WO2016204018A1 - Low-reflectance electrode for display device, and sputtering target - Google Patents

Low-reflectance electrode for display device, and sputtering target Download PDF

Info

Publication number
WO2016204018A1
WO2016204018A1 PCT/JP2016/066871 JP2016066871W WO2016204018A1 WO 2016204018 A1 WO2016204018 A1 WO 2016204018A1 JP 2016066871 W JP2016066871 W JP 2016066871W WO 2016204018 A1 WO2016204018 A1 WO 2016204018A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
electrode
substrate
atomic
Prior art date
Application number
PCT/JP2016/066871
Other languages
French (fr)
Japanese (ja)
Inventor
敏洋 釘宮
裕史 後藤
陽子 志田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016204018A1 publication Critical patent/WO2016204018A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an electrode having a laminated structure including a first layer and a second layer, and more specifically, includes a first layer that is a Cu film and a second layer that is a Cu film or a Cu alloy film.
  • the present invention relates to an electrode having a laminated structure.
  • the electrode according to the present invention is mainly used as a low-reflection electrode for a flat display or a curved display.
  • Patent Document 1 discloses a first layer made of pure Cu or a Cu alloy having a low electrical resistivity, and Cu—Zn containing a specific element.
  • a wiring structure including a Cu alloy layer including a second layer made of an alloy is disclosed.
  • Patent Document 2 relates to blackening treatment of a bridge electrode, which is configured by using a metal such as Al, Au, Ag, Sn, Cr, Ni, Ti, or Mg as a material, and a metal oxide or nitridation by a chemical reaction. It is disclosed that the material is blackened with an oxide or fluoride.
  • Patent Document 3 discloses that a nitride containing silicon or aluminum as a main component is used as the transparent electrode constituting the antireflection layer.
  • Patent Document 4 discloses a bridge using a black conductive material on an insulating layer formed in a conductive pattern cell in order to solve the problem of visibility in a bridge electrode interconnecting conductive transparent pattern cells. A method of forming an electrode is described.
  • Patent Document 4 merely discloses a technique for reducing the reflectance of the bridge electrode by metal blackening treatment, and does not pay any attention to the reduction of electrical resistivity. High electrical resistivity is also included, and it is difficult to satisfy both good electrical characteristics and low reflectance.
  • Patent Document 2 describes that the reflectance can be adjusted by blackening the bridge electrode, there is no disclosure or suggestion about Cu.
  • Patent Document 3 only discloses an Al alloy as a transparent film, and does not disclose or suggest any Cu. That is, there has been no report on an excellent low reflection wiring film using a Cu alloy.
  • the present invention has been made paying attention to the above circumstances, and provides a novel low-reflection wiring film using a Cu alloy as an electrode having low reflectance, high heat resistance, and good electrical characteristics.
  • the electrode according to the present invention is mainly used as a gate electrode and a source / drain electrode in a display device typified by a liquid crystal display or an organic EL display, an input device such as a touch panel sensor, or the like.
  • Another object of the present invention is to provide a sputtering target for producing the electrode.
  • the inventors have a laminated structure including a specific substrate and a first layer that is a specific Cu film and a second layer that is a Cu film or a Cu alloy film.
  • a laminated structure including a specific substrate and a first layer that is a specific Cu film and a second layer that is a Cu film or a Cu alloy film.
  • an electrode using a Cu alloy having a reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less, and that the above problem can be solved.
  • the present invention has been completed.
  • the substrate is a resin substrate or a ceramic substrate having a refractive index of 1.4 or more
  • the first layer is a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film
  • the second layer is a Cu film or a Cu alloy film, and in the laminated structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less.
  • the transparent conductive film is made of an oxide containing at least In and Sn, a transparent conductive film made of an oxide containing at least In and Zn, or a transparent conductive film made of an oxide containing at least In and Ga.
  • the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side after a heat treatment at 300 ° C. or higher is 40% or less.
  • a display device comprising the electrode according to any one of [1] to [10].
  • An input device comprising the electrode according to any one of [1] to [10].
  • a sputtering target used for forming a first layer constituting the electrode according to any one of [1] to [10] A sputtering target comprising Cu and Ni, or Cu and Ni partially nitrided as main materials.
  • the electrode of the present invention low reflectance, high heat resistance and good electrical characteristics can be achieved at the same time. Therefore, when the electrode according to the present invention is used for a gate electrode and a source / drain electrode, it is possible to provide a display device or an input device in which reflection from the electrode is not visually recognized.
  • FIG. 1 is a schematic cross-sectional view schematically showing a TFT array substrate of a general liquid crystal display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode and a barrier metal layer.
  • FIG. 2 is a schematic cross-sectional view schematically showing a TFT array substrate of a general bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode and a barrier metal layer.
  • FIG. 3 is a schematic cross-sectional view schematically showing a TFT array substrate of a bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode layer and an optical adjustment layer according to the present invention.
  • FIG. 4 schematically shows a TFT array substrate of a bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode layer, a Cu reaction layer, and a transparent conductive film according to the present invention.
  • FIG. 5 shows a Cu main wiring electrode layer according to the present invention, a Cu reaction layer and a gate electrode provided with a silicon oxide film or a silicon nitride film, and a source / drain electrode provided with a Cu main wiring electrode layer and a Cu reaction layer.
  • FIG. 6 is a diagram showing the relationship between the reflectance measured from the glass substrate side and the Ni addition amount (atomic%) in the laminated structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 7 is a diagram showing the relationship between the reflectance measured from the glass substrate side and the amount of added Ni in the laminated structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 8A is a diagram showing the reflectance in the wavelength region of 250 nm to 850 nm when the Ni addition amount is 30 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 8B is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 40 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 8C is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 50 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention. .
  • FIG. 8A is a diagram showing the reflectance in the wavelength region of 250 nm to 850 nm when the Ni addition amount is 30 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 8B is a diagram showing the
  • FIG. 8D is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 70 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 8E is a diagram showing the reflectance in the wavelength region of 250 nm to 850 nm when the Ni addition amount is 30 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 8F is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 40 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention. .
  • FIG. 8D is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 70 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 8E is a diagram showing the reflect
  • FIG. 8G is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 50 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 8H is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 70 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 9A is a diagram showing a relationship between electrical resistivity and Ni addition amount in a laminated structure including the first layer and the second layer of Example 1A of the present invention.
  • FIG. 9B is a diagram showing the relationship between the electrical resistivity and the Ni addition amount in the laminated structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 10 shows the etching rate of the first layer of the Cu—Ni—O thin film or the Cu—Ni—N thin film, which is the first layer of Example 1A and Example 1B of the present invention, using an etching solution containing hydrogen peroxide. It is a figure which shows the relationship with Ni addition amount contained in.
  • FIG. 11 is a scanning electron micrograph of a cross section showing the shape after etching for each Ni addition amount in the laminated structure including the first layer and the second layer of Example 1B of the present invention.
  • FIG. 10 shows the etching rate of the first layer of the Cu—Ni—O thin film or the Cu—Ni—N thin film, which is the first layer of Example 1A and Example 1B of the present invention, using an etching solution containing hydrogen peroxide. It is a figure which shows the relationship with
  • FIG. 12A shows the heat treatment immediately after the film formation and the heat treatment when the gas flow ratio in forming the first layer is 27: 22: 5 in the laminated structure including the first layer and the second layer of Example 2 of the present invention. It is a figure which shows the reflectance of wavelength range 400nm-800nm after.
  • FIG. 12B shows a case where the gas flow ratio at the time of forming the first layer is 27:12:15 in the laminated structure including the first layer and the second layer (pure Cu thin film) of Example 2 of the present invention.
  • FIG. 6 is a graph showing reflectivity in a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment.
  • FIG. 12C shows a case where the gas flow ratio in forming the first layer is 27:17:10 in the laminated structure including the first layer and the second layer (pure Cu thin film) of Example 2 of the present invention.
  • FIG. 6 is a graph showing reflectivity in a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment.
  • FIG. 13A shows a layered structure including the first layer and the second layer of Example 2 of the present invention, in a wavelength region of 400 nm to 800 nm immediately after film formation and after heat treatment when the Ni addition amount is 30 atomic%. It is a figure which shows a reflectance.
  • FIG. 13B shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 40 atomic%. It is a figure which shows a reflectance.
  • FIG. 13C shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 50 atomic%. It is a figure which shows a reflectance.
  • FIG. 13C shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 50 atomic%. It is a figure which shows a reflectance.
  • FIG. 13C shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength
  • 13D shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 70 atomic%. It is a figure which shows a reflectance.
  • the electrode according to the present invention is preferably used mainly as an electrode of a thin film transistor (hereinafter referred to as “TFT”) in a display device such as a liquid crystal display device or an input device such as a touch panel sensor.
  • TFT thin film transistor
  • a display device will be described as an example of an electrode of a thin film transistor, but is not limited thereto.
  • FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode and a substrate of a general liquid crystal display. That is, FIG. 1 shows the TFT substrate 10.
  • a gate electrode 12 and source / drain electrodes 11 are mounted on the TFT substrate.
  • a gate electrode and a source / drain electrode of a liquid crystal display may be formed by using a Cu main wiring electrode layer 3 containing Cu as a main component and a barrier metal layer 2 laminated below the Cu main wiring electrode layer 3. Many.
  • the Cu main wiring electrode layer often uses pure Cu as it is, and the barrier metal layer is mainly made of a refractory metal thin film such as pure Mo or pure Ti.
  • the viewer can view the liquid crystal display from the arrow A side shown in FIG. 1 and can visually recognize the image by viewing the transmitted light (arrow D) from the backlight unit 20.
  • the external light (arrow B) entering from the viewer side is reflected from the gate electrode and source / drain electrode surfaces of the TFT substrate, that is, the surface of the Cu main wiring electrode layer, and the reflected light (arrow C) is again transmitted to the viewer. Recognized.
  • FIG. 2 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode of a general bottom emission type organic EL display.
  • the structure of the TFT substrate 10 is the same as that of the TFT substrate 10 in FIG. 1.
  • the gate electrode 12 and the source / drain electrode 11 of a liquid crystal display of 50 inches or more have a Cu main wiring electrode layer 3 containing Cu as a main component and the Cu In the lower part of the main wiring electrode layer 3, a laminate of the barrier metal layer 2 is used.
  • the Cu main wiring electrode layer often uses pure Cu as it is, and the barrier metal layer is mainly made of a refractory metal thin film such as pure Mo or pure Ti.
  • the viewer sees the display from the opposite side of FIG. 1, and sees the transmitted light (arrow E) from the organic EL light emitting layer 21 built in the TFT substrate. Thus, it can be visually recognized as an image.
  • the external light (arrow B) entering from the viewer side is reflected from the lower surface of the gate electrode and the source / drain electrodes of the TFT substrate, that is, the lower surface of the barrier metal layer, and the reflected light (arrow C) is recognized by the viewer again.
  • the electrode according to the present invention is an electrode having a laminated structure including a first layer and a second layer in order from the substrate side on the substrate, and the substrate has a refractive index of 1.4 or more.
  • the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less.
  • the substrate a commonly used resin substrate or ceramic substrate can be used as long as the refractive index is 1.4 or more.
  • the resin substrate examples include polycarbonate resin, polyethylene terephthalate resin, and polyimide resin.
  • the ceramic substrate examples include a glass substrate and sapphire glass.
  • a glass substrate is preferably used from the viewpoint of heat resistance.
  • the thickness of the substrate may be 0.2 to 5 mm, preferably 0.5 to 0.7 mm.
  • the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side in the stacked structure including the first layer and the second layer can be 40% or less.
  • the Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film as the first layer is a Cu—O film, a Cu—N film, or a Cu—O—N film.
  • the first layer contains Ni, it is a Cu—Ni—O thin film, a Cu—Ni—N thin film, or a Cu—Ni—O—N thin film.
  • the total content of O and N in the first layer may be 5 to 50 atomic%, and 10 to 30 atomic% is preferable from the viewpoint of low reflectance.
  • the first layer contains Ni in an atomic ratio of 25 atomic% to 70 atomic% in the metal composition part from the viewpoint of realizing a low reflectance even after heat treatment, and further preferably 30 atomic% or more.
  • the Ni content in the first layer in this specification is synonymous with the Ni content in the Cu—Ni alloy target used for forming the first layer, and means the same value as the Ni addition amount.
  • the first layer includes one or more elements selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd as elements other than Cu, O, N, and Ni.
  • the ratio of elements other than Cu, O, N, and Ni in the first layer is preferably 0.1 to 10 atomic% in total.
  • the type and amount of elements contained in the first layer can be measured with an ICP emission spectrometer.
  • the film thickness of the first layer is preferably 50 to 100 nm from the viewpoint of low reflectivity, but the film thickness can be adjusted by changing the sputtering power and time.
  • the second layer is a Cu film, it is a pure Cu film.
  • the second layer when it is a Cu alloy film, it contains one or more elements selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La and Nd as elements other than Cu. Is preferable from the viewpoint of heat resistance, adhesion, and moisture resistance, and Ti, Mn, Ni, and Zn are more preferable.
  • the ratio of elements other than Cu in the Cu alloy film is preferably 0.1 to 10 atomic% in total.
  • the type and amount of elements contained in the Cu alloy film as the second layer can be measured with an ICP emission spectrometer.
  • the film thickness of the second layer is preferably 50 to 100 nm from the viewpoint of reducing the reflectance.
  • the film thickness can be adjusted by changing the sputtering power and time.
  • the electrode of the present invention will be described using a display device as an example to illustrate a preferred embodiment of the electrode of the present invention.
  • FIG. 3 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display, in which a Cu main wiring electrode layer 3 and a Cu thin film of an optical adjustment layer 5 are used for a gate electrode 12 and a source / drain electrode 11. ing.
  • the optical adjustment layer 5 is the first layer
  • the Cu main wiring electrode layer 3 is the second layer.
  • an optical adjustment layer is substituted for the conventional barrier metal layer on the lower side of the gate electrode 12 and the source / drain electrode 11 in the TFT substrate 10. 5 (first layer) is arranged.
  • the first layer is made of a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film.
  • the composition of the first layer is adjusted so that the reflectivity at wavelengths of 450 nm, 550 nm, and 650 nm of the gate electrode and the source / drain electrodes measured from the viewer side (arrow A, TFT substrate side) is 40% or less.
  • the reflectance is preferably 30% or less.
  • the reflectance at wavelengths of 450 nm, 550 nm, and 650 nm can be lowered by including at least one of oxygen and nitrogen in the first layer Cu film.
  • the reflectances at wavelengths of 450 nm, 550 nm, and 650 nm of the gate electrode and the source / drain electrode measured from the viewer side are all 40% or less. It is preferable that it is, and it is more preferable that it is 30% or less.
  • the Cu film as the first layer is a Cu—Ni alloy film containing Ni, a low reflectance can be achieved even after heat treatment.
  • the electrical resistivity of the laminated wiring of the first layer and the second layer is preferably 5 ⁇ ⁇ cm or less, more preferably 3 ⁇ ⁇ cm or less.
  • the electrical resistivity can be lowered by reducing the added amount of the alloy component of the second layer or by increasing the ratio of the thickness of the first layer to the second layer, that is, by increasing the thickness of the second layer. .
  • the thickness of the laminated wiring of the first layer and the second layer is too thin, the apparent resistance becomes high, and if it is too thick, etching processing becomes difficult.
  • the thickness can be adjusted by the power of sputtering film formation and the film formation time.
  • the laminated wiring of the first layer and the second layer is preferably wet-etched with an etching solution containing hydrogen peroxide from the viewpoint of suitability for a mass production line.
  • the etching solution preferably contains hydrogen peroxide solution as a main component, and preferably contains 3% or more of hydrogen peroxide solution.
  • FIG. 4 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display.
  • a Cu reaction layer 7 first layer
  • a transparent conductive layer is shown. It is constituted by the film 6.
  • the transparent conductive film 6 exists between the substrate and the first layer, and together with the first layer, effectively acts as an optical adjustment layer having a laminated structure and realizes a low reflectance.
  • a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film is used.
  • the thickness of the Cu reaction layer is preferably 50 to 100 nm.
  • the material of the transparent conductive film is not particularly limited, but a transparent conductive film (In—Sn—O) made of an oxide containing at least In and Sn, and a transparent conductive film made of an oxide containing at least In and Zn (In—Zn—). O) or a transparent conductive film (In—Ga—O) made of an oxide containing at least In and Ga has high conductivity, good etching processability, and reflectivity in a stacked structure when stacked. Is preferably used because it becomes lower.
  • the preferable aspects of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as the preferable conditions of the first layer and the second layer in Embodiment 1A, respectively.
  • FIG. 5 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display.
  • a Cu reaction layer 7 (first layer) and silicon oxide are used.
  • a film or silicon nitride film 8 is used.
  • the silicon oxide film and the silicon nitride film are both insulating films, and the lower portion of the source / drain electrode 11 cannot be electrically connected to the semiconductor layer 4. Applicable to only.
  • Examples of the silicon oxide film include SiO x and SiO x containing SiO 2 (where 0 ⁇ x ⁇ 2).
  • An example of the silicon nitride film is SiN.
  • the film thickness of the silicon oxide film or silicon nitride film is preferably 50 nm to 400 nm. The film thickness can be adjusted by the film formation time.
  • the preferable aspects of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as the preferable conditions of the first layer and the second layer in Embodiment 1A, respectively, and the Cu reaction layer 7 is the Cu in Embodiment 1A. Similar to the reaction layer 7.
  • the first layer in the present invention can be formed by a reactive sputtering method.
  • the film can be formed by sputtering using a sputtering target having a target film composition. That is, by using a pure Cu target and performing sputtering under a mixed gas flow of an inert gas such as Ar and at least one of O 2 and N 2 , a Cu—O thin film, a Cu—N thin film Alternatively, a Cu—O—N thin film is obtained.
  • the Ni content in the obtained first layer can be adjusted.
  • At least one of O 2 and N 2 contained in the first layer is set to a desired value. be able to.
  • the sputtering conditions may be within the range where conventional sputtering is conventionally performed.
  • the ultimate vacuum is preferably 1 ⁇ 10 ⁇ 6 Torr or less
  • the substrate temperature is preferably room temperature to 100 ° C.
  • the film formation temperature Is preferably from room temperature to 100 ° C.
  • the gas pressure during sputtering is preferably from 1 mTorr to 10 mTorr.
  • the thickness of the first layer can be adjusted by the power and discharge time of the sputter discharge, and can be measured with a stylus type step gauge.
  • ⁇ Sputtering target example 1> As a sputtering target for forming the first layer (optical adjustment layer) in Embodiment 1A, a pure Cu target or a Cu—Ni alloy target is used.
  • the Ni content in the first layer may be made desired by adjusting the Ni content in the target. it can.
  • Cu—Ni alloy target it is preferable that Cu and Ni or partially nitrided Cu and Ni are included as main materials.
  • the shape of the sputtering target is not particularly limited, and a sputtering target processed into an arbitrary shape such as a square plate shape, a circular plate shape, a donut plate shape, or a cylindrical shape can be used according to the shape and structure of the sputtering apparatus.
  • ⁇ Sputtering target example 2> As the sputtering target for forming the first layer (Cu reaction layer) in Embodiments 1B and 1C, a pure Cu target or a Cu—Ni alloy target is used. Further, the amount of Ni added in the Cu film can be set to a desired one as in ⁇ Sputtering target example 1>.
  • the method for producing the electrode according to the present invention is summarized in that the first layer is formed by the above-described ⁇ first layer forming method> which is a reactive sputtering method using nitrogen gas or oxygen gas.
  • the formation of the second layer, the formation of the transparent conductive film, the formation of the silicon oxide film or the silicon nitride film, etc. other than the formation of the first layer can be carried out under known conditions in accordance with a known method.
  • An electrode can be manufactured.
  • sputtering is performed using a sputtering target because of thinning, uniformity of alloy components in the film, ease of control of the amount of added elements, high throughput during manufacturing, etc. It is preferable to form a film by the method.
  • the sputtering target used for forming the second layer is also within the scope of the present invention, and the main material is Cu or partially nitrided Cu, and it is allowed to contain inevitable impurities.
  • the second layer can be formed by sputtering using a sputtering target having a target film composition. That is, a pure Cu thin film can be obtained by sputtering under a flow of an inert gas such as Ar using a pure Cu target. Further, by sputtering similarly using a desired Cu alloy target, a Cu alloy thin film having a composition depending on the target composition can be obtained.
  • the sputtering conditions may be within the range where conventional sputtering is conventionally performed.
  • the ultimate vacuum is preferably 1 ⁇ 10 ⁇ 6 Torr or less
  • the substrate temperature is preferably room temperature to 100 ° C.
  • the film formation temperature Is preferably from room temperature to 100 ° C.
  • the gas pressure during sputtering is preferably from 1 mTorr to 10 mTorr.
  • the thickness of the first layer can be adjusted by the power and discharge time of the sputter discharge, and can be measured with a stylus type step gauge.
  • Example 1A> A non-alkali glass plate (plate thickness: 0.7 mm, diameter: 4 inches) was used as a transparent substrate, and a Cu—Ni—O thin film as the first layer was formed on the surface thereof by DC magnetron sputtering.
  • the target was a disk-type Cu target or a Cu—Ni alloy target having a diameter of 4 inches, and reactive sputtering was performed by introducing oxygen gas into the film forming apparatus.
  • the reactive sputtering conditions are as follows.
  • the amount of Ni added in the film is 0%, 5%, 10%, 15%, 30%, 40%, 50%, 70 in atomic ratio. % Of 8 types of films were formed.
  • a second layer (pure Cu thin film) is formed under the following conditions (conditions for sputtering of the second layer (Cu main wiring electrode layer)), and a laminated structure including the substrate, the first layer, and the second layer is formed. Obtained.
  • the target used was a pure Cu target having a diameter of 4 inches.
  • FIG. 6 shows the relationship between the amount of Ni added in the metal composition contained in the Cu—Ni—O thin film as the first layer and the reflectance.
  • “550 nm” or “650 nm” indicates the wavelength at which the reflectance was measured
  • “as-depo” is before heat treatment
  • “350C” is after heat treatment at 350 ° C. for 5 minutes. Indicates the result.
  • the heat treatment was specifically performed in the following procedure. After placing the sample in the furnace at room temperature using an infrared lamp heating furnace, evacuation to a vacuum degree of 1 ⁇ 10 ⁇ 4 Torr or less, heat treatment at 350 ° C. for 5 minutes, cooling to room temperature again, and then in the furnace Was returned to atmospheric pressure and a sample was taken out.
  • the reflectivity is the target as long as at least Ni addition is 70 atomic% or less immediately after the film formation, regardless of the wavelength. The result was less than 40%.
  • the heat treatment is performed at 350 ° C. for 5 minutes, the reflectance changes, and it can be seen that the reflectance is less than 40% when the Ni addition amount is about 35 atomic% or more.
  • Example 1B In the formation of the first layer, in place of the reactive sputtering in which oxygen gas is introduced into the film forming apparatus, reactive sputtering under the following conditions using nitrogen gas was performed in the same manner as in Example 1A. One layer and a second layer were formed to obtain a laminated structure.
  • FIG. 7 shows the relationship between the amount of Ni added in the metal composition contained in the Cu—Ni—N thin film as the first layer and the reflectance.
  • “550 nm” or “650 nm” indicates the wavelength at which the reflectance was measured
  • “as-depo” is before heat treatment
  • “350C” is after heat treatment at 350 ° C. for 5 minutes. Indicates the result.
  • the heat treatment was performed under the same method and conditions as in Example 1A.
  • Example 1A when the Ni addition amount is 30 atomic%, 40 atomic%, 50 atomic%, or 70 atomic%, the wavelength region is 400 nm to 800 nm (the Ni addition amount is 30 atomic%; FIG. 8A 8A to 8D show the reflectance in the wavelength range of 250 nm to 850 nm.
  • the wavelength region is 400 nm to 800 nm (Ni addition amount is 30 atomic%).
  • the reflectance in the wavelength region of 250 nm to 850 nm for FIG. 8E is shown in FIGS. 8E to 8H.
  • “as-depo” indicates a result before heat treatment
  • “350 ° C., 5 min” indicates a result after heat treatment at 350 ° C. for 5 minutes.
  • the amount of Ni added in the metal composition is at least 30 atomic%. Within the range of ⁇ 70 atomic%, good results were obtained in which the reflectance was less than 30% at any of the wavelengths of 450 nm, 550 nm and 650 nm.
  • the first layer is a Cu—Ni—N thin film
  • the Ni addition amount is 40 atomic%, 50 atomic%, and 70 atomic%
  • the amount of Ni added in the metal composition is at least in the range of 30 atomic% to 70 atomic%, good results are obtained in which the reflectance is less than 40% at any of the wavelengths of 450 nm, 550 nm, and 650 nm. It was.
  • Example 1A For the structural laminate of Example 1A, the amount of Ni added in the first layer (Cu—Ni—O thin film) and the electrical resistivity of the laminated structure in which the second layer (pure Cu thin film) was laminated on the first layer; The relationship is shown in FIG. 9A.
  • Example 1B the amount of Ni added in the first layer (Cu—Ni—N thin film) and the electrical structure of the laminated structure in which the second layer (pure Cu thin film) was laminated on the first layer.
  • the relationship with resistivity is shown in FIG. 9B.
  • 9A and 9B “as-depo” indicates a result before heat treatment, and “350 ° C.” indicates a result after heat treatment at 350 ° C. for 5 minutes.
  • the heat treatment method and conditions are as described above.
  • the electrical resistivity of the laminated structure was 3 ⁇ ⁇ cm or less regardless of the amount of Ni added in the metal composition.
  • Example 1A A laminated structure in Example 1A in which the first layer is a Cu—Ni—O thin film and the second layer is a pure Cu thin film, and the second layer is a Cu—Ni—N thin film and the second layer is a pure Cu thin film.
  • a photoresist was patterned on the laminated film having the laminated structure in 1B, and the etching characteristics of the laminated film were evaluated.
  • As the etching solution an etching solution containing 3% or more of hydrogen peroxide was used, and the etching was performed under the condition that the solution temperature was room temperature.
  • FIG. 10 shows the relationship between the etching rate and the Ni addition amount.
  • the first layer of Example 1B is a Cu—Ni—N thin film
  • the smaller the Ni addition amount, the higher the etching rate, and the Ni addition amount in the metal composition is approximately 30 atoms. It was found that an etching rate almost the same as that of the pure Cu thin film (etching rate 271.5 nm / min) constituting the second layer can be obtained within the range of not less than 70% and not more than 70 atomic percent.
  • FIG. 11 shows a scanning electron micrograph of the cross section after etching the laminated structure of Example 1B. As a result, it can be seen from the patterning shape that a good forward tapered shape is obtained regardless of the amount of Ni added.
  • Example 1A it was found that when the first layer of Example 1A was a Cu—Ni—O thin film, the first layer could not be etched regardless of the amount of Ni added in the metal composition. That is, when the first layer is a Cu—Ni—O thin film, it has been found that an etching solution based on hydrogen peroxide is not suitable as an etching solution for patterning.
  • a low reflectivity electrode can be obtained by forming the first layer as a Cu—O film or a Cu—N film in which at least one of nitrogen and oxygen is contained in a part of the Cu film. It was.
  • a low reflectance is obtained when a Cu—Ni—O thin film or a Cu—Ni—N thin film in which the amount of Ni added in the metal composition is 30 atomic% to 70 atomic% is used. Has been demonstrated to be obtained.
  • the lower limit of the Ni addition amount for which the reflectance was measured was 30 atomic%, but a sufficiently low reflectance was obtained even at 30 atomic%. It is estimated that a good result of 40% or less can be obtained.
  • Example 2 In the formation of the first layer, in the same manner as in Example 1A except that reactive sputtering using nitrogen gas and oxygen gas was performed under the following conditions instead of reactive sputtering in which oxygen gas was introduced into the film forming apparatus. Thus, the first layer and the second layer were formed.
  • the first layer (Cu—Ni—O—N thin film) having a different ratio of O to N was obtained by changing the ratio of the gas flow rate ratio of N 2 and O 2 .
  • FIGS. 12A to 12C show the reflectance when the amount of Ni added in the metal composition contained in the Cu—Ni—O—N thin film as the first layer is 40 atomic%.
  • the gas flow ratio Ar: N 2 : O 2 when forming the first layer is 27: 22: 5 in FIG. 12A, 27:12:15 in FIG. 12B, and 27:17:10 in FIG. 12C.
  • 12A to 12C “Before anne.” Is a state immediately after the film formation and before the heat treatment, and “After ann.” Indicates the result after the heat treatment at 350 ° C. for 5 minutes. .
  • the heat treatment was performed under the same method and conditions as in Example 1A.
  • the nitrogen flow rate and the oxygen flow rate were fixed at 22:25, and the Ni addition amount in the metal composition contained in the Cu—Ni—O—N thin film (first layer) was 30 atomic%.
  • the reflectances at 40 atomic%, 50 atomic%, and 70 atomic% are shown in FIGS. 13A to 13D.
  • “as-depo” indicates a result before heat treatment
  • “350 ° C., 5 min” indicates a result after heat treatment at 350 ° C. for 5 minutes.
  • the heat treatment method and conditions are as described above.
  • the reflectance is 40 at any of the wavelengths 450 nm, 550 nm, and 650 nm by selecting an appropriate nitrogen flow rate and oxygen flow rate. Good results were obtained, less than%.

Abstract

The present invention pertains to an electrode having a laminated structure provided with a first layer and a second layer on a substrate, in the stated order from the substrate side, wherein the electrode is characterized in that: the substrate is a plastic or ceramic substrate having a refractive index of 1.4 or more; in the first layer a portion of a Cu film contains nitrogen and/or oxygen; the second layer is a Cu film or a Cu alloy film; and reflectivity at wavelengths of 450 nm, 550 nm, and 650 nm in the laminated structure when viewed from the substrate side is 40% or less.

Description

表示装置向け低反射電極およびスパッタリングターゲットLow reflective electrode and sputtering target for display device
  本発明は、第1層と、第2層とを備えた積層構造を有する電極に関し、より詳細には、Cu膜である第1層とCu膜又はCu合金膜である第2層とを備えた積層構造を有する電極に関する。本発明に係る電極は、主に平面ディスプレイ又は曲面ディスプレイ向けの低反射電極として用いられる。 The present invention relates to an electrode having a laminated structure including a first layer and a second layer, and more specifically, includes a first layer that is a Cu film and a second layer that is a Cu film or a Cu alloy film. The present invention relates to an electrode having a laminated structure. The electrode according to the present invention is mainly used as a low-reflection electrode for a flat display or a curved display.
  従来、液晶ディスプレイや有機ELディスプレイなどの表示装置のゲート電極、ソース・ドレイン電極や、タッチパネルセンサー等の入力装置における配線に求められる要求特性は、耐熱性、電気抵抗率、接触抵抗率であった。 Conventionally, the required characteristics required for wiring in input devices such as gate electrodes, source / drain electrodes, and touch panel sensors of display devices such as liquid crystal displays and organic EL displays have been heat resistance, electrical resistivity, and contact resistivity. .
  しかし、近年の高解像ディスプレイは従来と比べて走査線密度が高くなっていることから、これまで問題となっていなかった金属電極・配線からの反射が視認されることが課題になりつつある。 However, since high-resolution displays in recent years have higher scanning line density than conventional displays, it is becoming a problem that reflections from metal electrodes / wirings that have not been a problem until now are visible. .
  金属電極配線からの反射を制御するには、不可視化など光学特性を改善する必要があり、これまで要求されてこなかった光学特性を新たに付与する必要がある。それと同時に上記のようなディスプレイ配線としての従来の要求特性を満たす必要がある。 In order to control the reflection from the metal electrode wiring, it is necessary to improve optical characteristics such as invisibility, and it is necessary to newly add optical characteristics that have not been required so far. At the same time, it is necessary to satisfy the conventional characteristics required for display wiring as described above.
  上記従来の要求特性のうち、配線の酸化を有効に防止するものとして、特許文献1には、純Cu又は電気抵抗率の低いCu合金からなる第一層と、特定の元素を含むCu-Zn合金からなる第二層とを含むCu合金層を備えた配線構造が開示されている。 Among the above-mentioned conventional required characteristics, as a technique for effectively preventing the oxidation of the wiring, Patent Document 1 discloses a first layer made of pure Cu or a Cu alloy having a low electrical resistivity, and Cu—Zn containing a specific element. A wiring structure including a Cu alloy layer including a second layer made of an alloy is disclosed.
  また、特許文献2には、ブリッジ電極の黒化処理に関し、Al、Au、Ag、Sn、Cr、Ni、Ti又はMgなどの金属を材料として用いて構成し、化学反応により金属酸化物、窒化物、フッ化物などで黒化させることが開示されている。特許文献3には、反射防止層を構成する透明電極として、シリコン、アルミニウムの何れかを主成分とする窒化物を使用することが開示されている。 Further, Patent Document 2 relates to blackening treatment of a bridge electrode, which is configured by using a metal such as Al, Au, Ag, Sn, Cr, Ni, Ti, or Mg as a material, and a metal oxide or nitridation by a chemical reaction. It is disclosed that the material is blackened with an oxide or fluoride. Patent Document 3 discloses that a nitride containing silicon or aluminum as a main component is used as the transparent electrode constituting the antireflection layer.
  また、特許文献4には、導電性透明パターンセルを相互接続するブリッジ電極における視認性の問題を解決するため、導電性パターンセルに形成される絶縁層上に、黒色の導電材料を用いてブリッジ電極を形成する方法が記載されている。 Patent Document 4 discloses a bridge using a black conductive material on an insulating layer formed in a conductive pattern cell in order to solve the problem of visibility in a bridge electrode interconnecting conductive transparent pattern cells. A method of forming an electrode is described.
日本国特許第5171990号公報Japanese Patent No. 5171990 日本国特開2013-127792号公報Japanese Unexamined Patent Publication No. 2013-127792 日本国特開2014-78198号公報Japanese Unexamined Patent Publication No. 2014-78198 日本国特開2013-127792号公報Japanese Unexamined Patent Publication No. 2013-127792
  しかしながら、特許文献1に記載のCu合金は高耐熱性及び良好な電気的特性を示すものの、低反射率に関する記載はない。また特許文献4では、金属の黒色化処理によるブリッジ電極の反射率低減化技術が開示されているに過ぎず、電気抵抗率の低減には全く留意していない。高電気抵抗率のものも含まれており、良好な電気特性及び低反射率を共に満たすことは難しい。 However, although the Cu alloy described in Patent Document 1 exhibits high heat resistance and good electrical characteristics, there is no description regarding low reflectance. Further, Patent Document 4 merely discloses a technique for reducing the reflectance of the bridge electrode by metal blackening treatment, and does not pay any attention to the reduction of electrical resistivity. High electrical resistivity is also included, and it is difficult to satisfy both good electrical characteristics and low reflectance.
  また、Cu合金をディスプレイ用の電極に用いた場合、Al合金を用いた場合に比べて電気抵抗率が小さいため、好ましい。さらに、Cuは所望のシート抵抗を得るための電極膜厚をAlよりも薄くすることができる。そこでフィルム基材の場合に電極の応力起因で生じる基材のカーリングの問題が軽減できる。特許文献2はブリッジ電極を黒化することで反射率を調節できることが記載されているものの、Cuについて一切開示も示唆もされていない。また、特許文献3は透明膜としてAl合金が開示されているに過ぎず、Cuについて一切開示も示唆もされていない。すなわち、Cu合金を用いた優れた低反射配線膜に関する報告はされていない。 In addition, it is preferable to use a Cu alloy as an electrode for a display because the electrical resistivity is smaller than when an Al alloy is used. Furthermore, Cu can make the electrode film thickness for obtaining desired sheet resistance thinner than Al. Therefore, in the case of a film substrate, the problem of substrate curling caused by the stress of the electrode can be reduced. Although Patent Document 2 describes that the reflectance can be adjusted by blackening the bridge electrode, there is no disclosure or suggestion about Cu. Patent Document 3 only discloses an Al alloy as a transparent film, and does not disclose or suggest any Cu. That is, there has been no report on an excellent low reflection wiring film using a Cu alloy.
  本発明は上記事情に着目してなされたものであり、低反射率、高耐熱性、及び良好な電気的特性を備える電極として、Cu合金を用いた新規な低反射配線膜を提供することを目的とする。本発明に係る電極は液晶ディスプレイや有機ELディスプレイに代表される表示装置やタッチパネルセンサー等の入力装置等におけるゲート電極およびソース・ドレイン電極として主に用いられる。 The present invention has been made paying attention to the above circumstances, and provides a novel low-reflection wiring film using a Cu alloy as an electrode having low reflectance, high heat resistance, and good electrical characteristics. Objective. The electrode according to the present invention is mainly used as a gate electrode and a source / drain electrode in a display device typified by a liquid crystal display or an organic EL display, an input device such as a touch panel sensor, or the like.
  また本発明は、該電極を製造するためのスパッタリングターゲットを提供することも目的とする。 Another object of the present invention is to provide a sputtering target for producing the electrode.
  本発明者らは、鋭意研究を重ねた結果、特定の基板及び、特定のCu膜である第1層とCu膜又はCu合金膜である第2層とを備えた積層構造を有することにより、前記積層構造において、基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であるCu合金を用いた電極が得られ、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the inventors have a laminated structure including a specific substrate and a first layer that is a specific Cu film and a second layer that is a Cu film or a Cu alloy film. In the laminated structure, it is found that an electrode using a Cu alloy having a reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less, and that the above problem can be solved. The present invention has been completed.
  すなわち、本発明は、以下の[1]~[14]に係るものである。
[1]  基板上に、前記基板側から順に第1層と、第2層とを備えた積層構造を有する電極であって、
  前記基板は屈折率が1.4以上の、樹脂基板又はセラミックス基板であり、
  前記第1層はCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu膜であり、
  前記第2層はCu膜又はCu合金膜であり、かつ
  前記積層構造において、前記基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であることを特徴とする電極。
[2]  前記第1層がNiを金属原子比で25原子%以上、70原子%以下含むことを特徴とする前記[1]に記載の電極。
[3]  前記基板と前記第1層の間に透明導電膜を有することを特徴とする前記[1]又は[2]に記載の電極。
[4]  前記基板と前記第1層の間にシリコン酸化膜又はシリコン窒化膜を有することを特徴とする前記[1]又は[2]に記載の電極。
[5]  前記Cu合金膜がTi、Mn、Fe、Co、Ni、Zn、Ta、LaおよびNdからなる群より選択される少なくとも1種以上の元素を含むことを特徴とする前記[1]又は[2]に記載の電極。
[6]  前記透明導電膜が、少なくともIn及びSnを含む酸化物からなる透明導電膜、少なくともIn及びZnを含む酸化物からなる透明導電膜、又は少なくともIn及びGaを含む酸化物からなる透明導電膜であることを特徴とする前記[3]に記載の電極。
[7]  前記第1層及び前記第2層からなる積層配線の電気抵抗率が5μΩ・cm以下であることを特徴とする前記[1]又は[2]に記載の電極。
[8]  過酸化水素水含有のエッチング液を用いたウェットエッチングが可能なことを特徴とする前記[1]~[6]のいずれか1に記載の電極。
[9]  前記積層構造において、300℃以上の熱処理後における、前記基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であることを特徴とする前記[1]~[8]のいずれか1に記載の電極。
[10]  前記第1層の膜厚が50~100nmである前記[1]又は[2]に記載の電極。
[11]  前記[1]~[10]のいずれか1に記載の電極を有することを特徴とする表示装置。
[12]  前記[1]~[10]のいずれか1に記載の電極を有することを特徴とする入力装置。
[13]  前記[1]~[10]のいずれか1に記載の電極を構成する第1層の成膜に用いられるスパッタリングターゲットであって、
  Cu及びNi、又は、一部が窒化されたCu及びNiを主材料として含むことを特徴とするスパッタリングターゲット。
That is, the present invention relates to the following [1] to [14].
[1] An electrode having a laminated structure including a first layer and a second layer in order from the substrate side on a substrate,
The substrate is a resin substrate or a ceramic substrate having a refractive index of 1.4 or more,
The first layer is a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film,
The second layer is a Cu film or a Cu alloy film, and in the laminated structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less. Characteristic electrode.
[2] The electrode according to [1], wherein the first layer contains Ni in a metal atomic ratio of 25 atomic% to 70 atomic%.
[3] The electrode according to [1] or [2], wherein a transparent conductive film is provided between the substrate and the first layer.
[4] The electrode according to [1] or [2], wherein a silicon oxide film or a silicon nitride film is provided between the substrate and the first layer.
[5] The above [1], wherein the Cu alloy film contains at least one element selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La and Nd The electrode according to [2].
[6] The transparent conductive film is made of an oxide containing at least In and Sn, a transparent conductive film made of an oxide containing at least In and Zn, or a transparent conductive film made of an oxide containing at least In and Ga. The electrode according to [3], which is a film.
[7] The electrode according to [1] or [2], wherein an electrical resistivity of the multilayer wiring composed of the first layer and the second layer is 5 μΩ · cm or less.
[8] The electrode according to any one of [1] to [6], wherein wet etching using an etching solution containing hydrogen peroxide is possible.
[9] In the laminated structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side after a heat treatment at 300 ° C. or higher is 40% or less. [1] The electrode according to any one of [8].
[10] The electrode according to [1] or [2], wherein the thickness of the first layer is 50 to 100 nm.
[11] A display device comprising the electrode according to any one of [1] to [10].
[12] An input device comprising the electrode according to any one of [1] to [10].
[13] A sputtering target used for forming a first layer constituting the electrode according to any one of [1] to [10],
A sputtering target comprising Cu and Ni, or Cu and Ni partially nitrided as main materials.
  本発明に係る電極によれば、低反射率、高耐熱性及び良好な電気的特性を同時に達成できる。そのため、本発明に係る電極をゲート電極およびソース・ドレイン電極に用いた場合、同電極からの反射が視認されない表示装置や入力装置を提供することができる。 According to the electrode of the present invention, low reflectance, high heat resistance and good electrical characteristics can be achieved at the same time. Therefore, when the electrode according to the present invention is used for a gate electrode and a source / drain electrode, it is possible to provide a display device or an input device in which reflection from the electrode is not visually recognized.
図1は、Cu主配線電極及びバリアメタル層を備えたゲート電極およびソース・ドレイン電極を用いた、一般的な液晶ディスプレイのTFTアレイ基板を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing a TFT array substrate of a general liquid crystal display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode and a barrier metal layer. 図2は、Cu主配線電極及びバリアメタル層を備えたゲート電極およびソース・ドレイン電極を用いた、一般的なボトムエミッション型有機ELディスプレイのTFTアレイ基板を模式的に示す概略断面図である。FIG. 2 is a schematic cross-sectional view schematically showing a TFT array substrate of a general bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode and a barrier metal layer. 図3は、本発明に係るCu主配線電極層及び光学調整層を備えたゲート電極およびソース・ドレイン電極を用いた、ボトムエミッション型有機ELディスプレイのTFTアレイ基板を模式的に示す概略断面図であり、また、本発明の実施の様態1Aに該当する概略断面図でもある。FIG. 3 is a schematic cross-sectional view schematically showing a TFT array substrate of a bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode layer and an optical adjustment layer according to the present invention. Moreover, it is also a schematic sectional view corresponding to the embodiment 1A of the present invention. 図4は、本発明に係るCu主配線電極層、Cu反応層及び透明導電膜を備えたゲート電極およびソース・ドレイン電極を用いた、ボトムエミッション型有機ELディスプレイのTFTアレイ基板を模式的に示す概略断面図であり、また、本発明の実施の様態1Bに該当する概略断面図でもある。FIG. 4 schematically shows a TFT array substrate of a bottom emission type organic EL display using a gate electrode and a source / drain electrode provided with a Cu main wiring electrode layer, a Cu reaction layer, and a transparent conductive film according to the present invention. It is a schematic sectional drawing and is also a schematic sectional drawing corresponding to the embodiment 1B of the present invention. 図5は、本発明に係るCu主配線電極層、Cu反応層及びシリコン酸化膜又はシリコン窒化膜を備えたゲート電極、並びに、Cu主配線電極層及びCu反応層を備えたソース・ドレイン電極を用いた、ボトムエミッション型有機ELディスプレイ(表示装置)のTFTアレイ基板を模式的に示す概略断面図であり、また、本発明の実施の様態1Cに該当する概略断面図でもある。FIG. 5 shows a Cu main wiring electrode layer according to the present invention, a Cu reaction layer and a gate electrode provided with a silicon oxide film or a silicon nitride film, and a source / drain electrode provided with a Cu main wiring electrode layer and a Cu reaction layer. It is a schematic sectional drawing which shows typically the TFT array substrate of the used bottom emission type organic EL display (display apparatus), and is also a schematic sectional drawing applicable to Embodiment 1C of this invention. 図6は、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、ガラス基板側から測定した反射率とNi添加量(原子%)との関係を示す図である。FIG. 6 is a diagram showing the relationship between the reflectance measured from the glass substrate side and the Ni addition amount (atomic%) in the laminated structure including the first layer and the second layer of Example 1A of the present invention. . 図7は、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、ガラス基板側から測定した反射率とNi添加量との関係を示す図である。FIG. 7 is a diagram showing the relationship between the reflectance measured from the glass substrate side and the amount of added Ni in the laminated structure including the first layer and the second layer of Example 1B of the present invention. 図8Aは、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、Ni添加量が30原子%の場合の、波長域250nm~850nmの反射率を示す図である。FIG. 8A is a diagram showing the reflectance in the wavelength region of 250 nm to 850 nm when the Ni addition amount is 30 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention. . 図8Bは、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、Ni添加量が40原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8B is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 40 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention. . 図8Cは、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、Ni添加量が50原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8C is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 50 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention. . 図8Dは、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、Ni添加量が70原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8D is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 70 atomic% in the stacked structure including the first layer and the second layer of Example 1A of the present invention. . 図8Eは、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、Ni添加量が30原子%の場合の、波長域250nm~850nmの反射率を示す図である。FIG. 8E is a diagram showing the reflectance in the wavelength region of 250 nm to 850 nm when the Ni addition amount is 30 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention. . 図8Fは、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、Ni添加量が40原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8F is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 40 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention. . 図8Gは、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、Ni添加量が50原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8G is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 50 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention. . 図8Hは、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、Ni添加量が70原子%の場合の、波長域400nm~800nmの反射率を示す図である。FIG. 8H is a diagram showing the reflectance in the wavelength region of 400 nm to 800 nm when the Ni addition amount is 70 atomic% in the stacked structure including the first layer and the second layer of Example 1B of the present invention. . 図9Aは、本発明の実施例1Aの第1層と第2層とを備えた積層構造における、電気抵抗率とNi添加量との関係を示す図である。FIG. 9A is a diagram showing a relationship between electrical resistivity and Ni addition amount in a laminated structure including the first layer and the second layer of Example 1A of the present invention. 図9Bは、本発明の実施例1Bの第1層と第2層とを備えた積層構造における、電気抵抗率とNi添加量との関係を示す図である。FIG. 9B is a diagram showing the relationship between the electrical resistivity and the Ni addition amount in the laminated structure including the first layer and the second layer of Example 1B of the present invention. 図10は、本発明の実施例1A及び実施例1Bの第1層であるCu-Ni-O薄膜又はCu-Ni-N薄膜における、過酸化水素水含有のエッチング液によるエッチング速度と第1層に含まれるNi添加量との関係を示す図である。FIG. 10 shows the etching rate of the first layer of the Cu—Ni—O thin film or the Cu—Ni—N thin film, which is the first layer of Example 1A and Example 1B of the present invention, using an etching solution containing hydrogen peroxide. It is a figure which shows the relationship with Ni addition amount contained in. 図11は、本発明の実施例1Bの第1層と第2層とを備えた積層構造において、Ni添加量ごとにエッチング後の形状を示す、断面の走査型電子顕微鏡写真である。FIG. 11 is a scanning electron micrograph of a cross section showing the shape after etching for each Ni addition amount in the laminated structure including the first layer and the second layer of Example 1B of the present invention. 図12Aは、本発明の実施例2の第1層と第2層とを備えた積層構造において、第1層形成時のガス流量比が27:22:5の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 12A shows the heat treatment immediately after the film formation and the heat treatment when the gas flow ratio in forming the first layer is 27: 22: 5 in the laminated structure including the first layer and the second layer of Example 2 of the present invention. It is a figure which shows the reflectance of wavelength range 400nm-800nm after. 図12Bは、本発明の実施例2の第1層と第2層(純Cu薄膜)とを備えた積層構造において、第1層形成時のガス流量比が27:12:15の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 12B shows a case where the gas flow ratio at the time of forming the first layer is 27:12:15 in the laminated structure including the first layer and the second layer (pure Cu thin film) of Example 2 of the present invention. FIG. 6 is a graph showing reflectivity in a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment. 図12Cは、本発明の実施例2の第1層と第2層(純Cu薄膜)とを備えた積層構造において、第1層形成時のガス流量比が27:17:10の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 12C shows a case where the gas flow ratio in forming the first layer is 27:17:10 in the laminated structure including the first layer and the second layer (pure Cu thin film) of Example 2 of the present invention. FIG. 6 is a graph showing reflectivity in a wavelength range of 400 nm to 800 nm immediately after film formation and after heat treatment. 図13Aは、本発明の実施例2の第1層と第2層とを備えた積層構造において、Ni添加量が30原子%の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 13A shows a layered structure including the first layer and the second layer of Example 2 of the present invention, in a wavelength region of 400 nm to 800 nm immediately after film formation and after heat treatment when the Ni addition amount is 30 atomic%. It is a figure which shows a reflectance. 図13Bは、本発明の実施例2の第1層と第2層とを備えた積層構造において、Ni添加量が40原子%の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 13B shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 40 atomic%. It is a figure which shows a reflectance. 図13Cは、本発明の実施例2の第1層と第2層とを備えた積層構造において、Ni添加量が50原子%の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 13C shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 50 atomic%. It is a figure which shows a reflectance. 図13Dは、本発明の実施例2の第1層と第2層とを備えた積層構造において、Ni添加量が70原子%の場合の、成膜直後と熱処理後における波長域400nm~800nmの反射率を示す図である。FIG. 13D shows a layered structure including the first layer and the second layer of Example 2 of the present invention in a wavelength range of 400 nm to 800 nm immediately after the film formation and after the heat treatment when the Ni addition amount is 70 atomic%. It is a figure which shows a reflectance.
  本発明に係る電極は主に液晶表示装置等の表示装置やタッチパネルセンサー等の入力装置における薄膜トランジスタ(Thin  Film  Transistor、以下「TFT」と称することがある。)の電極として好適に用いられる。以下、薄膜トランジスタの電極として、表示装置を例として説明するが、これらに限定されるものではない。 The electrode according to the present invention is preferably used mainly as an electrode of a thin film transistor (hereinafter referred to as “TFT”) in a display device such as a liquid crystal display device or an input device such as a touch panel sensor. Hereinafter, a display device will be described as an example of an electrode of a thin film transistor, but is not limited thereto.
<液晶ディスプレイ>
  図1は、一般的な液晶ディスプレイのTFT電極と基板の構成を模式的に示す概略断面図である。すなわち、図1は、TFT基板10を示している。TFT基板には、ゲート電極12およびソース・ドレイン電極11が搭載されている。
  液晶ディスプレイのゲート電極およびソース・ドレイン電極には主成分にCuを含むCu主配線電極層3と該Cu主配線電極層3の下部にはバリアメタル層2を積層したものが使用されることが多い。Cu主配線電極層は純Cuをそのまま用いられることが多く、バリアメタル層は主に純Moや純Tiといった高融点金属薄膜が使用される。
<LCD display>
FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode and a substrate of a general liquid crystal display. That is, FIG. 1 shows the TFT substrate 10. A gate electrode 12 and source / drain electrodes 11 are mounted on the TFT substrate.
A gate electrode and a source / drain electrode of a liquid crystal display may be formed by using a Cu main wiring electrode layer 3 containing Cu as a main component and a barrier metal layer 2 laminated below the Cu main wiring electrode layer 3. Many. The Cu main wiring electrode layer often uses pure Cu as it is, and the barrier metal layer is mainly made of a refractory metal thin film such as pure Mo or pure Ti.
  視認者は図1に示す矢印A側から液晶ディスプレイをみることになり、バックライトユニット20からの透過光(矢印D)をみることにより、映像を視認することができる。また視認者側から入った外光(矢印B)は、TFT基板のゲート電極およびソース・ドレイン電極表面、つまりCu主配線電極層表面から反射され、該反射光(矢印C)が再び視認者に認知される。 The viewer can view the liquid crystal display from the arrow A side shown in FIG. 1 and can visually recognize the image by viewing the transmitted light (arrow D) from the backlight unit 20. The external light (arrow B) entering from the viewer side is reflected from the gate electrode and source / drain electrode surfaces of the TFT substrate, that is, the surface of the Cu main wiring electrode layer, and the reflected light (arrow C) is again transmitted to the viewer. Recognized.
<有機ELディスプレイ>
  次にボトムエミッション型有機EL表示装置における薄膜トランジスタの電極について説明する。
<Organic EL display>
Next, the electrode of the thin film transistor in the bottom emission type organic EL display device will be described.
  図2は、一般的なボトムエミッション型有機ELディスプレイのTFT電極の構成を模式的に示す概略断面図である。TFT基板10の構成は図1におけるTFT基板10と同じであり、50インチ以上の液晶ディスプレイのゲート電極12およびソース・ドレイン電極11には主成分にCuを含むCu主配線電極層3と該Cu主配線電極層3の下部にはバリアメタル層2を積層したものが使用される。Cu主配線電極層は純Cuをそのまま用いられることが多く、バリアメタル層は主に純Moや純Tiといった高融点金属薄膜が使用される。 FIG. 2 is a schematic cross-sectional view schematically showing a configuration of a TFT electrode of a general bottom emission type organic EL display. The structure of the TFT substrate 10 is the same as that of the TFT substrate 10 in FIG. 1. The gate electrode 12 and the source / drain electrode 11 of a liquid crystal display of 50 inches or more have a Cu main wiring electrode layer 3 containing Cu as a main component and the Cu In the lower part of the main wiring electrode layer 3, a laminate of the barrier metal layer 2 is used. The Cu main wiring electrode layer often uses pure Cu as it is, and the barrier metal layer is mainly made of a refractory metal thin film such as pure Mo or pure Ti.
  視認者は図2に示す矢印Aのように、図1とは反対側からディスプレイをみることになり、TFT基板内に内蔵された有機EL発光層21からの透過光(矢印E)をみることにより、映像として視認することができる。また視認者側から入った外光(矢印B)は、TFT基板のゲート電極およびソース・ドレイン電極下面、つまりバリアメタル層下面から反射され、該反射光(矢印C)が再び視認者に認知される。 As shown by an arrow A in FIG. 2, the viewer sees the display from the opposite side of FIG. 1, and sees the transmitted light (arrow E) from the organic EL light emitting layer 21 built in the TFT substrate. Thus, it can be visually recognized as an image. The external light (arrow B) entering from the viewer side is reflected from the lower surface of the gate electrode and the source / drain electrodes of the TFT substrate, that is, the lower surface of the barrier metal layer, and the reflected light (arrow C) is recognized by the viewer again. The
<電極>
  本発明に係る電極は、基板上に、前記基板側から順に第1層と、第2層とを備えた積層構造を有する電極であって、前記基板は屈折率が1.4以上の、樹脂基板又はセラミックス基板であり、前記第1層はCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu膜であり、前記第2層はCu膜又はCu合金膜であり、かつ前記積層構造において、前記基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であることを特徴とする。
<Electrode>
The electrode according to the present invention is an electrode having a laminated structure including a first layer and a second layer in order from the substrate side on the substrate, and the substrate has a refractive index of 1.4 or more. A substrate or a ceramic substrate, wherein the first layer is a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film, and the second layer is a Cu film or a Cu alloy film, In the laminated structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less.
  基板は通常用いられる樹脂基板又はセラミックス基板を用いることができ、屈折率が1.4以上であればよい。 As the substrate, a commonly used resin substrate or ceramic substrate can be used as long as the refractive index is 1.4 or more.
  樹脂基板としては、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂等が挙げられる。 Examples of the resin substrate include polycarbonate resin, polyethylene terephthalate resin, and polyimide resin.
  セラミックス基板としては、ガラス基板、サファイヤガラス等が挙げられる。TFT電極の場合、基板は耐熱性の点からガラス基板が好ましく用いられる。基板の厚さは0.2~5mmであればよく、好ましくは0.5~0.7mmである。 Examples of the ceramic substrate include a glass substrate and sapphire glass. In the case of a TFT electrode, a glass substrate is preferably used from the viewpoint of heat resistance. The thickness of the substrate may be 0.2 to 5 mm, preferably 0.5 to 0.7 mm.
  前記基板上に、基板側から順にCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu膜(第1層)と、Cu膜又はCu合金膜(第2層)とを積層する。
  かかる構造とすることにより、第1層と第2層を含む積層構造における、基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率をいずれも40%以下とすることができる。
On the substrate, a Cu film (first layer) in which at least one of nitrogen and oxygen is contained in a part of the Cu film in order from the substrate side, and a Cu film or a Cu alloy film (second layer) Laminate.
By adopting such a structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side in the stacked structure including the first layer and the second layer can be 40% or less. .
  第1層であるCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu膜とは、Cu-O膜、Cu-N膜、又はCu-O-N膜である。また、第1層にNiが含まれる場合は、Cu-Ni-O薄膜、Cu-Ni-N薄膜、又はCu-Ni-O-N薄膜である。 The Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film as the first layer is a Cu—O film, a Cu—N film, or a Cu—O—N film. When the first layer contains Ni, it is a Cu—Ni—O thin film, a Cu—Ni—N thin film, or a Cu—Ni—O—N thin film.
  第1層におけるO及びNの含有量は合計で5~50原子%であればよく、10~30原子%が低反射率の点から好ましい。 The total content of O and N in the first layer may be 5 to 50 atomic%, and 10 to 30 atomic% is preferable from the viewpoint of low reflectance.
  第1層は、金属組成部における原子比でNiを25原子%以上70原子%以下含むことが熱処理後でも低反射率を実現できる点からより好ましく、30原子%以上がさらに好ましい。ただし、本明細書における第1層中のNiの含有量は、第1層の形成に用いるCu-Ni合金ターゲットにおけるNi含有量と同義であり、Ni添加量と同じ値を意味する。 It is more preferable that the first layer contains Ni in an atomic ratio of 25 atomic% to 70 atomic% in the metal composition part from the viewpoint of realizing a low reflectance even after heat treatment, and further preferably 30 atomic% or more. However, the Ni content in the first layer in this specification is synonymous with the Ni content in the Cu—Ni alloy target used for forming the first layer, and means the same value as the Ni addition amount.
  さらに第1層には、Cu、O、N、Ni以外の元素として、Ti、Mn、Fe、Co、Ni、Zn、Ta、LaおよびNdからなる群より選択された1種以上の元素を含んでいてもよいが、第1層中のCu、O、N、Ni以外の元素の割合は合計で0.1~10原子%であることが好ましい。 Further, the first layer includes one or more elements selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd as elements other than Cu, O, N, and Ni. However, the ratio of elements other than Cu, O, N, and Ni in the first layer is preferably 0.1 to 10 atomic% in total.
  なお、第1層に含まれる元素の種類と量はICP発光分析装置により測定することができる。 Note that the type and amount of elements contained in the first layer can be measured with an ICP emission spectrometer.
  第1層の膜厚は低反射率化の点から50~100nmであることが好ましいが、スパッタのパワーや時間を変えることで、膜厚を調整することができる。 (2) The film thickness of the first layer is preferably 50 to 100 nm from the viewpoint of low reflectivity, but the film thickness can be adjusted by changing the sputtering power and time.
  第2層がCu膜である場合、純Cu膜である。 場合 When the second layer is a Cu film, it is a pure Cu film.
  また、第2層がCu合金膜である場合、Cu以外の元素として、Ti、Mn、Fe、Co、Ni、Zn、Ta、LaおよびNdからなる群より選択された1種以上の元素を含むことが耐熱性や密着性、耐湿性の点から好ましく、中でもTi、Mn、Ni、Znがより好ましい。 Further, when the second layer is a Cu alloy film, it contains one or more elements selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La and Nd as elements other than Cu. Is preferable from the viewpoint of heat resistance, adhesion, and moisture resistance, and Ti, Mn, Ni, and Zn are more preferable.
  Cu合金膜におけるCu以外の元素の割合は合計で0.1~10原子%であることが好ましい。 The ratio of elements other than Cu in the Cu alloy film is preferably 0.1 to 10 atomic% in total.
  なお、第2層であるCu合金膜に含まれる元素の種類と量はICP発光分析装置により測定することができる。また、第2層の膜厚は低反射率化の点から50~100nmであることが好ましい。膜厚はスパッタのパワーや時間を変えることで調整することができる。 Note that the type and amount of elements contained in the Cu alloy film as the second layer can be measured with an ICP emission spectrometer. The film thickness of the second layer is preferably 50 to 100 nm from the viewpoint of reducing the reflectance. The film thickness can be adjusted by changing the sputtering power and time.
  以下、表示装置を例に用いて、本発明の電極の好ましい実施態様を例示して、本発明の電極について説明する。 Hereinafter, the electrode of the present invention will be described using a display device as an example to illustrate a preferred embodiment of the electrode of the present invention.
<実施の態様1A>
  図3はボトムエミッション型有機ELディスプレイのTFT基板10を模式的に示す概略断面図であり、ゲート電極12およびソース・ドレイン電極11にCu主配線電極層3及び光学調整層5のCu薄膜を用いている。光学調整層5が第1層であり、Cu主配線電極層3が第2層である。
<Embodiment 1A>
FIG. 3 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display, in which a Cu main wiring electrode layer 3 and a Cu thin film of an optical adjustment layer 5 are used for a gate electrode 12 and a source / drain electrode 11. ing. The optical adjustment layer 5 is the first layer, and the Cu main wiring electrode layer 3 is the second layer.
  外光(矢印B)からの反射光(矢印C)の視認を抑制するために、TFT基板10におけるゲート電極12およびソース・ドレイン電極11の下層側に従来のバリアメタル層に替わって光学調整層5(第1層)を配置する。 In order to suppress the visibility of reflected light (arrow C) from external light (arrow B), an optical adjustment layer is substituted for the conventional barrier metal layer on the lower side of the gate electrode 12 and the source / drain electrode 11 in the TFT substrate 10. 5 (first layer) is arranged.
  第1層はCu膜の一部に窒素と酸素のうち少なくとも1種以上が含有されているCu膜からなる。第1層の組成を調整し、視認者側(矢印A、TFT基板側)から測定したゲート電極およびソース・ドレイン電極の、波長450nm、550nm及び650nmにおける反射率がいずれも40%以下となるようにする。該反射率は、いずれも30%以下であることが好ましい。 The first layer is made of a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film. The composition of the first layer is adjusted so that the reflectivity at wavelengths of 450 nm, 550 nm, and 650 nm of the gate electrode and the source / drain electrodes measured from the viewer side (arrow A, TFT substrate side) is 40% or less. To. The reflectance is preferably 30% or less.
  具体的には、第1層のCu膜に酸素及び窒素の少なくともいずれか一方を含むことにより、波長450nm、550nm及び650nmにおける反射率を低くすることができる。 Specifically, the reflectance at wavelengths of 450 nm, 550 nm, and 650 nm can be lowered by including at least one of oxygen and nitrogen in the first layer Cu film.
  さらにTFT基板の製造工程において、300℃以上の熱履歴を受けた後も、視認者側から測定したゲート電極およびソース・ドレイン電極の、波長450nm、550nm及び650nmにおける反射率がいずれも40%以下であることが好ましく、30%以下であることがより好ましい。 Further, in the TFT substrate manufacturing process, even after receiving a thermal history of 300 ° C. or higher, the reflectances at wavelengths of 450 nm, 550 nm, and 650 nm of the gate electrode and the source / drain electrode measured from the viewer side are all 40% or less. It is preferable that it is, and it is more preferable that it is 30% or less.
  具体的には、第1層であるCu膜を、Niを含むCu-Ni合金膜とすることにより、熱処理後でも低い反射率を達成することができるようになる。 Specifically, when the Cu film as the first layer is a Cu—Ni alloy film containing Ni, a low reflectance can be achieved even after heat treatment.
  第1層と第2層の積層配線の電気抵抗率は5μΩ・cm以下であることが好ましく、3μΩ・cm以下がより好ましい。電気抵抗率は第2層の合金成分の添加量を少なくする、あるいは、第1層と第2層の膜厚の比を大きくする、つまり第2層を厚くすることにより、低くすることができる。 電 気 The electrical resistivity of the laminated wiring of the first layer and the second layer is preferably 5 μΩ · cm or less, more preferably 3 μΩ · cm or less. The electrical resistivity can be lowered by reducing the added amount of the alloy component of the second layer or by increasing the ratio of the thickness of the first layer to the second layer, that is, by increasing the thickness of the second layer. .
  第1層と第2層の積層配線の厚みは、薄すぎると見かけの抵抗が高くなり、厚すぎるとエッチング加工が難しくなるため、100~1000nmの間であることが好ましい。厚みはスパッタ成膜のパワーと成膜時間によって調整することができる。 積 層 If the thickness of the laminated wiring of the first layer and the second layer is too thin, the apparent resistance becomes high, and if it is too thick, etching processing becomes difficult. The thickness can be adjusted by the power of sputtering film formation and the film formation time.
  第1層と第2層の積層配線は過酸化水素水を含有するエッチング液でウェットエッチングできることが量産ラインへの適合性の点で好ましい。
  エッチング液は過酸化水素水を主成分とすることが好ましく、過酸化水素水が3%以上であることが好ましい。
The laminated wiring of the first layer and the second layer is preferably wet-etched with an etching solution containing hydrogen peroxide from the viewpoint of suitability for a mass production line.
The etching solution preferably contains hydrogen peroxide solution as a main component, and preferably contains 3% or more of hydrogen peroxide solution.
<実施の態様1B>
  図4はボトムエミッション型有機ELディスプレイのTFT基板10を模式的に示す概略断面図であり、実施の態様1Aに示した光学調整層5に代わり、Cu反応層7(第1層)及び透明導電膜6により構成される。
<Embodiment 1B>
FIG. 4 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display. Instead of the optical adjustment layer 5 shown in the embodiment 1A, a Cu reaction layer 7 (first layer) and a transparent conductive layer are shown. It is constituted by the film 6.
  透明導電膜6は基板と第1層との間に存在し、第1層と合わせて、積層構造の光学調整層として有効に作用し、低反射率を実現するものである。 The transparent conductive film 6 exists between the substrate and the first layer, and together with the first layer, effectively acts as an optical adjustment layer having a laminated structure and realizes a low reflectance.
  Cu反応層としては、Cu膜の一部に窒素と酸素のうち少なくとも1種以上が含有されているCu膜が用いられる。 As the Cu reaction layer, a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film is used.
  Cu反応層の厚みは好ましくは50~100nmである。 The thickness of the Cu reaction layer is preferably 50 to 100 nm.
  透明導電膜の材料は特に限定されないが、少なくともIn及びSnを含む酸化物からなる透明導電膜(In-Sn-O)、少なくともIn及びZnを含む酸化物からなる透明導電膜(In-Zn-O)、又は、少なくともIn及びGaを含む酸化物からなる透明導電膜(In-Ga-O)などが、導電性が高く、エッチング加工性が良好で、積層したときに積層構造での反射率がより低くなることから好ましく用いられる。 The material of the transparent conductive film is not particularly limited, but a transparent conductive film (In—Sn—O) made of an oxide containing at least In and Sn, and a transparent conductive film made of an oxide containing at least In and Zn (In—Zn—). O) or a transparent conductive film (In—Ga—O) made of an oxide containing at least In and Ga has high conductivity, good etching processability, and reflectivity in a stacked structure when stacked. Is preferably used because it becomes lower.
  Cu反応層7及びCu主配線電極層3の好ましい態様は、実施の態様1Aにおける第1層及び第2層の好ましい条件とそれぞれ同様である。 The preferable aspects of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as the preferable conditions of the first layer and the second layer in Embodiment 1A, respectively.
<実施の態様1C>
  図5はボトムエミッション型有機ELディスプレイのTFT基板10を模式的に示す概略断面図であり、実施の態様1Aに示した光学調整層5に代わり、Cu反応層7(第1層)及びシリコン酸化膜又はシリコン窒化膜8により構成される。
<Aspect 1C>
FIG. 5 is a schematic cross-sectional view schematically showing a TFT substrate 10 of a bottom emission type organic EL display. Instead of the optical adjustment layer 5 shown in the embodiment 1A, a Cu reaction layer 7 (first layer) and silicon oxide are used. A film or silicon nitride film 8 is used.
  ただし、この場合、シリコン酸化膜およびシリコン窒化膜はいずれも絶縁膜であり、ソース・ドレイン電極11の下部には半導体層4との電気的接続ができないことから、実施の態様1Cはゲート電極12へのみの適用となる。 In this case, however, the silicon oxide film and the silicon nitride film are both insulating films, and the lower portion of the source / drain electrode 11 cannot be electrically connected to the semiconductor layer 4. Applicable to only.
  シリコン酸化膜としては、SiO、SiOを含むSiO(但し0<x≦2)が挙げられる。シリコン窒化膜としては、SiN等が挙げられる。
  基板と第1層との間にシリコン酸化膜又はシリコン窒化膜を有することにより、低反射率化の点で好ましくなるものと考えられる。シリコン酸化膜又はシリコン窒化膜の膜厚は、好ましくは50nm~400nmである。膜厚は成膜時間により調整することができる。
Examples of the silicon oxide film include SiO x and SiO x containing SiO 2 (where 0 <x ≦ 2). An example of the silicon nitride film is SiN.
By having a silicon oxide film or a silicon nitride film between the substrate and the first layer, it is considered preferable from the viewpoint of low reflectivity. The film thickness of the silicon oxide film or silicon nitride film is preferably 50 nm to 400 nm. The film thickness can be adjusted by the film formation time.
  その他、Cu反応層7及びCu主配線電極層3の好ましい態様は、実施の態様1Aにおける第1層及び第2層の好ましい条件とそれぞれ同様であり、Cu反応層7は実施の態様1AにおけるCu反応層7と同様である。 In addition, the preferable aspects of the Cu reaction layer 7 and the Cu main wiring electrode layer 3 are the same as the preferable conditions of the first layer and the second layer in Embodiment 1A, respectively, and the Cu reaction layer 7 is the Cu in Embodiment 1A. Similar to the reaction layer 7.
<第1層の成膜方法>
  本発明における第1層は反応性スパッタリング法によって製膜することができる。具体的には、目的とする膜組成のスパッタリングターゲットを用いてスパッタすることにより製膜することができる。すなわち、純Cuのターゲットを用いてAr等の不活性ガスと、O及びNの少なくともいずれか一方のガスとの混合ガス流通下でスパッタリングすることにより、Cu-O薄膜、Cu-N薄膜、又はCu-O-N薄膜が得られる。
<First layer deposition method>
The first layer in the present invention can be formed by a reactive sputtering method. Specifically, the film can be formed by sputtering using a sputtering target having a target film composition. That is, by using a pure Cu target and performing sputtering under a mixed gas flow of an inert gas such as Ar and at least one of O 2 and N 2 , a Cu—O thin film, a Cu—N thin film Alternatively, a Cu—O—N thin film is obtained.
  また、Cu-Ni合金ターゲットを用いてAr等の不活性ガスとO及びNの少なくともいずれか一方のガスとの混合ガス流通下でスパッタリングすることにより、Cu-Ni-O薄膜、Cu-Ni-N薄膜、又はCu-Ni-O-N薄膜が得られる。 Further, by using a Cu—Ni alloy target and performing sputtering under a mixed gas flow of an inert gas such as Ar and at least one of O 2 and N 2 , a Cu—Ni—O thin film, Cu— A Ni—N thin film or a Cu—Ni—O—N thin film is obtained.
  Cu-Ni合金ターゲットのNi含有量が異なるターゲットを用いることで、得られる第1層中のNi含有量を調整することができる。 By using targets with different Ni contents in the Cu—Ni alloy target, the Ni content in the obtained first layer can be adjusted.
  また、スパッタ時に流通するO及びNの少なくともいずれか一方のガスの流量を変えることで、第1層中に含まれるO及びNの少なくともいずれか一方のガスを所望の値にすることができる。 Further, by changing the flow rate of at least one of O 2 and N 2 flowing during sputtering, at least one of O 2 and N 2 contained in the first layer is set to a desired value. be able to.
  スパッタの条件は従来通常スパッタが行われている範囲であればよく、例えば、到達真空度は1×10-6Torr以下であることが好ましく、基板温度は室温~100℃が好ましく、成膜温度は室温~100℃が好ましく、スパッタ時のガス圧は1mTorr~10mTorrが好ましい。 The sputtering conditions may be within the range where conventional sputtering is conventionally performed. For example, the ultimate vacuum is preferably 1 × 10 −6 Torr or less, the substrate temperature is preferably room temperature to 100 ° C., and the film formation temperature Is preferably from room temperature to 100 ° C., and the gas pressure during sputtering is preferably from 1 mTorr to 10 mTorr.
  第1層の膜厚はスパッタ放電のパワーと放電時間により調整することができ、触針式段差計で測定することができる。 The thickness of the first layer can be adjusted by the power and discharge time of the sputter discharge, and can be measured with a stylus type step gauge.
<スパッタリングターゲット例1>
  実施の態様1Aにおける第1層(光学調整層)を成膜するためのスパッタリングターゲットとして、純Cuターゲット、またはCu-Ni合金ターゲットを用いる。
<Sputtering target example 1>
As a sputtering target for forming the first layer (optical adjustment layer) in Embodiment 1A, a pure Cu target or a Cu—Ni alloy target is used.
  また、Cu膜中のNi添加量はCu-Ni合金ターゲットのNi量に依存するため、ターゲット中のNi含有量を調整することにより、第1層のNi含有量を所望のものとすることができる。 Further, since the amount of Ni added in the Cu film depends on the amount of Ni in the Cu—Ni alloy target, the Ni content in the first layer may be made desired by adjusting the Ni content in the target. it can.
  Cu-Ni合金ターゲットである場合、Cu及びNi、又は、一部が窒化されたCu及びNiを主材料として含むことが好ましい。 In the case of a Cu—Ni alloy target, it is preferable that Cu and Ni or partially nitrided Cu and Ni are included as main materials.
  なお、スパッタリングターゲットの形状は特に限定されず、スパッタリング装置の形状や構造に応じて角型プレート状、円形プレート状、ドーナツプレート状、円筒状など任意の形状に加工したものを用いることができる。 Note that the shape of the sputtering target is not particularly limited, and a sputtering target processed into an arbitrary shape such as a square plate shape, a circular plate shape, a donut plate shape, or a cylindrical shape can be used according to the shape and structure of the sputtering apparatus.
<スパッタリングターゲット例2>
  実施の態様1B及び1Cにおける第1層(Cu反応層)を成膜するためのスパッタリングターゲットとして、純Cuターゲット、またはCu-Ni合金ターゲットを用いる。
  また、Cu膜中のNi添加量は<スパッタリングターゲット例1>と同様に所望のものとすることができる。
<Sputtering target example 2>
As the sputtering target for forming the first layer (Cu reaction layer) in Embodiments 1B and 1C, a pure Cu target or a Cu—Ni alloy target is used.
Further, the amount of Ni added in the Cu film can be set to a desired one as in <Sputtering target example 1>.
<電極の製造方法>
  窒素ガスや酸素ガスを用いた反応性スパッタリング法である前記<第1層の成膜方法>により第1層を成膜するところに本発明に係る電極の製造方法の要旨を有する。第1層の成膜以外の、第2層の形成や透明導電膜の形成、シリコン酸化膜又はシリコン窒化膜の形成等は、公知の方法に従って公知の条件で行うことができ、本発明に係る電極を製造することができる。
<Method for producing electrode>
The method for producing the electrode according to the present invention is summarized in that the first layer is formed by the above-described <first layer forming method> which is a reactive sputtering method using nitrogen gas or oxygen gas. The formation of the second layer, the formation of the transparent conductive film, the formation of the silicon oxide film or the silicon nitride film, etc. other than the formation of the first layer can be carried out under known conditions in accordance with a known method. An electrode can be manufactured.
  積層構造を有する電極を製造するに当たっては、細線化や膜内の合金成分の均一性、さらには添加元素量の制御の容易さ、製造時のスループットの高さなどから、スパッタリングターゲットを用いてスパッタリング法にて成膜することが好ましい。 In manufacturing an electrode having a laminated structure, sputtering is performed using a sputtering target because of thinning, uniformity of alloy components in the film, ease of control of the amount of added elements, high throughput during manufacturing, etc. It is preferable to form a film by the method.
  ただし、第2層の成膜に用いられるスパッタリングターゲットも本発明の範囲であり、その主たる材料はCuまたは一部が窒化されたCuであり、さらに不可避的不純物が含まれることも許される。 However, the sputtering target used for forming the second layer is also within the scope of the present invention, and the main material is Cu or partially nitrided Cu, and it is allowed to contain inevitable impurities.
  具体的には、第2層は、目的とする膜組成のスパッタリングターゲットを用いてスパッタすることにより製膜することができる。すなわち、純Cuのターゲットを用いてAr等の不活性ガス流通下でスパッタリングすることにより、純Cu薄膜が得られる。また、所望のCu合金ターゲットを用いて同様にスパッタリングすることにより、ターゲット組成に依存した組成のCu合金薄膜を得ることができる。 Specifically, the second layer can be formed by sputtering using a sputtering target having a target film composition. That is, a pure Cu thin film can be obtained by sputtering under a flow of an inert gas such as Ar using a pure Cu target. Further, by sputtering similarly using a desired Cu alloy target, a Cu alloy thin film having a composition depending on the target composition can be obtained.
  スパッタの条件は従来通常スパッタが行われている範囲であればよく、例えば、到達真空度は1×10-6Torr以下であることが好ましく、基板温度は室温~100℃が好ましく、成膜温度は室温~100℃が好ましく、スパッタ時のガス圧は1mTorr~10mTorrが好ましい。 The sputtering conditions may be within the range where conventional sputtering is conventionally performed. For example, the ultimate vacuum is preferably 1 × 10 −6 Torr or less, the substrate temperature is preferably room temperature to 100 ° C., and the film formation temperature Is preferably from room temperature to 100 ° C., and the gas pressure during sputtering is preferably from 1 mTorr to 10 mTorr.
  第1層の膜厚はスパッタ放電のパワーと放電時間により調整することができ、触針式段差計で測定することができる。 The thickness of the first layer can be adjusted by the power and discharge time of the sputter discharge, and can be measured with a stylus type step gauge.
  以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples, and modifications are made within a range that can be adapted to the gist thereof. It is also possible to carry out and they are all included in the technical scope of the present invention.
<実施例1A>
  透明基板として無アルカリ硝子板(板厚0.7mm、直径4インチ)を用い、その表面に、DCマグネトロンスパッタリング法により第1層であるCu-Ni-O薄膜を成膜した。ターゲットは直径4インチの円盤型Cuターゲット又はCu-Ni合金ターゲットとし、酸素ガスを成膜装置に導入する反応性スパッタリングを行った。反応性スパッタリング条件は以下のとおりである。
<Example 1A>
A non-alkali glass plate (plate thickness: 0.7 mm, diameter: 4 inches) was used as a transparent substrate, and a Cu—Ni—O thin film as the first layer was formed on the surface thereof by DC magnetron sputtering. The target was a disk-type Cu target or a Cu—Ni alloy target having a diameter of 4 inches, and reactive sputtering was performed by introducing oxygen gas into the film forming apparatus. The reactive sputtering conditions are as follows.
(酸素添加反応性スパッタリング条件)
  ・ガス圧:  3mTorr
  ・ガス流量比:  Ar:O=  15sccm:15sccm
  ・スパッタパワー:  500W
  ・基板温度:  室温
  ・成膜温度:  室温
  ・到達真空度:  1×10-6  Torr以下
(Oxygenation reactive sputtering conditions)
・ Gas pressure: 3mTorr
Gas flow ratio: Ar: O 2 = 15 sccm: 15 sccm
・ Sputtering power: 500W
-Substrate temperature: Room temperature-Deposition temperature: Room temperature-Ultimate vacuum: 1 x 10-6 Torr or less
  第1層の成膜時に組成の異なるCu-Ni合金ターゲットを用いて膜中のNi添加量が原子比で0%、5%、10%、15%、30%、40%、50%、70%である8種類の膜をそれぞれ成膜した。 Using a Cu—Ni alloy target having a different composition when forming the first layer, the amount of Ni added in the film is 0%, 5%, 10%, 15%, 30%, 40%, 50%, 70 in atomic ratio. % Of 8 types of films were formed.
  続けて下記(第2層(Cu主配線電極層)のスパッタリング法の条件)にて第2層(純Cu薄膜)を成膜し、基板、第1層及び第2層とからなる積層構造を得た。ターゲットは4インチ径の純Cuターゲットを用いた。 Subsequently, a second layer (pure Cu thin film) is formed under the following conditions (conditions for sputtering of the second layer (Cu main wiring electrode layer)), and a laminated structure including the substrate, the first layer, and the second layer is formed. Obtained. The target used was a pure Cu target having a diameter of 4 inches.
(第2層(Cu主配線電極層)のスパッタリング法の条件)
・ガス圧:  2mTorr
・ガス流量:  Ar=  15sccm
・スパッタパワー:  500W
・基板温度:  室温
・成膜温度:  室温
・雰囲気ガス:  Arガス
・到達真空度:  1×10-6  Torr以下
(Conditions for sputtering method of second layer (Cu main wiring electrode layer))
・ Gas pressure: 2mTorr
・ Gas flow rate: Ar = 15 sccm
・ Sputtering power: 500W
-Substrate temperature: Room temperature-Deposition temperature: Room temperature-Atmospheric gas: Ar gas-Ultimate vacuum: 1 x 10-6 Torr or less
  第1層の膜厚を触診式段差計により測定した所、50nmであった。
  得られた積層構造について、ガラス基板側からの反射率測定を行った。第1層であるCu-Ni-O薄膜に含まれる金属組成中のNi添加量と反射率の関係を図6に示した。図6中、「550nm」または「650nm」とはそれぞれ反射率を測定した波長を示し、「as-depo」とは熱処理前、「350C」とは350℃にて5分間熱処理を行った後の結果であることを示す。
It was 50 nm when the film thickness of the 1st layer was measured with the palpation type level difference meter.
About the obtained laminated structure, the reflectance measurement from the glass substrate side was performed. FIG. 6 shows the relationship between the amount of Ni added in the metal composition contained in the Cu—Ni—O thin film as the first layer and the reflectance. In FIG. 6, “550 nm” or “650 nm” indicates the wavelength at which the reflectance was measured, “as-depo” is before heat treatment, and “350C” is after heat treatment at 350 ° C. for 5 minutes. Indicates the result.
  なお、熱処理は、具体的には以下のような手順で行った。赤外線ランプ加熱炉を用い、室温でサンプルを炉内に入れたのち、真空度1×10-4Torr以下まで真空引きした後に、350℃5分間熱処理を行い、再び室温まで冷却してから炉内を大気圧に戻し、サンプルを取りだした。 The heat treatment was specifically performed in the following procedure. After placing the sample in the furnace at room temperature using an infrared lamp heating furnace, evacuation to a vacuum degree of 1 × 10 −4 Torr or less, heat treatment at 350 ° C. for 5 minutes, cooling to room temperature again, and then in the furnace Was returned to atmospheric pressure and a sample was taken out.
  図6から明らかなように、第1層にCu-Ni-O薄膜を用いた場合、成膜直後では、波長に関わらず、少なくともNi添加量が70原子%以下であれば、反射率が目標の40%を下回る結果となった。一方、350℃にて5分間の熱処理を行うことで反射率変化が発生し、Ni添加量が35原子%程度以上であれば、反射率が40%を下回ることがわかる。 As is apparent from FIG. 6, when a Cu—Ni—O thin film is used for the first layer, the reflectivity is the target as long as at least Ni addition is 70 atomic% or less immediately after the film formation, regardless of the wavelength. The result was less than 40%. On the other hand, when the heat treatment is performed at 350 ° C. for 5 minutes, the reflectance changes, and it can be seen that the reflectance is less than 40% when the Ni addition amount is about 35 atomic% or more.
<実施例1B>
  第1層の形成において、酸素ガスを成膜装置に導入する反応性スパッタリングに代えて、窒素ガスを用いた下記条件での反応性スパッタリングを行った以外は、実施例1Aと同様にして、第1層と第2層を形成し、積層構造を得た。
<Example 1B>
In the formation of the first layer, in place of the reactive sputtering in which oxygen gas is introduced into the film forming apparatus, reactive sputtering under the following conditions using nitrogen gas was performed in the same manner as in Example 1A. One layer and a second layer were formed to obtain a laminated structure.
(窒素添加反応性スパッタリング条件)
  ・ガス圧:  5mTorr
  ・ガス流量比:  Ar:N=  27sccm:27sccm
  ・スパッタパワー:  500W
  ・基板温度:  室温
  ・成膜温度:  室温
  ・到達真空度:  1×10-6  Torr以下
(Nitrogen-added reactive sputtering conditions)
・ Gas pressure: 5mTorr
Gas flow ratio: Ar: N 2 = 27 sccm: 27 sccm
・ Sputtering power: 500W
-Substrate temperature: Room temperature-Deposition temperature: Room temperature-Ultimate vacuum: 1 x 10-6 Torr or less
  第1層の膜厚を触針式段差計により測定したところ、50nmであった。 It was 50 nm when the film thickness of the 1st layer was measured with the stylus type level difference meter.
  得られた積層構造について、ガラス基板側からの反射率測定を行った。第1層であるCu-Ni-N薄膜に含まれる金属組成中のNi添加量と反射率の関係を図7に示した。図7中、「550nm」または「650nm」とはそれぞれ反射率を測定した波長を示し、「as-depo」とは熱処理前、「350C」とは350℃にて5分熱処理を行った後の結果であることを示す。なお、熱処理は実施例1Aと同様の方法と条件で行った。 反射 About the obtained laminated structure, the reflectance measurement from the glass substrate side was performed. FIG. 7 shows the relationship between the amount of Ni added in the metal composition contained in the Cu—Ni—N thin film as the first layer and the reflectance. In FIG. 7, “550 nm” or “650 nm” indicates the wavelength at which the reflectance was measured, “as-depo” is before heat treatment, and “350C” is after heat treatment at 350 ° C. for 5 minutes. Indicates the result. The heat treatment was performed under the same method and conditions as in Example 1A.
  図7から明らかなように、第1層にCu-Ni-N薄膜を用いた場合、成膜直後では、Ni添加量に関わらず、反射率が目標の40%を下回る良好な結果が得られた。また、350℃にて5分間の熱処理を行うと、Ni添加量が少ない場合には反射率が高くなる結果となったが、Ni添加量を30%とすると、極端に反射率が低下した。これより、Ni添加量が25原子%以上程度含まれていれば、反射率が40%を下回るものと推察される。 As is apparent from FIG. 7, when a Cu—Ni—N thin film is used for the first layer, a good result is obtained that the reflectance is less than the target of 40% immediately after the film formation, regardless of the amount of Ni added. It was. Further, when heat treatment was performed at 350 ° C. for 5 minutes, the reflectance was increased when the Ni addition amount was small, but when the Ni addition amount was 30%, the reflectance was extremely reduced. From this, it is presumed that the reflectance is less than 40% when the Ni addition amount is about 25 atomic% or more.
  実施例1Aの構造積層体について、Ni添加量を30原子%、40原子%、50原子%又は70原子%としたときの、波長域400nm~800nm(Ni添加量が30原子%である図8Aについては波長域250nm~850nm)の反射率を図8A~図8Dに示した。また、実施例1Bの構造積層体について、Ni添加量を30原子%、40原子%、50原子%又は70原子%としたときの、波長域400nm~800nm(Ni添加量が30原子%である図8Eについては波長域250nm~850nm)の反射率を図8E~図8Hに示した。図8A~図8H中、「as-depo」とは熱処理前、「350℃、5min」とは350℃にて5分熱処理を行った後の結果であることを示す。 For the structural laminate of Example 1A, when the Ni addition amount is 30 atomic%, 40 atomic%, 50 atomic%, or 70 atomic%, the wavelength region is 400 nm to 800 nm (the Ni addition amount is 30 atomic%; FIG. 8A 8A to 8D show the reflectance in the wavelength range of 250 nm to 850 nm. In the structural laminate of Example 1B, when the Ni addition amount is 30 atomic%, 40 atomic%, 50 atomic%, or 70 atomic%, the wavelength region is 400 nm to 800 nm (Ni addition amount is 30 atomic%). The reflectance in the wavelength region of 250 nm to 850 nm for FIG. 8E is shown in FIGS. 8E to 8H. In FIG. 8A to FIG. 8H, “as-depo” indicates a result before heat treatment, and “350 ° C., 5 min” indicates a result after heat treatment at 350 ° C. for 5 minutes.
  第1層をCu-Ni-O薄膜とした場合、熱処理前に比べて熱処理を行うと全体的に反射率が高くなる傾向が見られたものの、金属組成中のNi添加量が少なくとも30原子%~70原子%の範囲内であれば、波長450nm、550nm及び650nmのいずれにおいても、反射率が30%を下回る、良好な結果が得られた。 In the case where the first layer is a Cu—Ni—O thin film, although the overall reflectance tends to be higher when the heat treatment is performed than before the heat treatment, the amount of Ni added in the metal composition is at least 30 atomic%. Within the range of ˜70 atomic%, good results were obtained in which the reflectance was less than 30% at any of the wavelengths of 450 nm, 550 nm and 650 nm.
  また、第1層をCu-Ni-N薄膜とした場合、Ni添加量が40原子%、50原子%及び70原子%においては、熱処理前と熱処理後とで反射率にさほどの変化は見られなかった。また、金属組成中のNi添加量が少なくとも30原子%~70原子%の範囲内であれば、波長450nm、550nm及び650nmのいずれにおいても、反射率が40%を下回る、良好な結果が得られた。 In addition, when the first layer is a Cu—Ni—N thin film, when the Ni addition amount is 40 atomic%, 50 atomic%, and 70 atomic%, there is a considerable change in the reflectance before and after the heat treatment. There wasn't. Further, when the amount of Ni added in the metal composition is at least in the range of 30 atomic% to 70 atomic%, good results are obtained in which the reflectance is less than 40% at any of the wavelengths of 450 nm, 550 nm, and 650 nm. It was.
  実施例1Aの構造積層体について、第1層(Cu-Ni-O薄膜)におけるNi添加量と該第1層の上に第2層(純Cu薄膜)を積層した積層構造の電気抵抗率との関係を図9Aに示した。同様に、実施例1Bの構造積層体について、第1層(Cu-Ni-N薄膜)におけるNi添加量と該第1層の上に第2層(純Cu薄膜)を積層した積層構造の電気抵抗率との関係を図9Bに示した。図9A及び図9Bにおいて、「as-depo」とは熱処理前、「350℃」とは350℃にて5分熱処理を行った後の結果であることを示す。なお、熱処理方法と条件は先述したとおりである。 For the structural laminate of Example 1A, the amount of Ni added in the first layer (Cu—Ni—O thin film) and the electrical resistivity of the laminated structure in which the second layer (pure Cu thin film) was laminated on the first layer; The relationship is shown in FIG. 9A. Similarly, for the structural laminate of Example 1B, the amount of Ni added in the first layer (Cu—Ni—N thin film) and the electrical structure of the laminated structure in which the second layer (pure Cu thin film) was laminated on the first layer. The relationship with resistivity is shown in FIG. 9B. 9A and 9B, “as-depo” indicates a result before heat treatment, and “350 ° C.” indicates a result after heat treatment at 350 ° C. for 5 minutes. The heat treatment method and conditions are as described above.
  成膜直後後および350℃、5分の熱処理後いずれにおいても、金属組成中のNi添加量にかかわらず、積層構造の電気抵抗率は3μΩ・cm以下であった。 電 気 Immediately after film formation and after heat treatment at 350 ° C. for 5 minutes, the electrical resistivity of the laminated structure was 3 μΩ · cm or less regardless of the amount of Ni added in the metal composition.
  第1層をCu-Ni-O薄膜、第2層を純Cu薄膜とした実施例1Aにおける積層構造及び、第2層をCu-Ni-N薄膜、第2層を純Cu薄膜とした実施例1Bにおける積層構造である積層膜上にフォトレジストをパターニングし、該積層膜のエッチング特性を評価した。エッチング液には過酸化水素水を3%以上含むエッチング液を使用し、エッチングは液温を室温とした条件下で行った。エッチング速度とNi添加量との関係を図10に示す。 A laminated structure in Example 1A in which the first layer is a Cu—Ni—O thin film and the second layer is a pure Cu thin film, and the second layer is a Cu—Ni—N thin film and the second layer is a pure Cu thin film. A photoresist was patterned on the laminated film having the laminated structure in 1B, and the etching characteristics of the laminated film were evaluated. As the etching solution, an etching solution containing 3% or more of hydrogen peroxide was used, and the etching was performed under the condition that the solution temperature was room temperature. FIG. 10 shows the relationship between the etching rate and the Ni addition amount.
  図10から明らかなように、実施例1Bである第1層がCu-Ni-N薄膜である場合、Ni添加量が少ないほどエッチングレートが高くなり、金属組成中のNi添加量がおおよそ30原子%以上70原子%以下の範囲内であれば、第2層を構成する純Cu薄膜(エッチング速度271.5nm/分)とほぼ同じエッチング速度が得られることがわかった。 As is clear from FIG. 10, when the first layer of Example 1B is a Cu—Ni—N thin film, the smaller the Ni addition amount, the higher the etching rate, and the Ni addition amount in the metal composition is approximately 30 atoms. It was found that an etching rate almost the same as that of the pure Cu thin film (etching rate 271.5 nm / min) constituting the second layer can be obtained within the range of not less than 70% and not more than 70 atomic percent.
  実施例1Bの積層構造のエッチング後における断面の走査型電子顕微鏡写真を図11に示す。その結果、パターニング形状から、Ni添加量に関わらず良好な順テーパー形状が得られていることがわかる。 FIG. 11 shows a scanning electron micrograph of the cross section after etching the laminated structure of Example 1B. As a result, it can be seen from the patterning shape that a good forward tapered shape is obtained regardless of the amount of Ni added.
  一方、実施例1Aである第1層がCu-Ni-O薄膜である場合、金属組成中のNi添加量に依存せず、第1層がエッチングできないことが分かった。すなわち、第1層がCu-Ni-O薄膜である場合、パターニングのためのエッチング液には過酸化水素水ベースのエッチング液は適さないことが判明した。 On the other hand, it was found that when the first layer of Example 1A was a Cu—Ni—O thin film, the first layer could not be etched regardless of the amount of Ni added in the metal composition. That is, when the first layer is a Cu—Ni—O thin film, it has been found that an etching solution based on hydrogen peroxide is not suitable as an etching solution for patterning.
  以上の結果から、第1層をCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu-O膜またはCu-N膜とすることにより、低反射率の電極が得られた。また、300℃以上の熱処理を行う場合には、金属組成中のNi添加量が30原子%以上70原子%以下であるCu-Ni-O薄膜またはCu-Ni-N薄膜とすると、低い反射率が得られることが実証された。なお、反射率を測定したNi添加量の下限は30原子%であったが、30原子%でも十分に低い反射率が得られたことから、Ni添加量が25原子%以上であれば、反射率40%以下という良好な結果が得られるものと推測される。 From the above results, a low reflectivity electrode can be obtained by forming the first layer as a Cu—O film or a Cu—N film in which at least one of nitrogen and oxygen is contained in a part of the Cu film. It was. In addition, when heat treatment at 300 ° C. or higher is performed, a low reflectance is obtained when a Cu—Ni—O thin film or a Cu—Ni—N thin film in which the amount of Ni added in the metal composition is 30 atomic% to 70 atomic% is used. Has been demonstrated to be obtained. The lower limit of the Ni addition amount for which the reflectance was measured was 30 atomic%, but a sufficiently low reflectance was obtained even at 30 atomic%. It is estimated that a good result of 40% or less can be obtained.
  またエッチング液に過酸化水素水ベースのエッチング液を使う場合には、第1層としてCu-Ni-N薄膜を用いることが好ましいことがわかった。 It was also found that when a hydrogen peroxide-based etchant is used as the etchant, it is preferable to use a Cu—Ni—N thin film as the first layer.
<実施例2>
  第1層の形成において、酸素ガスを成膜装置に導入する反応性スパッタリングに代えて、窒素ガス及び酸素ガスを用いた下記条件での反応性スパッタリングを行った以外は、実施例1Aと同様にして、第1層と第2層を形成した。ガス流量比のNとOの割合を変えることで、OとNの比が異なる第1層(Cu-Ni-O-N薄膜)を得た。
<Example 2>
In the formation of the first layer, in the same manner as in Example 1A except that reactive sputtering using nitrogen gas and oxygen gas was performed under the following conditions instead of reactive sputtering in which oxygen gas was introduced into the film forming apparatus. Thus, the first layer and the second layer were formed. The first layer (Cu—Ni—O—N thin film) having a different ratio of O to N was obtained by changing the ratio of the gas flow rate ratio of N 2 and O 2 .
(窒素・酸素添加反応性スパッタリング条件)
  ・ガス圧:  5mTorr
  ・ガス流量比:  Ar:N:O=  27sccm:22~26sccm:1~5sccm
  ・スパッタパワー:  500W
  ・基板温度:  室温
  ・成膜温度:  室温
(Reactive sputtering conditions with nitrogen and oxygen addition)
・ Gas pressure: 5mTorr
Gas flow ratio: Ar: N 2 : O 2 = 27 sccm: 22 to 26 sccm: 1 to 5 sccm
・ Sputtering power: 500W
・ Substrate temperature: Room temperature ・ Deposition temperature: Room temperature
  第1層の膜厚を触針式段差計により測定したところ、50nmであった。 It was 50 nm when the film thickness of the 1st layer was measured with the stylus type level difference meter.
  得られた積層構造について、ガラス基板側からの反射率測定を行った。第1層であるCu-Ni-O-N薄膜に含まれる金属組成中のNi添加量を40原子%としたときの反射率を図12A~図12Cに示した。第1層形成時のガス流量比Ar:N:Oが、図12Aは27:22:5、図12Bは27:12:15、図12Cは27:17:10である。図12A~図12C中、「Before  ann.」は成膜直後で熱処理を行う前の状態であり、「After  ann.」は350℃にて5分熱処理を行った後の結果であることを示す。なお、熱処理は実施例1Aと同様の方法と条件で行った。 About the obtained laminated structure, the reflectance measurement from the glass substrate side was performed. FIGS. 12A to 12C show the reflectance when the amount of Ni added in the metal composition contained in the Cu—Ni—O—N thin film as the first layer is 40 atomic%. The gas flow ratio Ar: N 2 : O 2 when forming the first layer is 27: 22: 5 in FIG. 12A, 27:12:15 in FIG. 12B, and 27:17:10 in FIG. 12C. 12A to 12C, “Before anne.” Is a state immediately after the film formation and before the heat treatment, and “After ann.” Indicates the result after the heat treatment at 350 ° C. for 5 minutes. . The heat treatment was performed under the same method and conditions as in Example 1A.
  図12A~図12Cから明らかなように、金属組成中のNi添加量が40原子%の場合、適切な窒素流量および酸素流量を選択することにより、熱処理後であっても少なくとも波長450nm~750nmの波長領域において、40%以下という低い反射率が得られることがわかった。 As apparent from FIGS. 12A to 12C, when the amount of Ni added in the metal composition is 40 atomic%, by selecting an appropriate nitrogen flow rate and oxygen flow rate, at least a wavelength of 450 nm to 750 nm can be obtained even after the heat treatment. It was found that a low reflectance of 40% or less can be obtained in the wavelength region.
  第1層形成時のスパッタ条件において、窒素流量および酸素流量を22:25に固定し、Cu-Ni-O-N薄膜(第1層)に含まれる金属組成中のNi添加量を30原子%、40原子%、50原子%及び70原子%としたときの反射率を図13A~図13Dに示した。図13A~図13D中、「as-depo」とは熱処理前、「350℃,5min」とは350℃にて5分熱処理を行った後の結果であることを示す。熱処理の方法と条件は先述のとおりである。 Under the sputtering conditions for forming the first layer, the nitrogen flow rate and the oxygen flow rate were fixed at 22:25, and the Ni addition amount in the metal composition contained in the Cu—Ni—O—N thin film (first layer) was 30 atomic%. The reflectances at 40 atomic%, 50 atomic%, and 70 atomic% are shown in FIGS. 13A to 13D. In FIG. 13A to FIG. 13D, “as-depo” indicates a result before heat treatment, and “350 ° C., 5 min” indicates a result after heat treatment at 350 ° C. for 5 minutes. The heat treatment method and conditions are as described above.
  その結果、金属組成中のNi添加量が30原子%~70原子%の範囲において、適切な窒素流量および酸素流量を選択することにより、波長450nm、550nm及び650nmのいずれにおいても、反射率が40%を下回る、良好な結果が得られた。 As a result, when the Ni addition amount in the metal composition is in the range of 30 atomic% to 70 atomic%, the reflectance is 40 at any of the wavelengths 450 nm, 550 nm, and 650 nm by selecting an appropriate nitrogen flow rate and oxygen flow rate. Good results were obtained, less than%.
  以上の結果から、第1層がCu-Ni-O-N薄膜においても、金属組成中のNi添加量が少なくとも30原子%以上70原子%以下の範囲内であれば、300℃以上の熱処理後であっても40%以下という低い反射率を達成できた。 From the above results, even when the first layer is a Cu—Ni—O—N thin film, after the heat treatment at 300 ° C. or higher if the amount of Ni added in the metal composition is in the range of at least 30 atomic% to 70 atomic%. Even so, a low reflectance of 40% or less could be achieved.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2015年6月16日付けで出願された日本特許出願(特願2015-121211)に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2015-121211) filed on June 16, 2015, which is incorporated by reference in its entirety.
1  ガラス基板
2  バリアメタル層
3  Cu主配線電極層
4  半導体層
5  光学調整層
6  透明導電膜
7  Cu反応層
8  シリコン酸化膜又はシリコン窒化膜
10  TFT基板
11  ソース・ドレイン電極
12  ゲート電極
20  バックライトユニット
21  有機EL発光層
A  視認者の向き
B  外光の向き
C  反射光の向き
D  バックライトユニットからの透過光の向き
E  有機EL発光層からの透過光の向き
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Barrier metal layer 3 Cu main wiring electrode layer 4 Semiconductor layer 5 Optical adjustment layer 6 Transparent conductive film 7 Cu reaction layer 8 Silicon oxide film or silicon nitride film 10 TFT substrate 11 Source / drain electrode 12 Gate electrode 20 Backlight Unit 21 Organic EL emitting layer A Direction of viewer B Direction of external light C Direction of reflected light D Direction of transmitted light from backlight unit E Direction of transmitted light from organic EL light emitting layer

Claims (13)

  1.   基板上に、前記基板側から順に第1層と、第2層とを備えた積層構造を有する電極であって、
      前記基板は屈折率が1.4以上の、樹脂基板又はセラミックス基板であり、
      前記第1層はCu膜の一部に窒素及び酸素の少なくとも1種以上が含有されているCu膜であり、
      前記第2層はCu膜又はCu合金膜であり、かつ
      前記積層構造において、前記基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であることを特徴とする電極。
    An electrode having a laminated structure including a first layer and a second layer in order from the substrate side on the substrate,
    The substrate is a resin substrate or a ceramic substrate having a refractive index of 1.4 or more,
    The first layer is a Cu film in which at least one of nitrogen and oxygen is contained in a part of the Cu film,
    The second layer is a Cu film or a Cu alloy film, and in the laminated structure, the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side is 40% or less. Characteristic electrode.
  2.   前記第1層がNiを金属原子比で25原子%以上、70原子%以下含むことを特徴とする請求項1に記載の電極。 The electrode according to claim 1, wherein the first layer contains Ni in a metal atomic ratio of 25 atomic% to 70 atomic%.
  3.   前記基板と前記第1層の間に透明導電膜を有することを特徴とする請求項1又は2に記載の電極。 The electrode according to claim 1, further comprising a transparent conductive film between the substrate and the first layer.
  4.   前記基板と前記第1層の間にシリコン酸化膜又はシリコン窒化膜を有することを特徴とする請求項1又は2に記載の電極。 The electrode according to claim 1, further comprising a silicon oxide film or a silicon nitride film between the substrate and the first layer.
  5.   前記Cu合金膜がTi、Mn、Fe、Co、Ni、Zn、Ta、LaおよびNdからなる群より選択される少なくとも1種以上の元素を含むことを特徴とする請求項1又は2に記載の電極。 The Cu alloy film includes at least one element selected from the group consisting of Ti, Mn, Fe, Co, Ni, Zn, Ta, La, and Nd. electrode.
  6.   前記透明導電膜が、少なくともIn及びSnを含む酸化物からなる透明導電膜、少なくともIn及びZnを含む酸化物からなる透明導電膜、又は少なくともIn及びGaを含む酸化物からなる透明導電膜であることを特徴とする請求項3に記載の電極。 The transparent conductive film is a transparent conductive film made of an oxide containing at least In and Sn, a transparent conductive film made of an oxide containing at least In and Zn, or a transparent conductive film made of an oxide containing at least In and Ga. The electrode according to claim 3.
  7.   前記第1層及び前記第2層からなる積層配線の電気抵抗率が5μΩ・cm以下であることを特徴とする請求項1又は2に記載の電極。 The electrode according to claim 1, wherein an electrical resistivity of the laminated wiring composed of the first layer and the second layer is 5 μΩ · cm or less.
  8.   過酸化水素水含有のエッチング液を用いたウェットエッチングが可能なことを特徴とする請求項1又は2に記載の電極。 The electrode according to claim 1, wherein wet etching using an etching solution containing hydrogen peroxide solution is possible.
  9.   前記積層構造において、300℃以上の熱処理後における、前記基板側から見たときの波長450nm、波長550nm、および波長650nmにおける反射率がいずれも40%以下であることを特徴とする請求項1又は2に記載の電極。 2. The laminated structure according to claim 1, wherein the reflectance at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm when viewed from the substrate side after heat treatment at 300 ° C. or higher is 40% or less. 2. The electrode according to 2.
  10.   前記第1層の膜厚が50~100nmである請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, wherein the first layer has a thickness of 50 to 100 nm.
  11.   請求項1又は2に記載の電極を有することを特徴とする表示装置。 A display device comprising the electrode according to claim 1.
  12.   請求項1又は2に記載の電極を有することを特徴とする入力装置。 An input device comprising the electrode according to claim 1.
  13.   請求項1又は2に記載の電極を構成する第1層の成膜に用いられるスパッタリングターゲットであって、
      Cu及びNi、又は、一部が窒化されたCu及びNiを主材料として含むことを特徴とするスパッタリングターゲット。
    A sputtering target used for forming the first layer constituting the electrode according to claim 1 or 2,
    A sputtering target comprising Cu and Ni, or Cu and Ni partially nitrided as main materials.
PCT/JP2016/066871 2015-06-16 2016-06-07 Low-reflectance electrode for display device, and sputtering target WO2016204018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-121211 2015-06-16
JP2015121211A JP6190847B2 (en) 2015-06-16 2015-06-16 Low reflective electrode for flat display or curved display

Publications (1)

Publication Number Publication Date
WO2016204018A1 true WO2016204018A1 (en) 2016-12-22

Family

ID=57545849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066871 WO2016204018A1 (en) 2015-06-16 2016-06-07 Low-reflectance electrode for display device, and sputtering target

Country Status (3)

Country Link
JP (1) JP6190847B2 (en)
TW (1) TWI622088B (en)
WO (1) WO2016204018A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336144A (en) * 2018-01-22 2018-07-27 惠州市华星光电技术有限公司 A kind of thin film transistor (TFT) and display panel in display panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932444B2 (en) 2012-11-12 2018-04-03 Mitsui Chemicals, Inc. Semiaromatic polyamide, semiaromatic polyamide resin composition, and molded article
JP2019183251A (en) 2018-04-17 2019-10-24 三菱マテリアル株式会社 Cu-Ni alloy sputtering target
JP7339016B2 (en) 2019-04-24 2023-09-05 株式会社アルバック Display device, wiring film, wiring film manufacturing method
JP7445483B2 (en) * 2020-03-25 2024-03-07 株式会社ジャパンディスプレイ display device
TWI830560B (en) * 2022-12-28 2024-01-21 柏彌蘭金屬化研究股份有限公司 Transparent copper foil substrate and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335127A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Film forming device of protection film for organic electroluminescent element, its manufacturing method and organic el element
JP2007264102A (en) * 2006-03-27 2007-10-11 Sharp Corp Liquid crystal display panel and method of manufacturing same
WO2014035196A1 (en) * 2012-08-31 2014-03-06 주식회사 엘지화학 Metal structure and method for manufacturing same
JP2015007280A (en) * 2013-05-31 2015-01-15 日立金属株式会社 Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING GATE MATERIAL AND METHOD FOR FORMING Cu-Mn ALLOY FILM
WO2015046180A1 (en) * 2013-09-30 2015-04-02 株式会社神戸製鋼所 Electrode to be used in input device, and method for producing same
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745610B (en) * 2013-11-20 2019-01-08 Lg化学株式会社 Conductive structure and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335127A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Film forming device of protection film for organic electroluminescent element, its manufacturing method and organic el element
JP2007264102A (en) * 2006-03-27 2007-10-11 Sharp Corp Liquid crystal display panel and method of manufacturing same
WO2014035196A1 (en) * 2012-08-31 2014-03-06 주식회사 엘지화학 Metal structure and method for manufacturing same
JP2015007280A (en) * 2013-05-31 2015-01-15 日立金属株式会社 Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING GATE MATERIAL AND METHOD FOR FORMING Cu-Mn ALLOY FILM
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material
WO2015046180A1 (en) * 2013-09-30 2015-04-02 株式会社神戸製鋼所 Electrode to be used in input device, and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336144A (en) * 2018-01-22 2018-07-27 惠州市华星光电技术有限公司 A kind of thin film transistor (TFT) and display panel in display panel
CN108336144B (en) * 2018-01-22 2021-03-05 惠州市华星光电技术有限公司 Thin film transistor used in display panel and display panel

Also Published As

Publication number Publication date
JP2017005233A (en) 2017-01-05
JP6190847B2 (en) 2017-08-30
TWI622088B (en) 2018-04-21
TW201712741A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
WO2016204018A1 (en) Low-reflectance electrode for display device, and sputtering target
JP4611417B2 (en) Reflective electrode, display device, and display device manufacturing method
TWI394850B (en) A display device using a Cu alloy film and a Cu alloy sputtering target
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
TWI504765B (en) Cu alloy film, and a display device or an electronic device provided therewith
WO2007013269A1 (en) Laminated body for reflection film
US20160224151A1 (en) Electrode to be used in input device and method for producing same
TWI525702B (en) The display device is configured with a wiring
WO2014080933A1 (en) Electrode used in display device or input device, and sputtering target for use in electrode formation
JP4714477B2 (en) Ag alloy film and manufacturing method thereof
TW200406789A (en) Wiring material and wiring board using the same
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP5374111B2 (en) Display device and Cu alloy film used therefor
WO2019065080A1 (en) Electrochromic dimming member, light-transmitting conductive glass film and electrochromic dimming element
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
KR101597018B1 (en) METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
TWI498441B (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
JP5416470B2 (en) Display device and Cu alloy film used therefor
TWI484637B (en) A display device and a Cu alloy film used therewith
JP2007191761A (en) Stacked structure, electrode for electric circuit using the same and method for producing the same
JP2013060656A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
JP2017068219A (en) Electrode structure
US20230325014A1 (en) Transparent electrode laminate and touch sensor including same
KR20230103968A (en) Alloy Composition Comprising Aluminum, Manganese, Titanium and Silicon for Thin Film Transistor Electrodes and Reflective Electrodes
JP5756319B2 (en) Cu alloy film and display device or electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811493

Country of ref document: EP

Kind code of ref document: A1