46‧‧‧旋轉移動
47、47a、47b‧‧‧行進托架
48、48'‧‧‧距離
52a、52b、96‧‧‧移動
53a‧‧‧第一隔膜
53b‧‧‧第二隔膜
54a、54b、54c、54d‧‧‧照明構件
54i‧‧‧光源
56a、56b‧‧‧安裝元件
58a、58b、58c、58d‧‧‧影像感測器片段或區域/影像感測器部分
58e、58f、58i、5811 、5812 、5813 、5814 、5821 、5822 、5823 、5824 ‧‧‧影像感測器區域
62‧‧‧共同印刷電路板
64、64a、64b、64c、64d、64e、64f‧‧‧光學件/透鏡
64ai‧‧‧光學件
64i‧‧‧光學件/片段
66‧‧‧載體/基體/扁平載體基體/透明主體
66a、66b‧‧‧主要側面
68a、68b、68c、68d‧‧‧反射琢面/片段
68e、68f‧‧‧琢面
68i‧‧‧光束偏轉片段
72‧‧‧標的區域/全視場
74a、74b、74c、74d‧‧‧部分標的區域/部分視場
7411 、7412 、7413 、7414 、7421 、7422 、7423 、7424 ‧‧‧部分視場
76‧‧‧全視場方向
78a、78b、78c、78d‧‧‧第一透鏡
82a、82b、82c、82d‧‧‧第二透鏡
82e、82f、82g、82h‧‧‧透鏡
84a、84b、84c、84d‧‧‧第三透鏡
86a、86b、86c、86d‧‧‧管狀透鏡固持器/透鏡載體
86e、86f、86g、86h‧‧‧透鏡載體
92‧‧‧構件/致動器
94‧‧‧構件/致動器/光學影像穩定器
98、134b‧‧‧致動器/聚焦構件
102‧‧‧正面
108‧‧‧基本距離方向
110‧‧‧側向通道間距離/基於通道之距離
112‧‧‧處理器
114‧‧‧重疊區域
115‧‧‧笛卡爾座標系統
116‧‧‧調整構件
118‧‧‧記憶體
121‧‧‧側面
122‧‧‧控制件
123‧‧‧載體基體
124‧‧‧虛線/回饋
125‧‧‧虛線
128i、128i''‧‧‧相變光學元件/致動器
128i'、128i'''‧‧‧相變元件/致動器
130‧‧‧攜帶型裝置
134‧‧‧致動器/光學影像穩定器
136‧‧‧自動聚焦控制件/聚焦構件
138‧‧‧影像穩定控制件/光學影像穩定器
140‧‧‧3D多孔徑成像裝置
142‧‧‧第一方向/第二影像軸線
144‧‧‧方向/第一影像軸線
146‧‧‧線延伸方向
148a‧‧‧第一平面
148b‧‧‧第二平面
150‧‧‧多孔徑成像裝置/設備
152‧‧‧致動器構件/光學影像穩定器
154‧‧‧尺寸或延伸
172、172b、172c、172d‧‧‧光束偏轉元件
172a‧‧‧第一光束偏轉元件
174a‧‧‧第一側面
174b‧‧‧第二側面
174c‧‧‧第三側面
174d‧‧‧第四側面
176‧‧‧懸置或移置軸線
178‧‧‧質心
182‧‧‧厚度方向
186、186a、186b‧‧‧凹口
188‧‧‧連接元件
1000a‧‧‧第一多孔徑成像裝置/模組
1000b‧‧‧第二多孔徑成像裝置/模組
1002a‧‧‧第一光束偏轉區域/部分
1002b‧‧‧第二光束偏轉區域
1002c‧‧‧第三光束偏轉區域
1004a、1004b‧‧‧雜散光抑制結構/至少部分不透明之結構
1004、1004c‧‧‧雜散光抑制結構
1008a‧‧‧第一反射主要側面
1008b‧‧‧第二反射主要側面
1012a、1012b‧‧‧部分
1014‧‧‧方向/隆脊
1014a、1014b‧‧‧隆脊
1016‧‧‧透明基體
1016a、1016b、1016c‧‧‧至少部分不透明之結構
1018a、1018b‧‧‧至少部分不透明之結構/分離結構
1022a、1022b、1022c、1022d‧‧‧部分區域光學件
1024‧‧‧對稱平面
1026‧‧‧光軸
7000、7000'、9000‧‧‧成像系統
A、B‧‧‧尺寸
BA‧‧‧基本距離
下文中,將參看附圖論述本發明之較佳實施例。圖式展示: 圖1為根據實施例之多孔徑成像裝置之示意性俯視圖,該多孔徑成像裝置包括雜散光抑制結構; 圖2a為根據另一實施例之多孔徑成像裝置之示意性俯視圖,該多孔徑成像裝置每光學通道包含兩個光學件,包括沿光束偏轉構件之主要側面延伸的雜散光抑制結構; 圖2b為圖2a之多孔徑成像裝置之示意性俯視圖,該多孔徑成像裝置包括在光束偏轉構件之主要側面上以大約50%之程度延伸的雜散光抑制結構; 圖3a為根據實施例之多孔徑成像裝置之示意性側視截面圖,該多孔徑成像裝置相較於如圖2b中所說明之多孔徑成像裝置進一步包含至少部分透明之蓋罩; 圖3b為圖3a之多孔徑成像裝置之示意性側視截面圖,其中光束偏轉構件具有變更之位置; 圖4a為根據實施例之多孔徑成像裝置之示意性側視截面圖,該多孔徑成像裝置相較於前述多孔徑成像裝置進一步包含配置於雜散光抑制結構之間的隆脊; 圖4b為根據實施例之多孔徑成像裝置之示意性俯視圖,該多孔徑成像裝置包含配置於雜散光抑制結構之間的隆脊; 圖5為根據本文中所描述之實施例的用於投影全標的區域或全視場的概念之示意圖; 圖6a為根據實施例之多孔徑成像裝置的區段之示意性俯視圖; 圖6b為根據圖6a之多孔徑成像裝置之示意性俯視圖,該多孔徑成像裝置進一步包含配置於影像感測器區域之間且在標的區域之方向上配置於影像感測器上的至少部分不透明之結構; 圖6c為圖6a之多孔徑成像裝置之示意性俯視圖,其中光學通道包含部分區域光學件; 圖7a為根據實施例之成像系統之示意性俯視圖; 圖7b為根據實施例之另一成像系統之示意性俯視圖,該成像系統可被視為圖7a之成像系統之經修改變化; 圖8a為在第一操作狀態下之根據實施例的裝置之示意性側視截面圖; 圖8b為在第二操作狀態下之圖8a的裝置之示意性側視截面圖; 圖9a為根據另一實施例之裝置之示意性側視截面圖,該裝置包含蓋罩; 圖9b為在第二操作狀態下之圖9a的裝置之示意性側視截面圖; 圖9c為在第三位置中之圖9a的裝置之示意性側視截面圖; 圖10a為在第一操作狀態下之根據另一實施例的裝置之示意性側視截面圖,該裝置包含至少部分透明之蓋罩; 圖10b為在第二操作狀態下之圖10a的裝置之示意性側視截面圖; 圖10c為圖10a之裝置之示意性側視截面圖,其中光束偏轉構件另外可以平移方式移動; 圖11a為在第一操作狀態下之根據實施例的裝置之示意性側視截面圖,該裝置具有可以平移方式移位之蓋罩; 圖11b為在第二操作狀態下之圖11a的裝置之示意性側視截面圖; 圖12a為根據實施例之裝置之示意性側視截面圖,其中蓋罩係以可旋轉移動之方式配置; 圖12b為圖12a之裝置之示意性側視截面圖,其中行進托架可以平移方式移動; 圖12c為在第二操作狀態下之圖12a的裝置之示意性側視截面圖; 圖13a為在第一操作狀態下之根據實施例的裝置之示意性側視截面圖,該裝置相較於圖12之裝置包含至少部分透明之蓋罩; 圖13b為圖13a之裝置之示意性側視截面圖,其中光束偏轉構件包含在第一位置與第二位置之間的中間位置; 圖13c為圖13a之裝置之示意性側視截面圖,其中光束偏轉構件完全延伸出外殼體積; 圖13d為圖13a之裝置之示意性側視截面圖,其中相較於圖13a至圖13c,至少部分透明之蓋罩之間的距離擴大; 圖14為根據實施例之裝置之示意性透視圖,該裝置包含三個多孔徑成像裝置; 圖15為圖14之裝置之區段的放大透視圖; 圖16為根據實施例之裝置之示意性透視圖,其中光束偏轉構件藉助於安裝元件連接至多孔徑成像裝置; 圖17為在第一操作狀態下之根據實施例的裝置之示意性透視圖,該裝置具有例示性形狀之蓋罩; 圖17b為根據實施例之在第二操作狀態下的圖17a之裝置之示意圖; 圖17c為根據實施例的圖17a之替代例之示意性說明; 圖18a至圖18c為根據實施例之多孔徑成像裝置之詳細說明; 圖18d至18f為根據實施例的根據圖18a至圖18c之多孔徑成像裝置針對光學通道之光學件藉由共同載體固持之狀況的組配; 圖19為根據圖18a至圖18c之多孔徑成像裝置,根據實施例,該多孔徑成像裝置藉由用於實現相對移動以用於光學影像穩定及用於調適聚焦之額外構件補充; 圖20a為根據實施例之配置於扁平外殼中的多孔徑成像裝置之示意圖; 圖20b為用於立體地拍攝全視場之多孔徑成像裝置之示意性結構; 圖21為根據實施例之3D多孔徑成像裝置之示意圖; 圖22a為根據實施例之另一多孔徑成像裝置之示意圖,根據實施例,該多孔徑成像裝置藉由用於實現相對移動以用於聚焦控制及光學影像穩定之額外構件補充; 圖22b至圖22e為根據實施例之光束偏轉裝置之示意性側視圖; 圖23a為根據實施例之多孔徑成像裝置之示意圖,該多孔徑成像裝置具有用於光學特性之通道個別調整的調整構件; 圖23b為根據實施例之具有調整構件的多孔徑成像裝置之變化; 圖24為根據實施例之藉由額外致動器補充的圖22a之裝置之示意圖;及 圖25為根據實施例之多孔徑成像裝置中的致動器之配置之示意圖; 圖26a至圖26f為根據實施例之成像裝置的光束偏轉構件之有利實施。
12‧‧‧影像感測器/組件
14‧‧‧光學陣列/單行陣列/組件
16a、16b‧‧‧光學通道
17a、17b‧‧‧光學路徑/光軸
18‧‧‧光束偏轉構件/鏡面/鏡面偏轉裝置/光束偏轉裝置/組件
64a、64b‧‧‧光學件/透鏡
68a、68b‧‧‧反射琢面/片段
72‧‧‧標的區域/全視場
74a、74b‧‧‧部分標的區域/部分視場
146‧‧‧線延伸方向
1000‧‧‧多孔徑成像裝置
1002a‧‧‧第一光束偏轉區域/部分
1002b‧‧‧第二光束偏轉區域
1004‧‧‧雜散光抑制結構

Claims (41)

  1. 一種多孔徑成像裝置,其包含: 至少一個影像感測器;以及 並置光學通道之一陣列,其中各光學通道包含用於將一標的區域之至少一個部分區域投影於該影像感測器之一影像感測器區域上的光學件; 光束偏轉構件,其用於使該等光學通道之一光學路徑在該光束偏轉構件之光束偏轉區域中偏轉; 其中該光束偏轉構件係形成為沿光學通道之該陣列之一線延伸方向配置的琢面之一陣列,且其中一個琢面經分配至各光學通道且其中各琢面包含至少一個光束偏轉區域; 其中一雜散光抑制結構係配置於一第一琢面之一第一光束偏轉區域與一並置第二琢面之一第二光束偏轉區域之間,該雜散光抑制結構經組配以減少該第一光束偏轉區域與該第二光束偏轉區域之間的雜散光之轉變。
  2. 如請求項1之多孔徑成像裝置,其中該雜散光抑制結構係配置於該光束偏轉構件之一主要側面上。
  3. 如請求項1或2之多孔徑成像裝置,其中該雜散光抑制結構相對於該第一琢面或該第二琢面之表面形貌升高。
  4. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構包含相對於該第一琢面或該第二琢面的包含一多邊形鏈之一表面形貌。
  5. 如請求項4之多孔徑成像裝置,其中該多邊形鏈包含在該多孔徑成像裝置之操作期間本質上平行於該多孔徑成像裝置之一並置的至少部分透明之蓋罩而延行的一部分,其中該光束偏轉構件經組配以使該等光學通道偏轉穿過該至少部分透明之蓋罩且其中該至少部分透明之蓋罩形成該多孔徑成像裝置之一外殼部分。
  6. 如請求項5之多孔徑成像裝置,其中該光束偏轉構件包含一第一位置及一第二位置,該光束偏轉構件可在該第一位置與該第二位置之間移動,其中該光束偏轉構件經組配以在該第一位置中及在該第二位置中使各光學通道之該光學路徑在不同方向上偏轉;其中該多邊形鏈為配置於該光束偏轉構件之一第一主要側面上的一第一多邊形鏈,其中該至少部分透明之蓋罩為配置成面向該第一主要側面之一第一至少部分透明之蓋罩,且其中該雜散光抑制結構之一第二多邊形鏈或另一雜散光抑制結構係配置於該光束偏轉構件之一第二主要側面上,且在該第二位置中平行於該多孔徑成像裝置之一並置的第二至少部分透明之蓋罩而延行,其中該光束偏轉構件經組配以在該第二位置中使該等光學通道偏轉穿過該第二至少部分透明之蓋罩,且其中該第二至少部分透明之蓋罩形成該多孔徑成像裝置之一外殼部分。
  7. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構沿垂直於該線延伸方向之一方向在該光束偏轉構件之一主要側面上以該光束偏轉構件之延伸的至少30%之一程度延伸。
  8. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構係形成為連續結構且沿垂直於該線延伸方向之一方向在該光束偏轉構件之一主要側面上以該光束偏轉構件之該延伸的至少95%之一程度延伸。
  9. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構包括一金屬材料、一塑膠材料及/或一半導體材料中之至少一者。
  10. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構在該多孔徑成像裝置之一操作狀態下係配置成與該多孔徑成像裝置之一外殼隔開。
  11. 如前述請求項中任一項之多孔徑成像裝置,其中該光束偏轉構件包含一第一位置及一第二位置,該光束偏轉構件可在該第一位置與該第二位置之間移動,其中該光束偏轉構件經組配以在該第一位置中及在該第二位置中使各光學通道之該光學路徑在一不同方向上偏轉。
  12. 如請求項11之多孔徑成像裝置,其中該光束偏轉構件在該第一位置與該第二位置之間可繞一旋轉軸線旋轉移動。
  13. 如請求項11或12中任一項之多孔徑成像裝置,其中該光束偏轉構件包括一第一反射主要側面及一第二反射主要側面,其中在該第一位置中,該第一反射側面係配置成面向一影像感測器,且在該第二位置中,該第二反射側面係配置成面向該影像感測器。
  14. 如請求項13之多孔徑成像裝置,其中該雜散光抑制結構為配置於該光束偏轉構件之該第一主要側面上之一第一雜散光抑制結構,且其中一第三雜散光抑制結構係在該第二主要側面上配置於一第三琢面之一第三光束偏轉區域與一第四琢面之一第四光束偏轉區域之間。
  15. 如請求項14之多孔徑成像裝置,其中該第一雜散光抑制結構及該第三雜散光抑制結構係一體地形成。
  16. 如前述請求項中任一項之多孔徑成像裝置,其中該雜散光抑制結構為一第一雜散光抑制結構且經由一隆脊連接至該第二光束偏轉區域與配置成鄰近於該第二琢面之一第三琢面之該第三光束偏轉區域之間的一鄰近的第二雜散光抑制結構,該隆脊在該光束偏轉構件之面向該等光學件的一側面上延伸。
  17. 如請求項16之多孔徑成像裝置,其中該隆脊係與該第一雜散光抑制結構或該第二雜散光抑制結構一體地形成。
  18. 如請求項16或17之多孔徑成像裝置,其中該隆脊經配置以使得一光學通道之該光學路徑係配置於該陣列與該光束偏轉構件之間、該隆脊與該多孔徑成像裝置之一射出側面之間的一區域中,其中該射出側面為該多孔徑成像裝置之在該光學路徑藉由該光束偏轉構件偏轉時穿過的一側面。
  19. 如前述請求項中任一項之多孔徑成像裝置,其中該光束偏轉構件連接至一至少部分透明之蓋罩,其中該透明蓋罩在該光束偏轉構件自該第一位置移動至該第二位置期間至少部分地移出該外殼,其中該光束偏轉構件經組配以使該等光學通道之該等光學路徑偏轉以使得該等光學通道穿過該透明蓋罩。
  20. 如請求項中任一項之多孔徑成像裝置,其中該光束偏轉構件經組配以在一第一位置中使該等光學通道之該光學路徑偏轉以使得該光學路徑穿過一第一至少部分透明之蓋罩,且在一第二位置中使該等光學通道之該光學路徑偏轉以使得該光學路徑穿過一第二至少部分透明之區域。
  21. 如請求項20之多孔徑成像裝置,其中一第一隔膜經組配以在該第二位置中至少部分地光學關閉該第一至少部分透明之蓋罩,且其中一第二隔膜經組配以在該第一位置中至少有時至少部分地光學關閉該第二至少部分透明之蓋罩。
  22. 如請求項21之多孔徑成像裝置,其中該第一隔膜及/或該第二隔膜係形成為電致變色隔膜。
  23. 如請求項21或22之多孔徑成像裝置,其中一第一隔膜及該第二隔膜對該多孔徑成像裝置之至少兩個光學通道有效。
  24. 如請求項20至23中任一項之多孔徑成像裝置,其中該雜散光抑制結構在該光束偏轉構件之該第一位置中及該第二位置中相對於該多孔徑成像裝置之一外殼以一無接觸方式配置。
  25. 如前述請求項中任一項之多孔徑成像裝置,其中至少兩個光學通道經分配至一個琢面。
  26. 如前述請求項中任一項之裝置,其進一步包括:一光學影像穩定器,其針對該等光學通道之兩個、多個或所有光學路徑具有一聯合效應,以藉由產生一影像感測器與該陣列或該光束偏轉構件之間的一平移相對移動而用於沿一第一影像軸線及一第二影像軸線之影像穩定,其中該平移移動平行於由該多孔徑成像裝置拍攝之一影像的一第一影像軸線及一第二影像軸線而延行。
  27. 如前述請求項中任一項之裝置,其進一步包括:一光學影像穩定器,其針對該等光學通道之兩個、多個或所有光學路徑具有一聯合效應,以藉由產生一影像感測器與該陣列之間的一平移相對移動而用於沿一第一影像軸線之影像穩定及藉由產生該光束偏轉構件之一旋轉移動而用於沿一第二影像軸線之影像穩定。
  28. 如請求項26或27之多孔徑成像裝置,其中該光學影像穩定器包括至少一個致動器且經配置以使得其至少部分地配置於藉由一立方體之側面橫跨的兩個平面之間,其中該立方體之該等側面平行於彼此以及平行於該陣列之一線延伸方向及該影像感測器與該等光學件之間的該等光學通道之該光學路徑的部分而定向,且該立方體之體積最小且仍包括該影像感測器及該陣列。
  29. 如請求項28之多孔徑成像裝置,其中該影像穩定器突出於該等平面之間的一區域外至多50%。
  30. 如前述請求項中任一項之多孔徑成像裝置,其進一步包括一聚焦構件,該聚焦構件包括用於調整該多孔徑成像裝置之一焦點的至少一個致動器,該至少一個致動器經組配以提供該等光學通道中之一者的至少一個光學件與該影像感測器之間的一相對移動。
  31. 如請求項30之多孔徑成像裝置,其中該聚焦構件經配置以使得其至少部分地配置於藉由一立方體之側面橫跨的兩個平面之間,其中該立方體之該等側面平行於彼此以及平行於該陣列之一線延伸方向及一影像感測器與該等光學件之間的該等光學通道之該光學路徑的部分而定向,且該立方體之體積最小且仍包括該影像感測器及該陣列。
  32. 如請求項30或31之多孔徑成像裝置,其中該聚焦構件經組配以針對所有光學通道共同地調整該焦點。
  33. 如前述請求項中任一項之多孔徑成像裝置,其中該標的區域之各部分區域係藉由至少兩個光學通道投影於至少兩個影像感測器區域上。
  34. 如前述請求項中任一項之多孔徑成像裝置,其中該陣列之該等光學通道的一總量將該標的區域之部分區域的一總量投影於該至少一個影像感測器之影像感測器區域的一總量上,且其中該等部分區域之該總量完全投影待拍攝之該標的區域。
  35. 如前述請求項中任一項之多孔徑成像裝置,其中用於拍攝該標的區域之該陣列係形成為一單行。
  36. 一種成像系統,其具有一如前述請求項中任一項之多孔徑成像裝置。
  37. 如請求項36之成像系統,其包含如請求項1至31之至少一第一多孔徑成像裝置及至少一第二多孔徑成像裝置。
  38. 如請求項37之成像系統,其進一步針對該第一多孔徑成像裝置及該第二多孔徑成像裝置包含以下各者中之至少一者: 一共同影像感測器; 一共同聚焦構件,其包括用於共同地調整該第一多孔徑成像裝置及該第二多孔徑成像裝置之一焦點的至少一個致動器; 一光學影像穩定器,其針對該第一多孔徑成像裝置之至少一個光學路徑及針對該第二多孔徑成像裝置之至少一個光學路徑具有一聯合效應,以藉由產生該影像感測器與該第一多孔徑成像裝置或該第二多孔徑成像裝置之該陣列或該光束偏轉構件之間的一平移相對移動而用於沿一第一影像軸線及一第二影像軸線之影像穩定;以及 一共同光束偏轉構件,其配置於該第一多孔徑成像裝置及該第二多孔徑成像裝置之該陣列與該標的區域之間,且經組配以使該第一多孔徑成像裝置及該第二多孔徑成像裝置之該等光學通道之一光學路徑偏轉。
  39. 如請求項38之成像系統,其包括:一光學影像穩定器,其針對該第一多孔徑成像裝置之該至少一個光學路徑及針對該第二多孔徑成像裝置之該至少一個光學路徑具有一聯合效應,其中該光學影像穩定器經組配以產生該影像感測器與該陣列之間的一平移相對移動以用於沿一第一影像軸線之影像穩定及產生該第一多孔徑成像裝置之該光束偏轉構件或該第二多孔徑成像裝置之該光束偏轉構件之一旋轉移動以用於沿該第二影像軸線之影像穩定。
  40. 如請求項36至39中任一項之成像系統,其經組配為一行動電話、智慧型手機、平板電腦或監視器。
  41. 一種用於拍攝一標的區域之方法,其包含: 提供一影像感測器; 藉由並置光學通道之一陣列投影一標的區域,其中各光學通道包含用於將一標的區域之至少一個部分區域投影於該影像感測器之一影像感測器區域上的光學件; 使該等光學通道之一光學路徑在一光束偏轉構件之光束偏轉區域中偏轉,該光束偏轉構件係形成為沿光學通道之該陣列之一線延伸方向配置的琢面之一陣列,且其中一個琢面經分配至各光學通道且其中各琢面包含一光束偏轉區域; 藉由在一第一琢面之一第一光束偏轉區域與一第二琢面之一第二光束偏轉區域之間配置一雜散光抑制結構而減少該第一光束偏轉區域與該第二光束偏轉區域之間的雜散光之轉變。
TW106108146A 2016-03-14 2017-03-13 多孔徑成像裝置、成像系統及用以拍攝標的區域之方法 TWI651544B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102016204148.7 2016-03-14
DE102016204148.7A DE102016204148A1 (de) 2016-03-14 2016-03-14 Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Erfassen eines Objektbereichs

Publications (2)

Publication Number Publication Date
TW201740161A true TW201740161A (zh) 2017-11-16
TWI651544B TWI651544B (zh) 2019-02-21

Family

ID=58314172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106108146A TWI651544B (zh) 2016-03-14 2017-03-13 多孔徑成像裝置、成像系統及用以拍攝標的區域之方法

Country Status (9)

Country Link
US (1) US10606152B2 (zh)
EP (1) EP3371650B1 (zh)
JP (1) JP6756831B2 (zh)
KR (1) KR102340698B1 (zh)
CN (1) CN108604044B (zh)
DE (1) DE102016204148A1 (zh)
ES (1) ES2753807T3 (zh)
TW (1) TWI651544B (zh)
WO (1) WO2017157724A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204035B3 (de) 2017-03-10 2018-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Bereitstellen einer Multiaperturabbildungsvorrichtung
DE102017206429A1 (de) 2017-04-13 2018-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Bereitstellen einer Multiaperturabbildungsvorrichtung
DE102017206442B4 (de) 2017-04-13 2021-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Abbildung von Teilgesichtsfeldern, Multiaperturabbildungsvorrichtung und Verfahren zum Bereitstellen derselben
DE102017211586A1 (de) 2017-07-06 2019-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit geringer falschlichtempfindlichkeit, abbildungssystem und verfahren zum bereitstellen einer multiaperturabbildungsvorrichtung
DE102017216172A1 (de) 2017-09-13 2019-03-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit geringer bauhöhe und umschaltbarer blickrichtung, abbildungssystem und verfahren zum bereitstellen einer multiaperturabbildungsvorrichtung
IL255559A0 (en) 2017-11-09 2017-12-31 Eshel Aviv Ltd A system and method for electro-optical photography and event detection in large format and wide sectorial coverage
CN209525525U (zh) * 2018-01-25 2019-10-22 台湾东电化股份有限公司 光学元件驱动机构
KR102488006B1 (ko) * 2018-03-20 2023-01-12 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 광학 기기
KR102513680B1 (ko) * 2018-06-08 2023-03-24 엘지이노텍 주식회사 카메라 모듈 및 그의 깊이 정보 추출 방법
US11681164B2 (en) 2018-07-27 2023-06-20 Tectus Corporation Electrical interconnects within electronic contact lenses
KR102655129B1 (ko) 2018-09-03 2024-04-04 후아웨이 테크놀러지 컴퍼니 리미티드 비디오 인코더, 비디오 디코더 및 그에 대응하는 방법
JP7267414B2 (ja) * 2018-10-30 2023-05-01 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 撮像装置と情報端末
DE102018222865A1 (de) 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung mit einer Multiaperturabbildungsvorrichtung zur Erzeugung einer Tiefenkarte
DE102018222861A1 (de) 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung mit einer Multiaperturabbildungsvorrichtung zum Akkumulieren von Bildinformation
CN113287001B (zh) * 2019-01-14 2023-04-04 奥宝科技有限公司 用于光学系统的多重图像获取装置
DE102019204075B4 (de) * 2019-03-25 2022-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung mit einer Multiaperturabbildungsvorrichtung zur Erzeugung einer Tiefenkarte
US11237410B2 (en) * 2019-08-28 2022-02-01 Tectus Corporation Electronics assembly for use in electronic contact lens
KR20210112822A (ko) * 2020-03-06 2021-09-15 엘지이노텍 주식회사 카메라 모듈
CN111430259B (zh) * 2020-04-08 2024-01-02 匠岭科技(上海)有限公司 一种用于半导体工艺中显影后的硅片检测装置
CN111758641B (zh) * 2020-07-31 2023-05-16 深圳埃吉尔海洋科技有限公司 模块化空间桁架结构轻型半潜式悬索深远海网箱

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421342Y2 (zh) * 1987-04-08 1992-05-15
JPH104540A (ja) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Phsビデオフォン
JP4265037B2 (ja) * 1998-07-31 2009-05-20 ソニー株式会社 三次元撮像装置とステレオカメラ記録再生システム
US6992699B1 (en) * 2000-08-02 2006-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Camera device with selectable image paths
JP2002171430A (ja) * 2000-11-30 2002-06-14 Canon Inc 複眼撮像系、撮像装置および電子機器
JP4503933B2 (ja) * 2003-03-13 2010-07-14 オリンパス株式会社 撮像装置
CN2662265Y (zh) * 2003-10-15 2004-12-08 中国科学院光电技术研究所 光学系统的多孔径杂光抑制装置
WO2005041562A1 (ja) * 2003-10-22 2005-05-06 Matsushita Electric Industrial Co., Ltd. 撮像装置とその製造方法、携帯機器、及び撮像素子とその製造方法
KR100699561B1 (ko) * 2005-03-24 2007-03-23 (주)미래세움 무효화각을 이용한 입체영상 촬영용 스테레오 줌렌즈와이를 부착한 입체카메라
US20070041723A1 (en) * 2005-08-22 2007-02-22 Gutierrez Roman C Elongated camera system for cellular telephones
JP2007116361A (ja) * 2005-10-19 2007-05-10 Sony Ericsson Mobilecommunications Japan Inc カメラ付き携帯端末及び撮像装置
JP2008180773A (ja) * 2007-01-23 2008-08-07 Nikon Corp デジタルカメラおよび光学機器
JP4412362B2 (ja) * 2007-07-18 2010-02-10 船井電機株式会社 複眼撮像装置
US20090122148A1 (en) * 2007-09-14 2009-05-14 Fife Keith G Disjoint light sensing arrangements and methods therefor
US20100053414A1 (en) * 2008-01-11 2010-03-04 Satoshi Tamaki Compound eye camera module
WO2011078244A1 (ja) * 2009-12-24 2011-06-30 シャープ株式会社 多眼撮像装置および多眼撮像方法
JP2011239207A (ja) * 2010-05-11 2011-11-24 Fujifilm Corp 撮像装置、撮像制御方法、及び撮像制御プログラム
CN103636191B (zh) * 2011-08-23 2016-11-02 松下电器产业株式会社 三维摄像装置、透镜控制装置
US20140340536A1 (en) * 2011-09-15 2014-11-20 Nokia Corporation Image Stabilization
KR101255945B1 (ko) * 2011-09-16 2013-04-23 엘지이노텍 주식회사 카메라 모듈
US20140055624A1 (en) * 2012-08-23 2014-02-27 Microsoft Corporation Switchable camera mirror apparatus
US9398264B2 (en) * 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
DE102013209246B4 (de) * 2013-05-17 2019-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer falschlichtunterdrückenden Struktur und Vorrichtung mit derselben
JP6175945B2 (ja) * 2013-07-05 2017-08-09 ソニー株式会社 視線検出装置及び視線検出方法
CN108989649B (zh) * 2013-08-01 2021-03-19 核心光电有限公司 具有自动聚焦的纤薄多孔径成像系统及其使用方法
US9325906B2 (en) * 2013-10-18 2016-04-26 The Lightco Inc. Methods and apparatus relating to a thin camera device
US20150318308A1 (en) * 2014-04-30 2015-11-05 Pixtronix, Inc. Low temperature polycrystalline silicon backplane with coated aperture edges
US9386222B2 (en) * 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
DE102014212104A1 (de) 2014-06-24 2015-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur relativen positionierung einer multiaperturoptik mit mehreren optischen kanälen relativ zu einem bildsensor
DE102014213371B3 (de) * 2014-07-09 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur erfassung eines objektbereichs

Also Published As

Publication number Publication date
KR20180112016A (ko) 2018-10-11
WO2017157724A1 (de) 2017-09-21
US20190011809A1 (en) 2019-01-10
KR102340698B1 (ko) 2021-12-16
DE102016204148A1 (de) 2017-09-14
JP2019513239A (ja) 2019-05-23
TWI651544B (zh) 2019-02-21
CN108604044B (zh) 2021-09-14
CN108604044A (zh) 2018-09-28
US10606152B2 (en) 2020-03-31
JP6756831B2 (ja) 2020-09-16
ES2753807T3 (es) 2020-04-14
EP3371650A1 (de) 2018-09-12
EP3371650B1 (de) 2019-09-04

Similar Documents

Publication Publication Date Title
TWI651544B (zh) 多孔徑成像裝置、成像系統及用以拍攝標的區域之方法
TWI642975B (zh) 包含多孔徑成像裝置之設備、其製造方法及用以捕捉全視野之方法
TWI612337B (zh) 多孔徑成像裝置、成像系統及用以拍攝標的區域之方法
TWI629513B (zh) 多孔徑成像裝置、其製造方法及成像系統
CN109479126B (zh) 多孔径成像装置、提供输出信号的方法、及捕捉全视场的方法
TWI617192B (zh) 具有通道特定可調性之多孔徑成像裝置
TW201713993A (zh) 包含多通道成像器件之裝置及其製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees