TW201727682A - 陶瓷電容體 - Google Patents

陶瓷電容體 Download PDF

Info

Publication number
TW201727682A
TW201727682A TW106110839A TW106110839A TW201727682A TW 201727682 A TW201727682 A TW 201727682A TW 106110839 A TW106110839 A TW 106110839A TW 106110839 A TW106110839 A TW 106110839A TW 201727682 A TW201727682 A TW 201727682A
Authority
TW
Taiwan
Prior art keywords
dielectric
temperature
ceramic capacitor
ceramic
dielectric ceramic
Prior art date
Application number
TW106110839A
Other languages
English (en)
Inventor
Sea-Fue Wang
Yuan-Cheng Lai
Jian-Hua Li
Ming-Hua Chen
Original Assignee
Holy Stone Enterprise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holy Stone Enterprise Co Ltd filed Critical Holy Stone Enterprise Co Ltd
Priority to TW106110839A priority Critical patent/TW201727682A/zh
Publication of TW201727682A publication Critical patent/TW201727682A/zh

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

本發明係有關一種陶瓷電容體,利用複合材料之觀點,以高居禮溫度(Curie temperature)介電陶瓷層之介電材料添加低居禮溫度介電材料,形成複合相。兩種材料相互補償並穩定介電常數對溫度之變化率,可達到大溫度範圍之介電特性穩定度。本發明以鈦酸鋇(BaTiO3)為低居禮溫度介電材料並為主要成分(鈦酸鋇居禮溫度約130℃),添加居禮溫度200℃以上之介電材料。所述的添加物可以選自鉭酸鋰(LiTaO3)、鈰酸鋇(BaCeO3)、鈮酸鈉(NaNbO3)及其任意組合所組成的群組其中之一種,可得到新型介電材料,且其電容溫度係數(Temperature Coefficient of Capacitance;TCC)穩定。藉此,以此種方式所開發之介電陶瓷材料可符合電子工業協會(Electronic Industries Association,EIA)之X9R規範(應用溫度範圍-55~200℃,電容溫度係數△C/C≦±15%),高溫應用範圍甚至可超越250℃。

Description

陶瓷電容體
本發明關於一種陶瓷電容體,特別是關於一種以鈦酸鋇介電材料為主,選擇添加居禮溫度較高的介電材料作為次要成分,來使元件有更廣的使用範圍及穩定性。
積層陶瓷電容是目前電子產品中,常用的電容器,應用產品包括PC、手機、車用電子元件等。以積層陶瓷電容之材料結構來看,主要分為介電陶瓷體與內外電極兩方面。其中,介電陶瓷體以鈦酸鋇為主要原料,外加各種添加材料後形成NPO、COG、Y5V、X7R、X8R、Z5U等種類,依電氣特性應用也各不相同,介電陶瓷體決定積層陶瓷電容的特性。
由於X8R積層陶瓷電容擁有良好的介電溫度穩定特性(-55至150℃,△C/C≦15%),已被廣泛應用於溫度變化較大的微型化電子元件中。但在某些汽車電子元件,比如:引擎電子控制裝置(ECU)、防煞車鎖死系統(ABS)及燃料供給程式系統(PGMFI)等系統,需要在較為嚴苛的環境條件下運作,因此,積層陶瓷電容要應用於此類環境中時,所需具有平穩且大溫度範圍之介電特性。隨著科技的進步,以及基於安全上的考量,開發符合電子工業協會標準中X9R規範(-55至200℃,△C/C≦15%),甚至是 可應用於更大溫度範圍的介電材料已成為必然之趨勢。
由於鈦酸鋇具有很高的介電常數,目前在X8R積層陶瓷電容器的開發上,介電陶瓷體的材料也多以鈦酸鋇為主。但鈦酸鋇在居禮溫度(Tc)時,其晶體結構會由強電性的正方晶相(tetragonal)轉變為順電性的立方晶相(Cubic),在此溫度會有介電峰值出現,而影響介電溫度穩定性。鈦酸鋇之居禮溫度大約130℃左右。因此,以鈦酸鋇為主的介電陶瓷材料會藉由添加各種居禮點遷移劑、晶粒成長抑制劑及燒結促進劑等,來提升材料的介電溫度穩定性。
美國公開專利7,821,770揭示一種積層陶瓷電容,符合X8R特性,且在高溫的環境下具有高穩定性。其所使用的介電陶瓷材料的組成以100mol鈦酸鋇(BaTiO3)添加0.4至3.0mol氧化鎂(MgO)、6.0至16.5mol稀土族氧化物(ReO3/2)、3至5mol的氧化矽(SiO2)及0.05至0.4mol的金屬氧化物(MOx),其中稀土族氧化物可以選擇釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)及釔(Y)的氧化物;金屬氧化物可以選擇釩(V)、鉻(Cr)、錳(Mn)的氧化物。
另一美國公開專利7,541,306同樣揭示一種積層陶瓷電容可以符合X8R之要求。其介電陶瓷材料同樣以鈦酸鋇為主,添加其他金屬氧化物,如:氧化鋇、氧化釔、氧化鋯、氧化矽、氧化鎂、氧化錳、氧化鉬、氧化鈣、氧化鎦、氧化鐿或氧化鎢。
而美國公開專利7,751,178揭示一種介電陶瓷材料,可以讓積層陶瓷電容的穩定性提昇至符合X8R(-55至150℃,△C/C≦15%)之要求。其所揭示的介電材料以一鈣鈦礦結構之化合物為主體,所述化合物之化 學式為(Ba1-x-yCaxSny)m(Ti1-zZrz)O3,其中,0.1≦x≦0.2,0.02≦y≦0.2,0≦z≦0.05,0.99≦m≦1.015,再以稀土族元素作為添加物。每100mole的化合物添加0.5至20mole,添加物可以選自鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鎦(Lu)及釔(Y)等。
但隨著科技發展的日新月異,元件對於材料的要求也會隨之提高,若積層陶瓷電容可以適用於更廣的溫度範圍,可以擴大其產業利用性。
本發明之目的即在於提供一種陶瓷電容體,可以應用於積層陶瓷電容中,且可符合EIA之X9R規範,並可搭配卑金屬電極(Base-Metal-Electrode,BME)製程或貴金屬電極(Noble-Metal Electrode,NME)製程製備。介電陶瓷層的組成以鈦酸鋇(BaTiO3)為主,並添加高居禮溫度之添加物,其中,添加物之莫耳百分比約1至50%,且添加物的居禮溫度(Curie temperature)大於200℃。所述的添加物選自鉭酸鋰(LiTaO3)、鈰酸鋇(BaCeO3)、鈮酸鈉(NaNbO3)及其任意組合所組成的群組其中之一種。
本發明之另一目的係提供一種積層陶瓷電容器,一陶瓷電容體,包含複數層介電陶瓷層,以及沿著該些介電陶瓷層之表面形成之複數層內部陰極層及內部陽極層,其中,介電陶瓷層使用上述之介電陶瓷材料燒結而成,內部陰極層及內部陽極層相互交錯排列;一外部陰極;及一外部陽極,其中,外部陰極及外部陽極形成於陶瓷電容體外,並分別與該些內部陰極層及內部陽極層電性連接。其中,製成之積層陶瓷電容器之電 容溫度係數符合X9R溫度範圍,亦即在溫度範圍於-55℃~200℃之間,其相對電容值變化量小於15%。
本發明所提供之陶瓷電容體,皆在還原氣氛下燒結,可以與現有積層陶瓷電容之卑金屬電極製程整合,便於市場上開發利用。積層陶瓷電容應用此種介電陶瓷層時,其介電特性對溫度之穩定性可以符合X8R及X9R之規範,適用於溫度變化較大的電子元件中。
1‧‧‧積層陶瓷電容器
10‧‧‧陶瓷電容體
100‧‧‧介電陶瓷層
101‧‧‧內部陰極層
103‧‧‧內部陽極層
11‧‧‧外部陰極
13‧‧‧外部陽極
圖1 製備本發明陶瓷電容體的介電陶瓷層之實施例流程圖;圖2 製備本發明陶瓷電容體的介電陶瓷層之另一實施例流程圖;圖3A 本發明陶瓷電容體的介電陶瓷層實施例1~7之介電溫度穩定性量測圖;圖3B 本發明陶瓷電容體的介電陶瓷層實施例1~7之介電損失之量測圖;圖4 本發明陶瓷電容體的介電陶瓷層實施例8~10之介電溫度穩定性量測圖;圖5 積層陶瓷電容器之結構剖面圖。
為使本發明之上述目的、特徵和優點能更明顯易懂,下文依本發明之陶瓷電容體的介電陶瓷層及其製備粉末之組成,特舉較佳實施例,並配合所附相關圖式,作詳細說明如下。
本發明之陶瓷電容體之介電陶瓷層組成以鈦酸鋇(BaTiO3)為主,並添加高居禮溫度之添加物。本發明實施例中所使用的添加物居禮 溫度(Curie temperature;Tc)至少大於200℃,最好大於300℃,使主材料鈦酸鋇的居禮溫度能夠往高溫移動。並且,添加物同樣是具有高介電常數的陶瓷材料,以免使介電陶瓷材料整體的介電常數太低。添加物的莫耳百分比約1至50%,以和鈦酸鋇形成複合相,較佳實施例為5至50%。
在本發明較佳實施例中,添加物選自鉭酸鋰(LiTaO3)、鈰酸鋇(BaCeO3)、鈮酸鈉(NaNbO3)及其任意組合所組成的群組其中之一種。前述材料之居禮溫度皆大於300℃,和鈦酸鋇混合形成複合相之後,可以使整體陶瓷電容體之介電陶瓷層的居禮溫度提高於130℃以上。
在本發明較佳實施例中,添加物選自鉭酸鋰(LiTaO3)、鈰酸鋇(BaCeO3)、鈮酸鈉(NaNbO3)及其任意組合所組成的群組其中之一種。前述材料之居禮溫度皆大於300℃,和鈦酸鋇混合形成複合相之後,可以使整體陶瓷電容體之介電陶瓷層的居禮溫度提高於130℃以上。
在一較佳實施例中,添加物為莫耳百分比1至50%的鉭酸鋰(LiTaO3)、鈰酸鋇(BaCeO3)或鈮酸鈉(NaNbO3)。
本發明並以鈦酸鋇添加鉭酸鋰(LiTaO3),及鈦酸鋇添加鈮酸鈉(NaNbO3)為例,來詳述製備陶瓷電容體的介電陶瓷層之流程,及電性量測結果。
首先,鈦酸鋇添加鉭酸鋰(LiTaO3)時,使用鈦酸鋇添加0.5至25莫耳百分比碳酸鋰(Li2CO3)及氧化鉭(Ta2O5)製備(1-x)(BaTiO3)-x(LiTaO3)之初始粉末,亦可將碳酸鋰及氧化鉭先行合成鉭酸鋰(LiTaO3)化合物再與鈦酸鋇進行混合。在另一較佳實施例中,係添加碳酸鋇(BaCO3)及氧化鈰(CeO2),依莫耳百分比分別約1至50%,亦可先行合成鈰酸鋇化合物,以1至 50莫爾百分比與鈦酸鋇進行混合製備(1-x)(BaTiO3)-x(BaCeO3)之初始粉末。在又一較佳實施例中,以相同工法混合鈮酸鈉(NaNbO3),莫耳百分比約1至50莫爾百分比,製備(1-x)(BaTiO3)-x(NaNbO3)之初始粉末。
請參照下表1,即為本發明中用來製備陶瓷電容體之介電陶瓷層的粉末組成之不同實施例:
請參照圖1,為本發明之陶瓷電容體的介電陶瓷層之製程步 驟,但製備方法不需特別限定,具有通常知識者所能了解之陶瓷製程,皆可用來製備本發明之陶瓷電容體的介電陶瓷層。本發明實施例中,以鈦酸鋇添加鉭酸鋰為例。首先將鈦酸鋇、碳酸鋰(LiCO3)及氧化鉭(Ta2O5)粉末一特定莫耳百分比配比,進行球磨混合24小時,如步驟S100。
接著,烘乾粉末,及煅燒800℃持溫4小時如步驟S105,在煅燒程序形成所需要的化合物。再進行第二次球磨,如步驟S110。由於煅燒後粉末顆粒較大,經過二次球磨使粉末顆粒變小,在之後的燒結製程中,可以在較低的燒結溫度就達到緻密化的效果。經過了過篩造粒後,將粉體壓錠成型,製作生胚,如步驟S115。
將生胚放置在低溫爐中,於550℃持溫4小時以燒除黏結劑,如步驟S120。之後,如步驟S125,在一還原氣氛下,進行一燒結步驟。所述的還原氣氛所用氣體為N2:H2=97:3,氣體流量每分鐘約0.3公升,露點溫度45℃。而在本實施例中,燒結溫度大約1150℃至1275℃,並持溫約2小時。在燒結製程中,可使介電陶瓷材料達到可應用之緻密程度。
最後,進行一熱處理製程,使介電陶瓷層進行再氧化熱處理,如步驟S130。本實施例之熱處理製程係在1000℃下持溫數小時,以減少介電陶瓷層在還原氣氛下燒結所造成的過多氧空位。其中,持溫的時間會依照所混合的鉭酸鋰之莫耳百分比,以及燒結後,介電陶瓷層的緻密性來調整。
本發明之陶瓷電容體的介電陶瓷層的製備方式,另一實施例是以鈦酸鋇添加鈮酸鈉(NaNbO3)為例。請參照圖2,與前一實施例不同的是,本實施例是僅先將碳酸鈉(Na2CO3)及氧化鈮(Nb2O5)粉末依照特定比 例,球磨混合12小時,如步驟S200。接著,再進行一煅燒製程,以形成欲添加的化合物鈮酸鈉(NaNbO3),如步驟S205。本發明實施例中,煅燒製程是在950℃下持溫約2小時。
形成鈮酸鈉(NaNbO3)化合物之後再與鈦酸鋇粉末混合,球磨24小時,如步驟S210。進行過篩造粒後,將粉體壓錠成型,製作生胚,如步驟S215。接著,將生胚放置在低溫爐中,於550℃持溫4小時以燒除黏結劑,如步驟S220。
在還原氣氛下,進行一燒結步驟,如步驟S225。還原氣氛之條件如同前一實施例,但是在此一實施例中,燒結溫度大約1150℃至1300℃,並持溫至少2小時。最後進行再氧化熱處理製程,如步驟S230,本實施例之熱處理製程是在900℃,持溫約2至10小時。
製備完成之後進行電性量測,請參照圖3A及3B,為本發明實施例中,鈦酸鋇添加鉭酸鋰後的電容溫度係數及介電損耗。由圖3B中,可以看出實施例1~7之介電損失(tanδ)在室溫下皆小於2%。
而圖3A中可以看出,實施例1~3之電容溫度係數皆符合EIA之X8R規範。並且,每提高5mol%鉭酸鋰添加量,電容溫度係數在200℃,約可提高7%。其中,實施例4~7已可符合X9R規範(-55至200℃,△C/C≦15%)。由此趨勢可以推知,當鉭酸鋰添加量繼續增加時,其介電溫度穩定性可符合X9R規範,甚至可達到更大溫度範圍的穩定性。
而實施例1~4所測得之介電常數(k)分別約1865、1669、1325及1073。可知隨著鉭酸鋰添加量的增加,介電常數值也會往下降,因此添加量最好不超過50mol%。
請參照圖4,為本發明實施例中,鈦酸鋇添加鈮酸鈉後的介電溫度特性。由圖4中可以看出,實施例8~9之介電溫度穩定性能達到X9R之規範,而實施例10則在X9R之出口溫度點(200℃)的電容溫度係數大約16.56%,經過製程改良後,亦可作為X9R陶瓷電容器使用。
而實施例7~9所量測到的介電常數(K)分別為可達到三萬左右,具有很好的電性表現。雖然,在室溫下的介電損失約2%,但已可證明鈦酸鋇在添加此種高居禮溫度之介電材料時,確實可以有效使居禮峰之溫度往高溫移動,並具有良好的介電溫度穩定特性。
本發明之陶瓷電容體的可以應用於一積層陶瓷電容,請參考圖5,為積層陶瓷電容之結構剖面圖。圖中積層陶瓷電容器1,包含一陶瓷電容體10、一外部陰極11、一外部陽極13。
陶瓷電容體10包含複數層介電陶瓷層100,以及沿著介電陶瓷層100之表面形成之複數層內部陰極層101及內部陽極層103,且內部陰極層101及內部陽極層103相互交錯排列,彼此之間以介電陶瓷層100隔開。
外部陰極11及外部陽極13係形成於陶瓷電容體10外,並分別與內部陰極層101及內部陽極層103電性連接。在此應用中,陶瓷電容體所構成之上述之介電陶瓷層100,係由本發明之陶瓷電容體的介電陶瓷層所燒結而成。
其中,積層陶瓷電容器之介電陶瓷層應用本發明之介電陶瓷材料時,電容溫度係數符合X8R或X9R溫度範圍,亦即在溫度範圍於-55℃~200℃之間,其相對電容值變化量小於15%。
本發明所提供之積層陶瓷電容及介電陶瓷層,與習知技術所使用之材料相比,具有下列優點:
(1)本發明之陶瓷電容體的介電陶瓷層由鈦酸鋇添加高居禮溫度的介電材料,形成混合物,可有效使居禮峰向高溫移動(shift)。
(2)本發明之陶瓷電容體的介電陶瓷層應用於積層陶瓷電容時,可以符合X8R及X9R之規範,甚至超越,足以適用於溫度變化較大的微型化電子元件中。
(3)本發明之陶瓷電容體的介電陶瓷層皆在還原氣氛下燒結,適用於卑金屬電極製程,可以與現有積層陶瓷電容之製程整合,便於市場上開發利用。
本發明雖以較佳實例闡明如上,然其並非用以限定本發明精神與發明實體僅止於上述實施例。几熟悉此項技術者,當可輕易了解並利用其它元件或方式來產生相同的功效。是以,在不脫離本發明之精神與範疇內所作之修改,均應包含在下述之申請專利範圍內。
S100、S105、S110、S115、S120、S125、S130‧‧‧流程步驟

Claims (1)

  1. 一種陶瓷電容體,包含介電陶瓷層,其中,該介電陶瓷層的組成以鈦酸鋇(BaTiO3)為主,並添加莫耳百分比1至50%的鉭酸鋰(LiTaO3)。
TW106110839A 2012-03-22 2012-03-22 陶瓷電容體 TW201727682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106110839A TW201727682A (zh) 2012-03-22 2012-03-22 陶瓷電容體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106110839A TW201727682A (zh) 2012-03-22 2012-03-22 陶瓷電容體

Publications (1)

Publication Number Publication Date
TW201727682A true TW201727682A (zh) 2017-08-01

Family

ID=60186784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110839A TW201727682A (zh) 2012-03-22 2012-03-22 陶瓷電容體

Country Status (1)

Country Link
TW (1) TW201727682A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310826A (zh) * 2018-03-27 2019-10-08 Tdk株式会社 层叠陶瓷电子部件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310826A (zh) * 2018-03-27 2019-10-08 Tdk株式会社 层叠陶瓷电子部件
CN110310826B (zh) * 2018-03-27 2021-08-03 Tdk株式会社 层叠陶瓷电子部件

Similar Documents

Publication Publication Date Title
TWI592961B (zh) 積層陶瓷電容器
KR100631995B1 (ko) 저온 소성용 유전체 자기조성물 및 이를 이용한 적층세라믹 콘덴서
US8335073B2 (en) Dielectric ceramic composition and ceramic electronic component
CN102531591A (zh) 具有高介电常数的介电组合物、包括其的多层陶瓷电容器、和多层陶瓷电容器的制备方法
JP5668572B2 (ja) 誘電体磁器組成物およびセラミック電子部品
JP2012072037A (ja) 誘電体磁器組成物およびその製造方法ならびにセラミック電子部品
JP4522025B2 (ja) 誘電体磁器及び積層型電子部品並びに積層型電子部品の製法
JP2010285336A (ja) 誘電物質用焼結物質およびその製造方法、並びにコア−シェル微細構造を有する誘電物質用焼結物質およびその製造方法
JP6467648B2 (ja) 誘電体組成物、誘電体素子、電子部品および積層電子部品
JP5760890B2 (ja) 誘電体磁器組成物および電子部品
JP4582973B2 (ja) 誘電体磁器及び積層型電子部品並びに積層型電子部品の製法
JP5153069B2 (ja) 誘電体磁器
JP5831079B2 (ja) 誘電体磁器組成物および電子部品
KR20100094388A (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
JP5541318B2 (ja) 誘電体磁器組成物およびセラミック電子部品
KR20140118557A (ko) 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 캐패시터
CN103319167A (zh) 介电陶瓷材料及其所制成的积层陶瓷电容
JP5488118B2 (ja) 誘電体磁器組成物および電子部品
TW201727682A (zh) 陶瓷電容體
JP2005263508A (ja) 誘電体磁器組成物、積層型セラミックコンデンサ及びその製造方法
JP5834674B2 (ja) 誘電体磁器組成物および電子部品
JP2005272262A (ja) 誘電体磁器組成物、積層型セラミックコンデンサ及びその製造方法
KR100875288B1 (ko) Y5v 특성이 우수한 mlcc용 유전체 조성물 및 그의제조방법
JP4463093B2 (ja) 積層セラミックコンデンサおよびその製法
JP2002087879A (ja) 誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ