JP7339016B2 - Display device, wiring film, wiring film manufacturing method - Google Patents

Display device, wiring film, wiring film manufacturing method Download PDF

Info

Publication number
JP7339016B2
JP7339016B2 JP2019082926A JP2019082926A JP7339016B2 JP 7339016 B2 JP7339016 B2 JP 7339016B2 JP 2019082926 A JP2019082926 A JP 2019082926A JP 2019082926 A JP2019082926 A JP 2019082926A JP 7339016 B2 JP7339016 B2 JP 7339016B2
Authority
JP
Japan
Prior art keywords
film
low
reflection
transparent substrate
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019082926A
Other languages
Japanese (ja)
Other versions
JP2020181866A (en
Inventor
悟 高澤
瞭 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019082926A priority Critical patent/JP7339016B2/en
Publication of JP2020181866A publication Critical patent/JP2020181866A/en
Application granted granted Critical
Publication of JP7339016B2 publication Critical patent/JP7339016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、微小な半導体デバイスに使用される配線膜の分野に係り、特に、外光が入射する位置に形成される配線膜の技術分野に関する。 The present invention relates to the field of wiring films used in minute semiconductor devices, and more particularly to the technical field of wiring films formed at positions where external light is incident.

FPD(フラットパネルディスプレイ)装置は益々低コストな高精細かつ大型画面が望まれており、最近では液晶表示画面周囲の外周枠の幅を小さくすることで、室内でディスプレイ画面が浮き出るような感覚となり臨場感を向上させたFPD装置が検討されている。これまでのFPD装置はガラス基板上のカラーフィルターが配置された面が視聴者に向けられる。一方で近年のFPD装置の場合、外周枠の幅を小さくするため表示面としてTFT配線が配置された面が視聴者に向けられている構造となっている。 FPD (flat panel display) devices are increasingly desired to have low-cost, high-definition, and large screens, and recently, by reducing the width of the outer peripheral frame around the liquid crystal display screen, the display screen appears to stand out in the room. An FPD device with improved realism is being studied. In conventional FPD devices, the surface of the glass substrate on which color filters are arranged faces the viewer. On the other hand, in the case of a recent FPD device, in order to reduce the width of the outer peripheral frame, the structure is such that the surface on which the TFT wiring is arranged faces the viewer as the display surface.

しかしながらそのような構造では、ガラス基板と配線膜との界面が視聴者に向けられており、FPD装置の周囲からガラス基板に外光が入射すると、外光はガラス基板を透過して配線膜によって反射され、FPD装置を視聴する視聴者に視認されることになる。 However, in such a structure, the interface between the glass substrate and the wiring film is directed toward the viewer. It will be reflected and viewed by a viewer viewing the FPD device.

この場合、視聴者は反射光によって白っぽくなった画面を視聴するため、画質が悪化することになる。 In this case, the viewer sees a screen that has become whitish due to the reflected light, resulting in deterioration of image quality.

特開2017-5233号公報JP 2017-5233 A WO2008/044757号公報WO2008/044757

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は外光の反射を防止した配線膜と、その配線膜の製造方法、その配線膜を用いた表示装置を提供することにある。 The present invention was created to solve the above-mentioned problems of the prior art, and its object is to provide a wiring film that prevents reflection of external light, a method for manufacturing the wiring film, and a display device using the wiring film. to provide.

上記課題を解決するために、本発明は、透明基板と、前記透明基板上に設けられた配線膜と、前記透明基板上に配置され、前記配線膜に電気的に接続された画素と、を有し、前記透明基板を介して前記配線膜が視認される表示装置であって、前記配線膜は低反射合金から成る低反射膜と、前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜とを有し、前記低反射膜は前記本体膜と前記透明基板との間に配置され、前記低反射合金は金属成分とNとが含有され、前記金属成分には少なくともCuとAlとが含有され、Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記金属成分に含有され、Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で前記低反射合金に含有された表示装置である。
本発明は、透明基板と、前記透明基板上に配置されたTFTと、前記透明基板上に配置され、前記TFTに電気的に接続された画素と、を有し、前記透明基板を介して前記画素が視認される表示装置であって、前記TFTは、半導体層と、前記半導体層と接触して配置されたゲート絶縁膜と、前記ゲート絶縁膜を間にして前記半導体層と対向する位置に配置されたゲート電極膜とを有し、前記半導体層には、前記ゲート電極膜と対向する部分にチャネル領域が設けられ、前記チャネル領域の片側にソース領域が設けられ、前記チャネル領域の反対側にはドレイン領域が設けられ、前記ソース領域と前記ドレイン領域とには、ソース電極膜とドレイン電極膜とがそれぞれ接触され、前記ゲート電極膜は、低反射合金から成る低反射膜と、前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜とを有し、前記低反射膜は前記本体膜と前記透明基板との間に配置され、前記低反射合金は金属成分とNとが含有され、前記金属成分には少なくともCuとAlとが含有され、Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記低反射合金に含有され、Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で含有された表示装置である。
本発明は、前記透明基板は酸化物を含有し、前記低反射膜は前記透明基板に接触された表示装置である。
本発明は、前記低反射膜と前記透明基板との間には酸化物を含有した半透明膜が配置され、前記低反射膜は前記半透明膜に接触された表示装置である。
本発明は、前記半透明膜は、膜厚が10nm以上200nm以下の範囲にされた表示装置である。
本発明は、前記半透明膜の膜厚tTに対する前記低反射膜の膜厚tLの比率tL/tTは0.05以上10以下の範囲にされた表示装置である。
本発明は、前記低反射膜は膜厚が10nm以上100nm以下の範囲にされた表示装置である。
本発明は、前記金属成分の原子数を100at%としたときに、前記金属成分にはMgが0.5at%以上6at%以下の範囲で含有された表示装置である。
本発明は、低反射合金から成り、透明基板上に配置される低反射膜と、前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜と、を有し、前記低反射膜が前記本体膜よりも前記透明基板の近くに位置する配線膜であって、前記低反射合金は金属成分とNとが含有され、前記金属成分には少なくともCuとAlとが含有され、Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記金属成分に含有され、Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で前記低反射合金に含有された配線膜である。
本発明は、前記透明基板は酸化物を含有し、前記低反射膜は前記透明基板に接触された配線膜である。
本発明は、前記低反射膜と前記透明基板との間には酸化物を含有した半透明膜が配置され、前記低反射膜は前記半透明膜に接触された配線膜である。
本発明は、前記半透明膜は、膜厚が10nm以上200nm以下の範囲にされた配線膜である。
本発明は、前記半透明膜の膜厚tTに対する前記低反射膜の膜厚tLの比率tL/tTは0.05以上10以下の範囲にされた配線膜である。
本発明は、前記低反射膜は膜厚が10nm以上100nm以下の範囲にされた配線膜である。
本発明は、前記金属成分の原子数を100at%としたときに、前記金属成分にはMgが0.5at%以上6at%以下の範囲で含有された配線膜である。
本発明は、金属成分を含有する第一のターゲットをスパッタリングし、透明基板上に低反射合金から成る低反射膜を形成し、少なくともCuを含有する第二のターゲットをスパッタリングし、前記低反射膜上に前記低反射膜よりも抵抗率が小さい本体膜を形成する配線膜製造方法であって、前記金属成分には少なくともCuとAlとを含有させ、前記第一のターゲットには、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲でAlを含有させ、前記低反射合金には、前記低反射合金の原子数を100at%としたときに、Nが10at%以上50at%以下の範囲で含有されるように、前記第一のターゲットをスパッタリングするスパッタリングガスに窒素を含有させる配線膜製造方法である。
本発明は、前記金属成分の原子数を100at%としたときに、前記金属成分に0.5at%以上6at%以下の範囲でMgを含有させる配線膜製造方法である。
本発明は、前記透明基板上に半透明膜を形成した後、前記半透明膜上に前記低反射膜を形成する配線膜製造方法である。
In order to solve the above problems, the present invention includes a transparent substrate, a wiring film provided on the transparent substrate, and pixels disposed on the transparent substrate and electrically connected to the wiring film. wherein the wiring film is visible through the transparent substrate, wherein the wiring film is a low-reflection film made of a low-reflection alloy, and the wiring film is laminated on the low-reflection film and has a higher a body film with low resistivity, the low-reflection film is disposed between the body film and the transparent substrate, the low-reflection alloy contains a metal component and N, and the metal component contains at least Cu and Al are contained, Al is contained in the metal component in a range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%, and N is an atom of the low reflection alloy In the display device, the low-reflection alloy is contained in a range of 10 at % or more and 50 at % or less, where the number is 100 at %.
The present invention has a transparent substrate, a TFT arranged on the transparent substrate, and a pixel arranged on the transparent substrate and electrically connected to the TFT, and the above-described pixel is arranged through the transparent substrate. In a display device in which pixels are visually recognized, the TFT includes a semiconductor layer, a gate insulating film arranged in contact with the semiconductor layer, and a position facing the semiconductor layer with the gate insulating film interposed therebetween. a gate electrode film disposed on the semiconductor layer, a channel region provided in a portion facing the gate electrode film, a source region provided on one side of the channel region, and an opposite side of the channel region; is provided with a drain region, a source electrode film and a drain electrode film are in contact with the source region and the drain region, respectively, and the gate electrode film includes a low reflection film made of a low reflection alloy a body film laminated on the reflective film and having a lower resistivity than the low reflective film; the low reflective film is disposed between the body film and the transparent substrate; and the low reflective alloy contains a metal component. N is contained, and the metal component contains at least Cu and Al, and Al is in the range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%. and N is contained in a range of 10 at % or more and 50 at % or less when the number of atoms of the low reflection alloy is 100 at %.
The present invention is a display device in which the transparent substrate contains an oxide, and the low-reflection film is in contact with the transparent substrate.
The present invention is a display device in which a semi-transparent film containing an oxide is disposed between the low-reflection film and the transparent substrate, and the low-reflection film is in contact with the semi-transparent film.
The present invention is the display device, wherein the semi-transparent film has a film thickness in the range of 10 nm or more and 200 nm or less.
In the display device according to the present invention, the ratio t L /t T of the film thickness t L of the low reflection film to the film thickness t T of the semi-transparent film is in the range of 0.05 or more and 10 or less.
The present invention is the display device, wherein the low reflection film has a film thickness in the range of 10 nm to 100 nm.
The present invention is a display device in which Mg is contained in the metal component in a range of 0.5 at % or more and 6 at % or less when the number of atoms of the metal component is 100 at %.
The present invention comprises a low-reflection film made of a low-reflection alloy and arranged on a transparent substrate, and a body film laminated on the low-reflection film and having a lower resistivity than the low-reflection film, A wiring film in which a reflective film is located closer to the transparent substrate than the main film, the low-reflection alloy contains a metal component and N, the metal component contains at least Cu and Al, Al is contained in the metal component in a range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%, and N is contained in the low reflection alloy when the number of atoms is 100 at%. , a wiring film contained in the low reflection alloy in a range of 10 at % or more and 50 at % or less.
In the present invention, the transparent substrate contains an oxide, and the low reflection film is a wiring film in contact with the transparent substrate.
In the present invention, a semi-transparent film containing an oxide is disposed between the low-reflection film and the transparent substrate, and the low-reflection film is a wiring film in contact with the semi-transparent film.
In the present invention, the semi-transparent film is a wiring film having a film thickness in the range of 10 nm to 200 nm.
The present invention is a wiring film in which the ratio t L /t T of the film thickness t L of the low reflection film to the film thickness t T of the semi-transparent film is in the range of 0.05 or more and 10 or less.
The present invention is a wiring film in which the low reflection film has a film thickness in the range of 10 nm or more and 100 nm or less.
The present invention is a wiring film in which the metal component contains Mg in a range of 0.5 at % or more and 6 at % or less when the number of atoms of the metal component is 100 at %.
In the present invention, a first target containing a metal component is sputtered to form a low-reflection film made of a low-reflection alloy on a transparent substrate, a second target containing at least Cu is sputtered, and the low-reflection film is A wiring film manufacturing method for forming a main film having a resistivity lower than that of the low-reflection film thereon, wherein the metal component contains at least Cu and Al, and the first target contains the metal component Al is contained in the range of 1 at% or more and 20 at% or less when the number of atoms of the low reflection alloy is 100 at%, and N is 10 at% when the number of atoms of the low reflection alloy is 100 at%. % or more and 50 at % or less of the wiring film manufacturing method, the sputtering gas for sputtering the first target contains nitrogen.
The present invention is a wiring film manufacturing method in which Mg is contained in the metal component in the range of 0.5 at % or more and 6 at % or less when the number of atoms of the metal component is 100 at %.
The present invention is a wiring film manufacturing method in which a semi-transparent film is formed on the transparent substrate, and then the low reflection film is formed on the semi-transparent film.

反射率が小さい低反射膜で光が反射されるので、画面に外光が入射して透明基板を透過しても美しい画像を見ることができる。 Since the light is reflected by the low-reflection film with a low reflectance, a beautiful image can be seen even when external light enters the screen and passes through the transparent substrate.

透明基板と低反射膜との間に半透明膜を設けると、外光の反射率が小さくなる。 If a semi-transparent film is provided between the transparent substrate and the low-reflection film, the reflectance of external light is reduced.

Mgを含有させた場合は酸化物薄膜との間の密着強度が大きくなり、剥離しにくくなる。 When Mg is contained, the adhesion strength with the oxide thin film is increased, making it difficult to peel off.

本発明の表示装置の一例を説明するための断面図Cross-sectional view for explaining an example of the display device of the present invention (a)~(c):その表示装置の製造工程を説明するための断面図(1)(a) to (c): Cross-sectional view (1) for explaining the manufacturing process of the display device (a)~(c):その表示装置の製造工程を説明するための断面図(2)(a) to (c): Cross-sectional view (2) for explaining the manufacturing process of the display device (a)、(b):その表示装置の製造工程を説明するための断面図(3)(a), (b): Cross-sectional view for explaining the manufacturing process of the display device (3) その表示装置の製造工程を説明するための断面図(4)Sectional drawing (4) for demonstrating the manufacturing process of the display apparatus 本発明の表示装置の他の例を説明するための断面図Sectional view for explaining another example of the display device of the present invention 低反射膜と本体膜を形成するスパッタリング装置Sputtering equipment for forming low-reflection film and main film 2ガスの分圧値と低反射膜の比抵抗との関係を示すグラフGraph showing the relationship between the partial pressure value of N 2 gas and the resistivity of the low-reflection film

図1の符号2は、本発明の一実施例の表示装置であり、TFT(薄膜トランジスタ)11を有している。 Reference numeral 2 in FIG. 1 denotes a display device according to one embodiment of the present invention, which has a TFT (thin film transistor) 11 .

TFT11は、細長のゲート電極膜32が透明基板31の表面に配置されている。 The TFT 11 has an elongated gate electrode film 32 disposed on the surface of a transparent substrate 31 .

ゲート電極膜32上には、少なくとも幅方向に亘ってSi酸化物(SiOx)から成るゲート絶縁膜33が配置されている。ゲート絶縁膜33上には、ゲート電極膜32の幅方向両端上でゲート電極膜32からはみ出る長さで酸化物半導体層34が配置され、ゲート電極膜32は、酸化物半導体層34の一端と他端との間に位置するようにされており、酸化物半導体層34の一端側上にはソース電極膜51が配置され、他端側上にはドレイン電極膜52が配置されている。 A gate insulating film 33 made of Si oxide (SiO x ) is disposed on the gate electrode film 32 at least in the width direction. On the gate insulating film 33 , an oxide semiconductor layer 34 is arranged on both ends of the gate electrode film 32 in the width direction so as to protrude from the gate electrode film 32 . A source electrode film 51 is arranged on one end side of the oxide semiconductor layer 34 and a drain electrode film 52 is arranged on the other end side thereof.

ソース電極膜51とドレイン電極膜52の間には凹部55が設けられ、この凹部55によってソース電極膜51とドレイン電極膜52とは電気的に分離されており、ソース電極膜51とドレイン電極膜52の間に異なる電圧を印加できるようにされている。 A recess 55 is provided between the source electrode film 51 and the drain electrode film 52, and the source electrode film 51 and the drain electrode film 52 are electrically isolated by the recess 55. 52, different voltages can be applied.

ソース電極膜51上と、ドレイン電極膜52上と、その間の凹部55上には、Si酸化物から成る保護絶縁膜41が形成されており、保護絶縁膜41は、ここでは保護膜として用いられている。 A protective insulating film 41 made of Si oxide is formed on the source electrode film 51, the drain electrode film 52, and the concave portion 55 therebetween, and the protective insulating film 41 is used here as a protective film. ing.

酸化物半導体層34のうちソース電極膜51が接触した部分とその周囲とをソース領域71とし、ドレイン電極膜52が接触した部分とその周囲とをドレイン領域72とし、ソース領域71とドレイン領域72との間をチャネル領域73とすると、ソース電極膜51とドレイン電極膜52の間に電圧を印加した状態でゲート電極膜32にゲート電圧を印加してチャネル領域73にチャネル層を形成すると、ソース領域71とドレイン領域72とがチャネル層によって低抵抗で接続され、その結果、ソース電極膜51とドレイン電極膜52とが電気的に接続され、TFT11が導通する。 A portion of the oxide semiconductor layer 34 in contact with the source electrode film 51 and its surroundings is defined as a source region 71 , and a portion of the oxide semiconductor layer 34 in contact with the drain electrode film 52 and its surroundings is defined as a drain region 72 . When a channel layer is formed in the channel region 73 by applying a gate voltage to the gate electrode film 32 while a voltage is applied between the source electrode film 51 and the drain electrode film 52 , a channel layer is formed in the channel region 73 . The channel layer connects the region 71 and the drain region 72 with a low resistance. As a result, the source electrode film 51 and the drain electrode film 52 are electrically connected, and the TFT 11 becomes conductive.

ここでは、チャネル領域73の半導体の極性がソース領域71の半導体の極性とドレイン領域72の半導体の極性と同極性であり、チャネル層の極性はチャネル領域73の半導体の極性と同極性である。 Here, the polarity of the semiconductor of the channel region 73 is the same as the polarity of the semiconductor of the source region 71 and the polarity of the semiconductor of the drain region 72 , and the polarity of the channel layer is the same as the polarity of the semiconductor of the channel region 73 .

但し、チャネル領域73の半導体の極性が、ソース領域71の半導体の極性とドレイン領域72の半導体の極性と異なり、チャネル層の極性がソース領域71の半導体の極性とドレイン領域72の半導体の極性と同極性になる場合も本発明に含まれる。 However, the polarity of the semiconductor in the channel region 73 is different from the polarity of the semiconductor in the source region 71 and the polarity of the semiconductor in the drain region 72, and the polarity of the channel layer is different from the polarity of the semiconductor in the source region 71 and the polarity of the semiconductor in the drain region 72. The present invention also includes the case of having the same polarity.

ゲート電圧の印加を停止すると、チャネル層は消滅し、ソース電極膜51とドレイン電極膜52との間は高抵抗になり、電気的に分離される。 When the application of the gate voltage is stopped, the channel layer disappears and the resistance between the source electrode film 51 and the drain electrode film 52 becomes high and they are electrically separated.

この表示装置2は複数の画素12を有しており、各画素12は、画素電極82と、画素電極82上に配置された液晶83と、液晶83の上部に配置された上部電極81とを有しており、画素電極82と上部電極81との間に電圧が印加されると、液晶83を通る光の偏光性が変更され、偏光フィルタ(不図示)の光通過性が制御され、その結果、画素12と偏光フィルタとを透過する光量が制御されるようになっている。 This display device 2 has a plurality of pixels 12. Each pixel 12 includes a pixel electrode 82, a liquid crystal 83 arranged on the pixel electrode 82, and an upper electrode 81 arranged above the liquid crystal 83. When a voltage is applied between the pixel electrode 82 and the upper electrode 81, the polarization of light passing through the liquid crystal 83 is changed, the light transmittance of the polarizing filter (not shown) is controlled, and the As a result, the amount of light transmitted through the pixel 12 and the polarizing filter is controlled.

ここでは画素12には液晶が配置されていたが、有機EL素子によって画素を構成させた表示装置であってもよい。 Although liquid crystal is arranged in the pixel 12 here, a display device in which the pixel is configured by an organic EL element may be used.

画素電極82はソース電極膜51やドレイン電極膜52(ここではドレイン電極膜52)と電気的に接続されており、TFT11がON・OFFすることで、画素電極82への電圧印加の開始・終了が行われる。 The pixel electrode 82 is electrically connected to the source electrode film 51 and the drain electrode film 52 (here, the drain electrode film 52), and the voltage application to the pixel electrode 82 is started/finished by turning the TFT 11 ON/OFF. is done.

ここでは画素電極82は、ドレイン電極膜52に接続された透明導電層42の一部から成る。透明導電層42は例えばITOで構成される。 The pixel electrode 82 here consists of a portion of the transparent conductive layer 42 connected to the drain electrode film 52 . The transparent conductive layer 42 is made of ITO, for example.

透明導電層42の下方には、配線膜35が配置されている。 A wiring film 35 is arranged below the transparent conductive layer 42 .

この配線膜35とゲート電極膜32とは、反射率が小さい低反射膜36と、低反射膜36よりも抵抗率が小さい本体膜37とを有しており、また、ソース電極膜51とドレイン電極膜52とも、低反射膜46と、低反射膜46よりも抵抗値が小さい本体膜47とを有している。 The wiring film 35 and the gate electrode film 32 have a low-reflectance film 36 with a small reflectance and a body film 37 with a resistivity smaller than that of the low-reflection film 36. Each of the electrode films 52 has a low-reflection film 46 and a body film 47 having a smaller resistance value than the low-reflection film 46 .

このTFT11の製造工程を説明すると、図7を参照し、符号80はスパッタリング装置であり、このスパッタリング装置80によってゲート電極膜32と、配線膜35と、ソース電極膜51と、ドレイン電極膜52とを形成するものとする。 Referring to FIG. 7, reference numeral 80 denotes a sputtering device. By means of this sputtering device 80, a gate electrode film 32, a wiring film 35, a source electrode film 51, and a drain electrode film 52 are formed. shall form

スパッタリング装置80は第一、第二の真空槽89a、89bを有しており、第一、第二の真空槽89a、89bの内部には、第一、第二のカソード電極86a、86bがそれぞれ配置されている。第一のカソード電極86aには金属成分を含有する第一のターゲット88aが配置され、第二のカソード電極86bには純銅から成る第二のターゲット88bが配置されている。第二のターゲット88bには銅に他の金属が添加されていてもよい。 The sputtering apparatus 80 has first and second vacuum chambers 89a and 89b, and inside the first and second vacuum chambers 89a and 89b are respectively first and second cathode electrodes 86a and 86b. are placed. A first target 88a containing a metal component is placed on the first cathode electrode 86a, and a second target 88b made of pure copper is placed on the second cathode electrode 86b. Other metals may be added to copper in the second target 88b.

第一のターゲット88aの金属成分には、少なくともCuとAlとが含有されており、金属成分のAlは、金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で含有されて、スパッタリング装置80の第一の真空槽89aの内部に配置されている。 The metal component of the first target 88a contains at least Cu and Al, and when the number of atoms in the metal component is 100 at %, the Al content is in the range of 1 at % or more and 20 at % or less. contained and placed inside the first vacuum chamber 89 a of the sputtering apparatus 80 .

ここでは金属成分には、Mgが0.5at%以上6at%以下の範囲で含有されている。 Here, the metal component contains Mg in a range of 0.5 at % or more and 6 at % or less.

第一、第二の真空槽89a、89bは第一、第二の真空排気装置96a、96bによってそれぞれ真空排気されており、第一の真空槽89aの内部には、スパッタリングの際には、Arガス等の希ガスから成るスパッタリングガスと、Nを化学構造に有する反応ガスとが第一のガス源87aから導入され、第二の真空槽89bの内部には、Arガス等の希ガスから成るスパッタリングガスが第二のガス源87bから導入されている。ここでは反応ガスにはN2ガスが用いられている。 The first and second vacuum chambers 89a and 89b are evacuated by first and second evacuation devices 96a and 96b, respectively. A sputtering gas composed of a rare gas such as gas and a reaction gas having N in its chemical structure are introduced from a first gas source 87a, and a second vacuum chamber 89b is filled with a rare gas such as Ar gas. A sputtering gas is introduced from a second gas source 87b. Here, N 2 gas is used as the reaction gas.

成膜対象物である透明基板31を搬入室84aから第一の真空槽89aの内部に搬入し、搬入した透明基板31を第一のターゲット88aと対面させ、第一のスパッタ電源85aによって第一のカソード電極86aに第一のスパッタ電圧を印加し、アルゴンプラズマと窒素プラズマとが含有されたプラズマを第一のターゲット88aの表面近傍に発生させ、第一のターゲット88aを窒化させながらスパッタリングし、透明基板31の表面に低反射膜を形成する。 The transparent substrate 31, which is an object to be film-formed, is carried from the carry-in chamber 84a into the first vacuum chamber 89a. A first sputtering voltage is applied to the cathode electrode 86a of, plasma containing argon plasma and nitrogen plasma is generated in the vicinity of the surface of the first target 88a, and sputtering is performed while nitriding the first target 88a, A low reflection film is formed on the surface of the transparent substrate 31 .

低反射膜はCuとAlとを含有する低反射合金によって形成されており、低反射合金には、低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲の含有率でNが含有されている。 The low-reflection film is formed of a low-reflection alloy containing Cu and Al, and the low-reflection alloy contains 10 at% or more and 50 at% or less when the number of atoms of the low-reflection alloy is 100 at%. N is contained in the ratio.

次いで、低反射膜が形成された透明基板31を第一の真空槽89aから第二の真空槽89bの内部に移動させ、第二のスパッタ電源85bによって第二のカソード電極86bに第二のスパッタ電圧を印加し、アルゴンプラズマを第二のターゲット88bの表面近傍に発生させ、第二のターゲット88bをスパッタリングし、低反射膜の表面に本体膜を形成する。 Next, the transparent substrate 31 on which the low-reflection film is formed is moved from the first vacuum chamber 89a into the second vacuum chamber 89b, and the second sputtering power source 85b applies the second sputtering to the second cathode electrode 86b. A voltage is applied to generate argon plasma near the surface of the second target 88b, and the second target 88b is sputtered to form a main film on the surface of the low-reflection film.

本体膜は、Cu合金によって形成されており、本体膜の抵抗率は低反射膜の抵抗率よりも小さくなっている。 The body film is made of a Cu alloy, and the resistivity of the body film is lower than that of the low reflection film.

図2(a)の符号36は低反射膜であり、符号37は本体膜である。低反射膜36は、透明基板31に接触されている。 Reference numeral 36 in FIG. 2A is a low-reflection film, and reference numeral 37 is a main body film. The low reflection film 36 is in contact with the transparent substrate 31 .

次いで、本体膜37が形成された透明基板31を搬出室84bに移動させ、大気中に取り出す。 Next, the transparent substrate 31 with the body film 37 formed thereon is moved to the unloading chamber 84b and taken out into the atmosphere.

次に、図2(b)に示すように、本体膜37上にパターニングしたレジスト膜44を形成し、低反射膜36と本体膜37とが形成された透明基板31を、Cuをエッチングするエッチング液に浸漬すると、レジスト膜44とレジスト膜44との間に露出する部分の本体膜37がエッチングされ、次いで、本体膜37のエッチングによって露出された低反射膜36の部分とが同じエッチング液によってエッチングされる。 Next, as shown in FIG. 2B, a patterned resist film 44 is formed on the main body film 37, and the transparent substrate 31 on which the low-reflection film 36 and the main body film 37 are formed is subjected to etching for etching Cu. When immersed in the liquid, the portion of the body film 37 exposed between the resist films 44 is etched, and then the portion of the low-reflection film 36 exposed by the etching of the body film 37 is etched by the same etchant. etched.

図2(c)はエッチングされた状態を示しており、低反射膜36と本体膜37とは部分的に除去され、残った部分によって、ゲート電極膜32と配線膜35とが透明基板31上に形成される。 FIG. 2(c) shows an etched state, in which the low-reflection film 36 and the body film 37 are partially removed, and the gate electrode film 32 and the wiring film 35 are formed on the transparent substrate 31 by the remaining portions. formed in

レジスト膜44を除去した後、透明基板31をCVD装置内に搬入し、図3(a)に示すように、透明基板31上にゲート絶縁膜33を形成する。 After removing the resist film 44, the transparent substrate 31 is carried into the CVD apparatus, and the gate insulating film 33 is formed on the transparent substrate 31 as shown in FIG. 3(a).

次いで、ゲート絶縁膜33上に半導体材料(IGZO等の酸化物半導体)から成る薄膜を形成し、パターニングしてゲート絶縁膜33上に、図3(b)に示すような酸化物半導体層34を形成する。 Next, a thin film made of a semiconductor material (an oxide semiconductor such as IGZO) is formed on the gate insulating film 33 and patterned to form an oxide semiconductor layer 34 on the gate insulating film 33 as shown in FIG. Form.

酸化物半導体層34が形成された透明基板31をスパッタリング装置80の第一の真空槽89aの内部に搬入し、アルゴンプラズマと窒素プラズマとを含有するプラズマを発生させて第一のターゲット88aをスパッタリングして酸化物半導体層34や酸化物半導体層34の周囲に露出するゲート絶縁膜33上に低反射膜を形成した後、透明基板31を第二の真空槽89bの内部に移動させ、アルゴンプラズマを発生させて第二のターゲット88bをスパッタリングして低反射膜上に本体膜を形成する。 The transparent substrate 31 with the oxide semiconductor layer 34 formed thereon is carried into the first vacuum chamber 89a of the sputtering apparatus 80, and plasma containing argon plasma and nitrogen plasma is generated to sputter the first target 88a. After forming a low-reflection film on the oxide semiconductor layer 34 and the gate insulating film 33 exposed around the oxide semiconductor layer 34, the transparent substrate 31 is moved into the second vacuum chamber 89b, and argon plasma is applied. is generated to sputter the second target 88b to form the body film on the low-reflection film.

図3(c)の符号46は低反射膜であり、ゲート電極膜32及び配線膜35の低反射膜36と同じ組成である。符号47は本体膜であり、ゲート電極膜32及び配線膜35の本体膜37と同じ組成である。 Reference numeral 46 in FIG. 3C denotes a low-reflection film, which has the same composition as the low-reflection film 36 of the gate electrode film 32 and the wiring film 35 . Reference numeral 47 denotes a main film, which has the same composition as the main film 37 of the gate electrode film 32 and the wiring film 35 .

次いで、フォトリソグラフ工程とエッチング工程とにより、低反射膜46と本体膜47とを同じ形状にパターニングし、図4(a)に示すように、ソース電極膜51とドレイン電極膜52とを形成する。ソース電極膜51とドレイン電極膜52とは、それぞれ低反射膜46と本体膜47とを有しており、ソース電極膜51はソース領域71と接触し、ドレイン電極膜52はドレイン領域72と接触する。 Then, the low-reflection film 46 and the main body film 47 are patterned into the same shape by photolithography and etching to form a source electrode film 51 and a drain electrode film 52 as shown in FIG. 4(a). . The source electrode film 51 and the drain electrode film 52 respectively have a low reflection film 46 and a body film 47 , the source electrode film 51 is in contact with the source region 71 and the drain electrode film 52 is in contact with the drain region 72 . do.

ソース電極膜51とドレイン電極膜52は、酸化物半導体層34のうちの幅方向両端上に位置しており、その間には、ゲート電極膜32とゲート電極膜32と接触したゲート絶縁膜33とが位置している。 The source electrode film 51 and the drain electrode film 52 are positioned on both ends in the width direction of the oxide semiconductor layer 34 , and the gate electrode film 32 and the gate insulating film 33 in contact with the gate electrode film 32 are interposed therebetween. is located.

この透明基板31上に絶縁膜を形成し、パターニングして図4(b)に示す保護膜41を形成する。 An insulating film is formed on the transparent substrate 31 and patterned to form a protective film 41 shown in FIG. 4(b).

保護膜41には接続孔43が形成されており、接続孔43の底面には、ドレイン電極膜52、ソース電極膜51、又は配線膜35等が露出される。 A contact hole 43 is formed in the protective film 41 , and the drain electrode film 52 , the source electrode film 51 , the wiring film 35 or the like is exposed at the bottom surface of the contact hole 43 .

次に、図5に示すように、保護膜41上にパターニングされた透明導電層を形成する。符号42は、パターニングされた透明導電層であり、符号82は透明導電層42によって構成された画素電極を示している。 Next, as shown in FIG. 5, a patterned transparent conductive layer is formed on the protective film 41 . Reference numeral 42 denotes a patterned transparent conductive layer, and reference numeral 82 denotes a pixel electrode made up of the transparent conductive layer 42. As shown in FIG.

そして画素電極82上に液晶83と上部電極81とが配置されると、図1に示す表示装置2が得られる。 Then, when the liquid crystal 83 and the upper electrode 81 are arranged on the pixel electrode 82, the display device 2 shown in FIG. 1 is obtained.

ガラスの透明基板31の表面に形成されたゲート電極膜32と配線膜35に、透明基板31側から光を照射し、低反射膜36で反射された反射光の光強度を測定し、反射率を求めた。 The gate electrode film 32 and the wiring film 35 formed on the surface of the transparent substrate 31 made of glass were irradiated with light from the transparent substrate 31 side, and the light intensity of the reflected light reflected by the low-reflection film 36 was measured to determine the reflectance. asked for

低反射膜36の膜厚は5、10、50nmであり、本体膜37の膜厚は300nmである。本体膜37の成分は純銅である。 The film thicknesses of the low-reflection film 36 are 5, 10, and 50 nm, and the film thickness of the main body film 37 is 300 nm. The component of the main body film 37 is pure copper.

比較対象として、Ti薄膜、MoTi合金薄膜、Mo薄膜と、Nを含有しないCuMgAl合金薄膜とをガラス基板上に密着膜として形成し、表面に純銅の本体膜を形成した。 For comparison, a Ti thin film, a MoTi alloy thin film, a Mo thin film, and a CuMgAl alloy thin film containing no N were formed as adhesion films on glass substrates, and a main body film of pure copper was formed on the surface.

波長400、500、700nmの測定光に透明基板を透過させて密着膜に照射し、反射率を測定した。反射率が100~50%以上を「×」、50%未満30%以上を「○」(良好)、30%より低い場合を「◎」(非常に良好)と判断した。 Measurement light having wavelengths of 400, 500 and 700 nm was transmitted through the transparent substrate and irradiated to the adhesion film, and the reflectance was measured. A reflectance of 100 to 50% or more was evaluated as "x", a reflectance of less than 50% and 30% or more was evaluated as "◯" (good), and a reflectance of less than 30% was evaluated as "⊚" (very good).

また、ガラス基板との密着性についてテープテストにより評価した。100マス中1マスでも剥離したら「×」、全く剥離が無い状態を「〇」と判断した。 Also, the adhesiveness to the glass substrate was evaluated by a tape test. If even one of the 100 squares was peeled off, it was judged to be "x", and if there was no peeling at all, it was judged to be "good".

Figure 0007339016000001
Figure 0007339016000001

表1より、Ti、Mo-Ti、Moは各膜厚において反射率と密着性を両立する条件は無い。Cu-Mg-Alは各膜厚において密着性は良好であるが、反射率は高い傾向を示し特性を両立する条件は無い。 From Table 1, Ti, Mo--Ti and Mo do not have conditions for achieving both reflectance and adhesion at each film thickness. Cu--Mg--Al has good adhesion at each film thickness, but the reflectance tends to be high.

Cu-Al合金にMgが含有されたCuMgAl合金薄膜は、Nを含有した場合と含有しない場合との両方に於いて、Mgを含有しないCuAl合金薄膜に比べて酸化物に対する付着力が向上しており、Mgを含有したCuMgAl合金薄膜と酸化物との間の剥離が発生しにくくなることが確認されている。従って、半導体の表面に本発明の低反射膜と本体膜とを積層させてソース電極膜やドレイン電極膜を形成すると、これら電極膜が半導体から剥離しにくくなる。 A CuMgAl alloy thin film in which Mg is contained in a Cu—Al alloy has improved adhesion to oxides compared to a CuAl alloy thin film containing no Mg, both when N is contained and when N is not contained. It has been confirmed that peeling between the CuMgAl alloy thin film containing Mg and the oxide is less likely to occur. Therefore, when a source electrode film and a drain electrode film are formed by laminating the low reflection film of the present invention and a main film on the surface of a semiconductor, these electrode films are less likely to separate from the semiconductor.

本発明の低反射膜36と透明基板31の間に半透明膜を挿入すると、反射率を一層低下させることができる。 Inserting a semi-transparent film between the low-reflection film 36 of the present invention and the transparent substrate 31 can further reduce the reflectance.

その一例を図6に示す。図6の表示装置3のゲート電極膜77と配線膜78とは、低反射膜36と透明基板31との間に、導電性酸化物薄膜から成る半透明膜76が設けられている。他の構造は図1のTFT2と同じであり、説明を省略する。 An example is shown in FIG. The gate electrode film 77 and the wiring film 78 of the display device 3 of FIG. Other structures are the same as those of TFT2 in FIG.

透明基板31を透過した光が半透明膜76に照射されると、半透明膜76を透過する間に光は減衰するから、低反射膜36で反射して透明基板31から射出される光の光量は小さくなる。 When the light that has passed through the transparent substrate 31 is irradiated onto the semi-transparent film 76, the light is attenuated while passing through the semi-transparent film 76. The amount of light becomes smaller.

低反射膜をスパッタリング法によって形成する際の、真空槽89a中のガスの圧力を100%としたときのN2ガスの分圧値と、その分圧値で形成された低反射膜の比抵抗との関係を測定した。 Partial pressure value of N 2 gas when the pressure of the gas in the vacuum chamber 89a is 100% when forming the low-reflection film by sputtering, and the specific resistance of the low-reflection film formed at that partial pressure value measured the relationship between

図8のグラフに、測定結果を示す。O2ガスを添加した場合は分圧値が大きくなると抵抗値が増加するが、N2ガスの場合は分圧が大きくなっても抵抗増加は小さい。 The graph in FIG. 8 shows the measurement results. When O 2 gas is added, the resistance value increases as the partial pressure value increases, but in the case of N 2 gas, even if the partial pressure value increases, the increase in resistance is small.

次に、Cuを含有し、Alを種々の含有率で含有する金属成分と、種々の割合のNとを含有する低反射合金から成る低反射膜をガラス製の透明基板の表面に形成し、低反射膜上に純銅から成る本体膜を形成した。波長400、550、700nmの測定光に透明基板を透過させて低反射合金に照射し、反射率を測定した。半透明膜は設けていない。 Next, a low-reflection film made of a low-reflection alloy containing metal components containing Cu and Al in various proportions and N in various proportions is formed on the surface of a transparent substrate made of glass, A body film made of pure copper was formed on the low-reflection film. Measurement light with wavelengths of 400, 550 and 700 nm was transmitted through the transparent substrate and irradiated to the low-reflection alloy, and the reflectance was measured. A semi-transparent membrane is not provided.

低反射膜について、膜厚と、金属成分の原子数を100at%としたときのAl含有率と、低反射合金の原子数を100at%としたときのNの含有率と、反射率評価との関係を下記表2に示す。 For the low-reflection film, the film thickness, the Al content when the number of atoms of the metal component is 100 at%, the N content when the number of atoms of the low-reflection alloy is 100 at%, and the reflectance evaluation. The relationships are shown in Table 2 below.

Figure 0007339016000002
Figure 0007339016000002

表2及び下記表3、表4の中の反射率評価の欄では、「×」は測定値が50%以上100%以下の反射率を示し、「○」は30%以上50%未満の反射率を示し、「◎」は30%未満の反射率を示している。 In the column of reflectance evaluation in Table 2 and Tables 3 and 4 below, "x" indicates a reflectance with a measured value of 50% or more and 100% or less, and "○" indicates a reflectance of 30% or more and less than 50%. "⊚" indicates a reflectance of less than 30%.

表2の測定結果から、1at%以上のAlを含有する場合に、N含有率10at%以上50at%以下の範囲で反射率が小さい低反射膜が得られていることが分かる。但し、Cuと30at%のAlとを含有する金属成分では、ターゲットを作成することができなかったので、Alは1at%以上30at%未満が望ましいが、ターゲットを作成できる場合には30at%以上であってもAlの範囲に含まれる。 From the measurement results in Table 2, it can be seen that when the Al content is 1 at % or more, a low reflectance film with a small reflectance is obtained when the N content is in the range of 10 at % or more and 50 at % or less. However, since it was not possible to create a target with a metal component containing Cu and 30 at% of Al, Al is preferably 1 at% or more and less than 30 at%, but if a target can be created, it should be 30 at% or more. Even if there is, it is included in the scope of Al.

ガラス基板との密着性の結果から、1at%以上のAlを含有およびN含有率10at%以上の場合、5at%以上のAlを含有する場合において、良好な密着特性が得られていることが分かる。 From the results of the adhesion to the glass substrate, it can be seen that good adhesion characteristics are obtained when the Al content is 1 at% or more, the N content is 10 at% or more, and the Al content is 5 at% or more. .

また、ガラス製の透明基板上にITOから成る種々の膜厚の半透明膜を透明基板の表面に形成し、Cuを含有し、Alを種々の含有率で含有する金属成分と、種々の割合のNとを含有する低反射合金から成る低反射膜を半透明膜の表面に形成し、低反射膜上に純銅から成る本体膜を形成した。波長400、550、700nmの測定光に透明基板を透過させて低反射合金に照射し、反射率を測定した。 In addition, semi-transparent films made of ITO with various thicknesses are formed on a transparent substrate made of glass on the surface of the transparent substrate. A low-reflection film made of a low-reflection alloy containing N was formed on the surface of the semi-transparent film, and a main body film made of pure copper was formed on the low-reflection film. Measurement light with wavelengths of 400, 550 and 700 nm was transmitted through the transparent substrate and irradiated to the low-reflection alloy, and the reflectance was measured.

金属成分の原子数を100at%としたときのAl含有率と、低反射膜の膜厚と、半透明膜の膜厚と、反射率評価との関係について、Nが25at%の低反射合金から成る低反射膜を下記表3に示し、Nが50at%の低反射合金から成る低反射膜を下記表4に示す。 Regarding the relationship between the Al content when the number of atoms of the metal component is 100 at%, the thickness of the low-reflection film, the thickness of the semi-transparent film, and the reflectance evaluation, from the low-reflection alloy with N of 25 at% Table 3 below shows the low-reflectance films formed, and Table 4 below shows the low-reflection films made of the low-reflection alloy containing 50 atomic % of N.

Figure 0007339016000003
Figure 0007339016000003

Figure 0007339016000004
Figure 0007339016000004

表3、表4と表2とを併せて見ると、半透明膜を有する場合も低反射合金のAlとNの含有率については、表2と同じ数値範囲が適用され、更に、半透明膜の膜厚tTに対する前記低反射膜の膜厚tLの比率tL/tTについては、0.05以上10以下の範囲が適していることが分かる。 Looking at Tables 3, 4 and 2 together, the same numerical range as in Table 2 is applied to the content of Al and N in the low-reflection alloy even when a semi-transparent film is provided. It can be seen that a range of 0.05 or more and 10 or less is suitable for the ratio tL / tT of the film thickness tL of the low reflection film to the film thickness tT of the low reflection film.

なお、金属成分を含有するターゲットを反応性スパッタリングして得られた低反射膜の金属成分の組成は、ターゲットの金属成分の組成と同じであり、所望の組成の金属成分を含有する低反射合金の低反射膜を得るときには、その金属成分の組成と同じ組成のターゲットを窒素を含有するプラズマによってスパッタリングすればよい。 In addition, the composition of the metal component of the low-reflection film obtained by reactive sputtering of the target containing the metal component is the same as the composition of the metal component of the target, and the low-reflection alloy containing the metal component of the desired composition In order to obtain a low reflection film of (1), a target having the same composition as that of the metal component may be sputtered by plasma containing nitrogen.

2、3……表示装置
11……TFT
12……画素
31……透明基板
32……ゲート電極膜
33……ゲート絶縁膜
34……酸化物半導体層
35……配線膜
36、46……低反射膜
37、47……本体膜
51……ソース電極膜
52……ドレイン電極膜
71……ソース領域
72……ドレイン領域
73……チャネル領域
2, 3... display device 11... TFT
DESCRIPTION OF SYMBOLS 12... Pixel 31... Transparent substrate 32... Gate electrode film 33... Gate insulating film 34... Oxide semiconductor layer 35... Wiring film 36, 46... Low reflection film 37, 47... Body film 51... ... source electrode film 52 ... drain electrode film 71 ... source region 72 ... drain region 73 ... channel region

Claims (15)

透明基板と、
前記透明基板上に設けられた配線膜と、
前記透明基板上に配置され、前記配線膜に電気的に接続された画素と、
を有し、
前記透明基板を介して前記配線膜が視認される表示装置であって、
前記配線膜は低反射合金から成る低反射膜と、前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜とを有し、
前記低反射膜は前記本体膜と前記透明基板との間に配置され、
前記低反射合金は金属成分とNとが含有され、
前記金属成分には少なくともCuとAlとMgとが含有され、
Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記金属成分に含有され、
Mgは、前記金属成分の原子数を100at%としたときに、0.5at%以上6at%以下の範囲で前記金属成分に含有され、
Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で前記低反射合金に含有された表示装置。
a transparent substrate;
a wiring film provided on the transparent substrate;
pixels arranged on the transparent substrate and electrically connected to the wiring film;
has
A display device in which the wiring film is visible through the transparent substrate,
The wiring film has a low-reflection film made of a low-reflection alloy, and a body film laminated on the low-reflection film and having a lower resistivity than the low-reflection film,
the low-reflection film is disposed between the body film and the transparent substrate;
The low-reflection alloy contains a metal component and N,
The metal component contains at least Cu, Al and Mg ,
Al is contained in the metal component in a range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%,
Mg is contained in the metal component in a range of 0.5 at% or more and 6 at% or less when the number of atoms of the metal component is 100 at%,
A display device in which N is contained in the low reflection alloy in a range of 10 at % or more and 50 at % or less when the number of atoms of the low reflection alloy is 100 at %.
透明基板と、
前記透明基板上に配置されたTFTと、
前記透明基板上に配置され、前記TFTに電気的に接続された画素と、
を有し、
前記透明基板を介して前記画素が視認される表示装置であって、
前記TFTは、
半導体層と、
前記半導体層と接触して配置されたゲート絶縁膜と、
前記ゲート絶縁膜を間にして前記半導体層と対向する位置に配置されたゲート電極膜とを有し、
前記半導体層には、前記ゲート電極膜と対向する部分にチャネル領域が設けられ、前記チャネル領域の片側にソース領域が設けられ、前記チャネル領域の反対側にはドレイン領域が設けられ、
前記ソース領域と前記ドレイン領域とには、ソース電極膜とドレイン電極膜とがそれぞれ接触され、
前記ゲート電極膜は、低反射合金から成る低反射膜と、前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜とを有し、
前記低反射膜は前記本体膜と前記透明基板との間に配置され、
前記低反射合金は金属成分とNとが含有され、
前記金属成分には少なくともCuとAlとMgとが含有され、
Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記低反射合金に含有され、
Mgは、前記金属成分の原子数を100at%としたときに、0.5at%以上6at%以下の範囲で前記金属成分に含有され、
Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で含有された表示装置。
a transparent substrate;
a TFT disposed on the transparent substrate;
a pixel disposed on the transparent substrate and electrically connected to the TFT;
has
A display device in which the pixels are visually recognized through the transparent substrate,
The TFT is
a semiconductor layer;
a gate insulating film disposed in contact with the semiconductor layer;
a gate electrode film disposed at a position facing the semiconductor layer with the gate insulating film therebetween;
the semiconductor layer includes a channel region provided in a portion facing the gate electrode film, a source region provided on one side of the channel region, and a drain region provided on the opposite side of the channel region;
a source electrode film and a drain electrode film are in contact with the source region and the drain region, respectively;
The gate electrode film has a low-reflection film made of a low-reflection alloy and a main film laminated on the low-reflection film and having a lower resistivity than the low-reflection film,
the low-reflection film is disposed between the body film and the transparent substrate;
The low-reflection alloy contains a metal component and N,
The metal component contains at least Cu, Al and Mg ,
Al is contained in the low reflection alloy in a range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%,
Mg is contained in the metal component in a range of 0.5 at% or more and 6 at% or less when the number of atoms of the metal component is 100 at%,
A display device in which N is contained in a range of 10 at % or more and 50 at % or less when the number of atoms of the low reflection alloy is 100 at %.
前記透明基板は酸化物を含有し、前記低反射膜は前記透明基板に接触された請求項1又は請求項2のいずれか1項記載の表示装置。 3. The display device according to claim 1, wherein said transparent substrate contains an oxide, and said low reflection film is in contact with said transparent substrate. 前記低反射膜と前記透明基板との間には酸化物を含有した半透明膜が配置され、前記低反射膜は前記半透明膜に接触された請求項1又は請求項2のいずれか1項記載の表示装置。 3. A semi-transparent film containing an oxide is disposed between the low-reflection film and the transparent substrate, and the low-reflection film is in contact with the semi-transparent film. Display device as described. 前記半透明膜は、膜厚が10nm以上200nm以下の範囲にされた請求項4記載の表示装置。 5. The display device according to claim 4, wherein the semi-transparent film has a film thickness in the range of 10 nm to 200 nm. 前記半透明膜の膜厚tTに対する前記低反射膜の膜厚tLの比率tL/tTは0.05以上10以下の範囲にされた請求項4又は請求項5のいずれか1項記載の表示装置。 6. The ratio tL / tT of the film thickness tL of the low reflection film to the film thickness tT of the semi-transparent film is in the range of 0.05 or more and 10 or less. Display device as described. 前記低反射膜は膜厚が10nm以上100nm以下の範囲にされた請求項1乃至請求項6のいずれか1項記載の表示装置。 7. The display device according to any one of claims 1 to 6, wherein the low reflection film has a film thickness in the range of 10 nm or more and 100 nm or less. 低反射合金から成り、透明基板上に配置される低反射膜と、
前記低反射膜に積層され、前記低反射膜よりも抵抗率が小さい本体膜と、を有し、前記低反射膜が前記本体膜よりも前記透明基板の近くに位置する配線膜であって、
前記低反射合金は金属成分とNとが含有され、
前記金属成分には少なくともCuとAlとMgとが含有され、
Alは、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲で前記金属成分に含有され、
Mgは、前記金属成分の原子数を100at%としたときに、0.5at%以上6at%以下の範囲で前記金属成分に含有され、
Nは、前記低反射合金の原子数を100at%としたときに、10at%以上50at%以下の範囲で前記低反射合金に含有された配線膜。
A low-reflection film made of a low-reflection alloy and arranged on a transparent substrate;
a main film laminated on the low-reflection film and having a lower resistivity than the low-reflection film, wherein the low-reflection film is positioned closer to the transparent substrate than the main film,
The low-reflection alloy contains a metal component and N,
The metal component contains at least Cu, Al and Mg ,
Al is contained in the metal component in a range of 1 at% or more and 20 at% or less when the number of atoms of the metal component is 100 at%,
Mg is contained in the metal component in a range of 0.5 at% or more and 6 at% or less when the number of atoms of the metal component is 100 at%,
N is a wiring film contained in the low reflection alloy in a range of 10 at % or more and 50 at % or less when the number of atoms of the low reflection alloy is 100 at %.
前記透明基板は酸化物を含有し、前記低反射膜は前記透明基板に接触された請求項記載の配線膜。 9. The wiring film according to claim 8 , wherein said transparent substrate contains an oxide, and said low reflection film is in contact with said transparent substrate. 前記低反射膜と前記透明基板との間には酸化物を含有した半透明膜が配置され、
前記低反射膜は前記半透明膜に接触された請求項記載の配線膜。
A semi-transparent film containing an oxide is disposed between the low-reflection film and the transparent substrate,
9. A wiring film according to claim 8 , wherein said low reflection film is in contact with said semi-transparent film.
前記半透明膜は、膜厚が10nm以上200nm以下の範囲にされた請求項1記載の配線膜。 11. The wiring film according to claim 10 , wherein the semi-transparent film has a film thickness in the range of 10 nm to 200 nm. 前記半透明膜の膜厚tTに対する前記低反射膜の膜厚tLの比率tL/tTは0.05以上10以下の範囲にされた請求項1又は請求項1のいずれか1項記載の配線膜。 12. The ratio tL / tT of the film thickness tL of the low reflection film to the film thickness tT of the translucent film is in the range of 0.05 to 10 . The wiring film according to item 1. 前記低反射膜は膜厚が10nm以上100nm以下の範囲にされた請求項乃至請求項1のいずれか1項記載の配線膜。 13. The wiring film according to any one of claims 8 to 12 , wherein said low reflection film has a film thickness in the range of 10 nm or more and 100 nm or less. 金属成分を含有する第一のターゲットをスパッタリングし、透明基板上に低反射合金から成る低反射膜を形成し、
少なくともCuを含有する第二のターゲットをスパッタリングし、前記低反射膜上に前記低反射膜よりも抵抗率が小さい本体膜を形成する配線膜製造方法であって、
前記金属成分には少なくともCuとAlとMgとを含有させ、
前記第一のターゲットには、前記金属成分の原子数を100at%としたときに、1at%以上20at%以下の範囲でAlを含有させ、0.5at%以上6at%以下の範囲でMgを含有させ、
前記低反射合金には、前記低反射合金の原子数を100at%としたときに、Nが10at%以上50at%以下の範囲で含有されるように、前記第一のターゲットをスパッタリングするスパッタリングガスに窒素を含有させる配線膜製造方法。
Sputtering a first target containing a metal component to form a low-reflection film made of a low-reflection alloy on a transparent substrate,
A wiring film manufacturing method comprising sputtering a second target containing at least Cu to form a body film having a lower resistivity than the low reflection film on the low reflection film,
The metal component contains at least Cu, Al and Mg ,
The first target contains Al in the range of 1 at% or more and 20 at% or less, and Mg in the range of 0.5 at% or more and 6 at% or less, when the number of atoms of the metal component is 100 at%. let
In the sputtering gas for sputtering the first target, the low-reflection alloy contains N in a range of 10 at% or more and 50 at% or less when the number of atoms of the low-reflection alloy is 100 at%. A wiring film manufacturing method containing nitrogen.
前記透明基板上に半透明膜を形成した後、前記半透明膜上に前記低反射膜を形成する請求項1記載の配線膜製造方法。 15. The wiring film manufacturing method according to claim 14 , wherein after forming a semi-transparent film on the transparent substrate, the low reflection film is formed on the semi-transparent film.
JP2019082926A 2019-04-24 2019-04-24 Display device, wiring film, wiring film manufacturing method Active JP7339016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082926A JP7339016B2 (en) 2019-04-24 2019-04-24 Display device, wiring film, wiring film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082926A JP7339016B2 (en) 2019-04-24 2019-04-24 Display device, wiring film, wiring film manufacturing method

Publications (2)

Publication Number Publication Date
JP2020181866A JP2020181866A (en) 2020-11-05
JP7339016B2 true JP7339016B2 (en) 2023-09-05

Family

ID=73024474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082926A Active JP7339016B2 (en) 2019-04-24 2019-04-24 Display device, wiring film, wiring film manufacturing method

Country Status (1)

Country Link
JP (1) JP7339016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635554B (en) * 2020-12-28 2022-04-12 Tcl华星光电技术有限公司 Thin film transistor, preparation method thereof and array substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281698A (en) 2000-03-30 2001-10-10 Advanced Display Inc Production method for optoelectronic element
WO2008044757A1 (en) 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2008098192A (en) 2006-10-05 2008-04-24 Kobe Steel Ltd Wiring or electrode
JP2016191967A (en) 2015-03-30 2016-11-10 株式会社神戸製鋼所 NITROGEN-CONTAINING Cu ALLOY FILM, LAMINATION LAYER, METHOD FOR FORMING FILM AND LAYER, AND Cu ALLOY SPUTTERING TARGET
JP2017005233A (en) 2015-06-16 2017-01-05 株式会社神戸製鋼所 Low reflection electrode for flat display or curved display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281698A (en) 2000-03-30 2001-10-10 Advanced Display Inc Production method for optoelectronic element
JP2008098192A (en) 2006-10-05 2008-04-24 Kobe Steel Ltd Wiring or electrode
WO2008044757A1 (en) 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2016191967A (en) 2015-03-30 2016-11-10 株式会社神戸製鋼所 NITROGEN-CONTAINING Cu ALLOY FILM, LAMINATION LAYER, METHOD FOR FORMING FILM AND LAYER, AND Cu ALLOY SPUTTERING TARGET
JP2017005233A (en) 2015-06-16 2017-01-05 株式会社神戸製鋼所 Low reflection electrode for flat display or curved display

Also Published As

Publication number Publication date
JP2020181866A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP5963804B2 (en) Manufacturing method of semiconductor device
JP5017282B2 (en) Method for forming wiring film
JP4970622B2 (en) Semiconductor device, liquid crystal display device having semiconductor device, and method of manufacturing semiconductor device
KR101175970B1 (en) Wiring layer, semiconductor device, liquid crystal display device
KR101358529B1 (en) Layered interconnection for electronic device, and sputtering target for forming a covering layer
JPWO2008081805A1 (en) Wiring film forming method, transistor, and electronic device
US20190148412A1 (en) Multilayer wiring film and thin film transistor element
JP7339016B2 (en) Display device, wiring film, wiring film manufacturing method
JP4913267B2 (en) Wiring layer, semiconductor device, and liquid crystal display device having semiconductor device
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR101350648B1 (en) Layered interconnection for electronic device, and sputtering target for forming a covering layer
KR101597018B1 (en) METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
WO2020213232A1 (en) Cu alloy target
KR100817630B1 (en) Method for forming transparent conductive film on Al-C based metal film and method for manufacturing array substrate of TFT-LCD using thereof
WO2020208904A1 (en) Cu alloy target, wiring film, semiconductor device and liquid crystal display device
JP6768180B1 (en) Cu alloy target, wiring film, semiconductor device, liquid crystal display device
JPWO2010143609A1 (en) Method for forming electronic device, electronic device, semiconductor device, and transistor
JP2009200162A (en) DISPLAY APPARATUS AND Cu ALLOY FILM USED THEREFOR
JP2018180297A (en) Target, wiring film, semiconductor element, and display device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7339016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150