TW201712741A - Low-reflectance electrode for display device, and sputtering target - Google Patents

Low-reflectance electrode for display device, and sputtering target Download PDF

Info

Publication number
TW201712741A
TW201712741A TW105118696A TW105118696A TW201712741A TW 201712741 A TW201712741 A TW 201712741A TW 105118696 A TW105118696 A TW 105118696A TW 105118696 A TW105118696 A TW 105118696A TW 201712741 A TW201712741 A TW 201712741A
Authority
TW
Taiwan
Prior art keywords
layer
film
substrate
electrode
electrode according
Prior art date
Application number
TW105118696A
Other languages
Chinese (zh)
Other versions
TWI622088B (en
Inventor
釘宮敏洋
後藤裕史
志田陽子
Original Assignee
神戶製鋼所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神戶製鋼所股份有限公司 filed Critical 神戶製鋼所股份有限公司
Publication of TW201712741A publication Critical patent/TW201712741A/en
Application granted granted Critical
Publication of TWI622088B publication Critical patent/TWI622088B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

The present invention pertains to an electrode having a laminated structure provided with a first layer and a second layer on a substrate, in the stated order from the substrate side, wherein the electrode is characterized in that: the substrate is a plastic or ceramic substrate having a refractive index of 1.4 or more; in the first layer a portion of a Cu film contains nitrogen and/or oxygen; the second layer is a Cu film or a Cu alloy film; and reflectivity at wavelengths of 450 nm, 550 nm, and 650 nm in the laminated structure when viewed from the substrate side is 40% or less.

Description

對於顯示裝置的低反射電極、顯示裝置、輸入裝置和濺射靶材Low reflection electrode for display device, display device, input device, and sputtering target

本發明是有關於一種具有具備第1層與第2層的積層結構的電極,更詳細而言是有關於一種具有具備作為Cu膜的第1層與作為Cu膜或Cu合金膜的第2層的積層結構的電極。本發明的電極主要用作對於平面顯示器或曲面顯示器的低反射電極。The present invention relates to an electrode having a laminated structure including a first layer and a second layer, and more particularly to a first layer having a Cu film and a second layer as a Cu film or a Cu alloy film. The electrode of the laminated structure. The electrodes of the present invention are primarily used as low reflection electrodes for flat or curved displays.

先前,對液晶顯示器或有機電致發光(electroluminescence,EL)顯示器等顯示裝置的閘極電極、源極·汲極電極、或觸控面板感測器等輸入裝置中的配線所要求的要求特性為耐熱性、電阻率、接觸電阻率。Previously, the required characteristics for wiring in input devices such as gate electrodes, source/drain electrodes, or touch panel sensors of display devices such as liquid crystal displays or organic electroluminescence (EL) displays are Heat resistance, electrical resistivity, and contact resistivity.

然而,與先前相比,近年來的高解析顯示器的掃描線密度變高,因此,迄今為止並未成為問題的、視認到自金屬電極·配線的反射的情況正逐步成為課題。However, the scanning line density of the high-resolution display has been increasing in recent years, and the reflection from the metal electrode and the wiring has been gradually becoming a problem.

為了控制自金屬電極配線的反射,需要改善不可視化等光學特性,需要新賦予迄今為止並未要求過的光學特性。與此同時,需要滿足所述般的作為顯示器配線的先前的要求特性。In order to control the reflection from the metal electrode wiring, it is necessary to improve optical characteristics such as invisibility, and it is necessary to newly impart optical characteristics that have not been required so far. At the same time, it is necessary to satisfy the aforementioned conventional characteristics as display wiring.

關於所述先前的要求特性,作為有效地防止配線的氧化者,專利文獻1中揭示有一種具備Cu合金層的配線結構,所述Cu合金層包括包含純Cu或電阻率低的Cu合金的第一層、與包含含有特定元素的Cu-Zn合金的第二層。With regard to the above-mentioned required characteristics, as a method of effectively preventing oxidation of wiring, Patent Document 1 discloses a wiring structure including a Cu alloy layer including a Cu alloy containing pure Cu or a low specific resistance. A layer and a second layer comprising a Cu-Zn alloy containing a specific element.

另外,專利文獻2是有關於一種橋電極的黑化處理,揭示有使用Al、Au、Ag、Sn、Cr、Ni、Ti或Mg等金屬作為材料來構成,並藉由化學反應以金屬氧化物、氮化物、氟化物等使其黑化。專利文獻3中揭示有使用以矽、鋁的任一者為主成分的氮化物作為構成抗反射層的透明電極。Further, Patent Document 2 relates to a blackening treatment of a bridge electrode, and discloses that a metal such as Al, Au, Ag, Sn, Cr, Ni, Ti, or Mg is used as a material, and a metal oxide is formed by a chemical reaction. , nitride, fluoride, etc. to blacken it. Patent Document 3 discloses that a nitride containing as a main component of bismuth or aluminum is used as a transparent electrode constituting an antireflection layer.

另外,專利文獻4中,為了解決使導電性透明圖案胞元相互連接的橋電極中的視認性的問題,而記載有於形成於導電性圖案胞元的絕緣層上使用黑色的導電材料形成橋電極的方法。 [現有技術文獻] [專利文獻]Further, in Patent Document 4, in order to solve the problem of visibility in a bridge electrode in which conductive transparent pattern cells are connected to each other, it is described that a black conductive material is used to form a bridge on an insulating layer formed on a conductive pattern cell. The method of the electrode. [Prior Art Document] [Patent Literature]

[專利文獻1]日本專利第5171990號公報 [專利文獻2]日本專利特開2013-127792號公報 [專利文獻3]日本專利特開2014-78198號公報 [專利文獻4]日本專利特開2013-127792號公報[Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A-2013-127792 (Patent Document 3) Japanese Patent Laid-Open No. Hei. No. Hei. Bulletin No. 127792

[發明所欲解決之課題] 然而,專利文獻1中記載的Cu合金雖顯示出高耐熱性及良好的電特性,但並無與低反射率相關的記載。另外,專利文獻4中只不過是揭示了利用金屬的黑色化處理的橋電極的反射率降低化技術,完全未注意到電阻率的降低。亦包含高電阻率者而難以同時滿足良好的電特性及低反射率。[Problems to be Solved by the Invention] However, the Cu alloy described in Patent Document 1 exhibits high heat resistance and good electrical properties, but has no description regarding low reflectance. Further, Patent Document 4 merely discloses a technique for reducing the reflectance of a bridge electrode by a blackening treatment of metal, and does not notice a decrease in resistivity at all. It also includes high resistivity and it is difficult to satisfy both good electrical characteristics and low reflectance.

另外,與使用Al合金的情況相比,將Cu合金用於顯示器用的電極的情況的電阻率小,因此較佳。進而,與Al相比,Cu可使用以獲得所期望的片電阻的電極膜厚更薄。因此,於膜基材的情況下,可減輕因電極的應力而產生的基材的捲曲的問題。專利文獻2雖記載了可藉由使橋電極黑化來調節反射率,但關於Cu並無任何揭示,亦無任何教示。另外,專利文獻3只不過是揭示了Al合金作為透明膜,關於Cu並無任何揭示,亦無任何教示。即,並無與使用Cu合金的優異的低反射配線膜相關的報告。Further, in the case where the Cu alloy is used for an electrode for display, the resistivity is small as compared with the case of using an Al alloy, which is preferable. Further, compared with Al, Cu can be used to obtain a thinner electrode film having a desired sheet resistance. Therefore, in the case of a film substrate, the problem of curling of the substrate due to stress of the electrode can be alleviated. Patent Document 2 describes that the reflectance can be adjusted by blackening the bridge electrode, but there is no disclosure about Cu and no teaching. Further, Patent Document 3 merely discloses an Al alloy as a transparent film, and there is no disclosure about Cu, and there is no teaching. That is, there is no report relating to an excellent low-reflection wiring film using a Cu alloy.

本發明是著眼於所述情況而成者,其目的在於提供一種使用Cu合金的新穎的低反射配線膜作為具備低反射率、高耐熱性及良好的電特性的電極。本發明的電極主要用作液晶顯示器或有機EL顯示器所代表的顯示裝置或觸控面板感測器等輸入裝置等中的閘極電極及源極·汲極電極。The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel low-reflection wiring film using a Cu alloy as an electrode having low reflectance, high heat resistance, and good electrical characteristics. The electrode of the present invention is mainly used as a gate electrode and a source/drain electrode in an input device such as a display device or a touch panel sensor represented by a liquid crystal display or an organic EL display.

另外,本發明的目的亦在於提供一種用以製造該電極的濺射靶材。 [解決課題之手段]Further, it is an object of the present invention to provide a sputtering target for manufacturing the electrode. [Means for solving the problem]

本發明者等人反覆進行了努力研究,結果發現藉由具有具備特定基板、及作為特定Cu膜的第1層與作為Cu膜或Cu合金膜的第2層的積層結構,可獲得於所述積層結構中,自基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下的使用Cu合金的電極,可解決所述課題,從而完成了本發明。As a result of intensive studies, the inventors of the present invention have found that a laminate structure including a specific substrate, a first layer as a specific Cu film, and a second layer as a Cu film or a Cu alloy film can be obtained. In the laminated structure, the electrode using a Cu alloy having a wavelength of 450 nm, a wavelength of 550 nm, and a reflectance of 650 nm at a wavelength of 650 nm when viewed from the substrate side can solve the above problems, and completed the present invention.

即,本發明為以下的[1]~[14]。 [1] 一種電極,其為具有於基板上自所述基板側起依次具備第1層與第2層的積層結構的電極,並且其特徵在於: 所述基板為折射率為1.4以上的樹脂基板或陶瓷基板, 所述第1層為Cu膜的一部分中含有氮及氧的至少一種以上的Cu膜, 所述第2層為Cu膜或Cu合金膜,且 於所述積層結構中,自所述基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下。 [2] 如所述[1]所述的電極,其特徵在於:所述第1層以金屬原子比計包含25原子%以上且70原子%以下的Ni。 [3] 如所述[1]或[2]所述的電極,其特徵在於:於所述基板與所述第1層之間具有透明導電膜。 [4] 如所述[1]或[2]所述的電極,其特徵在於:於所述基板與所述第1層之間具有氧化矽膜或氮化矽膜。 [5] 如所述[1]或[2]所述的電極,其特徵在於:所述Cu合金膜包含選自由Ti、Mn、Fe、Co、Ni、Zn、Ta、La及Nd所組成的群組中的至少一種以上的元素。 [6] 如所述[3]所述的電極,其特徵在於:所述透明導電膜為包含至少含有In及Sn的氧化物的透明導電膜、包含至少含有In及Zn的氧化物的透明導電膜、或包含至少含有In及Ga的氧化物的透明導電膜。 [7] 如所述[1]或[2]所述的電極,其特徵在於:包含所述第1層及所述第2層的積層配線的電阻率為5 μΩ·cm以下。 [8] 如所述[1]~[6]中任一項所述的電極,其特徵在於:能夠進行使用含有過氧化氫水的蝕刻液的濕式蝕刻。 [9] 如所述[1]~[8]中任一項所述的電極,其特徵在於:於所述積層結構中,於300℃以上的熱處理後的、自所述基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下。 [10] 如所述[1]或[2]所述的電極,其中所述第1層的膜厚為50 nm~100 nm。 [11] 一種顯示裝置,其特徵在於:具有如所述[1]~[10]中任一項所述的電極。 [12] 一種輸入裝置,其特徵在於:具有如所述[1]~[10]中任一項所述的電極。 [13] 一種濺射靶材,其為構成如所述[1]~[10]中任一項所述的電極的第1層的成膜中所使用的濺射靶材,且其特徵在於: 包含Cu及Ni、或一部分經氮化的Cu及Ni作為主材料。That is, the present invention is the following [1] to [14]. [1] An electrode having a laminated structure including a first layer and a second layer in this order from the substrate side on a substrate, wherein the substrate is a resin substrate having a refractive index of 1.4 or more. Or a ceramic substrate, wherein the first layer is a Cu film containing at least one of nitrogen and oxygen in a part of the Cu film, and the second layer is a Cu film or a Cu alloy film, and in the laminated structure, The reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed on the substrate side was 40% or less. [2] The electrode according to the above [1], wherein the first layer contains 25 atom% or more and 70 atom% or less of Ni in terms of a metal atomic ratio. [3] The electrode according to [1] or [2], wherein a transparent conductive film is provided between the substrate and the first layer. [4] The electrode according to [1] or [2], wherein a ruthenium oxide film or a tantalum nitride film is provided between the substrate and the first layer. [5] The electrode according to [1] or [2], wherein the Cu alloy film comprises a layer selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd. At least one or more elements in the group. [6] The electrode according to the above [3], wherein the transparent conductive film is a transparent conductive film containing an oxide containing at least In and Sn, and a transparent conductive layer containing an oxide containing at least In and Zn. A film or a transparent conductive film containing at least an oxide of In and Ga. [7] The electrode according to the above [1] or [2], wherein the laminated wiring including the first layer and the second layer has a specific resistance of 5 μΩ·cm or less. [8] The electrode according to any one of [1] to [6] wherein wet etching using an etching solution containing hydrogen peroxide water can be performed. [9] The electrode according to any one of [1] to [8] wherein, in the laminated structure, after heat treatment at 300 ° C or higher, when viewed from the substrate side The reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm is 40% or less. [10] The electrode according to [1] or [2], wherein the first layer has a film thickness of 50 nm to 100 nm. [11] A display device, comprising the electrode according to any one of [1] to [10]. [12] An input device, comprising the electrode according to any one of [1] to [10]. [13] A sputtering target used for forming a film of the first layer of the electrode according to any one of the above [1] to [10], wherein the sputtering target is characterized in that : Contains Cu and Ni, or a part of nitrided Cu and Ni as main materials.

[發明的效果] 根據本發明的電極,可同時達成低反射率、高耐熱性及良好的電特性。因此,於將本發明的電極用於閘極電極及源極·汲極電極的情況下,可提供不會視認到自該電極的反射的顯示裝置或輸入裝置。[Effects of the Invention] According to the electrode of the present invention, low reflectance, high heat resistance, and good electrical characteristics can be achieved at the same time. Therefore, when the electrode of the present invention is used for a gate electrode and a source/drain electrode, a display device or an input device that does not recognize reflection from the electrode can be provided.

本發明的電極主要適宜用作液晶顯示裝置等顯示裝置或觸控面板感測器等輸入裝置中的薄膜電晶體(Thin Film Transistor,以下有時稱為「TFT」)的電極。以下,作為薄膜電晶體的電極,以顯示裝置為例進行說明,但並不限定於該些。The electrode of the present invention is preferably used as an electrode of a thin film transistor (hereinafter sometimes referred to as "TFT") in an input device such as a liquid crystal display device or a touch panel sensor. Hereinafter, the display device will be described as an example of the electrode of the thin film transistor, but the invention is not limited thereto.

<液晶顯示器> 圖1為示意性地表示通常的液晶顯示器的TFT電極與基板的構成的概略剖面圖。即,圖1表示TFT基板10。於TFT基板搭載有閘極電極12及源極·汲極電極11。 液晶顯示器的閘極電極及源極·汲極電極多使用主成分包含Cu的Cu主配線電極層3與於該Cu主配線電極層3的下部積層位障金屬層2而成者。Cu主配線電極層多直接使用純Cu,位障金屬層主要使用純Mo或純Ti等高熔點金屬薄膜。<Liquid Crystal Display> FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode and a substrate of a general liquid crystal display. That is, FIG. 1 shows the TFT substrate 10. The gate electrode 12 and the source/drain electrode 11 are mounted on the TFT substrate. In the gate electrode and the source/drain electrodes of the liquid crystal display, the Cu main wiring electrode layer 3 mainly containing Cu and the barrier metal layer 2 are laminated on the lower portion of the Cu main wiring electrode layer 3. Pure Cu is directly used for the Cu main wiring electrode layer, and a high melting point metal film such as pure Mo or pure Ti is mainly used for the barrier metal layer.

視認者自圖1所示的箭頭A側觀察液晶顯示器,觀察到來自背光單元(back light unit)20的透過光(箭頭D),藉此可視認到映像。另外,自視認者側進入的外部光(箭頭B)由TFT基板的閘極電極及源極·汲極電極表面、即Cu主配線電極層表面反射,從而視認者再次識別到該反射光(箭頭C)。The viewer observes the liquid crystal display from the arrow A side shown in FIG. 1, and observes the transmitted light (arrow D) from the backlight unit 20, thereby visually recognizing the image. Further, external light (arrow B) entering from the viewer side is reflected by the gate electrode of the TFT substrate and the surface of the source/drain electrode, that is, the surface of the Cu main wiring electrode layer, so that the viewer recognizes the reflected light again (arrow) C).

<有機EL顯示器> 繼而,對底部發光型有機EL顯示裝置中的薄膜電晶體的電極進行說明。<Organic EL Display> Next, an electrode of a thin film transistor in a bottom emission type organic EL display device will be described.

圖2為示意性地表示通常的底部發光型有機EL顯示器的TFT電極的構成的概略剖面圖。TFT基板10的構成與圖1中的TFT基板10相同,且50英吋以上的液晶顯示器的閘極電極12及源極·汲極電極11使用主成分包含Cu的Cu主配線電極層3與於該Cu主配線電極層3的下部積層位障金屬層2而成者。Cu主配線電極層多直接使用純Cu,位障金屬層主要使用純Mo或純Ti等高熔點金屬薄膜。FIG. 2 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode of a general bottom emission type organic EL display. The configuration of the TFT substrate 10 is the same as that of the TFT substrate 10 in FIG. 1, and the gate electrode 12 and the source/drain electrode 11 of the liquid crystal display of 50 inches or more are made of a Cu main wiring electrode layer 3 containing Cu as a main component. The barrier metal layer 2 is formed by laminating the lower portion of the Cu main wiring electrode layer 3. Pure Cu is directly used for the Cu main wiring electrode layer, and a high melting point metal film such as pure Mo or pure Ti is mainly used for the barrier metal layer.

如圖2所示的箭頭A般,視認者自圖1的相反側觀察顯示器,觀察到來自內置於TFT基板內的有機EL發光層21的透過光(箭頭E),藉此可視認為映像。另外,自視認者側進入的外部光(箭頭B)由TFT基板的閘極電極及源極·汲極電極的下表面、即位障金屬層的下表面反射,從而視認者再次識別到該反射光(箭頭C)。As seen by the arrow A shown in FIG. 2, the viewer observes the display from the opposite side of FIG. 1, and observes the transmitted light (arrow E) from the organic EL light-emitting layer 21 built in the TFT substrate, thereby visually observing the image. Further, external light (arrow B) entering from the viewer side is reflected by the gate electrode of the TFT substrate and the lower surface of the source/drain electrode, that is, the lower surface of the barrier metal layer, so that the viewer recognizes the reflected light again. (arrow C).

<電極> 本發明的電極為具有於基板上自所述基板側起依次具備第1層與第2層的積層結構的電極,且其特徵在於:所述基板為折射率為1.4以上的樹脂基板或陶瓷基板,所述第1層為Cu膜的一部分中含有氮及氧的至少一種以上的Cu膜,所述第2層為Cu膜或Cu合金膜,且於所述積層結構中,自所述基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下。<Electrode> The electrode of the present invention has an electrode having a laminated structure of a first layer and a second layer in this order from the substrate side, and the substrate is a resin substrate having a refractive index of 1.4 or more. In the ceramic substrate, the first layer is a Cu film containing at least one of nitrogen and oxygen in a part of the Cu film, and the second layer is a Cu film or a Cu alloy film, and in the laminated structure, The reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed on the substrate side was 40% or less.

基板可使用通常所使用的樹脂基板或陶瓷基板,折射率只要為1.4以上即可。A resin substrate or a ceramic substrate which is generally used can be used as the substrate, and the refractive index should be 1.4 or more.

作為樹脂基板,可列舉聚碳酸酯樹脂、聚對苯二甲酸乙二酯樹脂、聚醯亞胺樹脂等。Examples of the resin substrate include a polycarbonate resin, a polyethylene terephthalate resin, and a polyimide resin.

作為陶瓷基板,可列舉玻璃基板、藍寶石玻璃等。於TFT電極的情況下,就耐熱性的方面而言,基板較佳為使用玻璃基板。基板的厚度只要為0.2 mm~5 mm即可,較佳為0.5 mm~0.7 mm。Examples of the ceramic substrate include a glass substrate and sapphire glass. In the case of a TFT electrode, in terms of heat resistance, the substrate is preferably a glass substrate. The thickness of the substrate may be 0.2 mm to 5 mm, preferably 0.5 mm to 0.7 mm.

於所述基板上,自基板側起依次積層Cu膜的一部分中含有氮及氧的至少一種以上的Cu膜(第1層)、與Cu膜或Cu合金膜(第2層)。 藉由設為所述結構,可將包含第1層與第2層的積層結構中的、自基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均設為40%以下。On the substrate, at least one or more Cu films (first layer) containing nitrogen and oxygen, and a Cu film or a Cu alloy film (second layer) are formed in a part of the Cu film in this order from the substrate side. With the above configuration, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side in the laminated structure including the first layer and the second layer can be set to 40%. the following.

所謂作為第1層的、Cu膜的一部分中含有氮及氧的至少一種以上的Cu膜,為Cu-O膜、Cu-N膜、或Cu-O-N膜。另外,於第1層中包含Ni的情況下,為Cu-Ni-O薄膜、Cu-Ni-N薄膜、或Cu-Ni-O-N薄膜。The Cu film containing at least one of nitrogen and oxygen in a part of the Cu film as the first layer is a Cu-O film, a Cu-N film, or a Cu-O-N film. Further, when Ni is contained in the first layer, it is a Cu-Ni-O thin film, a Cu-Ni-N thin film, or a Cu-Ni-O-N thin film.

第1層中的O及N的含量只要以合計計為5原子%~50原子%即可,就低反射率的方面而言,較佳為10原子%~30原子%。The content of O and N in the first layer may be 5 atom% to 50 atom% in total, and is preferably 10 atom% to 30 atom% in terms of low reflectance.

就熱處理後亦可實現低反射率的方面而言,更佳為第1層以金屬組成部中的原子比計包含25原子%以上且70原子%以下的Ni,進而佳為30原子%以上。其中,本說明書中的第1層中的Ni的含量與第1層的形成中使用的Cu-Ni合金靶材中的Ni含量為相同含義,是指與Ni添加量相同的值。In terms of the low reflectance after the heat treatment, it is more preferable that the first layer contains 25 atom% or more and 70 atom% or less of Ni in an atomic ratio in the metal component, and more preferably 30 atom% or more. In addition, the content of Ni in the first layer in the present specification has the same meaning as the Ni content in the Cu—Ni alloy target used for forming the first layer, and means the same value as the amount of addition of Ni.

進而,第1層中亦可包含選自由Ti、Mn、Fe、Co、Ni、Zn、Ta、La及Nd所組成的群組中的一種以上的元素作為Cu、O、N、Ni以外的元素,第1層中的Cu、O、N、Ni以外的元素的比例較佳為以合計計為0.1原子%~10原子%。Further, the first layer may further contain one or more elements selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd as elements other than Cu, O, N, and Ni. The ratio of elements other than Cu, O, N, and Ni in the first layer is preferably from 0.1 atom% to 10 atom% in total.

再者,第1層中所含的元素的種類與量可藉由感應耦合電漿(Inductively Coupled Plasma,ICP)發光分析裝置來測定。Further, the type and amount of the elements contained in the first layer can be measured by an Inductively Coupled Plasma (ICP) luminescence analyzer.

就低反射率化的方面而言,第1層的膜厚較佳為50 nm~100 nm,藉由改變濺射的功率或時間,可調整膜厚。In terms of low reflectance, the film thickness of the first layer is preferably from 50 nm to 100 nm, and the film thickness can be adjusted by changing the power or time of sputtering.

於第2層為Cu膜的情況下,為純Cu膜。When the second layer is a Cu film, it is a pure Cu film.

另外,於第2層為Cu合金膜的情況下,就耐熱性或密接性、耐濕性的方面而言,較佳為包含選自由Ti、Mn、Fe、Co、Ni、Zn、Ta、La及Nd所組成的群組中的一種以上的元素作為Cu以外的元素,其中更佳為Ti、Mn、Ni、Zn。Further, when the second layer is a Cu alloy film, it is preferable to contain a material selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, and La in terms of heat resistance, adhesion, and moisture resistance. One or more elements in the group consisting of Nd and Nd are elements other than Cu, and more preferably Ti, Mn, Ni, or Zn.

Cu合金膜中的Cu以外的元素的比例較佳為以合計計為0.1原子%~10原子%。The ratio of elements other than Cu in the Cu alloy film is preferably from 0.1 atom% to 10 atom% in total.

再者,作為第2層的Cu合金膜中所含的元素的種類與量可藉由ICP發光分析裝置來測定。另外,就低反射率化的方面而言,第2層的膜厚較佳為50 nm~100 nm。膜厚可藉由改變濺射的功率或時間來調整。In addition, the kind and amount of the element contained in the Cu alloy film as the second layer can be measured by an ICP emission spectrometer. Further, in terms of low reflectance, the film thickness of the second layer is preferably from 50 nm to 100 nm. The film thickness can be adjusted by changing the power or time of sputtering.

以下,使用顯示裝置為例,例示本發明的電極的較佳實施方式來對本發明的電極進行說明。Hereinafter, an electrode of the present invention will be described by exemplifying a preferred embodiment of the electrode of the present invention by using a display device as an example.

<實施方式1A> 圖3是示意性地表示底部發光型有機EL顯示器的TFT基板10的概略剖面圖,閘極電極12及源極·汲極電極11使用Cu主配線電極層3及光學調整層5的Cu薄膜。光學調整層5為第1層,Cu主配線電極層3為第2層。(Embodiment 1A) FIG. 3 is a schematic cross-sectional view showing a TFT substrate 10 of a bottom emission type organic EL display, in which a Cu main wiring electrode layer 3 and an optical adjustment layer are used for the gate electrode 12 and the source/drain electrodes 11. 5 Cu film. The optical adjustment layer 5 is the first layer, and the Cu main wiring electrode layer 3 is the second layer.

為了抑制視認到來自外部光(箭頭B)的反射光(箭頭C),代替先前的位障金屬層而於TFT基板10中的閘極電極12及源極·汲極電極11的下層側配置光學調整層5(第1層)。In order to suppress the reflected light (arrow C) from the external light (arrow B), the optical layer is disposed on the lower electrode side of the gate electrode 12 and the source/drain electrode 11 in the TFT substrate 10 instead of the previous barrier metal layer. Adjust layer 5 (1st layer).

第1層包含Cu膜的一部分中含有氮與氧中的至少一種以上的Cu膜。調整第1層的組成以使自視認者側(箭頭A、TFT基板側)測定的閘極電極及源極·汲極電極的波長450 nm、550 nm及650 nm下的反射率均為40%以下。該反射率較佳為均為30%以下。The first layer contains a Cu film containing at least one of nitrogen and oxygen in a part of the Cu film. Adjusting the composition of the first layer so that the reflectance at the wavelengths of 450 nm, 550 nm, and 650 nm measured by the gate electrode and the source/drain electrode measured from the viewer side (arrow A, TFT substrate side) is 40%. the following. The reflectance is preferably 30% or less.

具體而言,藉由第1層的Cu膜中包含氧及氮的至少任一者,可降低波長450 nm、550 nm及650 nm下的反射率。Specifically, by including at least one of oxygen and nitrogen in the Cu film of the first layer, the reflectance at wavelengths of 450 nm, 550 nm, and 650 nm can be lowered.

進而,於TFT基板的製造步驟中,較佳為於接受300℃以上的熱歷程以後,自視認者側測定的閘極電極及源極·汲極電極的波長450 nm、550 nm及650 nm下的反射率亦均為40%以下,更佳為30%以下。Further, in the step of manufacturing the TFT substrate, it is preferable to measure the wavelengths of the gate electrode and the source/drain electrode measured at 450 nm, 550 nm, and 650 nm after the thermal history of 300 ° C or higher. The reflectance is also 40% or less, more preferably 30% or less.

具體而言,藉由將作為第1層的Cu膜設為包含Ni的Cu-Ni合金膜,可於熱處理後亦達成低反射率。Specifically, by using the Cu film as the first layer as a Cu-Ni alloy film containing Ni, a low reflectance can be achieved even after the heat treatment.

第1層與第2層的積層配線的電阻率較佳為5 μΩ·cm以下,更佳為3 μΩ·cm以下。可藉由減少第2層的合金成分的添加量、或增大第1層與第2層的膜厚的比、即、使第2層變厚來降低電阻率。The resistivity of the laminated wiring of the first layer and the second layer is preferably 5 μΩ·cm or less, and more preferably 3 μΩ·cm or less. The resistivity can be lowered by reducing the addition amount of the alloy component of the second layer or increasing the ratio of the film thicknesses of the first layer to the second layer, that is, increasing the thickness of the second layer.

關於第1層與第2層的積層配線的厚度,若過薄則外表的電阻變高,若過厚則難以進行蝕刻加工,因此較佳為100 nm~1000 nm之間。厚度可藉由濺射成膜的功率與成膜時間來調整。When the thickness of the laminated wiring of the first layer and the second layer is too thin, the external resistance becomes high, and if it is too thick, etching processing is difficult, and therefore it is preferably between 100 nm and 1000 nm. The thickness can be adjusted by the power of film formation by sputtering and the film formation time.

就對量產線的適合性的方面而言,較佳為第1層與第2層的積層配線可利用含有過氧化氫水的蝕刻液進行濕式蝕刻。 蝕刻液較佳為以過氧化氫水為主成分,過氧化氫水較佳為3%以上。In terms of suitability for the production line, it is preferable that the laminated wiring of the first layer and the second layer be wet-etched by using an etching solution containing hydrogen peroxide water. The etching liquid is preferably composed mainly of hydrogen peroxide water, and the hydrogen peroxide water is preferably 3% or more.

<實施方式1B> 圖4為示意性地表示底部發光型有機EL顯示器的TFT基板10的概略剖面圖,代替實施方式1A中所示的光學調整層5而由Cu反應層7(第1層)及透明導電膜6來構成。(Embodiment 1B) FIG. 4 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display, and is replaced by an Cu reaction layer 7 (first layer) instead of the optical adjustment layer 5 shown in Embodiment 1A. And a transparent conductive film 6 is comprised.

透明導電膜6存在於基板與第1層之間,與第1層一併作為積層結構的光學調整層有效地發揮作用,而實現低反射率。The transparent conductive film 6 is present between the substrate and the first layer, and functions as an optical adjustment layer having a laminated structure together with the first layer, thereby achieving low reflectance.

作為Cu反應層,可使用Cu膜的一部分中含有氮與氧中的至少一種以上的Cu膜。As the Cu reaction layer, a Cu film containing at least one of nitrogen and oxygen in a part of the Cu film can be used.

Cu反應層的厚度較佳為50 nm~100 nm。The thickness of the Cu reaction layer is preferably from 50 nm to 100 nm.

透明導電膜的材料並無特別限定,就導電性高、蝕刻加工性良好且積層時積層結構中的反射率變得更低的方面而言,較佳為使用包含至少含有In及Sn的氧化物的透明導電膜(In-Sn-O)、包含至少含有In及Zn的氧化物的透明導電膜(In-Zn-O)、或包含至少含有In及Ga的氧化物的透明導電膜(In-Ga-O)等。The material of the transparent conductive film is not particularly limited, and it is preferable to use an oxide containing at least In and Sn in terms of high conductivity, good etching workability, and low reflectance in the laminated structure at the time of lamination. Transparent conductive film (In-Sn-O), transparent conductive film (In-Zn-O) containing at least an oxide of In and Zn, or transparent conductive film containing at least oxide containing In and Ga (In- Ga-O) and so on.

Cu反應層7及Cu主配線電極層3的較佳態樣分別與實施方式1A中的第1層及第2層的較佳條件相同。Preferred embodiments of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as those of the first layer and the second layer in the first embodiment.

<實施方式1C> 圖5為示意性地表示底部發光型有機EL顯示器的TFT基板10的概略剖面圖,代替實施方式1A中所示的光學調整層5而由Cu反應層7(第1層)及氧化矽膜或氮化矽膜8來構成。(Embodiment 1C) FIG. 5 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display, and is replaced by an Cu reaction layer 7 (first layer) instead of the optical adjustment layer 5 shown in Embodiment 1A. It is composed of a hafnium oxide film or a tantalum nitride film 8.

其中,於該情況下,氧化矽膜及氮化矽膜均為絕緣膜,因無法於源極·汲極電極11的下部與半導體層4電性連接,因此實施方式1C僅適用於閘極電極12。In this case, since both the hafnium oxide film and the tantalum nitride film are insulating films, since the lower portion of the source/drain electrodes 11 cannot be electrically connected to the semiconductor layer 4, Embodiment 1C is only applicable to the gate electrode. 12.

作為氧化矽膜,可列舉包含SiO、SiO2 的SiOx (其中,0<x≦2)。作為氮化矽膜可列舉SiN等。 認為藉由於基板與第1層之間具有氧化矽膜或氮化矽膜,就低反射率化的方面而言為較佳者。氧化矽膜或氮化矽膜的膜厚較佳為50 nm~400 nm。膜厚可藉由成膜時間來調整。Examples of the ruthenium oxide film include SiO x containing SiO or SiO 2 (where 0<x≦2). Examples of the tantalum nitride film include SiN and the like. It is considered that the ruthenium oxide film or the tantalum nitride film is preferably formed between the substrate and the first layer in terms of low reflectance. The film thickness of the hafnium oxide film or the hafnium nitride film is preferably from 50 nm to 400 nm. The film thickness can be adjusted by the film formation time.

此外,Cu反應層7及Cu主配線電極層3的較佳態樣分別與實施方式1A中的第1層及第2層的較佳條件相同,Cu反應層7與實施方式1A中的Cu反應層7相同。Further, preferred embodiments of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as those of the first layer and the second layer in Embodiment 1A, respectively, and the Cu reaction layer 7 reacts with Cu in Embodiment 1A. Layer 7 is the same.

<第1層的成膜方法> 本發明中的第1層可藉由反應性濺射法來製膜。具體而言,可藉由使用目標膜組成的濺射靶材來進行濺射而製膜。即,使用純Cu靶材並於Ar等惰性氣體、與O2 及N2 的至少任一種氣體的混合氣體的流通下進行濺射,藉此可獲得Cu-O薄膜、Cu-N薄膜、或Cu-O-N薄膜。<Method of Forming Film of First Layer> The first layer in the present invention can be formed by a reactive sputtering method. Specifically, the film can be formed by sputtering using a sputtering target composed of a target film. In other words, a pure Cu target is used and sputtering is performed under a flow of a mixed gas of an inert gas such as Ar or at least one of O 2 and N 2 to obtain a Cu-O thin film, a Cu-N thin film, or Cu-ON film.

另外,使用Cu-Ni合金靶材並於Ar等惰性氣體與O2 及N2 的至少任一種氣體的混合氣體的流通下進行濺射,藉此可獲得Cu-Ni-O薄膜、Cu-Ni-N薄膜、或Cu-Ni-O-N薄膜。Further, a Cu-Ni alloy target material is used and sputtering is performed under a flow of a mixed gas of an inert gas such as Ar and at least one of O 2 and N 2 to obtain a Cu-Ni-O film and Cu-Ni. -N film, or Cu-Ni-ON film.

藉由使用Cu-Ni合金靶材的Ni含量不同的靶材,可調整所得的第1層中的Ni含量。The Ni content in the obtained first layer can be adjusted by using a target having a different Ni content of the Cu-Ni alloy target.

另外,藉由改變濺射時流通的O2 及N2 的至少任一種氣體的流量,可將第1層中所含的O2 及N2 的至少任一種氣體設為所期望的值。In addition, at least one of O 2 and N 2 contained in the first layer can be set to a desired value by changing the flow rate of at least one of O 2 and N 2 flowing during sputtering.

濺射的條件只要為先前通常進行濺射的範圍即可,例如,到達真空度較佳為1×10-6 Torr以下,基板溫度較佳為室溫~100℃,成膜溫度較佳為室溫~100℃,濺射時的氣體壓力較佳為1 mTorr~10 mTorr。The sputtering condition may be a range in which sputtering is conventionally performed. For example, the degree of vacuum is preferably 1 × 10 -6 Torr or less, the substrate temperature is preferably room temperature to 100 ° C, and the film formation temperature is preferably a chamber. The temperature at the temperature of -100 ° C is preferably from 1 mTorr to 10 mTorr at the time of sputtering.

第1層的膜厚可藉由濺射放電的功率與放電時間來調整,可利用觸針式段差計來測定。The film thickness of the first layer can be adjusted by the power of the sputtering discharge and the discharge time, and can be measured by a stylus type step meter.

<濺射靶材例1> 作為用以將實施方式1A中的第1層(光學調整層)成膜的濺射靶材,使用純Cu靶材、或Cu-Ni合金靶材。<Sputter Target Example 1> As a sputtering target for forming the first layer (optical adjustment layer) in Embodiment 1A, a pure Cu target or a Cu-Ni alloy target is used.

另外,Cu膜中的Ni添加量依存於Cu-Ni合金靶材的Ni量,因此藉由調整靶材中的Ni含量,可將第1層的Ni含量設為所期望者。Further, since the amount of Ni added to the Cu film depends on the amount of Ni in the Cu-Ni alloy target, the Ni content of the first layer can be made desired by adjusting the Ni content in the target.

於為Cu-Ni合金靶材的情況下,較佳為包含Cu及Ni、或一部分經氮化的Cu及Ni作為主材料。In the case of a Cu-Ni alloy target, Cu and Ni or a part of nitrided Cu and Ni are preferably used as the main material.

再者,濺射靶材的形狀並無特別限定,可根據濺射裝置的形狀或結構而使用加工成方形板狀、圓形板狀、圓環板狀、圓筒狀等任意形狀者。In addition, the shape of the sputtering target is not particularly limited, and any shape such as a square plate shape, a circular plate shape, an annular plate shape, or a cylindrical shape can be used depending on the shape or structure of the sputtering apparatus.

<濺射靶材例2> 作為用以將實施方式1B及實施方式1C中的第1層(Cu反應層)成膜的濺射靶材,使用純Cu靶材、或Cu-Ni合金靶材。 另外,Cu膜中的Ni添加量可與<濺射靶材例1>同樣地設為所期望者。<Sputter Target Example 2> As a sputtering target for forming a first layer (Cu reaction layer) in Embodiment 1B and Embodiment 1C, a pure Cu target or a Cu-Ni alloy target is used. . In addition, the amount of Ni added to the Cu film can be set as desired in the same manner as in <Sputter Target Example 1>.

<電極的製造方法> 於藉由作為使用氮氣或氧氣的反應性濺射法的所述<第1層的成膜方法>來將第1層成膜時,具有本發明的電極的製造方法的主旨。第1層的成膜以外的、第2層的形成或透明導電膜的形成、氧化矽膜或氮化矽膜的形成等可依照公知的方法以公知的條件進行,可製造本發明的電極。<Method for Producing Electrode> When the first layer is formed by the <film formation method of the first layer> which is a reactive sputtering method using nitrogen gas or oxygen gas, the method for producing the electrode of the present invention is provided. The main idea. The formation of the second layer or the formation of the transparent conductive film other than the film formation of the first layer, the formation of the ruthenium oxide film or the tantalum nitride film, and the like can be carried out under known conditions in accordance with a known method, and the electrode of the present invention can be produced.

於製造具有積層結構的電極時,就細線化或膜內的合金成分的均勻性、進而添加元素量的控制的容易性、製造時的處理量的高度等方面而言,較佳為使用濺射靶材並利用濺射法進行成膜。When manufacturing an electrode having a laminated structure, it is preferable to use sputtering in terms of thinning or uniformity of alloy components in the film, easiness of control of the amount of added elements, height of processing amount at the time of production, and the like. The target was formed by sputtering.

其中,第2層的成膜中所使用的濺射靶材亦為本發明的範圍,其主要材料為Cu或一部分經氮化的Cu,進而亦容許包含不可避免的雜質。Among them, the sputtering target used in the film formation of the second layer is also in the scope of the present invention, and the main material thereof is Cu or a part of nitrided Cu, and further, it is also allowed to contain unavoidable impurities.

具體而言,第2層可藉由使用目標膜組成的濺射靶材來進行濺射而製膜。即,使用純Cu靶材並於Ar等惰性氣體的流通下進行濺射,藉此可獲得純Cu薄膜。另外,使用所期望的Cu合金靶材並同樣地進行濺射,藉此可獲得組成依存於靶材組成的Cu合金薄膜。Specifically, the second layer can be formed by sputtering using a sputtering target composed of a target film. That is, a pure Cu target is used and sputtering is performed under a flow of an inert gas such as Ar, whereby a pure Cu thin film can be obtained. Further, a desired Cu alloy target is used and sputtering is performed in the same manner, whereby a Cu alloy thin film having a composition depending on the composition of the target can be obtained.

濺射的條件只要為先前通常進行濺射的範圍即可,例如,到達真空度較佳為1×10-6 Torr以下,基板溫度較佳為室溫~100℃,成膜溫度較佳為室溫~100℃,濺射時的氣體壓力較佳為1 mTorr~10 mTorr。The sputtering condition may be a range in which sputtering is conventionally performed. For example, the degree of vacuum is preferably 1 × 10 -6 Torr or less, the substrate temperature is preferably room temperature to 100 ° C, and the film formation temperature is preferably a chamber. The temperature at the temperature of -100 ° C is preferably from 1 mTorr to 10 mTorr at the time of sputtering.

第1層的膜厚可藉由濺射放電的功率與放電時間來調整,可利用觸針式段差計來測定。 [實施例]The film thickness of the first layer can be adjusted by the power of the sputtering discharge and the discharge time, and can be measured by a stylus type step meter. [Examples]

以下,列舉實施例及比較例來進一步對本發明進行具體說明,但本發明並不限定於該些實施例,亦可於可適合其主旨的範圍內施加變更來實施,該些均包含於本發明的技術範圍內。The present invention will be specifically described by way of examples and comparative examples. However, the present invention is not limited to the examples, and may be practiced with modifications within the scope of the invention, which are all included in the present invention. Within the technical scope.

<實施例1A> 使用無鹼玻璃板(板厚0.7 mm、直徑4英吋)作為透明基板,並於其表面利用DC磁控濺射法來成膜作為第1層的Cu-Ni-O薄膜。將靶材設為直徑4英吋的圓盤形Cu靶材或Cu-Ni合金靶材,進行將氧氣導入至成膜裝置的反應性濺射。反應性濺射條件如以下所述。<Example 1A> An alkali-free glass plate (plate thickness: 0.7 mm, diameter: 4 inches) was used as a transparent substrate, and a Cu-Ni-O film as a first layer was formed on the surface by DC magnetron sputtering. . The target material was a disc-shaped Cu target or a Cu-Ni alloy target having a diameter of 4 inches, and reactive sputtering for introducing oxygen into a film forming apparatus was performed. The reactive sputtering conditions are as follows.

(氧添加反應性濺射條件) ·氣體壓力:3 mTorr ·氣體流量比:Ar:O2 =15 sccm:15 sccm ·濺射功率:500 W ·基板溫度:室溫 ·成膜溫度:室溫 ·到達真空度:1×10-6 Torr以下(Oxygen addition reactive sputtering conditions) • Gas pressure: 3 mTorr • Gas flow ratio: Ar: O 2 = 15 sccm: 15 sccm • Sputtering power: 500 W • Substrate temperature: room temperature • Film formation temperature: room temperature ·The degree of vacuum reached: 1 × 10 -6 Torr or less

於第1層的成膜時,使用組成不同的Cu-Ni合金靶材來分別將膜中的Ni添加量以原子比計為0%、5%、10%、15%、30%、40%、50%、70%的8種膜成膜。In the film formation of the first layer, the Cu-Ni alloy target having different compositions is used to respectively add the amount of Ni in the film to 0%, 5%, 10%, 15%, 30%, 40% by atomic ratio. , 50%, 70% of 8 kinds of films are formed.

接著,以下述條件(第2層(Cu主配線電極層)的濺射法的條件)將第2層(純Cu薄膜)成膜,獲得包含基板、第1層及第2層的積層結構。靶材使用直徑4英吋的純Cu靶材。Next, the second layer (pure Cu thin film) was formed into a film under the following conditions (conditions of the sputtering method of the second layer (Cu main wiring electrode layer)) to obtain a laminated structure including the substrate, the first layer, and the second layer. The target used a pure Cu target with a diameter of 4 inches.

(第2層(Cu主配線電極層)的濺射法的條件) ·氣體壓力:2 mTorr ·氣體流量:Ar=15 sccm ·濺射功率:500 W ·基板溫度:室溫 ·成膜溫度:室溫 ·環境氣體:Ar氣體 ·到達真空度:1×10-6 Torr以下(Conditions of sputtering method of the second layer (Cu main wiring electrode layer)) · Gas pressure: 2 mTorr · Gas flow rate: Ar = 15 sccm · Sputtering power: 500 W · Substrate temperature: room temperature · Film formation temperature: Room temperature · Ambient gas: Ar gas · Reaching degree of vacuum: 1 × 10 -6 Torr or less

利用觸針式段差計對第1層的膜厚進行測定,結果為50 nm。 關於所得的積層結構,對自玻璃基板側的反射率進行測定。將作為第1層的Cu-Ni-O薄膜中所含的金屬組成中的Ni添加量與反射率的關係示於圖6中。圖6中,所謂「550 nm」或「650 nm」分別表示測定反射率的波長,所謂「as-depo」是表示熱處理前,所謂「350 C」是表示以350℃進行5分鐘熱處理後的結果。The film thickness of the first layer was measured by a stylus type step meter and found to be 50 nm. The reflectance of the obtained laminated structure was measured from the side of the glass substrate. The relationship between the amount of addition of Ni in the metal composition contained in the Cu-Ni-O film as the first layer and the reflectance is shown in Fig. 6 . In Fig. 6, "550 nm" or "650 nm" means the wavelength at which the reflectance is measured. The "as-depo" means that the heat treatment is performed, and the "350 C" means that the heat treatment is performed at 350 ° C for 5 minutes. .

再者,具體而言,熱處理是利用以下般的程序進行。使用紅外線燈加熱爐並於室溫下將樣品放入爐內後,進行真空抽吸直至真空度為1×10-4 Torr以下,然後以350℃進行5分鐘加熱,再次冷卻至室溫後,將爐內恢復為大氣壓,取出樣品。Further, specifically, the heat treatment is carried out by the following procedure. After the sample was placed in the furnace at room temperature using an infrared lamp heating furnace, vacuum suction was performed until the degree of vacuum was 1 × 10 -4 Torr or less, and then heating was performed at 350 ° C for 5 minutes, and after cooling again to room temperature, The furnace was returned to atmospheric pressure and the sample was taken out.

如根據圖6明確般,於第1層使用Cu-Ni-O薄膜的情況下,於剛成膜後,不論波長如何,只要Ni添加量至少為70原子%以下,則為反射率低於作為目標的40%的結果。另一方面得知,藉由以350℃進行5分鐘熱處理而反射率發生變化,只要Ni添加量為35原子%程度以上,則反射率低於40%。As is clear from Fig. 6, when a Cu-Ni-O thin film is used for the first layer, the reflectance is lower than that as long as the Ni addition amount is at least 70 atom% or less immediately after the film formation, regardless of the wavelength. 40% of the result of the target. On the other hand, it was found that the reflectance was changed by heat treatment at 350 ° C for 5 minutes, and the reflectance was less than 40% as long as the Ni addition amount was about 35 atom% or more.

<實施例1B> 於第1層的形成中,代替將氧氣導入至成膜裝置中的反應性濺射,而進行使用氮氣的下述條件下的反應性濺射,除此以外,與實施例1A同樣地進行來形成第1層與第2層,獲得積層結構。<Example 1B> In the formation of the first layer, reactive sputtering under the following conditions using nitrogen gas was carried out instead of reactive sputtering in which oxygen gas was introduced into a film forming apparatus, and examples were also given. 1A was similarly formed to form the first layer and the second layer, and a laminated structure was obtained.

(氮添加反應性濺射條件) ·氣體壓力:5 mTorr ·氣體流量比:Ar:N2 =27 sccm:27 sccm ·濺射功率:500 W ·基板溫度:室溫 ·成膜溫度:室溫 ·到達真空度:1×10-6 Torr以下(Nitrogen addition reactive sputtering conditions) • Gas pressure: 5 mTorr • Gas flow ratio: Ar: N 2 = 27 sccm: 27 sccm • Sputtering power: 500 W • Substrate temperature: room temperature • Film formation temperature: room temperature ·The degree of vacuum reached: 1 × 10 -6 Torr or less

利用觸針式段差計對第1層的膜厚進行測定,結果為50 nm。The film thickness of the first layer was measured by a stylus type step meter and found to be 50 nm.

關於所得的積層結構,對自玻璃基板側的反射率進行測定。將作為第1層的Cu-Ni-N薄膜中所含的金屬組成中的Ni添加量與反射率的關係示於圖7中。圖7中,所謂「550 nm」或「650 nm」分別表示測定反射率的波長,所謂「as-depo」是表示熱處理前,所謂「350 C」是表示以350℃進行5分鐘熱處理後的結果。再者,熱處理以與實施例1A相同的方法與條件進行。The reflectance of the obtained laminated structure was measured from the side of the glass substrate. The relationship between the amount of addition of Ni in the metal composition contained in the Cu-Ni-N thin film as the first layer and the reflectance is shown in Fig. 7 . In Fig. 7, "550 nm" or "650 nm" respectively indicate the wavelength at which the reflectance is measured. The "as-depo" means that before the heat treatment, "350 C" means the result of heat treatment at 350 ° C for 5 minutes. . Further, the heat treatment was carried out in the same manner and under the same conditions as in Example 1A.

如根據圖7明確般,於第1層使用Cu-Ni-N薄膜的情況下,於剛成膜後,不論Ni添加量如何均可獲得反射率低於作為目標的40%的良好的結果。另外,若以350℃進行5分鐘的熱處理,則於Ni添加量少的情況下為反射率變高的結果,若將Ni添加量設為30%,則反射率極度降低。由此推測,關於Ni添加量,只要以25原子%以上的程度包含,則反射率低於40%。As is clear from FIG. 7, when the Cu-Ni-N thin film was used for the first layer, a good result was obtained in which the reflectance was lower than the target 40% regardless of the amount of Ni added immediately after the film formation. In addition, when heat treatment was performed at 350 ° C for 5 minutes, when the amount of addition of Ni was small, the reflectance became high. When the amount of Ni added was 30%, the reflectance extremely lowered. From this, it is estimated that the amount of addition of Ni is included to the extent of 25 atom% or more, and the reflectance is less than 40%.

關於實施例1A的結構積層體,將把Ni添加量設為30原子%、40原子%、50原子%或70原子%時的波長範圍400 nm~800 nm(關於Ni添加量為30原子%的圖8A,為波長範圍250 nm~850 nm)的反射率示於圖8A~圖8D中。另外,關於實施例1B的結構積層體,將把Ni添加量設為30原子%、40原子%、50原子%或70原子%時的波長範圍400 nm~800 nm(關於Ni添加量為30原子%的圖8E,為波長範圍250 nm~850 nm)的反射率示於圖8E~圖8H中。圖8A~圖8H中,所謂「as-depo」是表示熱處理前,所謂「350℃、5 min」是表示以350℃進行5分鐘熱處理後的結果。With respect to the structural laminate of Example 1A, the wavelength range of 400 nm to 800 nm when the amount of Ni added is 30 atom%, 40 atom%, 50 atom%, or 70 atom% (the amount of Ni added is 30 atom%). The reflectance of the wavelength range of 250 nm to 850 nm in Fig. 8A is shown in Figs. 8A to 8D. Further, regarding the structural laminate of Example 1B, the wavelength range of 400 nm to 800 nm when Ni is added in an amount of 30 atom%, 40 atom%, 50 atom%, or 70 atom% (about 30 atoms for Ni addition) The reflectance of % of Fig. 8E, which is in the wavelength range of 250 nm to 850 nm) is shown in Figs. 8E to 8H. In FIGS. 8A to 8H, "as-depo" means that "350 ° C, 5 min" means heat treatment at 350 ° C for 5 minutes before heat treatment.

於將第1層設為Cu-Ni-O薄膜的情況下,與熱處理前相比,雖於進行熱處理時發現反射率整體變高的傾向,但只要金屬組成中的Ni添加量至少為30原子%~70原子%的範圍內,則可獲得波長450 nm、550 nm及650 nm任一者下的反射率均低於30%的良好的結果。When the first layer is a Cu-Ni-O thin film, the reflectance tends to be higher as a whole during heat treatment than before the heat treatment, but the Ni addition amount in the metal composition is at least 30 atoms. In the range of % to 70 atom%, good results are obtained in which the reflectance at any of the wavelengths of 450 nm, 550 nm, and 650 nm is less than 30%.

另外,於將第1層設為Cu-Ni-N薄膜的情況下,於Ni添加量為40原子%、50原子%及70原子%時,熱處理前與熱處理後的反射率並未發現多少變化。另外,只要金屬組成中的Ni添加量至少為30原子%~70原子%的範圍內,則可獲得波長450 nm、550 nm及650 nm任一者下的反射率均低於40%的良好的結果。Further, when the first layer is a Cu-Ni-N thin film, when the amount of Ni added is 40 atom%, 50 atom%, and 70 atom%, the reflectance before and after the heat treatment is not changed much. . Further, as long as the Ni addition amount in the metal composition is in the range of at least 30 atom% to 70 atom%, it is possible to obtain a good reflectance of less than 40% at any of wavelengths of 450 nm, 550 nm, and 650 nm. result.

關於實施例1A的結構積層體,將第1層(Cu-Ni-O薄膜)中的Ni添加量與於該第1層上積層第2層(純Cu薄膜)而成的積層結構的電阻率的關係示於圖9A中。同樣地,關於實施例1B的結構積層體,將第1層(Cu-Ni-N薄膜)中的Ni添加量與於該第1層上積層第2層(純Cu薄膜)而成的積層結構的電阻率的關係示於圖9B中。於圖9A及圖9B中,所謂「as-depo」是表示熱處理前,所謂「350℃」是表示以350℃進行5分鐘熱處理後的結果。再者,熱處理方法與條件如上所述。In the structural laminate of Example 1A, the resistivity of the laminated structure obtained by laminating the amount of Ni in the first layer (Cu-Ni-O thin film) and the second layer (pure Cu thin film) on the first layer The relationship is shown in Figure 9A. Similarly, in the structural layered product of Example 1B, a layered structure in which the amount of Ni added in the first layer (Cu-Ni-N film) and the second layer (pure Cu film) were laminated on the first layer were obtained. The relationship of the resistivity is shown in Fig. 9B. In FIGS. 9A and 9B, "as-depo" means that the "350 ° C" is a result of heat treatment at 350 ° C for 5 minutes. Further, the heat treatment method and conditions are as described above.

於剛成膜後及以350℃進行5分鐘的熱處理後的任一情況下,不論金屬組成中的Ni添加量如何,積層結構的電阻率均為3 μΩ·cm以下。In any of the cases after the film formation and the heat treatment at 350 ° C for 5 minutes, the resistivity of the laminated structure was 3 μΩ·cm or less regardless of the amount of Ni added in the metal composition.

於作為將第1層設為Cu-Ni-O薄膜、將第2層設為純Cu薄膜的實施例1A中的積層結構、及將第2層設為Cu-Ni-N薄膜、將第2層設為純Cu薄膜的實施例1B中的積層結構的積層膜上使光阻劑圖案化,評價該積層膜的蝕刻特性。蝕刻液使用包含3%以上的過氧化氫水的蝕刻液,蝕刻是於將液溫設為室溫的條件下進行。將蝕刻速度與Ni添加量的關係示於圖10中。The laminated structure in Example 1A in which the first layer is a Cu-Ni-O film, the second layer is a pure Cu film, and the second layer is a Cu-Ni-N film, and the second layer is used. The photoresist was patterned on the laminated film of the laminated structure in Example 1B in which the layer was a pure Cu thin film, and the etching characteristics of the laminated film were evaluated. An etching solution containing 3% or more of hydrogen peroxide water is used as the etching solution, and etching is performed under the condition that the liquid temperature is room temperature. The relationship between the etching rate and the amount of addition of Ni is shown in FIG.

如根據圖10明確般,得知於作為實施例1B的、第1層為Cu-Ni-N薄膜的情況下,Ni添加量越少蝕刻速率越高,只要金屬組成中的Ni添加量大致為30原子%以上且70原子%以下的範圍內,則可獲得與構成第2層的純Cu薄膜(蝕刻速度為271.5 nm/min)幾乎相同的蝕刻速度。As is clear from FIG. 10, in the case where the first layer is a Cu-Ni-N thin film as the first embodiment, the less the amount of Ni added, the higher the etching rate, as long as the amount of Ni added in the metal composition is substantially In the range of 30 at% or more and 70 at% or less, an etching rate almost the same as that of the pure Cu film constituting the second layer (etching rate: 271.5 nm/min) can be obtained.

將實施例1B的積層結構的蝕刻後的剖面的掃描型電子顯微鏡照片示於圖11中。結果得知,不論Ni添加量如何,均可根據圖案化形狀獲得良好的順錐形形狀。A scanning electron micrograph of the cross section after etching of the laminated structure of Example 1B is shown in FIG. As a result, it was found that a good smooth tapered shape can be obtained according to the patterned shape regardless of the amount of addition of Ni.

另一方面,得知於作為實施例1A的、第1層為Cu-Ni-O薄膜的情況下,並不依存於金屬組成中的Ni添加量且第1層無法蝕刻。即,判明於第1層為Cu-Ni-O薄膜的情況下,以過氧化氫水為基質的蝕刻液並不適合於用以進行蝕刻的蝕刻液。On the other hand, when the first layer was a Cu-Ni-O thin film as the first embodiment, it was found that the amount of Ni added in the metal composition did not depend on the first layer and the first layer could not be etched. That is, when the first layer is a Cu-Ni-O thin film, the etching liquid based on hydrogen peroxide water is not suitable for the etching liquid for etching.

根據以上結果,藉由將第1層設為Cu膜的一部分中含有氮及氧的至少一種以上的Cu-O膜或Cu-N膜,而可獲得低反射率的電極。另外證實,於進行300℃以上的熱處理的情況下,若設為金屬組成中的Ni添加量為30原子%以上且70原子%以下的Cu-Ni-O薄膜或Cu-Ni-N薄膜,則可獲得低反射率。再者,測定反射率的Ni添加量的下限為30原子%,但即便為30原子%亦可獲得充分低的反射率,因此推測只要Ni添加量為25原子%以上,則可獲得反射率為40%以下的良好的結果。According to the above results, the first layer is an at least one type of Cu-O film or Cu-N film containing nitrogen and oxygen in a part of the Cu film, whereby an electrode having a low reflectance can be obtained. In addition, when the heat treatment at 300 ° C or higher is performed, the Cu-Ni-O film or the Cu-Ni-N film having a Ni addition amount of 30 atom% or more and 70 atom% or less in the metal composition is used. Low reflectance is obtained. In addition, the lower limit of the amount of Ni added to measure the reflectance is 30 atom%, but a sufficiently low reflectance can be obtained even if it is 30 atom%. Therefore, it is estimated that the reflectance can be obtained as long as the Ni addition amount is 25 atom% or more. Good results below 40%.

另外,得知於蝕刻液使用以過氧化氫水為基質的蝕刻液的情況下,較佳為使用Cu-Ni-N薄膜作為第1層。Further, when it is known that an etching liquid having hydrogen peroxide water as a substrate is used as the etching liquid, it is preferable to use a Cu-Ni-N thin film as the first layer.

<實施例2> 於第1層的形成中,代替將氧氣導入至成膜裝置中的反應性濺射,而進行使用氮氣及氧氣的下述條件下的反應性濺射,除此以外,與實施例1A同樣地進行,形成第1層與第2層。藉由改變氣體流量比的N2 與O2 的比例,獲得O與N的比不同的第1層(Cu-Ni-O-N薄膜)。<Example 2> In the formation of the first layer, instead of the reactive sputtering in which oxygen gas was introduced into the film forming apparatus, reactive sputtering under the following conditions using nitrogen gas and oxygen gas was performed, and Example 1A was carried out in the same manner to form a first layer and a second layer. The first layer (Cu-Ni-ON film) having a different ratio of O to N was obtained by changing the ratio of N 2 to O 2 in the gas flow ratio.

(氮·氧添加反應性濺射條件) ·氣體壓力:5 mTorr ·氣體流量比:Ar:N2 :O2 =27 sccm:22 sccm~26 sccm:1 sccm~5 sccm ·濺射功率:500 W ·基板溫度:室溫 ·成膜溫度:室溫(Nitrogen-oxygen addition reactive sputtering conditions) · Gas pressure: 5 mTorr · Gas flow ratio: Ar: N 2 : O 2 = 27 sccm: 22 sccm - 26 sccm: 1 sccm - 5 sccm · Sputtering power: 500 W · substrate temperature: room temperature · film formation temperature: room temperature

利用觸針式段差計對第1層的膜厚進行測定,結果為50 nm。The film thickness of the first layer was measured by a stylus type step meter and found to be 50 nm.

關於所得的積層結構,對自玻璃基板側的反射率進行測定。將把作為第1層的Cu-Ni-O-N薄膜中所含的金屬組成中的Ni添加量設為40原子%時的反射率示於圖12A~圖12C中。第1層形成時的氣體流量比Ar:N2 :O2 於圖12A中為27:22:5,於圖12B中為27:12:15,於圖12C中為27:17:10。圖12A~圖12C中,「Before ann.」表示於剛成膜後進行熱處理前的狀態,「After ann.」表示以350℃進行5分鐘熱處理後的結果。再者,熱處理以與實施例1A相同的方法與條件進行。The reflectance of the obtained laminated structure was measured from the side of the glass substrate. The reflectance when the amount of Ni added to the metal composition contained in the Cu-Ni-ON thin film as the first layer is 40 atom% is shown in FIGS. 12A to 12C. The gas flow rate at the time of formation of the first layer is Ar:N 2 :O 2 is 27:22:5 in Fig. 12A, 27:12:15 in Fig. 12B, and 27:17:10 in Fig. 12C. In FIGS. 12A to 12C, "Before ann." indicates a state before heat treatment immediately after film formation, and "After ann." indicates a result of heat treatment at 350 ° C for 5 minutes. Further, the heat treatment was carried out in the same manner and under the same conditions as in Example 1A.

如根據圖12A~圖12C明確般,得知於金屬組成中的Ni添加量為40原子%的情況下,藉由選擇適當的氮流量及氧流量,即便於熱處理後,亦可至少於波長450 nm~750 nm的波長區域內獲得40%以下的低反射率。As is clear from FIGS. 12A to 12C, when the amount of Ni added to the metal composition is 40 atom%, it is possible to select at least an appropriate nitrogen flow rate and oxygen flow rate, even after heat treatment, at least 450. A low reflectance of 40% or less is obtained in a wavelength region of nm to 750 nm.

將於第1層形成時的濺射條件中,把氮流量及氧流量固定為22:25且把Cu-Ni-O-N薄膜(第1層)中所含的金屬組成中的Ni添加量設為30原子%、40原子%、50原子%及70原子%時的反射率示於圖13A~圖13D中。圖13A~圖13D中,所謂「as-depo」是表示熱處理前,所謂「350℃、5 min」是表示以350℃進行5分鐘熱處理後的結果。熱處理的方法與條件如上所述。In the sputtering conditions in the formation of the first layer, the nitrogen flow rate and the oxygen flow rate are fixed to 22:25, and the amount of Ni added in the metal composition contained in the Cu-Ni-ON thin film (first layer) is set to The reflectance at 30 atom%, 40 atom%, 50 atom%, and 70 atom% is shown in Figs. 13A to 13D. In FIGS. 13A to 13D, "as-depo" means that "350 ° C, 5 min" means heat treatment at 350 ° C for 5 minutes before heat treatment. The method and conditions of the heat treatment are as described above.

結果,藉由於金屬組成中的Ni添加量為30原子%~70原子%的範圍內,選擇適當氮流量及氧流量,而可獲得波長450 nm、550 nm及650 nm的任一者下的反射率均低於40%的良好的結果。As a result, by setting the appropriate nitrogen flow rate and oxygen flow rate in the range of 30 atom% to 70 atom% of the metal composition in the metal composition, the reflection at any of the wavelengths of 450 nm, 550 nm, and 650 nm can be obtained. Good results are below 40%.

根據以上的結果,即便於第1層為Cu-Ni-O-N薄膜時,只要金屬組成中的Ni添加量至少為30原子%以上且70原子%以下的範圍內,則於300℃以上的熱處理後亦可達成40%以下的低反射率。According to the above results, even when the first layer is a Cu-Ni-ON film, the amount of Ni added to the metal composition is at least 30 atom% or more and 70 atom% or less, and after heat treatment at 300 ° C or higher. A low reflectance of 40% or less can also be achieved.

參照特定態樣對本發明進行了詳細說明,但對本領域技術人員而言明確的是可不脫離本發明的精神與範圍地進行各種變更及修正。 再者,本申請基於2015年6月16日提出申請的日本專利申請(日本專利特願2015-121211)而將其整體以引用的形式加以援用。The present invention has been described in detail with reference to the specific embodiments thereof. In addition, the present application is incorporated by reference in its entirety by reference to the Japanese Patent Application Serial No.

1‧‧‧玻璃基板
2‧‧‧位障金屬層
3‧‧‧Cu主配線電極層
4‧‧‧半導體層
5‧‧‧光學調整層
6‧‧‧透明導電膜
7‧‧‧Cu反應層
8‧‧‧氧化矽膜或氮化矽膜
10‧‧‧TFT基板
11‧‧‧源極·汲極電極
12‧‧‧閘極電極
20‧‧‧背光單元
21‧‧‧有機EL發光層
A‧‧‧視認者的朝向
B‧‧‧外部光的朝向
C‧‧‧反射光的朝向
D‧‧‧來自背光單元的透過光的朝向
E‧‧‧來自有機EL發光層的透過光的朝向
1‧‧‧ glass substrate
2‧‧‧ barrier metal layer
3‧‧‧Cu main wiring electrode layer
4‧‧‧Semiconductor layer
5‧‧‧Optical adjustment layer
6‧‧‧Transparent conductive film
7‧‧‧Cu reaction layer
8‧‧‧Oxide film or tantalum nitride film
10‧‧‧TFT substrate
11‧‧‧Source pole electrode
12‧‧‧ gate electrode
20‧‧‧Backlight unit
21‧‧‧Organic EL light-emitting layer
A‧‧‧Director’s orientation
B‧‧‧Orientation of external light
C‧‧‧The direction of reflected light
D‧‧‧Directed light from the backlight unit
E‧‧‧The direction of transmitted light from the organic EL luminescent layer

圖1為示意性地表示使用具備Cu主配線電極及位障金屬層(barrier metal layer)的閘極電極及源極·汲極電極的、通常的液晶顯示器的薄膜電晶體(thin film transistor,TFT)陣列基板的概略剖面圖。 圖2為示意性地表示使用具備Cu主配線電極及位障金屬層的閘極電極及源極·汲極電極的、通常的底部發光型有機EL顯示器的TFT陣列基板的概略剖面圖。 圖3為示意性地表示使用本發明的具備Cu主配線電極層及光學調整層的閘極電極及源極·汲極電極的、底部發光型有機EL顯示器的TFT陣列基板的概略剖面圖,另外,亦為相當於本發明的實施方式1A的概略剖面圖。 圖4為示意性地表示使用本發明的具備Cu主配線電極層、Cu反應層及透明導電膜的閘極電極及源極·汲極電極的、底部發光型有機EL顯示器的TFT陣列基板的概略剖面圖,另外,亦為相當於本發明的實施方式1B的概略剖面圖。 圖5為示意性地表示使用本發明的具備Cu主配線電極層、Cu反應層及氧化矽膜或氮化矽膜的閘極電極、以及具備Cu主配線電極層及Cu反應層的源極·汲極電極的、底部發光型有機EL顯示器(顯示裝置)的TFT陣列基板的概略剖面圖,另外,亦為相當於本發明的實施方式1C的概略剖面圖。 圖6為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、自玻璃基板側測定的反射率與Ni添加量(原子%)的關係的圖。 圖7為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、自玻璃基板側測定的反射率與Ni添加量的關係的圖。 圖8A為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、Ni添加量為30原子%時的波長範圍250 nm~850 nm的反射率的圖。 圖8B為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、Ni添加量為40原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖8C為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、Ni添加量為50原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖8D為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、Ni添加量為70原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖8E為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、Ni添加量為30原子%時的波長範圍250 nm~850 nm的反射率的圖。 圖8F為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、Ni添加量為40原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖8G為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、Ni添加量為50原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖8H為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、Ni添加量為70原子%時的波長範圍400 nm~800 nm的反射率的圖。 圖9A為表示本發明的實施例1A的具備第1層與第2層的積層結構中的、電阻率與Ni添加量的關係的圖。 圖9B為表示本發明的實施例1B的具備第1層與第2層的積層結構中的、電阻率與Ni添加量的關係的圖。 圖10為表示本發明的實施例1A及實施例1B的作為第1層的Cu-Ni-O薄膜或Cu-Ni-N薄膜中的、利用含有過氧化氫水的蝕刻液的蝕刻速度與第1層中所含的Ni添加量的關係的圖。 圖11為於本發明的實施例1B的具備第1層與第2層的積層結構中,針對每一Ni添加量而示出蝕刻後的形狀的剖面的掃描型電子顯微鏡照片。 圖12A為表示於本發明的實施例2的具備第1層與第2層的積層結構中,第1層形成時的氣體流量比為27:22:5時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖12B為表示於本發明的實施例2的具備第1層與第2層(純Cu薄膜)的積層結構中,第1層形成時的氣體流量比為27:12:15時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖12C為表示於本發明的實施例2的具備第1層與第2層(純Cu薄膜)的積層結構中,第1層形成時的氣體流量比為27:17:10時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖13A為表示於本發明的實施例2的具備第1層與第2層的積層結構中,Ni添加量為30原子%時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖13B為表示於本發明的實施例2的具備第1層與第2層的積層結構中,Ni添加量為40原子%時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖13C為表示於本發明的實施例2的具備第1層與第2層的積層結構中,Ni添加量為50原子%時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。 圖13D為表示於本發明的實施例2的具備第1層與第2層的積層結構中,Ni添加量為70原子%時的、剛成膜後與熱處理後的波長範圍400 nm~800 nm的反射率的圖。FIG. 1 is a view schematically showing a thin film transistor (TFT) of a general liquid crystal display using a gate electrode and a source/drain electrode including a Cu main wiring electrode and a barrier metal layer. A schematic cross-sectional view of the array substrate. 2 is a schematic cross-sectional view showing a TFT array substrate of a normal bottom emission type organic EL display using a gate electrode and a source/drain electrode having a Cu main wiring electrode and a barrier metal layer. 3 is a schematic cross-sectional view showing a TFT array substrate of a bottom emission type organic EL display using a gate electrode and a source/drain electrode of a Cu main wiring electrode layer and an optical adjustment layer of the present invention, and It is also a schematic cross-sectional view corresponding to Embodiment 1A of the present invention. FIG. 4 is a schematic view showing a TFT array substrate of a bottom emission type organic EL display using the gate electrode and the source/drain electrodes of the Cu main wiring electrode layer, the Cu reaction layer, and the transparent conductive film of the present invention. The cross-sectional view is also a schematic cross-sectional view corresponding to the first embodiment of the present invention. FIG. 5 is a view schematically showing a gate electrode including a Cu main wiring electrode layer, a Cu reaction layer, a hafnium oxide film or a tantalum nitride film, and a source including a Cu main wiring electrode layer and a Cu reaction layer; A schematic cross-sectional view of a TFT array substrate of a bottom-emission type organic EL display (display device) of a drain electrode, and a schematic cross-sectional view corresponding to Embodiment 1C of the present invention. FIG. 6 is a view showing the relationship between the reflectance measured from the glass substrate side and the Ni addition amount (atomic %) in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 7 is a view showing the relationship between the reflectance measured from the glass substrate side and the amount of Ni added in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 8A is a graph showing the reflectance in the wavelength range of 250 nm to 850 nm when the Ni addition amount is 30 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 8B is a view showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 40 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 8C is a graph showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 50 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 8D is a graph showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 70 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 8E is a view showing the reflectance in the wavelength range of 250 nm to 850 nm when the Ni addition amount is 30 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 8F is a view showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 40 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 8G is a graph showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 50 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 8H is a graph showing the reflectance in the wavelength range of 400 nm to 800 nm when the Ni addition amount is 70 atom% in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 9A is a view showing the relationship between the specific resistance and the Ni addition amount in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. FIG. 9B is a view showing the relationship between the specific resistance and the amount of addition of Ni in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 10 is an etching rate of an etching solution using hydrogen peroxide-containing water in a Cu-Ni-O film or a Cu-Ni-N film as a first layer in the first embodiment and the first embodiment of the present invention. A graph showing the relationship between the amount of Ni added in one layer. FIG. 11 is a scanning electron micrograph showing a cross section of the shape after etching for each Ni addition amount in the laminated structure including the first layer and the second layer in the first embodiment of the present invention. 12A is a view showing a laminated structure including a first layer and a second layer according to a second embodiment of the present invention, in which the gas flow rate ratio at the time of forming the first layer is 27:22:5, immediately after film formation and after heat treatment. A plot of reflectance in the wavelength range from 400 nm to 800 nm. Fig. 12B is a view showing a case where the gas flow rate ratio at the time of formation of the first layer is 27:12:15 in the laminated structure including the first layer and the second layer (pure Cu thin film) in the second embodiment of the present invention. A plot of reflectance in the wavelength range from 400 nm to 800 nm after and after heat treatment. Fig. 12C is a view showing a case where the first layer and the second layer (pure Cu thin film) have a laminated structure in the second layer of the present invention, when the gas flow rate ratio at the time of forming the first layer is 27:17:10. A plot of reflectance in the wavelength range from 400 nm to 800 nm after and after heat treatment. Fig. 13A is a view showing a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment in a laminated structure including a first layer and a second layer in the second embodiment of the present invention, when the amount of Ni added is 30 atom%; The map of reflectivity. Fig. 13B is a view showing a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment in a laminated structure including a first layer and a second layer in the second embodiment of the present invention, when the amount of Ni added is 40 atom%; The map of reflectivity. Fig. 13C is a view showing a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment in a laminated structure including a first layer and a second layer in the second embodiment of the present invention, when the amount of Ni added is 50 atom%; The map of reflectivity. 13D is a view showing a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment in a laminated structure including the first layer and the second layer in the second embodiment of the present invention, when the amount of Ni added is 70 atom%. The map of reflectivity.

1‧‧‧玻璃基板 1‧‧‧ glass substrate

2‧‧‧位障金屬層 2‧‧‧ barrier metal layer

3‧‧‧Cu主配線電極層 3‧‧‧Cu main wiring electrode layer

4‧‧‧半導體層 4‧‧‧Semiconductor layer

10‧‧‧TFT基板 10‧‧‧TFT substrate

11‧‧‧源極.汲極電極 11‧‧‧ source. Bipolar electrode

12‧‧‧閘極電極 12‧‧‧ gate electrode

20‧‧‧背光單元 20‧‧‧Backlight unit

A‧‧‧視認者的朝向 A‧‧‧Director’s orientation

B‧‧‧外部光的朝向 B‧‧‧Orientation of external light

C‧‧‧反射光的朝向 C‧‧‧The direction of reflected light

D‧‧‧來自背光單元的透過光的朝向 D‧‧‧Directed light from the backlight unit

Claims (13)

一種電極,其為具有於基板上自所述基板側起依次具備第1層與第2層的積層結構的電極,並且其特徵在於: 所述基板為折射率為1.4以上的樹脂基板或陶瓷基板, 所述第1層為Cu膜的一部分中含有氮及氧的至少一種以上的Cu膜, 所述第2層為Cu膜或Cu合金膜,且 於所述積層結構中,自所述基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下。An electrode having a laminated structure including a first layer and a second layer in this order from the substrate side on a substrate, wherein the substrate is a resin substrate or a ceramic substrate having a refractive index of 1.4 or more. The first layer is a Cu film containing at least one of nitrogen and oxygen in a part of the Cu film, and the second layer is a Cu film or a Cu alloy film, and in the laminated structure, from the substrate side The reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm was 40% or less. 如申請專利範圍第1項所述的電極,其中所述第1層以金屬原子比計包含25原子%以上且70原子%以下的Ni。The electrode according to claim 1, wherein the first layer contains 25 atom% or more and 70 atom% or less of Ni in terms of a metal atom ratio. 如申請專利範圍第1項或第2項所述的電極,其中於所述基板與所述第1層之間具有透明導電膜。The electrode according to claim 1 or 2, wherein a transparent conductive film is provided between the substrate and the first layer. 如申請專利範圍第1項或第2項所述的電極,其中於所述基板與所述第1層之間具有氧化矽膜或氮化矽膜。The electrode according to claim 1 or 2, wherein a ruthenium oxide film or a tantalum nitride film is provided between the substrate and the first layer. 如申請專利範圍第1項或第2項所述的電極,其中所述Cu合金膜包含選自由Ti、Mn、Fe、Co、Ni、Zn、Ta、La及Nd所組成的群組中的至少一種以上的元素。The electrode according to claim 1 or 2, wherein the Cu alloy film contains at least one selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd. More than one element. 如申請專利範圍第3項所述的電極,其中所述透明導電膜為包含至少含有In及Sn的氧化物的透明導電膜、包含至少含有In及Zn的氧化物的透明導電膜、或包含至少含有In及Ga的氧化物的透明導電膜。The electrode according to claim 3, wherein the transparent conductive film is a transparent conductive film containing an oxide containing at least In and Sn, a transparent conductive film containing an oxide containing at least In and Zn, or at least A transparent conductive film containing an oxide of In and Ga. 如申請專利範圍第1項或第2項所述的電極,其中包含所述第1層及所述第2層的積層配線的電阻率為5 μΩ·cm以下。The electrode according to the first or second aspect of the invention, wherein the multilayer wiring including the first layer and the second layer has a resistivity of 5 μΩ·cm or less. 如申請專利範圍第1項或第2項所述的電極,其中能夠進行使用含有過氧化氫水的蝕刻液的濕式蝕刻。The electrode according to claim 1 or 2, wherein wet etching using an etching solution containing hydrogen peroxide water can be performed. 如申請專利範圍第1項或第2項所述的電極,其中於所述積層結構中,於300℃以上的熱處理後的、自所述基板側觀察時的波長450 nm、波長550 nm及波長650 nm下的反射率均為40%以下。The electrode according to claim 1 or 2, wherein in the laminated structure, a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength when viewed from the side of the substrate after heat treatment at 300 ° C or higher The reflectance at 650 nm is 40% or less. 如申請專利範圍第1項或第2項所述的電極,其中所述第1層的膜厚為50 nm~100 nm。The electrode according to claim 1 or 2, wherein the first layer has a film thickness of 50 nm to 100 nm. 一種顯示裝置,其特徵在於:具有如申請專利範圍第1項或第2項所述的電極。A display device comprising the electrode according to the first or second aspect of the patent application. 一種輸入裝置,其特徵在於:具有如申請專利範圍第1項或第2項所述的電極。An input device comprising the electrode according to item 1 or item 2 of the patent application. 一種濺射靶材,其為構成如申請專利範圍第1項或第2項所述的電極的第1層的成膜中所使用的濺射靶材,且其特徵在於: 包含Cu及Ni、或一部分經氮化的Cu及Ni作為主材料。A sputtering target which is a sputtering target used for forming a first layer of an electrode according to the first or second aspect of the invention, and characterized in that it contains Cu and Ni, Or a part of nitrided Cu and Ni as main materials.
TW105118696A 2015-06-16 2016-06-15 Low reflection electrode for display device, display device, input device, and sputtering target TWI622088B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121211A JP6190847B2 (en) 2015-06-16 2015-06-16 Low reflective electrode for flat display or curved display

Publications (2)

Publication Number Publication Date
TW201712741A true TW201712741A (en) 2017-04-01
TWI622088B TWI622088B (en) 2018-04-21

Family

ID=57545849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118696A TWI622088B (en) 2015-06-16 2016-06-15 Low reflection electrode for display device, display device, input device, and sputtering target

Country Status (3)

Country Link
JP (1) JP6190847B2 (en)
TW (1) TWI622088B (en)
WO (1) WO2016204018A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315740A (en) * 2020-03-25 2022-11-08 株式会社日本显示器 Display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242339B2 (en) 2012-11-12 2017-12-06 三井化学株式会社 Semi-aromatic polyamide resin composition, molded article, and method for producing semi-aromatic polyamide
CN108336144B (en) * 2018-01-22 2021-03-05 惠州市华星光电技术有限公司 Thin film transistor used in display panel and display panel
JP2019183251A (en) 2018-04-17 2019-10-24 三菱マテリアル株式会社 Cu-Ni alloy sputtering target
JP7339016B2 (en) 2019-04-24 2023-09-05 株式会社アルバック Display device, wiring film, wiring film manufacturing method
TWI830560B (en) * 2022-12-28 2024-01-21 柏彌蘭金屬化研究股份有限公司 Transparent copper foil substrate and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179041B2 (en) * 2003-04-30 2008-11-12 株式会社島津製作所 Deposition device for organic EL protective film, manufacturing method, and organic EL element
JP2007264102A (en) * 2006-03-27 2007-10-11 Sharp Corp Liquid crystal display panel and method of manufacturing same
JP6183628B2 (en) * 2012-08-31 2017-08-23 エルジー・ケム・リミテッド Display substrate bezel and method of manufacturing the same
JP6376438B2 (en) * 2013-05-31 2018-08-22 日立金属株式会社 Cu-Mn alloy sputtering target material and method for producing the same
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
JP6043264B2 (en) * 2013-09-30 2016-12-14 株式会社コベルコ科研 Electrode used for input device
KR101656581B1 (en) * 2013-11-20 2016-09-09 주식회사 엘지화학 Conductive structure body and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315740A (en) * 2020-03-25 2022-11-08 株式会社日本显示器 Display device
CN115315740B (en) * 2020-03-25 2023-09-15 株式会社日本显示器 display device

Also Published As

Publication number Publication date
JP2017005233A (en) 2017-01-05
WO2016204018A1 (en) 2016-12-22
JP6190847B2 (en) 2017-08-30
TWI622088B (en) 2018-04-21

Similar Documents

Publication Publication Date Title
TWI622088B (en) Low reflection electrode for display device, display device, input device, and sputtering target
JP4705062B2 (en) Wiring structure and manufacturing method thereof
TWI437697B (en) Wiring structure and a display device having a wiring structure
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
TWI437107B (en) Display device
TWI390059B (en) Method for forming an electroconductive film, thin film transistor, panel having a thin film transistor and method for producing a thin film transistor
WO2017016237A1 (en) Conductive layer in a semiconductor apparatus, display substrate and display apparatus having the same, and fabricating method thereof
TWI504765B (en) Cu alloy film, and a display device or an electronic device provided therewith
TWI652359B (en) Multilayer wiring film and thin film transistor element
TW201309822A (en) Multilayer wiring film for electronic part and sputtering target material for forming covering layer
US10365520B2 (en) Wiring structure for display device
WO2014080933A1 (en) Electrode used in display device or input device, and sputtering target for use in electrode formation
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP2011049542A (en) Wiring structure, method for manufacturing the same and display device with the wiring structure
TW201641699A (en) Nitrogen-containing Cu alloy film, multilayer film, method for producing nitrogen-containing Cu alloy film or multilayer film, and Cu alloy sputtering target
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP5264233B2 (en) Organic electroluminescent display
JP6375658B2 (en) Laminated film
JP2014120486A (en) Electrode for use in display device or input device, and sputtering target for electrode formation
JP2011179021A (en) Conductor and method for manufacturing conductor
JP5756319B2 (en) Cu alloy film and display device or electronic device including the same
KR20230103968A (en) Alloy Composition Comprising Aluminum, Manganese, Titanium and Silicon for Thin Film Transistor Electrodes and Reflective Electrodes
JP2020037253A (en) Laminate, and target material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees