TW201631620A - 電漿處理裝置及電漿處理方法 - Google Patents

電漿處理裝置及電漿處理方法 Download PDF

Info

Publication number
TW201631620A
TW201631620A TW104130141A TW104130141A TW201631620A TW 201631620 A TW201631620 A TW 201631620A TW 104130141 A TW104130141 A TW 104130141A TW 104130141 A TW104130141 A TW 104130141A TW 201631620 A TW201631620 A TW 201631620A
Authority
TW
Taiwan
Prior art keywords
wafer
electrode
etching
period
frequency power
Prior art date
Application number
TW104130141A
Other languages
English (en)
Other versions
TWI603368B (zh
Inventor
Nanako TAMARI
Michikazu Morimoto
Naoki Yasui
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of TW201631620A publication Critical patent/TW201631620A/zh
Application granted granted Critical
Publication of TWI603368B publication Critical patent/TWI603368B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

提供將樣品之處理的均勻性及良率予以提升之電漿處理裝置及電漿處理方法。 一種電漿處理裝置,具備配置於真空容器內部的處理室內之樣品台、及在該樣品台的內側配置成中心側的部分與該外周側部分並被供應高頻電力之電極,就載置於前述樣品台上表面之晶圓利用形成在該處理室內之電漿作處理,供應至前述中心側的電極及外周側之電極的各者之高頻電力係振幅大小分別以既定的週期作重複,具備將前述高頻電力各者的振幅大之期間的長度或該期間的長度相對於該週期之比率調節成不同值之控制裝置。

Description

電漿處理裝置及電漿處理方法
本發明,係關於具備真空容器內部的處理室、及配置於其內側且半導體晶圓等之基板狀的樣品被載置於其上表面上的樣品台,利用形成於該處理室內之電漿而就樣品作處理的電漿處理裝置或電漿處理方法,且關於邊形成電漿邊對於配置在樣品台的內部之電極供應高頻電力而實施樣品的處理之電漿處理裝置或電漿處理方法。
在半導體裝置的製程,係一般而言進行採用上述的電漿處理裝置之樣品的蝕刻處理、所謂的乾式蝕刻。供於進行如此之蝕刻用的電漿處理裝置係使用各種之方式。自歷來,如此之電漿處理裝置,係包含:由是配置於真空容器內部之處理用的空間之處理室;包含連接於真空容器且與處理室內作連通而將處理用的氣體等供應至處理室之路徑的供氣裝置;包含就處理室內作排氣而將其壓力調節成適於處理之期望的範圍內之值的渦輪分子泵浦等之真空泵浦的真空排氣裝置;是將半導體晶圓等之基板狀的樣品載置於配置在其上表面之介電體膜上的樣品台之下 部電極;及具有產生為了使電漿產生於處理室內而供應之電場、磁場的手段之電漿生成部等。
在樣品台的上表面上載置樣品而保持之狀態下,藉該產生手段而供應之電場或磁場將從構成處理室的頂處之噴灑板等的供氣口供應至處理室內的處理氣體予以激發而作成電漿狀態,使得在處理室內的樣品台上方之空間形成電漿。在此狀態下,於配置在樣品台的內部而與高頻電源作電連接之金屬製的圓板或圓筒形的電極連接著高頻電力(Radio Frequency:RF),而在樣品上方形成對應於電漿的電位之偏壓電位,將電漿中的帶電粒子引誘至樣品上表面而予以衝撞,開始包含預先配置在樣品上表面的遮罩與處理對象的膜層之膜構造的蝕刻處理。
於近年的半導體製程係接近採光刻之微細化極限,多重曝光、間隔物圖案化等之程序正成為主流。在如此之多重曝光、SADP(Self Aligned Double Patterning)為代表的間隔物圖案化程序係蝕刻程序增加。
在各蝕刻程序產生之晶圓面內的輕微之蝕刻性能的均勻性降低,因蝕刻程序增加而被積算,隨著該程序數的增加,漸趨亦難以容許輕微的晶圓面內的均勻性降低。因此在尖端邏輯電路為代表之半導體製程,尤其在FEOL(Front End Of Line)程序,係要求蝕刻性能的晶圓面內均勻性的高精度控制。具體而言,需要晶圓面內的蝕刻深度、CD的分布控制、凸分布至凹分布的控制等之自由度高的控制性。
例如於SiN膜的蝕刻程序,係有時由於分布於晶圓的中心部之高濃度的反應生成物使得蝕刻受到阻礙,因而蝕刻率在晶圓中心部變低,在晶圓外周部係蝕刻率變高,獲得晶圓面內的蝕刻率相對於徑向成為凹分布之結果。另外於Poly-Si膜等之蝕刻程序,係有時採電漿密度在反應器的中心附近為最高,隨著接近反應器內壁而徐徐降低的不均勻之分布,使得因其造成蝕刻率在晶圓中心部變高,在晶圓外周部係蝕刻率變低,獲得晶圓面內的蝕刻率相對於徑向而成為凸分布的結果。
為了解決如此之在蝕刻率的晶圓面內之均勻性不足,歷來係藉處理氣體的種類、壓力等之蝕刻配方的條件檢索、條件最佳化,從而進行蝕刻率均勻化。此情況下係蝕刻配方的條件檢索所伴隨之評估次數的增大、為此所需的時間、成本變成極大的情事成為課題。
此外,為了使電漿特性作變化,將生成電漿之高頻的電力、就電漿分布作控制之磁場條件如此的參數予以變化時,不僅電漿分布存在電漿特性尤其自由基密度、分布、電漿密度、分布、伴隨離子量的變化之晶圓溫度等同時變化如此的相互參數之複雜的相關性。為此,在歷來的裝置,係使蝕刻材料選擇比與蝕刻率的均勻性同時成立之程序構築屢次變困難。
在針對如此之問題將蝕刻率的均勻性予以提升之技術方面,係自歷來已知悉揭露於日本發明專利公開2008-244063號公報(專利文獻1)等者。於專利文獻1, 係記載將是樣品之晶圓作載置的樣品台,藉連接於在其上表面方向上被分割的複數個電極與RF偏壓電源之間的可變阻抗,就晶圓面內的偏壓形成用之RF電力(RF偏壓電力)的電流之大小作調節,從而實現蝕刻的均勻性。
此外,於日本發明專利公開2002-141340號公報(專利文獻2)、日本發明專利公開2001-319920號公報(專利文獻3),亦揭露在晶圓面內或下部電極的上表面方向上,就偏壓電位形成用的高頻之電流作調整的技術。專利文獻2,係對於是樣品台內部在樣品載置面的外周側將其包圍而配置並隔著可變阻抗元件而設置之電極從RF偏壓電源予以洩漏偏壓電流,從而抑制因偏壓電位使得電漿中的電子等帶電粒子被引誘所造成之往樣品的放電損傷之發生並防止良率的降低者。此外,於專利文獻3,係在將下部電極在載置面的半徑方向上分割成複數個區間作配置,各自與在其上具備可變阻抗元件之偏壓電力的供應電路作連接之構成方面,以入射於是樣品之晶圓的離子能在晶圓的面內方向上成為均勻之方式就可變阻抗值作調節,從而謀求抑制晶圓的放電損傷之發生。
〔先前技術文獻〕 〔專利文獻〕
〔專利文獻1〕日本發明專利公開2008-244063號公報
〔專利文獻2〕日本發明專利公開2002-141340號公 報
〔專利文獻3〕日本發明專利公開2001-319920號公報
在上述現有技術中係在以下幾點方面,因考慮為不充分而出現問題。亦即,在上述專利文獻,係獲悉在提升晶圓面內的蝕刻性能之均勻性的提升雖看見改善惟並不充分。
首先,在揭露於專利文獻1至3的構成,在藉可變阻抗元件的值之調節從而使離子能成為期望者的技術方面,係蝕刻率的樣品之面內方向上之不均勻雖可抑制惟就離子能本身作調節,故抑制不均勻之結果有時對於入射於晶圓之離子能進行蝕刻處理的程度,例如對於蝕刻速度亦造成影響使得此成為不足或過剩。例如,於離子能比蝕刻的進行發生之閾值還不足的情況下,係蝕刻未進展至期望的深度而發生稱作蝕刻中止的問題。
此外,於離子能值過大之情況下,係被假定為執行以適當的該能量值之處理而即使以預先設定之蝕刻處理條件作處理,蝕刻仍會進行所望的深度以上,或蝕刻的選擇比降低而蝕刻貫至基底,或遮罩膜厚不足而過度削去。此結果,產生樣品的處理後之CD值不合容許範圍而處理的良率降低如此之問題。
如以上,離子能的晶圓面內分布控制,於離子能相對於蝕刻閾值而充分高,且不超過成為過剩之蝕刻性能的閾值之範圍內,係可期待獲得晶圓面內均勻性,惟於該範圍外係反而可能引起蝕刻中止、過蝕等良率的降低,於適用範圍有極限。
此外,由於近年來的多重曝光等之多步驟程序的增加使得可作該離子能控制之範圍逐年縮小,在上述的現有技術係成為難以達成在晶圓的面內方向上要求處理的不均勻之範圍內。依此,在現有技術方面,係內部參數間的相關性之故程序設計每每困難。此外,在專利文獻揭露的技術方面,係如上述有發生離子能的不足或過剩所致的蝕刻中止、過蝕,面內的蝕刻率、蝕刻後的圖案形狀之均勻性降低,良率不良化之課題。
此外,在SiN的蝕刻程序,係已知悉發生晶圓中心部的反應生成物濃度變高使得晶圓中心部的蝕刻受阻,蝕刻率相對於徑向成為凹型,蝕刻率在面內成為不均勻,過剩之反應生成物所致的蝕刻中止等之問題。在專利文獻,係獲悉雖欲就在晶圓面內方向上的離子之汲取能量分布作控制從而使蝕刻率為均勻,惟難以就如上述的SiN程序之因反應生成物使得蝕刻被控速之程序作調節而獲得所望的加工尺寸與其分布。然後,要於如此之處理使晶圓面內方向的蝕刻率接近均勻,經由發明人們的檢討得到不僅需要就晶圓的面內方向上之離子能的分布作控制,亦需要在晶圓的面內方向上就反應生成物濃度的分布作控制之 見解。
本發明之目的,係在於提供將樣品之處理的均勻性及良率予以提升之電漿處理裝置及電漿處理方法。
上述的目的,係藉一種電漿處理裝置而達成,具備配置於真空容器內部的處理室內之樣品台、及在該樣品台的內側配置成中心側的部分與該外周側部分並被供應高頻電力之電極,就載置於前述樣品台上表面之晶圓利用形成在該處理室內之電漿作處理,供應至前述中心側的電極及外周側之電極的各者之高頻電力各者係振幅大小以既定的週期作重複,具備將前述高頻電力各者的振幅大之期間的長度或該期間的長度相對於該週期之比率調節成不同值之控制裝置,而達成。
依本發明,即有從晶圓的中心部至外周部之蝕刻率的均勻性改善,尤其於晶圓的全面上半導體裝置的電特性、性能不會變異,將良率予以提升如此的效果。另外有可高精度就蝕刻形狀在晶圓面內作控制,在晶圓面內的半導體裝置之電特性、性能不會變異,將良率予以提升如此的效果。
101‧‧‧腔室
102‧‧‧晶圓
103‧‧‧晶圓載置電極
104‧‧‧噴灑板
105‧‧‧介電體窗
106‧‧‧處理室
107‧‧‧供氣裝置
108‧‧‧導波管
109‧‧‧電磁波產生用電源
110‧‧‧磁場產生線圈
111‧‧‧高密度電漿
112‧‧‧脈衝調變電路
113‧‧‧高頻濾波器
114‧‧‧直流電源
115‧‧‧匹配電路
116‧‧‧高頻電源
201‧‧‧介電體膜
202‧‧‧內側電極
203‧‧‧外側電極
206‧‧‧時序控制器
301‧‧‧中心位置EPD感測器
302‧‧‧外周位置EPD感測器
303‧‧‧晶圓中心部
304‧‧‧晶圓外周部
〔圖1〕示意性就本發明之實施例相關的電漿處理裝置之構成的概略作繪示之縱剖面圖。
〔圖2〕示意性就示於圖1之實施例的晶圓載置用電極之構成作放大而繪示的圖。
〔圖3〕示意性就利用示於圖1之實施例的膜厚監控器之膜厚度的檢測之構成作繪示。
〔圖4〕示意性就示於圖1之電漿處理裝置的晶圓之面內方向上的蝕刻率之分布的一例作繪示之圖形。
〔圖5〕示意性就示於圖4之處理的條件下之晶圓的面內方向之蝕刻深度的蝕刻時間依存性作繪示之圖形。
〔圖6〕示意性就在示於圖1之實施例中供應至晶圓載置用電極內的電極之高頻電力的值之例作繪示的圖形。
〔圖7〕示意性就在示於圖6之實施例中對於晶圓載置用電極內的電極供應高頻電力之情況下的蝕刻處理之結果作繪示的圖形。
〔圖8〕示意性就於示於圖1之實施例中間歇輸出RF基板偏壓電力的情況下之RF基板偏壓電力的Duty之依存性作繪示的圖形。
〔圖9〕就根據示於圖8之Duty的設定而從時序控制器所輸出之脈衝波形或方波形與供應至內側電極及外側電極之RF基板偏壓電力的波形之例作繪示的圖形。
〔圖10〕示意性就晶圓的半徑方向上之處理的特性成為凹型之情況下的晶圓面內之蝕刻率的一例作繪示之圖 形。
〔圖11〕示意性就於圖10的例中在晶圓之面內方向上的蝕刻深度之值的相對於RF基板偏壓電力之值的相關作繪示之圖形。
〔圖12〕就在示於圖10的例中根據晶圓的半徑方向上之蝕刻率與RF基板偏壓電力的相關而供應至內側電極之RF基板偏壓電力的值與供應至外側電極之RF基板偏壓電力的設定之例作繪示的圖形。
〔圖13〕示意性就根據示於圖12之設定作處理的情況下之蝕刻深度與蝕刻時間的相關作繪示之圖形。
〔圖14〕示意性就RF基板偏壓電力間歇電力輸出之情況下的RF基板偏壓電力之時間上的平均值與Duty之依存性作繪示的圖形。
〔圖15〕就根據示於圖14之Duty的設定而從時序控制器所輸出之脈衝波形或方波形與供應至內側電極及外側電極之RF基板偏壓電力的波形之例作繪示的圖形。
〔圖16〕示意性就在示於圖1之實施例中在晶圓的半徑方向上之反應生成物的排氣量速度之分布作繪示的圖形。
〔圖17〕示意性就在示於圖16之例中在晶圓的半徑方向上之反應生成物的濃度之分布作繪示的圖形。
〔圖18〕就在圖1之實施例的電漿處理裝置中在晶圓載置用電極的半徑方向上就值及分布作調節而供應之RF基板偏壓電力的其他例作繪示之圖形。
〔圖19〕示意性針對在示於圖1之實施例中利用來自膜厚監控器的輸出而就往晶圓載置用電極之內側的區域與外側的區域之RF基板偏壓電力的Duty作調節之情況下的晶圓之蝕刻率與RF基板偏壓電力的時間平均值之關係作繪示的圖形。
〔圖20〕就在示於圖19之例中相對於蝕刻時間的推移之蝕刻深度的變化之例作繪示的圖形。
〔圖21〕就在示於圖1之實施例中所實施的示於圖19、20之蝕刻處理的動作之調節的流程作繪示之流程圖。
〔圖22〕針對於本發明的第2實施例相關之電漿處理裝置,利用脈衝電漿而對於在晶圓的面內方向上配置於不同位置或區域的複數個電極供應不同相位的RF基板偏壓電力而就晶圓作處理之情況下的電漿形成用之電力及RF基板偏壓電力的時序圖及該處理之結果作繪示的表。
〔圖23〕就示於圖22之實施例的變化例下之電漿形成用的電力及RF基板偏壓電力之時序圖及該處理的結果作繪示之表。
〔圖24〕就示於圖22之實施例的其他變化例下之電漿形成用的電力及RF基板偏壓電力之時序圖及該處理的結果作繪示之表。
〔圖25〕示於圖22之實施例的其他變化例下之電漿形成用的電力及RF基板偏壓電力之時序圖。在晶圓面內的基板偏壓電源輸出圖。
〔圖26〕就示於圖22之實施例的其他變化例下之電漿形成用的電力及RF基板偏壓電力之時序圖及該處理的結果作繪示之縱剖面圖。
以下就本發明之實施形態利用圖式作說明。
〔實施例1〕
以下,就本發明的實施例利用圖1至21作說明。圖1,係示意性就本發明之實施例相關的電漿處理裝置之構成的概略作繪示之縱剖面圖。本例的電漿處理裝置係在真空容器內部的處理室內就被載於其內部的樣品台上表面上並被靜電吸附而保持的半導體晶圓等之樣品利用形成於處理室內的電漿作蝕刻處理之裝置,係在形成電漿之電場方面採用微波並利用因其與磁場的相互作用而起之電子迴旋諧振而將處理室內的氣體作激發而電漿化之微波ECR(Electron Cyclotron Resonance)蝕刻裝置。
本實施例的電漿處理裝置,係於在內部具有圓筒狀的處理室106並具備上部被開放之圓筒狀的真空容器101之上部上端上方,載置供以於真空容器101內封入蝕刻氣體用的介電體窗105(例如石英製)。介電體窗105的外周緣部下表面與真空容器101之圓筒形的側壁上端部之上表面呈對向而夾著O環等之密封手段作連結從而形成內側相對於外側被密封成氣密之處理室106。
於真空容器101的上部之介電體窗105的下方,係配置一噴灑板104,其構成真空容器101內的處理室106之頂面而配置有供以於其內部導入蝕刻用的氣體用之複數個貫通孔並具有圓板狀而以電場可透射的材料(例如石英製)作構成。此外,在本實施例,係構成為於噴灑板104與介電體窗105之間配置間隙,於該間隙係連結供以使蝕刻用的氣體流通用之供氣裝置107,從此所供應之蝕刻氣體係導入間隙內而在內部作擴散後從噴灑板104的貫通孔朝處理室106內從上方而導入。
此外,於真空容器101的下部係配置與處理室106的底部作連通之真空排氣口,以與此連通的方式於渦輪分子泵浦等包含真空泵浦的真空排氣裝置被與真空容器101作連結。本例的電漿處理裝置,係如下之構成:真空容器101內之處理室106的壓力,係根據透過噴灑板104而供應之氣體的流量、速度、從真空排氣口所排氣之排氣的流量、速度的平衡而調節。
再者,為了將供以生成電漿用的電力傳送至處理室106,於本例的介電體窗105之上方係配置有從電源所產生之電漿形成用的電場在內部作傳播的導波管108。依電場的頻率,配置與電源透過纜線等而連接之圓板狀的天線。往導波管108(或天線)傳送之電場係從電場產生用電源109予以振盪。電場的頻率係不特別限定者,惟在本實施例係採用2.45GHz的微波。
此外,在本實施例,係為了可按既定的週期 及在期間內間歇形成電漿而實施樣品的處理,於電場產生用電源109係連接著脈衝調變用信號產生器112。再者,於包圍處理室106的外周之真空容器1010的側壁之外側係配置有供以將其作包圍,而形成磁場用的磁場產生線圈110(螺線管線圈)。
於處理室106的下部,係於其上表面載置並保持了晶圓之具有圓筒狀的晶圓載置用電極103被以使其上表面對向於介電體窗105或噴灑板104的方式而設置。晶圓載置用電極103係具有配置在內部並具有圓筒形之金屬製的基材且於其上表面係被覆該上表面而配置以介電體材料作熱噴塗而形成之介電體製的膜(圖示省略)。
於介電體製的膜(介電體膜)之內部係金屬製的膜狀之電極被內置而配置,於該電極係透過高頻濾波器電路115而連接著直流電源116。再者,於晶圓載置用電極103,係如後述於內部的電極透過匹配電路113而連接著RF基板偏壓電源114。
在連結於真空容器101之側壁的未圖示之別的真空容器,亦即在內部被減壓之空間被載置於配置在該內部的搬送用之機器人的臂件上而搬送,臂件作伸長而搬送至處理室106內的晶圓102,係交接至晶圓載置用電極103而載於其上表面。藉因於介電體膜內的電極從直流電源116所施加之直流電壓而形成在介電體膜上表面與晶圓102下表面之間的靜電力而使晶圓102被吸附而保持於介電體膜上表面。
在此狀態下,於處理室106內從噴灑板104的貫通孔而供應處理用之蝕刻氣體,檢測到內部被調成適於處理之既定的壓力時,藉電場產生用電源109而振盪之既定的頻率之電場在導波管108作傳播而導入處理室106內,與從磁場產生線圈110所供應之磁場的相互作用使得氣體被激發並在處理室106內形成高密度的電漿111。從連接於晶圓載置用電極103之RF基板偏壓電源114施加高頻電力,使得依電漿111的電位在晶圓102上表面上方形成偏壓電位,因電位差使得電漿111內部的離子等之帶電粒子被引誘至晶圓102上表面造成上表面的膜構造之處理對象的膜被蝕刻處理。
利用圖2,而就本實施例的晶圓載置用電極之構成更詳細作說明。圖2,係示意性就示於圖1之實施例的晶圓載置用電極之構成作放大而繪示的圖。
在本圖,係晶圓載置用電極103之中,抽出以下而示意性繪示:構成其上表面的介電體膜201;配置在介電體膜201內之膜狀的電極,亦即配置在中央側之內側電極202及配置在其外周側之環狀的外側電極203;與此等作電連接對於晶圓102供應汲取離子之高頻電力的RF基板偏壓電源207及電連接於此等而就電力的供應作調節之控制電路。
於本例中,係具備如下構成:來自RF基板偏壓電源207的高頻(RF)電力係分歧成2個而分別被供應至內側電極202及外側電極203。此外,此等電極,係從 晶圓102的上方作俯視時,在介電體膜201內配置成,在該中央側的區域與該外周側的環狀之區域在晶圓102的半徑方向上具有該面積相等或近似於視為相等之程度的值。
另外,此等電極係可不為單一而得以複數個膜狀的電極之集合而構成。此外,內側電極202與外側電極203之各者係透過高頻濾波器電路115而與直流電源116電連接,於此等分別施加極性不同的直流電壓,從而藉因累積於介電體膜201內之電荷而形成的靜電力而將晶圓102朝向該膜上表面予以吸附,於晶圓載置用電極103上就晶圓102作保持。在圖2,就連接於內側電極202、外側電極203之個別的2個直流電源係省略圖示。
在本實施例,係藉控制裝置就往內側電極202之電力的供應作調節從而調節在位於其上方之晶圓102的中心部之蝕刻處理的特性,就往外側電極203之電力的供應作調節從而調節在其上方的晶圓102之外周部的蝕刻處理之特性。予以分歧之來自RF基板偏壓電源207的高頻電力,係透過整合器(圖上M.B.),而以分別對於內側與外側的ESC膜予以傳送高頻電力的方式而連接於在ON/OFF之間實施切換的電式高速繼電器204、205。
此外,電式高速繼電器204、205,係與將供於將此等以既定的週期與週期予以ON或OFF用的方波或脈衝狀之信號發送至各者的時序控制器206作電連接。此外,為了實施往內側電極202、外側電極203的偏壓電力之間歇的施加,於RF基板偏壓電源207係亦可連接脈衝 調變用信號產生器208。
此外,於本實施例的電漿處理裝置之真空容器101,係膜厚監控器301、302被配置於介電體膜105上方,該膜厚監控器301、302係供於就具有圓板狀之晶圓102的中心及外周側之既定的位置之膜構造下的處理中之膜的厚度作檢測用之檢測器。於圖3,示意性就依此等膜厚監控器301、302之膜厚度的檢測之構成作繪示。
於本例,膜厚監控器301、302係具有光學式檢知器,分別輸出此等檢知器檢知到來自晶圓102的圓形之中心部303的特定處與其外側之環狀的外周部304之特定處的光之結果。輸出的結果,係發送至透過纜線或通訊電路、網路等之通訊手段而連接的未圖示之控制裝置,控制裝置就膜構造的處理對象之殘餘膜厚度或溝或孔的深度作檢測,據此就電漿處理裝置的動作或處理之條件作調節。
本實施例的電漿處理裝置,係根據在晶圓102的面內方向上可變地就施加RF基板偏壓電力之時間的值作調節,或RF基板偏壓電源114或207的ON與OFF之期間的週期與比率(Duty)之調節及根據來自膜厚監控器的輸出而就RF基板偏壓電源114或207的Duty作調節,從而抑制在晶圓102的面內方向上之蝕刻處理的不均勻。
在本實施例,將RF基板偏壓電力施加於內側電極202、外側電極203的各者之時間,係針對是RF基板偏壓電力的控制參數之Duty利用時序控制器206或脈 衝調變用信號產生器208作增減從而調節。亦即,電式高速繼電器204、205的各者根據依來自時序控制器206之既定的週期、期間而增減之2個脈衝波或方波的信號之值而將偏壓電力的供電路徑在連接(ON)與非連接(OFF)之間作切換,或RF基板偏壓電源114或207的輸出係依來自脈衝調變用信號產生器208之既定的週期、期間而增減之2個脈衝波或方波的信號被重疊而根據該信號之值在高輸出值(ON)與低輸出或0(OFF)之間作切換。
如此,從本實施例的RF基板偏壓電源114或207所供應之電力,係對於特定的頻率之高頻電力的輸出藉時序控制器206或脈衝調變用信號產生器208而調節之值的ON與OFF之週期與期間的方波或脈衝波被重疊且該特定頻率的高頻電力之振幅於該ON與OFF之各者的時刻於2個值作增減者。結果被供應至內側電極202與外側電極203之高頻電力,例如電壓的波形,係成為具有RF基板偏壓電源114或207所產生之高頻電力的頻率與特定之大的振幅之ON的第1期間與接續其之同頻率且特定之小的振幅或振幅成為0之OFF的第2期間按既定的週期作重複者。於振幅在OFF期間成為0之情況下變成高頻電力係被間歇供應。
在本實施例,係將RF基板偏壓電源114或207產生之高頻電力的如此之波形的調節稱作時間調變。另外Duty,係就來自RF基板偏壓電源114或207的輸出作時間調變(或脈衝調變)時所使用的參數指標。
於時序控制器206或脈衝調變用信號產生器208,於RF基板偏壓電源114或207的輸出成為間歇之情況下係設定是間歇的週期之頻率。於本實施例中Duty,係設定為時序控制器206或脈衝調變用信號產生器208所輸出之方波或脈衝波的頻率之1週期下的來自RF基板偏壓電源114或207之RF基板偏壓電力的成為ON之時間的比例。
接著,就在本實施例下之在晶圓102的面內方向上之蝕刻處理的分布之調節利用圖4至15作說明。圖4,係示意性就示於圖1之電漿處理裝置的晶圓之面內方向上的蝕刻率之分布的一例作繪示之圖形。在本圖,係示出在晶圓102的中央部之區域的蝕刻率大於在外周側的區域者之情況,亦即示出在面內方向上的蝕刻率(處理速度)成為凸分布的情況,此等蝕刻率係示出相對於RF基板偏壓電力的值成比例之依存性。
於就具有如示於圖4之晶圓面內的蝕刻率分布之晶圓102的處理對象之膜作處理的程序之條件方面,將RF基板偏壓電力設定為既定的值,例如X0〔W〕之情況下,將晶圓102的面內方向之蝕刻深度的蝕刻時間依存性繪示於圖5。圖5,係示意性就示於圖4之處理的條件下之晶圓102的面內方向之蝕刻深度的蝕刻時間依存性作繪示之圖形。
如示於本圖,將RF基板偏壓電力設定為X0〔W〕時,晶圓102的中心部之蝕刻深度為深,晶圓102 的外周部之蝕刻深度為淺,發生晶圓面內的蝕刻深度均勻性不足如此之問題。在另一方面,在依現有技術之電漿處理裝置,係無法在晶圓102的面內方向上將施加於晶圓102之RF基板偏壓電力予以變化,惟在本實施例係可在晶圓面內就施加於晶圓之RF基板偏壓電力作控制。
所以,於圖6,繪示在本實施例下之在晶圓102的面內方向上就施加於晶圓102之RF基板偏壓電力的分布作調節之例。圖6,係示意性就在示於圖1之實施例中供應至晶圓載置用電極內的電極之高頻電力的值之例作繪示的圖形。
如本圖所示,為了在晶圓102的面內方向上蝕刻率會成為均勻,將供應至內側電極202與外側電極203之高頻電力的值在晶圓之面內方向上予以變化。亦即,於控制裝置方面晶圓102的中心部之RF基板偏壓電力被設定成X1〔W〕,晶圓外周部的RF基板偏壓電力被設定成Y1〔W〕,分別供應至內側電極202、外側電極203。藉此減低晶圓102的中心部與晶圓102之外周部的蝕刻率之差而抑制了處理結果的不均勻度。
將利用在圖6所設定之RF基板偏壓電力而蝕刻的情況下之晶圓面內的蝕刻深度之時間依存性繪示於圖7。圖7,係示意性就在示於圖6之實施例中對於晶圓載置用電極內的電極供應高頻電力之情況下的蝕刻處理之結果作繪示的圖形。
如本圖所示,如圖6在晶圓102的面內方向 上將偏壓電位形成用的高頻電力予以分散,使得晶圓102的面內方向上之蝕刻率的不均勻度受到抑制,蝕刻深度的均勻性會提升。依此,於如晶圓102的面內方向上之處理的特性成為凸分布之程序,就往內側電極202、外側電極203的各者之來自RF基板偏壓電源的輸出作調節而使分布成為期望者,使得可使該處理的特性在晶圓102的面內方向上接近所望者。
再者,控制裝置,參照記憶了如示於圖4之預先取得的RF基板偏壓電力之值與處理的特性,例如與蝕刻率的關係之資料並據此,而在晶圓102的中心部與外周部將供應至該中心部與外周部的RF基板偏壓電力調節成獲得期望之處理的特性、結果,例如蝕刻率之值而進行處理。藉此,可例如如圖7,在晶圓102的面內方向上獲得不均勻度減低之蝕刻深度。
於本例,RF基板偏壓電力,係根據Duty(ON及OFF的週期與期間或其比率)之值與平均偏壓電力的關係,而藉接收來自控制裝置的指令信號之未圖示的時序控制器206而調節。於圖8,就間歇輸出RF基板偏壓電力之情況下的RF基板偏壓電力之Duty的依存性作繪示。圖8,係示意性就於示於圖1之實施例中間歇輸出RF基板偏壓電力的情況下之RF基板偏壓電力的Duty之依存性作繪示的圖形。
在本例中,係供應至是在圖6所示之晶圓102的RF基板偏壓電力之對應於晶圓102中央側部分的內側 電極202之輸出電力X1〔W〕與供應至對應於晶圓102的外周部之外側電極203的輸出電力Y1〔W〕,被依時序控制器206所發送之方波或脈衝波的ON與OFF之比率而調節,在對應於此等的在晶圓102之面內方向上的不同區域之ON/OFF的Duty方面分別設定成X1〔%〕、Y1〔%〕。將圖8的情況下之脈衝波的信號及所施加之RF基板偏壓電力繪示於圖9。
圖9,係就根據示於圖8之Duty的設定而從時序控制器所輸出之脈衝波形或方波形與供應至內側電極及外側電極之RF基板偏壓電力的波形之例作繪示的圖形。如示於本圖,在圖8之例,供應至內側電極202之RF基板偏壓電力,係對於來自RF基板偏壓電源114或207之既定的頻率之高頻電力重疊從時序控制器206的朝內側之輸出端部所供應的Duty X1〔%〕之是方波或脈衝波的內側脈衝,電力的電壓之波形係成為具有僅該內側脈衝的ON之期間輸出既定的振幅及頻率之高頻電力並在OFF的期間係振幅成為0之間歇的波形者。
此外,供應至外側電極203之RF基板偏壓電力,係對於來自RF基板偏壓電源114或207之既定的頻率之高頻電力重疊從時序控制器206的朝外側之輸出端部所供應的Duty Y1〔%〕之是方波或脈衝波的外側脈衝,電力的電壓之波形係成為具有僅該外側脈衝的ON之期間輸出既定的振幅及頻率之高頻電力並在OFF的期間係振幅成為0之間歇的波形者。在本例,係如圖8所示設定成 外側脈衝的Duty Y1之值大於內側脈衝的值X1,此亦可從於圖9中此等脈衝波形係相對於共通的重複週期之成為ON的期間之比例(Duty比)外側脈衝比內側脈衝大的事實而獲悉。
將如此之波形的RF基板偏壓電力供應至內側電極202、外側電極203的各者,使得形成於各電極上之RF基板偏壓電壓的波形,係成為準據此等RF基板偏壓電力者,同時其時間上的平均值,係成為比例於來自共通的RF基板偏壓電源114或207之既定的頻率之高頻電力與脈衝波形的ON之期間的相對於脈衝週期之比率(Duty比)的值之乘積者。結果,供應至外側電極203之RF基板偏壓電力的電壓之平均值係變成比供應至內側電極202者大,變成從電漿111中所引誘之帶電粒子的時間上平均之量係對應於晶圓102的外側電極203的外側之區域比對應於內側電極202之中央側的區域大。
如此之在晶圓102半徑方向上可變地就間歇供應之RF基板偏壓電力的大小在中央部的區域與外周部的區域作調節,使得可使晶圓102的膜構造之蝕刻率、蝕刻深度等之處理的特性在晶圓102的半徑方向上變化而接近期望的分布。藉此,可實現在晶圓102的半徑方向上處理的結果之變異性受到抑制的電漿處理。
尤其,從晶圓102的中心部至外周部之蝕刻率的不均勻度被減低,半導體裝置的電特性、性能的變異性遍及晶圓102的面內方向之整體受到抑制,可發揮良率 提升之效果。此外,可就蝕刻後的處理形狀在晶圓102的半徑方向上以高準度作調節,抑制從該晶圓102所製造之半導體裝置的電特性、性能的變異性,提升良率。
就對於在晶圓102的半徑方向上之處理的特性成為凹型之情況的RF基板偏壓電力之調節利用圖10~圖15作說明。圖10,係示意性就晶圓102的半徑方向上之處理的特性成為凹型之情況下的晶圓面內之蝕刻率的一例作繪示之圖形。
圖10,係就晶圓102的半徑方向上之蝕刻率成為外周側的區域比在中央側之區域的值還大之凹分布的情況下,蝕刻率的對於RF基板偏壓電力之依存性作繪示者。於具有如示於圖10之晶圓面內的蝕刻率分布之蝕刻程序,將RF基板偏壓電力設定為例如X0〔W〕之情況下,晶圓102之面內方向上的蝕刻深度之值的相對於RF基板偏壓電力之值的依存性係成為如圖11。
如此圖,將RF基板偏壓電力設定為X0〔W〕之情況下,成為在晶圓102的中心部之蝕刻深度為淺,晶圓102的外周部之蝕刻深度為大的分布,有晶圓102之面內方向上的蝕刻深度成為不均勻如此之問題。此情形係表示在無法將施加於晶圓102之RF基板偏壓電力在晶圓102的面內方向予以變化之現有技術的電漿處理裝置係發生無法抑制蝕刻深度的不均勻如此之問題。
另一方面,在本實施例,係根據來自未圖示之控制裝置的指令信號,而如示於圖12,為了在晶圓102 的半徑方向上處理的特性,例如蝕刻率成為均勻,將供應至對應於晶圓102的中心部之內側電極202的RF基板偏壓電力之值設定為X2〔W〕,將供應至對應於晶圓102的外周部之外側電極203的RF基板偏壓電力設定為Y2〔W〕。尤其,以將晶圓102的中心部與外周部之蝕刻率的變異性、差作減低的方式設定各個的電力之值。
將利用如圖12而設定之RF基板偏壓電力就晶圓102作蝕刻的情況下之晶圓面內的蝕刻深度之相對於蝕刻時間的依存性繪示於圖13。在此圖的例,係以成為設定於在圖12所設定之內側及外側之區域的各者之RF基板偏壓電力X2、Y2〔W〕的方式,就內側電極202、外側電極203各者的Duty藉時序控制器206作調節,從而減低晶圓面內之蝕刻率的不均勻,使相對於蝕刻時間之特性為相同或近似其者,使得蝕刻深度之面內方向上的均勻性會提升。
在本實施例,係根據如圖10所示之預先取得的偏壓電力與蝕刻率之關係,以蝕刻率在如示於圖12之晶圓中心部與外周部成為相等的RF基板偏壓電力進行蝕刻處理。藉此,可例如如圖13,在晶圓面內獲得均勻之蝕刻深度如此的效果。
於圖14、15,說明有關於利用時序控制器206,根據Duty與平均偏壓電力的關係就RF基板偏壓電力作控制之例。圖14,係示意性就RF基板偏壓電力間歇電力輸出之情況下的RF基板偏壓電力之時間上的平均值 與Duty之依存性作繪示的圖形。
在本例,係供應至內側電極202與外側電極203之各者的RF基板偏壓電力之值被藉從時序控制器206所輸出之脈衝,而就是在圖12所示之晶圓面內的RF基板偏壓電力之晶圓內側部的輸出電力X2〔W〕與晶圓外周部的輸出電力Y2〔W〕依來自時序控制器206的信號而作為ON/OFF的切換之Duty分別調節成X2〔%〕、Y2〔%〕。將如此之情況下的藉時序控制器206之脈衝信號及所施加的高頻偏壓繪示於圖15。
圖15,係就根據示於圖14之Duty的設定而從時序控制器所輸出之脈衝波形或方波形與供應至內側電極及外側電極之RF基板偏壓電力的波形之例作繪示的圖形。如示於本圖,在圖14之例,供應至內側電極202之RF基板偏壓電力,係對於來自RF基板偏壓電源114或207之既定的頻率之高頻電力重疊從時序控制器206的朝內側之輸出端部所供應的Duty X2〔%〕之是方波或脈衝波的內側脈衝,電壓的波形成為僅該內側脈衝的ON之期間輸出既定的振幅及頻率之高頻電力之具有間歇的波形者。
此外,供應至外側電極203之RF基板偏壓電力,係對於來自RF基板偏壓電源114或207之既定的頻率之高頻電力重疊從時序控制器206的朝外側之輸出端部所供應的Duty Y2〔%〕之是方波或脈衝波的外側脈衝,電力的電壓的波形係成為僅該外側脈衝的ON之期間輸出 既定的振幅及頻率之高頻電力之具有間歇的波形者,響應於內側脈衝的Duty X2之值被設成比外側脈衝之值Y2大,使得Duty比方面內側脈衝比外側脈衝大。
如此之波形的RF基板偏壓電力被供應至內側電極202、外側電極203的各者,形成於各電極上之RF基板偏壓電壓的時間上之平均值,係比例於來自共通的RF基板偏壓電源114或207之既定的頻率之高頻電力與各個電壓的Duty比之值的乘積,故供應至內側電極202之RF基板偏壓電力的電壓之平均值係變成比供應至外側電極203者大。依此,在晶圓102半徑方向上可變地就間歇供應之RF基板偏壓電力的大小在中央部的區域與外周部的區域作調節,使得可使晶圓102的膜構造之蝕刻率、蝕刻深度等之處理的特性在晶圓102的半徑方向上變化而接近期望的分布。藉此,可實現在晶圓102的半徑方向上處理的結果之變異性受到抑制的電漿處理。
依上述的構成,在晶圓102的面內方向上之處理的特性,例如蝕刻率、蝕刻深度之值的均勻性獲得提升,所製造之半導體裝置的良率會提升。再者,在上述的例被調節之晶圓102的半徑方向上之Duty的值與其分布,係不易由電漿111的離子能及內部參數之值受到影響之可謂獨立者,故可抑制係現有技術的課題之蝕刻中止、過蝕所造成之基底貫穿、遮罩選擇比不足等之問題的發生。
接著,說明將上述之實施例的構成適用於, 晶圓102的中心部之反應生成物濃度變高使得蝕刻率顯著降低,或發生蝕刻中止使得晶圓102的面內方向之蝕刻率均勻性顯著降低的程序(例如SiN程序等)之例。
將強烈依存於反應生成物分布之蝕刻程序下的每單位時間之反應生成物的排氣量之晶圓的半徑方向上之依存性繪示於圖16。如圖16所示,每單位時間的反應生成物排氣量,係在晶圓中心部低,越外周部越高。將藉此而產生之反應生成物的在晶圓面內之濃度分布繪示於圖17。曲線1701為緊接著處理開始後所產生之反應生成物的濃度分布,曲線1702為從其經過t秒後的分布。中心部的排氣量比外周部的排氣量低,故反應生成物的分布係相對於晶圓的徑向成為凸分布。於如此之程序,係反應生成物的排氣時間之面內控制為有效。
採用本實施例之情況下,藉將晶圓中心部附近的RF基板偏壓之Duty控制成非常小,使得可使晶圓中心部的反應生成物之排氣時間夠長,可大幅減低反應生成物的影響。亦即以使晶圓中心部附近的RF基板偏壓之Duty比晶圓外周部附近的RF基板偏壓的Duty還小之方式就時序控制器206作控制,使得可將晶圓面內的反應生成物濃度分布均勻化,可使晶圓面內之蝕刻圖案的CD等之均勻性提升。
接著,針對在上述晶圓102的半徑方向上可變地就供應至晶圓載置用電極103之RF基板偏壓電力的值與其分布作調節之構成的其他例利用圖18、19進行說 明。圖18,係就在圖1之實施例的電漿處理裝置中在晶圓載置用電極的半徑方向上就值及分布作調節而供應之RF基板偏壓電力的其他例作繪示之圖形。
如示於本圖,依來自脈衝調變用信號產生器208之脈衝波或方波的信號而以既定的週期及期間而間歇或重複高輸出與低輸出之來自RF基板偏壓電源114或207的電力,係藉依來自時序控制器206的信號之電式高速繼電器204、205的動作,而供應至內側電極202(Center)、外側電極203(Edge)。在此圖,來自RF基板偏壓電源的輸出(在本例係電壓)係具有以週期τ0脈衝狀重複之脈衝波形,此在是ON之期間τ1中從開始此ON的期間之時刻至僅特定的時間τ2使對應於晶圓102中心側的內側電極202(Center)之電式高速繼電器204成為ON的狀態,將RF基板偏壓電力予以施加至該電極。
接續該τ1經過後從使連接於晶圓102的中心側之內側電極202的電式高速繼電器204為OFF之時刻僅既定的期間τ3使連接在對應於晶圓102的外側之外側電極203的電式高速繼電器205為ON的狀態而予以持續RF基板偏壓電源之RF基板偏壓電力的ON之期間τ1結束而OFF的期間開始。另外,在本例係依來自時序控制器206的信號之對應於內側電極202、外側電極203的電式高速繼電器204、205的各者重複ON/OFF之週期,係結果等於τ0。
進行如此之RF基板偏壓電力的供應,從而將晶圓102的中心部或外周部之OFF時間及施加的偏壓電力之時間平均的值調節成任意者,同時中心部與外周部的各者被交互間歇蝕刻。藉此,晶圓102的中心部與外周部之各自的蝕刻之特性被獨立調節。此外,可減低從晶圓102的中心部脫離之反應生成物所致的對於晶圓102的外周部之蝕刻的影響,或調節成期望者。或者,可獲得其相反的效果可將可選擇程序的條件之區域增大,結果可提升處理的良率。
亦即,依上述的構成,可根據晶圓102之面內方向上的反應生成物之濃度與施加的平均RF基板偏壓電力而調節處理的特性。此外,與同時蝕刻中心部與外周部之情況作比較下,蝕刻中滯空於晶圓上之反應生成物量亦減低,故亦有對於蝕刻之反應生成物的影響被減低之效果。
依本方式使得在晶圓面內的蝕刻率之均勻性會提升,故可預期蝕刻製品的良率之提升。再者依本方式,係亦可消解在現有技術下無法解決之起因於反應生成物所致的蝕刻之阻礙的蝕刻率之面內不均勻性。
此外,於預先不知道RF基板偏壓電力與蝕刻率的相關之程序、或欲更嚴密控制蝕刻深度之程序中,係如下利用來自膜厚監控器301、302的輸出而就晶圓載置用電極103的晶圓102之半徑方向上的RF基板偏壓電力之值與其分布作調節,從而可獲得處理的特性之晶圓102 的半徑方向上之均勻性的提升。
利用圖19至21,而示出於圖1的實施例中在處理中使用利用膜厚監控器而檢測出之膜厚度而就處理作調節的例。在本例,係藉膜厚監控器301、302逐次監控被蝕刻層的膜厚,以蝕刻深度在晶圓面內成為均勻之方式,就施加於晶圓的中心部/外周部之RF基板偏壓的Duty作自動控制。
圖19,係示意性繪示於本例中利用來自膜厚監控器的輸出而就往晶圓載置用電極之內側的區域與外側之區域的RF基板偏壓電力之Duty作調節的情況下之晶圓的蝕刻率與RF基板偏壓電力之時間平均值的關係之圖形。圖20,係就在示於圖19之例中相對於蝕刻時間的推移之蝕刻深度的變化之例作繪示的圖形。
於此等圖,係在蝕刻處理中於未圖示之控制裝置利用使用膜厚監控器301、302而以光學方式檢測出之資料而就在晶圓102的中心側部分的特定之區域與外周側的部分的特定之區域的蝕刻深度之資料作檢測。於此等值的絕對值差成為預先規定之容許值(2001)以上的情況下,如示於圖19,以預先規定之步距(1901)縮小檢測出蝕刻率為高之側的Duty(比)。
此情況下,此步距(1901),係根據在預先測試晶圓的實施試驗處理等之結果而設定為非常小之值。藉此,增減蝕刻率之值發生擺動等而短時間內無法穩定之情形受到抑制而使得可階段性使在中心部與外周部的蝕刻 率精度佳地成為期望的值。
就進行如此之Duty與蝕刻特性的控制之動作的流程於圖21繪示一例。圖21,係就在示於圖1之實施例中所實施的示於圖19、20之蝕刻處理的動作之調節的流程作繪示之流程圖。
在本例中,電漿處理裝置,係蝕刻處理開始後,處理結束為止,晶圓中心部與外周部的蝕刻深度差被以規定之時寬(2002)利用膜厚監控器301、302作監控並於控制裝置被作檢測。(步驟2101)。於步驟2102,在控制裝置確認了處理開始後之當下的時間並判定為經過所預先設定之處理時間的情況(圖上No的情況)下係依來自控制裝置的指令而停止處理。
於判定為未經過處理時間之情況(圖上Yes的情況)下,係轉移至步驟2103而於控制裝置就作為監控而得之結果的中心部與外周部之蝕刻深度之差是否為容許範圍外作判定。於判定為是容許範圍內的情況下,係返回步驟2101並繼續處理。
判定為中心部與外周部的蝕刻深度之差超過容許值之情況下,經過步驟2104而於步驟2105根據來自控制裝置的指令而將蝕刻率高之側的Duty予以減低僅預先設定之步距(1901)。接著,實施採用膜厚監控器301、302之蝕刻深度的檢測僅既定之時間,於控制裝置就該差的相對於時間之變化量亦即傾斜度檢測既定的時間間隔(步驟2106)。
接著,於步驟2107,檢測於步驟2106所檢測之深度差的傾斜度,是否小於非常小至視為在晶圓102的半徑方向上在不同的檢測位置的蝕刻率變相等之程度的任意之值的預先設定之基準值(例如0.1等),直到此被檢測出為止如示於步驟2105至2108,重複根據規定之步距而減低Duty之程序與以該Duty比的處理下之蝕刻深度的差之變化率的檢測及該基準值之比較的程序。於藉控制裝置判定為深度之差的變化率不足基準值亦即視為晶圓102的中心部與外周部之蝕刻率相等的情況下,係將當下的內外之Duty的資訊記憶於配置在控制裝置內之RAM、快閃記憶體或硬碟等之記憶裝置或記憶體內(步驟2109),暫且為了消解深度差,而最初蝕刻率為高之側的Duty被調成0而停止在該側的蝕刻(步驟2110及圖20的2003)。
之後,另一方之側的處理係持續,控制裝置係於此另一方之側的處理中亦利用來自膜厚監控器301、302的輸出而就蝕刻深度之差作檢測(步驟2111)。判定深度之差是否到達預先考量Duty的控制之時間延遲而設定為適當之值的緩衝區(圖20的2004)(步驟2112),檢測出該到達(圖上Yes)時,在控制裝置係視為已消解深度之差而讀出在步驟2109所記憶之示出Duty的資料(步驟2113),返回步驟2101以所記憶之內側、外側的Duty再次開始處理並在以等蝕刻率進行處理從而在均勻保持面內的蝕刻深度之狀態下,進行蝕刻處理(圖20的 2005)。
此外,以膜厚監控器檢知到晶圓的中心部/外周部的任一者先到達期望的蝕刻深度之情況下,亦可藉晶圓面內的Duty控制,自動控制蝕刻率面內均勻性。
依本方式使得在晶圓面內的蝕刻率之均勻性會提升,故可預期蝕刻製品的良率之提升。再者由於係從離子能及內部參數而獨立之控制方式,故現有技術的課題之蝕刻中止、過蝕等之問題亦獲消解。
〔實施例2〕
就本發明的其他實施例利用圖22至26作說明。本實施例,係關於與示於圖1之電漿處理裝置為實質同等之電漿處理裝置,係關於藉此電漿處理裝置而實施之電漿處理方法。
要高精度實施蝕刻處理,係需要就電漿的強度、密度之值與其分布作調節而將自由基種的選定、離子量調節成適於處理之值。在就自由基、離子的量作調節之手段方面,係考量就形成電漿之電場的供應實施時間調變而間歇或將高及低密度的電漿以既定的週期而交互形成之脈衝電漿。在如此之脈衝電漿,係重複電漿的ON與OF或強度的高低,就其週期、期間作調節從而調節電漿中的粒子之解離,而使自由基的解離之狀態、離子密度成為適於處理之期望的範圍內者。
脈衝電漿的ON與OFF或強度之高低的重複 頻率(以下稱作脈衝頻率)及相對於重複的1週期之成為ON(高輸出)之時間的比(工作比、Duty比)、再者成為ON(高輸出)之時間與成為OFF(關斷)之時間的比為參數,而在處理中或處理之前事前作調節、設定,使得可高精度實施蝕刻處理。本實施例,係於示於圖1之電漿處理裝置,利用如此之脈衝電漿而在晶圓102的面內方向上對於配置在不同位置或區域之複數個電極供應不同相位的RF基板偏壓電力而處理晶圓102之例,就此情況利用圖22至26作說明。
於圖22中(S)係表示供以生成本例的電漿處理裝置之電漿用的電場之電力的輸出之電場控制脈衝輸出的圖形,(I)及(J)係表示RF基板偏壓電源114或207的輸出(RF基板偏壓電力)的時序圖之例的圖形。在(S)係示出重複頻率為1kHz,工作比為50%之例。
另一方面,(I)及(J),係重複頻率為1kHz,工作比為20%,RF基板偏壓電力係100W。(J)係相對於(I)具有3ms的延遲相位。
(a),係就根據上述的電漿形成之電場的供應與RF基板偏壓電力的供應而就具有既定的種類之膜的膜構造作處理之情況下的結果作匯集之表。(a)的No.1、No.2,係就在晶圓102上表面的膜構造方面多晶矽(以下稱作Poly)及氧化矽膜(以下稱作OX)的空白晶圓下的蝕刻率作測定之結果。從此表,係得知例如,所求之蝕刻性能為Poly蝕刻率均勻性:2%以下,OX選擇 比:30以上的情況下,以No.1、No.2的高頻偏壓條件係無法滿足此等。
另一方面,在依本實施例之處理,係施加至構成對應於晶圓102的中央部之晶圓載置用電極103的上表面之載置面的介電體膜201內部,亦即施加至配置在對應於載置面的中央部之位置或區域(中心部)的內側電極202及配置在對應於載置面的外周部之位置或區域(邊緣部)的外側電極203之RF基板偏壓電力被獨立控制而其相位差被高精度作調節。為此,於中心部施加(I)所示、於邊緣部施加(J)所示之RF基板偏壓電力。
在如此之處理的結果方面,獲得示於No.3的蝕刻特性。在No.3,係可滿足在膜構造方面的Poly蝕刻率均勻性:2%以下、OX選擇比:30以上。得知在本實施例,變得可作高精度的蝕刻特性之控制。
利用圖23就對於在晶圓102的面內方向上配置在不同位置或區域之電極施加不同工作比的RF基板偏壓電力之情況作說明。圖23的(S)係表示電場控制脈衝輸出之圖形,(I)及(J)係表示RF基板偏壓電源輸出的時序圖之例的圖形。
在(S)係重複頻率為1kHz,工作比為50%。(I)及(J)係重複頻率為1kHz,高頻電源輸出係80W。(I)的工作比為50%而(J)的工作比係40%。
(a),係就根據上述的電漿形成之電場的供應與RF基板偏壓電力的供應而就具有既定的種類之膜的 膜構造作處理之情況下的結果作匯集之表。尤其(a)的No.1、No.2係就在處理對象的膜構造方面氮化矽膜(以下稱作SiN)的空白晶圓之蝕刻率作測定的結果。
從(a),係得知例如所求之蝕刻性能為SiN蝕刻率均勻性:1%以下的情況下,以No.1、No.2的高頻偏壓條件係無法滿足此等。在另一方面,在本發明的構成,係為了獨立就施加於中心部及邊緣部之高頻偏壓電力作控制並高精度就相位差作控制,以於中心部施加(I)、於邊緣部施加(J)的高頻電力之No.3的條件而實施處理。為此獲得示於該表之蝕刻特性,得知可達成要求之蝕刻性能。
於圖24,就對於在晶圓102的面內方向上配置於不同位置或區域之電極施加不同振幅的RF基板偏壓電力之例作說明。圖24的(S)係表示電場控制脈衝輸出之圖形,(I)及(J)係表示RF基板偏壓電源輸出的時序圖之例的圖形。
(S)係重複頻率為1kHz,工作比為50%。(I)及(J)係重複頻率為1kHz,工作比係50%。(I)係100W的輸出,(J)係50W的輸出。(a),係就根據上述的電漿形成之電場的供應與RF基板偏壓電力的供應而就具有既定的種類之膜的膜構造作處理之情況下的結果作匯集之表。
(a)的No.1、No.2係在處理對象的膜構造方面Poly之空白晶圓的蝕刻率測定結果。例如,得知所 求之蝕刻性能為Poly蝕刻率均勻性:1%以下的情況下,以No.1、No.2的高頻偏壓條件係無法滿足此等。在另一方面,在本發明的構成,係就供應至中心部及邊緣部的RF基板偏壓電力之值分別獨立作控制,以No.3的條件而實施處理。為此獲得示於該表之蝕刻特性,得知可達成要求之蝕刻性能。
於圖25,就對於在晶圓102的面內方向上配置於不同位置或區域之電極施加不同頻率的高頻偏壓之情況作說明。一般而言在採用真空之蝕刻裝置係排氣效果在晶圓周邊部變強,故蝕刻、電漿的反應生成物之密度係中心變高。在對於在表面形成有自然氧化膜之蝕刻膜的蝕刻,係為了此表面層除去一般而言應用突破步驟(以下BT)。電場控制脈衝輸出、(I)及(J)係表示RF基板偏壓電源輸出的時序圖之例的圖形。
BT步驟的效果,在晶圓的中心部係反應生成物的堆積比邊緣部多,故有時中心部的BT不充分。此情況下,有如示於圖25之高頻偏壓的輸出波形(I)、(J)使用不同頻率的高頻偏壓之方法。於中心部應用(I)、於邊緣部應用(J)的高頻偏壓,使得可邊緣部的2倍的次數進行中心部的BT。
在上述的例係就1個參數在中心部與邊緣部不同之例作敘述,惟參數係可依需要而組合。於圖26示出該例。電場控制脈衝輸出、(I)及(J)係表示RF基板偏壓電源輸出的時序圖之例的圖形。(S)係重複頻率 為1kHz,工作比為50%。
(I)及(J)係重複頻率為1kHz。(I)係工作比為20%、高頻電源輸出50W。(J)係工作比為10%、高頻電源輸出係80W。(a)係示意性繪示就Poly閘極蝕刻圖案之加工結果的一例之蝕刻處理後的膜構造之剖面圖。
(i)係對於中心部、邊緣部施加(I)的高頻偏壓之情況下的結果之一例。(j)係對於中心部、邊緣部施加(J)的高頻偏壓之情況下的結果之一例。
施加(I)的高頻偏壓之情況下,中心成為錐狀。此係一般而言晶圓的中心部係反應生成物比邊緣部多,故依條件容易成為中心部的形狀為錐形之故。
要使錐狀為垂直,係減少反應生成物的影響即可。降低工作比使得可減少反應生成物的影響。降低高頻偏壓的工作比之情況下,OFF時間會變長,故反應生成物所排氣之量於OFF時間會增加之故。
降低工作比之情況下,離子的通量降低故有時蝕刻中止裕度會下降。因此(J)的情況下,不僅從(I)的條件將工作比降低10%,將高頻偏壓輸出提升至80W。
(j)為蝕刻結果,中心係垂直化,邊緣係成為側蝕形狀。邊緣係反應生成物少使得側壁成為不充分而引起側蝕。
如此在中心部與邊緣部施加同高頻輸出、同 工作比之方法係難以將蝕刻性能控制成消除中心與邊緣的蝕刻形狀差。然而在本實施例的形態下係可獨立控制中心部與邊緣部。
於中心部電極施加(J)、於邊緣部電極施加(I)的高頻偏壓使得中心部邊緣部皆獲得垂直形狀。於中心部與邊緣部應用不同工作比、不同高頻偏壓輸出使得可高精度控制蝕刻形狀。
在所說明之實施例係舉使蝕刻率在晶圓面內為均勻之方法為例,惟以例如蝕刻率成為均勻之RF基板偏壓電力為基準,而將一側的RF基板偏壓電力作降低、或提升使得可將面內的蝕刻率從平坦分布自由控制成凹、或凸。
此外,在此等實施例係以半導體裝置的前程序為中心說明各效果,惟應用於半導體的後程序(配線連接、超級連接)、微型機器、MEMS領域(顯示器領域、光開關領域、通訊領域、儲存器領域、感測器領域、成像領域、小型發電機領域、小型燃料電池領域、微探測器領域、處理用氣體控制系統領域、包含醫學生物領域的關係))等之領域的蝕刻加工技術亦獲得同樣的作用效果。
此外,在上述實施例係說明採用利用微波ECR放電之蝕刻裝置的電漿處理方法的例,惟於利用其他放電(有磁場UHF放電、電容耦合型放電、感應耦合型放電、磁控放電、表面波激發放電、傳輸耦合(transfer coupled)放電)之乾式蝕刻裝置亦有同樣的作用效果。 然而,採用ECR放電之情況下,主要之電漿生成區域與晶圓的距離之控制性、高解離度的電漿所致之反應性自由基的密度增加等,使得可獲得更高精度的效果,故要獲得最佳效果係ECR放電為較優選。
另外本發明係非限定於上述之實施例者,包含各式各樣的變化例。例如,上述之實施例係為了以容易理解的方式說明本發明而詳細說明者,並非限定於一定具備所說明之全部的構成者。
101‧‧‧腔室
102‧‧‧晶圓
103‧‧‧晶圓載置電極
104‧‧‧噴灑板
105‧‧‧介電體窗
106‧‧‧處理室
107‧‧‧供氣裝置
108‧‧‧導波管
109‧‧‧電磁波產生用電源
110‧‧‧磁場產生線圈
111‧‧‧高密度電漿
112‧‧‧脈衝調變電路
113‧‧‧高頻濾波器
114‧‧‧直流電源
115‧‧‧匹配電路
116‧‧‧高頻電源
301‧‧‧中心位置EPD感測器
302‧‧‧外周位置EPD感測器

Claims (8)

  1. 一種電漿處理裝置,具備配置於真空容器內部的處理室內之樣品台、及在該樣品台的內側配置成中心側的部分與該外周側部分並被供應高頻電力之電極,就載置於前述樣品台上表面之晶圓利用形成在該處理室內之電漿作處理,供應至前述中心側的電極及外周側之電極的各者之高頻電力係振幅大小分別以既定的週期作重複,具備將前述高頻電力各者的振幅大之期間的長度或該期間的長度相對於該週期之比率調節成不同值之控制裝置。
  2. 如申請專利範圍第1項之電漿處理裝置,其中,供應至前述中心側的電極及外周側的電極之各者的高頻電力各者,係在一方的振幅大之期間結束後,開始另一方的振幅大之期間。
  3. 如申請專利範圍第1項之電漿處理裝置,其中,來自供應前述高頻電力之高頻電源的輸出,振幅大小以與供應至前述中心側的電極及外周側之電極的各者之前述高頻電力的前述振幅之前述週期係不同的週期而重複,供應至前述中心側的電極及外周側之電極的各者之高頻電力各者的振幅大之期間含於來自前述高頻電源的輸出以不同週期而重複之振幅為大的期間內。
  4. 如申請專利範圍第1至3項中任一項之電漿處理裝置,其中供應至前述中心側的電極及外周側之電極的各者之前 述高頻電力係各者以前述週期而重複成為既定的振幅之ON狀態與成為0的OFF狀態。
  5. 一種電漿處理方法,於真空容器內部的處理室內在樣品台上配置處理對象的晶圓,於該處理室內形成電漿而對於配置在前述樣品台的內側之中心側的部分與其外周側部分之電極供應高頻電力而就前述晶圓作處理,供應至前述中心側的電極及外周側之電極的各者之高頻電力係振幅大小分別以既定的週期作重複,將前述高頻電力各者的振幅大之期間的長度或該期間的長度相對於該週期之比率調節成不同值而處理前述晶圓。
  6. 如申請專利範圍第5項之電漿處理方法,其中,供應至前述中心側的電極及外周側的電極之各者的高頻電力各者,係在一方的振幅大之期間結束後,開始另一方的振幅大之期間。
  7. 如申請專利範圍第5項之電漿處理方法,其中,來自供應前述高頻電力之高頻電源的輸出,振幅大小以與供應至前述中心側的電極及外周側之電極的各者之前述高頻電力的前述振幅之前述週期係不同的週期而重複,供應至前述中心側的電極及外周側之電極的各者之高頻電力各者的振幅大之期間含於來自前述高頻電源的輸出以不同週期而重複之振幅為大的期間內。
  8. 如申請專利範圍第5至7項中任一項之電漿處理方法,其中供應至前述中心側的電極及外周側之電極的各者之前 述高頻電力係各者以前述週期而重複成為既定的振幅之ON狀態與成為0的OFF狀態。
TW104130141A 2015-02-27 2015-09-11 Plasma processing apparatus and plasma processing method TWI603368B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037624A JP6488150B2 (ja) 2015-02-27 2015-02-27 プラズマ処理装置およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
TW201631620A true TW201631620A (zh) 2016-09-01
TWI603368B TWI603368B (zh) 2017-10-21

Family

ID=56798381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104130141A TWI603368B (zh) 2015-02-27 2015-09-11 Plasma processing apparatus and plasma processing method

Country Status (4)

Country Link
US (1) US9741579B2 (zh)
JP (1) JP6488150B2 (zh)
KR (1) KR101750002B1 (zh)
TW (1) TWI603368B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491888B2 (ja) * 2015-01-19 2019-03-27 株式会社日立ハイテクノロジーズ プラズマ処理方法およびプラズマ処理装置
JP6703508B2 (ja) * 2017-09-20 2020-06-03 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理方法
JP6997642B2 (ja) * 2018-01-30 2022-01-17 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理方法
WO2020036801A1 (en) * 2018-08-17 2020-02-20 Lam Research Corporation Rf power compensation to reduce deposition or etch rate changes in response to substrate bulk resistivity variations
KR20210016946A (ko) * 2019-08-06 2021-02-17 삼성전자주식회사 샤워헤드 및 이를 구비하는 기판 처리장치
KR102258361B1 (ko) * 2019-09-10 2021-05-28 포항공과대학교 산학협력단 펄스형 전력을 사용한 플라즈마 활성종 생성방법
JP7348640B2 (ja) * 2019-11-29 2023-09-21 スピードファム株式会社 エッチング装置、およびエッチング方法
US20220367156A1 (en) * 2020-02-07 2022-11-17 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124191A (ja) * 1998-10-13 2000-04-28 Hitachi Ltd 表面加工方法
JP4655385B2 (ja) 2000-03-01 2011-03-23 株式会社日立製作所 プラズマ処理装置および処理方法
JP2001244250A (ja) * 2000-03-01 2001-09-07 Hitachi Ltd 表面処理方法および装置
JP2002141340A (ja) 2000-08-25 2002-05-17 Hitachi Ltd プラズマ処理装置及びプラズマ処理方法
JP4557400B2 (ja) * 2000-09-14 2010-10-06 キヤノン株式会社 堆積膜形成方法
JP4433614B2 (ja) * 2001-01-17 2010-03-17 ソニー株式会社 エッチング装置
KR101247833B1 (ko) * 2004-06-21 2013-03-26 도쿄엘렉트론가부시키가이샤 플라즈마 처리 방법
JP5160802B2 (ja) 2007-03-27 2013-03-13 東京エレクトロン株式会社 プラズマ処理装置
JP5395491B2 (ja) 2009-03-31 2014-01-22 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP5496568B2 (ja) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2011228436A (ja) 2010-04-19 2011-11-10 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP5701958B2 (ja) * 2013-10-15 2015-04-15 東京エレクトロン株式会社 基板処理装置

Also Published As

Publication number Publication date
KR101750002B1 (ko) 2017-06-22
US20160254163A1 (en) 2016-09-01
KR20160105272A (ko) 2016-09-06
JP6488150B2 (ja) 2019-03-20
JP2016162795A (ja) 2016-09-05
TWI603368B (zh) 2017-10-21
US9741579B2 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
TWI603368B (zh) Plasma processing apparatus and plasma processing method
US10672589B2 (en) Plasma processing apparatus and control method
US20210327681A1 (en) Control method and plasma processing apparatus
JP7306886B2 (ja) 制御方法及びプラズマ処理装置
US10593519B2 (en) Plasma processing apparatus
US10115567B2 (en) Plasma processing apparatus
US10090160B2 (en) Dry etching apparatus and method
US9053908B2 (en) Method and apparatus for controlling substrate DC-bias and ion energy and angular distribution during substrate etching
TWI614807B (zh) 電漿處理裝置
JP2022183200A (ja) 制御方法、プラズマ処理装置、プロセッサ、及び非一時的コンピュータ可読記録媒体
US9663858B2 (en) Plasma processing apparatus
WO2017126184A1 (ja) プラズマ処理方法およびプラズマ処理装置
TW201642303A (zh) 電漿處理裝置及電漿處理方法
US11830704B2 (en) Plasma processing apparatus and control method
JP2016134461A (ja) プラズマ処理方法およびプラズマ処理装置
CN105702572A (zh) 等离子体蚀刻方法
KR20170054281A (ko) 펄싱된 플라즈마 반도체 디바이스 제조시 라디칼 밀도, 이온 밀도 및 이온 에너지의 독립적인 제어를 위한 방법들 및 시스템들
WO2018233455A1 (zh) 偏压调制方法、偏压调制系统和等离子体处理设备
JP2015211093A (ja) プラズマ処理装置
JP4550710B2 (ja) プラズマ処理方法および装置
US11328903B2 (en) Plasma processing system, method of controlling plasma in the plasma processing system, and method of manufacturing semiconductor device by using the method of controlling the plasma
TWI835826B (zh) 電漿處理裝置之控制方法及電漿處理裝置
JP2006100630A (ja) プラズマ処理装置およびプラズマ処理方法
JP2012129429A (ja) プラズマ処理方法