TW201528375A - 氮化矽膜及其製造方法與其製造裝置 - Google Patents

氮化矽膜及其製造方法與其製造裝置 Download PDF

Info

Publication number
TW201528375A
TW201528375A TW103140587A TW103140587A TW201528375A TW 201528375 A TW201528375 A TW 201528375A TW 103140587 A TW103140587 A TW 103140587A TW 103140587 A TW103140587 A TW 103140587A TW 201528375 A TW201528375 A TW 201528375A
Authority
TW
Taiwan
Prior art keywords
nitride film
tantalum nitride
decane
atom content
gas
Prior art date
Application number
TW103140587A
Other languages
English (en)
Other versions
TWI646600B (zh
Inventor
Shoichi Murakami
Masayasu Hatashita
Hiroshi Taka
Masaya Yamawaki
Original Assignee
Spp Technologies Co Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spp Technologies Co Ltd, Taiyo Nippon Sanso Corp filed Critical Spp Technologies Co Ltd
Publication of TW201528375A publication Critical patent/TW201528375A/zh
Application granted granted Critical
Publication of TWI646600B publication Critical patent/TWI646600B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3211Nitridation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本發明係提供一種將有機矽烷作為原料且經由電漿CVD法形成的氮化矽膜方法,其中相對於矽原子與氮原子含量,能降低碳原子及/或氫原子的含量比,且能提升膜的品質的電氣特性等。本發明之一的氮化矽膜係利用電漿CVD法,藉由將有機矽烷以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體進行電漿化所形成。在此氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比未達0.8。此外,在此氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,氫原子的含量比未達0.9。根據該氮化矽膜,由於使漏電流降低等的特性改善,因而能實現提升具有該氮化矽膜的各種裝置的可靠性。

Description

氮化矽膜及其製造方法與其製造裝置
本發明是關於一種利用有機矽烷原料的氮化矽膜及其製造方法與其製造裝置。
至今,隨著利用半導體的各種裝置開發的進展,揭露了許多的成膜技術及其膜的加工技術。在習知技術中,揭露了以改善氮化碳膜中氮的含量不安定,且含量較少的問題為目的的氮化碳膜。此外,亦揭露了以四(二甲基胺基) 矽烷 (tetrakis(dimethylamino)silane)作為原料且經由電漿CVD法成膜的碳氮化矽膜 (silicon carbonitride film)的例子(專利文獻1)。
〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕特開2011-89186號公報
〔發明所欲解決之課題〕 當經由電漿CVD法形成氮化矽膜時,雖然可使用無機矽烷,但是無機矽烷具有較高的爆炸性,因此就安全性的觀點而言,使用有機矽烷作為原料是有意義的。然而,如專利文獻1所揭露,當將四(二甲基胺基) 矽烷作為原料且經由電漿CVD法形成氮化矽膜時,由於在氮化矽膜中含有羥基,因此氮化矽膜中的碳原子含量的值會非常高(例如,矽原子含量與氮原子含量的總合設為1時,碳原子的含量比為1.86)。當氮化矽膜中含有較多的碳原子與氫原子時,由於在氮化矽膜中會形成較多的C-C結合、N-C結合或Si-H結合,所以提高了造成漏電流增加及/或耐潮濕性惡化的可能性。因此,為了提升具有氮化矽膜的各種裝置的可靠性,必須尋求氮化矽膜的特性(特別是電氣特性或耐潮濕性)更進一步的提升。
本發明係為解決上述問題,改善以有機矽烷作為原料且經由電漿CVD法形成的氮化矽膜的各種特性,有助於大幅提升使用該氮化矽膜的各種裝置的可靠性。
〔解決課題之手段〕 本案發明者發現,包含上述專利文獻1,當使用過去已揭露的以有機矽烷作為原料的氮化矽膜的成膜技術時,特別是由於碳原子及/或氫原子的含量比較高,所以嘗試提高電氣特性或耐潮濕性是極為困難的,因此為了解決此問題而潛心研究,並歷經了反覆的試驗。結果發現,藉由四(二甲基胺基) 矽烷等的有機矽烷,並加入以一種以上的特殊添加氣體作為原料氣體之一,能降低氮化矽膜中的碳原子及/或氫原子的含量,並且將耐潮濕性的提升,或是以漏電流為代表的電氣特性的提升也就是氮化矽膜的特性的提升得以實現。基於上述的觀點,創造出本發明之氮化矽膜、氮化矽膜的製造方法及氮化矽膜的製造裝置。
本發明之一的氮化矽膜係以有機矽烷作為原料之一且經由電漿CVD法形成的氮化矽膜,在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比未達0.8。
根據此氮化矽膜,即使在有機矽烷作為原料氣體之一使用的情況下,由於矽原子含量與氮原子含量的總合設為1時的碳原子含量比及/或氫原子含量比較低,因此能得到例如較低的漏電流值及/或較高的耐潮濕性。從而,能實現具有氮化矽膜的各種裝置的可靠性的提升。
此外,本發明之一的氮化矽膜的製造方法,係包含利用電漿CVD法,將有機矽烷以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體進行電漿化而形成的步驟。
根據此氮化矽膜的製造方法,即使在有機矽烷作為原料氣體之一使用的情況下,能降低將矽原子含量與氮原子含量的總合設為1時的碳原子含量比及/或氫原子含量比。從而,由於能得到例如較低的漏電流值及/或較高的耐潮濕性,因此能實現提升具有氮化矽膜的各種裝置的可靠性。
此外,本發明之一的氮化矽膜的製造裝置,係包含將有機矽烷以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體導入至腔室內的氣體導入部,使有機矽烷與添加氣體在腔室內進行電漿化的電漿生成部。
根據此氮化矽膜的製造裝置,即使在有機矽烷作為原料氣體之一使用的情況下,能製造將矽原子含量與氮原子含量的總合設為1時的碳原子含量比及/或氫原子含量比降低的氮化矽膜。從而,得以實現例如具有較低的漏電流值及/或較高的耐潮濕性的氮化矽膜的製造。
〔發明效果〕 根據本發明之一的氮化矽膜,即使在有機矽烷作為原料氣體之一使用的情況下,亦能具有例如較低的漏電流值及/或較高的耐潮濕性的特性。 此外,根據本發明之一的氮化矽膜的製造方法,即使在有機矽烷作為原料氣體之一使用的情況下,在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,能降低碳原子含量比及/或氫原子含量比。 此外,根據本發明之一的氮化矽膜的製造裝置,即使在有機矽烷作為原料氣體之一使用的情況下,能製造出在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時的碳原子含量比及/或氫原子含量比降低的氮化矽膜。
接著,將根據附圖詳細地說明本發明之實施形態。另外,在此說明之際,所有的附圖之共通的部分皆附上相同的參照符號。再者,圖中本實施形態的元件未必按實際比例繪示。此外,以下各種氣體的流量係為標準狀態的流量。
〔第1實施形態〕 第1圖係為本實施形態的氮化矽膜的製造裝置100構造的部分截面圖。由於本圖為概略圖,因此省略了包含習知的氣體供給機構的一部分或排氣機構的一部分的周邊裝置。
將經由未圖示的基板搬送腔室所搬送的基板20係載置在設於腔室40的中央附近的平台41上。基板20與腔室40內係經由配置在腔室40的外壁的加熱器44a、44b加熱。腔室40係透過氣體流量調節器51與作為原料氣體之一的有機矽烷氣體的鋼瓶的有機矽烷鋼瓶50連接。本實施形態的有機矽烷氣體的代表例為四(二甲基胺基) 矽烷或三(二甲基胺基) 矽烷(tris(dimethylamino)silane)或雙(二乙基胺基) 矽烷(bis(diethylamino)silane)。
此外,與本實施形態的有機矽烷氣體一同導入至腔室40內的添加氣體的氫氣(H2 ) 的氣體鋼瓶54係透過氣體流量調節器55與腔室40連接。此外,替代前述的氫或是與氫一同導入至腔室40內為添加氣體的氨氣(NH3 )的氣體鋼瓶52係透過氣體流量調節器53與腔室40連接。腔室40係具有多孔氣體導入部45。
在本實施形態中
,自多孔氣體導入部45,將有機矽烷氣體以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體導入至腔室40內。自有機矽烷鋼瓶50到腔室40的配管係經由未圖示的加熱器加熱至例如約200℃。
多孔氣體導入部45係經由環狀的密封材S與腔室40電性絕緣。此外,平台41亦經由環狀的密封材S與腔室40電性絕緣。再者,為了將此腔室40內進行減壓,且將處理後生成的氣體進行排氣,因此腔室40係透過排氣流量調節器48與真空泵47連接。更進一步,自此腔室40的排氣流量係經由排氣流量調節器48進行變更。上述的氣體流量調節器51、53、55、加熱器44a、44b、電源46a、46b及排氣流量調節器48係由控制部49控制。
自有機矽烷鋼瓶50、氫氣的氣體鋼瓶54、氨氣的氣體鋼瓶52送出的氣體最終通過相同經路到達腔室40內。電源46a係藉由施加預定頻率的電力在多孔氣體導入部45,使得自多孔氣體導入部45吐出的上述氣體進行電漿化。生成的電漿係到達根據需要由電源46b施加預定頻率的電力的平台41上的基板20。在曝露於此電漿的基板20上,形成氮化矽膜。此外,本實施形態的施加電力的頻率並未特別限制。不論該頻率為低頻(例如,380 kHz)與高頻(例如,13.56MHz)的任一種,都能發揮本實施形態的至少一部分效果。
順帶一提的是,本實施形態的氮化矽膜的製造裝置100係包含控制部49,且該控制部49係與計算機60連接。計算機60係通過用於執行氮化矽膜的製造過程的氮化矽膜30的製造程式,而監視製造過程或進行整體性的控制。在本實施形態中,製造程式係保存在計算機60內的硬碟,或是插入設於計算機60的光碟機等的光碟等的習知記憶媒體,但是此製造程式的保存位置不以此為限。例如,此製造程式的一部分或全部亦可保存在設置於本實施形態中各過程的腔室的控制部49內。此外,透過區域網路或網際網路線路等的習知技術,亦能經由製造程式監視製造過程或進行控制。
〔氮化矽膜的製造方法〕 接著,對於氮化矽膜的製造方法進行說明。本實施形態的氮化矽膜的製造方法係包含利用電漿CVD法,並且藉由將有機矽烷以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體進行電漿化而形成的步驟。
在此,本實施形態中的氮化矽膜係以有機矽烷作為原料之一且經由電漿CVD法形成。如同上述,本實施形態的有機矽烷氣體的代表例為四(二甲基胺基) 矽烷、三(二甲基胺基) 矽烷或雙(二乙基胺基) 矽烷。
在本實施形態中,首先,在腔室40內的平台上載置有作為待處理體的基板20。接著,在腔室40內,已加熱的基板20係利用電漿CVD法而曝露在電漿化的有機矽烷與添加氣體。從而,在基板20上形成氮化矽膜。此外,本實施形態的添加氣體係為選自由氫氣與氨氣所組成之群組之至少一種。這些添加氣體係有助於生成用於將氮化矽膜中的碳原子或氫原子轉變成碳氫化物氣體或氫氣而能自氮化矽膜中去除的氫自由基。
此外,若是氮化矽膜中的碳原子及/或氫原子的存在較多時,可能會增加例如漏電流值及/或耐潮濕性惡化的可能性。因此,碳原子及/或氫原子殘留在氮化矽膜中亦較為不利。此外,例如四(二甲基胺基) 矽烷在其分子中具有甲基,但是根據本案發明者將四(二甲基胺基) 矽烷的鍵結及解離能量經由理論化學計算(Gaussian 09程式、B3LYP/cc-pVDZ)所算出的結果,由於碳及氫的鍵結(C-N鍵結)的部位最容易解離,因此碳原子及/或氫原子含在氮化矽膜中的可能性變低。然而,仍存在甲基進一步的解離使碳原子及/或氫原子含在氮化矽膜中的可能性。因此,根據本實施形態,由於上述各添加氣體的導入,能自氮化矽膜的形成過程中的反應系統中促進將碳原子及/或氫原子轉變成碳氫化物氣體或氫氣而去除,因而實現氮化矽膜特性的提升。
本實施形態具體的氮化矽膜的製造條件係如下所述。首先,供給有機矽烷氣體與添加氣體至腔室40,直到腔室40內的壓力達到預定壓力為止。腔室40內的壓力係自原料在電漿中分解且用於在基板上反應的腔室內的停留時間的觀點來看,較佳為設在10Pa以上500Pa以下。此外,自生產性及原料充分分解的觀點來看,有機矽烷氣體的流量較佳係在0.05sccm以上500sccm以下。此外,自用於將氮化矽膜中的碳原子或氫原子轉變成碳氫化物氣體或氫氣的生產性的觀點來看,包含有機矽烷氣體的碳氫分子與包含添加氣體的氫原子的混合比較佳為1:1~1:300的範圍。
此外,在本實施形態中,直到平台41的溫度到達預定溫度,將加熱器44b進行加熱。平台41的溫度上限並未特別限制,但是自高成本及生產性的觀點來看,較佳為將平台41的溫度設定在500℃以下。以同樣的觀點來看,更佳為將平台41的溫度設定在400℃以下。接著,在多孔氣體導入部45施加上述預定頻率的電力。
根據上述的過程進行氮化矽膜的製造。經由本實施形態的氮化矽膜的製造方法,在400℃以下製造的氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比未達0.8。由於能實現氮化矽膜中的碳原子含量比的降低,而使精確度較高,提升具有氮化矽膜的各種裝置的可靠性。此外,自前述的觀點來看,在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時的碳原子的含量比較佳為未達0.4,更佳為未達0.2。
此外,根據本實施形態的氮化矽膜,不僅是碳原子,亦能降低氫原子的含有率。具體而言,在藉由本實施形態的氮化矽膜的製造方法且在400℃以下製造的氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,氫原子的含量比未達0.9。由於能實現氮化矽膜中的氫原子含量比的降低,因而達到較高的精確度,提升具有該氮化矽膜的各種裝置的可靠性。此外,自前述的觀點來看,在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時的氫原子的含量比較佳為未達0.6,且更佳為未達0.5。
此外,關於本實施形態的氮化矽膜的漏電流值,當電場強度為1 MV/cm時,能實現未達1.0×10-6 A/cm2 的漏電流值。此外,由於電場強度為1 MV/cm時的漏電流值未達1.0×10-8 A/cm2 ,因此本實施形態的氮化矽膜作為絕緣層能發揮充分的效果。如後述,特別值得一提的是,採用四(二甲基胺基) 矽烷作為本實施形態的有機矽烷氣體的氮化矽膜的漏電流值,能實現抑制到未達2.6×10-9 A/cm2
〔實施例〕 以下,將舉出實施例與比較例進行說明,但是本發明不以這些例子為限。關於實施例與比較例,係透過以下的方法實施氮化矽膜的物理性質的測定及氮化矽膜的組成分析。
1. 氮化矽膜的元素含有率 透過拉塞福背向散射法 (Rutherford Backscattering Spectrometry, RBS分析法)及氫前向散射光谱 (Hydrogen Forward Scattering Spectrometry, HFS分析法)進行元素分析,以求得實施例與比較例中的氫化矽膜的碳原子(C)、氫原子(H)、矽原子(Si)、氮原子(N)的各原子組成百分比(at%)。
2.紅外吸收分析 進行氮化矽膜的紅外吸收光譜分析。此外,紅外吸收光譜係利用FTIR光譜儀(傅立葉轉換紅外光譜儀)進行測定。
3.漏電流值的測定 氮化矽膜的漏電流值係藉由使用汞探針的IV測定進行測定。
4.耐潮濕性評價 關於以下實施例的一部分,亦對於氮化矽膜的耐潮濕性進行調查。此外,耐潮濕性的評價係利用壓力鍋測試(Pressure Cooker Test, PCT)進行。並且,此PCT係在2 atm、121℃、6小時的條件下進行。在此評價中係由FTIR光譜分析計算出吸濕性。此外,在氮化矽膜進行吸濕的情況下,已知係由Si-N鍵結置換成Si-O鍵結。在此,以Si-O的吸收強度減去Si-N的吸收強度得到的數值為根據進行評價。因此,當數值為越小的值時,表示其耐潮濕性越高。
實施例與比較例的製造條件 (實施例1) 在實施例1中,根據第1實施形態的製造方法製造氮化矽膜。利用四(二甲基胺基) 矽烷作為原料之一的有機矽烷氣體,且利用氫氣作為添加氣體。腔室40內的壓力設定成93.3 Pa,並供給1 sccm的四(二甲基胺基) 矽烷及400 sccm的氫氣。在多孔氣體導入部45施加13.56 MHz、600W的電力。平台的溫度設為300℃。
(實施例2) 利用氫氣及氨氣作為原料氣體之一的添加氣體,且除了供給氫氣的流量設為300 sccm,氨氣的流量設為100 sccm為不同點之外,係在與實施例1同樣的條件下形成氮化矽膜。
(實施例3) 利用氨氣作為原料氣體之一的添加氣體,且除了以流量400sccm的條件供給為不同點之外,係在與實施例1同樣的條件下形成氮化矽膜。
(實施例4) 利用三(二甲基胺基) 矽烷作為原料氣體之一的有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例1同樣的條件下形成氮化矽膜。
(實施例5) 利用三(二甲基胺基) 矽烷作為有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例2同樣的條件下形成氮化矽膜。
(實施例6) 利用三(二甲基胺基) 矽烷作為有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例3同樣的條件下形成氮化矽膜。
(實施例7) 利用雙(二乙基胺基) 矽烷作為原料氣體之一的有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例1同樣的條件下形成氮化矽膜。
(實施例8) 利用雙(二乙基胺基) 矽烷作為原料氣體之一的有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例2同樣的條件下形成氮化矽膜。
(實施例9) 利用雙(二乙基胺基) 矽烷作為原料氣體之一的有機矽烷氣體,且除了以流量1sccm的條件供給為不同點之外,係在與實施例3同樣的條件下形成氮化矽膜。
(比較例1) 在比較例1中,利用氦氣作為無法供給氫自由基的稀釋氣體,且除了以流量400 sccm的條件供給為不同點之外,係在與實施例1同樣的條件下形成氮化矽膜。
(比較例2) 在比較例2中,利用氦氣作為無法供給氫自由基的稀釋氣體,且除了以流量400 sccm的條件供給為不同點之外,係在與實施例4同樣的條件下形成氮化矽膜。
(比較例3) 在比較例3中,利用氦氣作為無法供給氫自由基的稀釋氣體,且除了以流量400 sccm的條件供給為不同點之外,係在與實施例7同樣的條件下形成氮化矽膜。
5.評價結果 (1) 關於氮化矽膜中的碳原子及氫原子的各含量比 根據實施例1至9及比較例1至3中所求得的氮化矽膜的元素含有率,將矽原子含量與氮原子含量的總合設為1時,碳原子的含量比、氫原子含量比、氮化矽膜的電氣特性及耐潮濕性評估的結果如表1所示。
利用四(二甲基胺基) 矽烷、三(二甲基胺基) 矽烷、雙(二乙基胺基) 矽烷作為原料氣體之一的實施例1至實施例9的所有實施例中,以能更高精確度的發揮第1實施形態的的氮化矽膜所具有的效果的觀點來看,在氮化矽膜中,將矽原子含量與氮原子含量的總合設為1時,碳原子的含量比以未達0.8為較佳的態樣。特別值得一提的是,在以四(二甲基胺基) 矽烷或三(二甲基胺基) 矽烷作為本實施形態的有機矽烷氣體所使用的氮化矽膜中,當矽原子含量與氮原子含量的總合設為1時,碳原子的含量比為0.13以上0.19以下。
另一方面,比較例1至必較例3中,可以得知在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比為0.8以上。
(2)關於紅外吸收分析 將代表性的實施例1、實施例4以及實施例7與比較例1至3的吸光度的光譜分析如第2圖至第4圖所示。第2圖至第4圖所示的波數850cm-1 附近的波峰為Si-N的伸縮震動吸收,波數2180cm-1 附近的波峰為Si-H的伸縮震動吸收,波數2950cm-1 附近的波峰為C-H的伸縮震動吸收,波數3380cm-1 附近的波峰為N-H的伸縮震動吸收。相對於Si-N波峰強度的Si-H、C-H、N-H的波峰強度比如表2所示。實施例1、實施例4及實施例7相較於未使用添加氣體的比較例1至3,對於各碳原子及氫原子的吸收量降低。因此,能得知藉由使用添加氣體可減少碳原子含量。
(3)關於漏電流 關於電場強度為1MV/cm時的漏電流值,各實施例的漏電流值為未達1.0×10-6 A/cm2 。可知與比較例相比,由於矽原子含量與氮原子含量的總合設為1時的碳原子的含量比及/或氫原子含量比降低的結果,使漏電流降低。
(4)在關於耐潮濕性評價的各實施例中,其未達0.04。可知與比較例相比,由於矽原子含量與氮原子含量的總合設為1時的碳原子的含量比及/或氫原子含量比降低的結果,使耐潮濕性提升。
自以上各實施例的測定結果顯示,由於氮化矽膜中矽原子含量與氮原子含量的總合設為1時的碳原子的含量比及/或氫原子含量比顯著的降低,因而在漏電流值及耐潮濕性方面均能得到良好的效果。
因此,根據上述實施形態的氮化矽膜,由於在氮化矽膜中,當至少將矽原子含量與氮原子含量的總合設為1時的碳原子含量比較低,因而能實現漏電流的降低與較高耐濕性的特性。此外,根據上述實施形態的氮化矽膜,由於能降低在氮化矽膜中的矽原子含量與氮原子含量的總合設為1時的氫原子含量比,因此能抑制或防止氮化矽膜的膜性質隨時間變動。因此,由於能將實現了絕緣性或耐潮濕性的提升的上述實施形態的氮化矽膜作為電子裝置的絕緣膜、介電膜或鈍化膜使用,因此能有助於大幅提升各種裝置的可靠性及/或特性。
〔其他的實施形態〕 順帶一提的是,在上述實施形態中,雖將氫氣及/或氨氣作為添加氣體,但是亦能採用氘氣作為其他添加氣體以替代氫氣,或是將氫氣與氘氣一起使用也是可採用的一態樣。
此外,在上述實施形態中的電漿生成手段雖使用平行板型的電容耦合電漿(Capacitive-Coupled Plasma, CCP),但是本發明不以此為限。即使使用其他的高密度電漿,例如感應耦合電漿 (Inductively-Coupled Plasma, ICP)或電子迴旋共振電漿 (Electron-Cyclotron Resonance Plasma, ECR)亦能得到本發明的效果。
此外,上述實施形態的揭示係為了說明該實施形態而記載,而非用以限定本發明。再者,包含該實施型態的其他組合之存在於本發明範圍內的變形例亦包含於本發明之申請專利範圍中。
20‧‧‧基板
30‧‧‧氮化矽膜
40‧‧‧腔室
41‧‧‧平台
44a、44b‧‧‧加熱器
45‧‧‧多孔氣體導入部
46a、46b‧‧‧電源
47‧‧‧真空泵
48‧‧‧排氣流量調節器
49‧‧‧控制部
50、52、54‧‧‧鋼瓶
51、53、55‧‧‧氣體流量調節器
60‧‧‧計算機
100‧‧‧氮化矽膜的製造裝置
S‧‧‧密封材
第1圖係為本發明之一的實施形態中的氮化矽膜的製造裝置構造的部分截面圖。 第2圖係為實施例1及比較例1中的氮化矽膜的紅外吸收光譜的測定結果圖。 第3圖係為實施例4及比較例2中的氮化矽膜的紅外吸收光譜的測定結果圖。 第4圖係為實施例7及比較例3中的氮化矽膜的紅外吸收光譜的測定結果圖。
20‧‧‧基板
30‧‧‧氮化矽膜
40‧‧‧腔室
41‧‧‧平台
44a、44b‧‧‧加熱器
45‧‧‧多孔氣體導入部
46a、46b‧‧‧電源
47‧‧‧真空泵
48‧‧‧排氣流量調節器
49‧‧‧控制部
50、52、54‧‧‧鋼瓶
51、53、55‧‧‧氣體流量調節器
60‧‧‧計算機
100‧‧‧氮化矽膜的製造裝置
S‧‧‧密封材

Claims (13)

  1. 一種氮化矽膜,其係以一有機矽烷作為原料之一且經由電漿CVD法形成; 其中,在該氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比係未達0.8。
  2. 如申請專利範圍第1項所述之氮化矽膜,其中在該氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,氫原子的含量比係未達0.9。
  3. 如申請專利範圍第1或2項所述之氮化矽膜,其中當電場強度為1MV/cm時的漏電流值係未達1.0×10-6 A/cm2
  4. 如申請專利範圍第1至3項中的任一項所述之氮化矽膜,其中該有機矽烷為四(二甲基胺基) 矽烷、三(二甲基胺基) 矽烷、雙(二乙基胺基) 矽烷。
  5. 一種裝置,其係以申請專利範圍第1至4項中的任一項所述之氮化矽膜作為絕緣膜、介電膜或鈍化膜使用。
  6. 一種氮化矽膜之製造方法,其係利用電漿CVD法,藉由將一有機矽烷、以及選自由氫氣與氨氣所組成之群組之至少一種的添加氣體進行電漿化,以形成一氮化矽膜。
  7. 如申請專利範圍第6項所述之氮化矽膜之製造方法,其中在該氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比係未達0.8。
  8. 如申請專利範圍第6或7項所述之氮化矽膜之製造方法,其中在該氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,氫原子的含量比係未達0.9。
  9. 如申請專利範圍第6至8項中的任一項所述之氮化矽膜之製造方法,其中該有機矽烷為四(二甲基胺基) 矽烷、三(二甲基胺基) 矽烷、雙(二乙基胺基) 矽烷。
  10. 一種氮化矽膜之製造裝置,其包含: 一氣體導入部,其係將一有機矽烷以及選自由氫氣與氨氣所組成之群組之至少一種的一添加氣體導入至一腔室內;以及 一電漿生成部,係將該有機矽烷與該添加氣體在該腔室內進行電漿化。
  11. 如申請專利範圍第10項所述之氮化矽膜之製造裝置,其係在載置於該腔室內的一平台上的一待處理體上形成一氮化矽膜,在該氮化矽膜的矽原子含量與氮原子含量的總合設為1時,碳原子的含量比係未達0.8。
  12. 如申請專利範圍第10或11項所述之氮化矽膜之製造裝置,其係在載置於該腔室內的一平台上的一待處理體上形成一氮化矽膜,在該氮化矽膜中的矽原子含量與氮原子含量的總合設為1時,氫原子的含量比係未達0.9。
  13. 如申請專利範圍第10至12項中的任一項所述之氮化矽膜之製造裝置,其中該有機矽烷為四(二甲基胺基) 矽烷、三(二甲基胺基) 矽烷、雙(二乙基胺基) 矽烷。
TW103140587A 2013-11-28 2014-11-24 氮化矽膜及其製造方法與其製造裝置 TWI646600B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246798 2013-11-28
JP2013-246798 2013-11-28

Publications (2)

Publication Number Publication Date
TW201528375A true TW201528375A (zh) 2015-07-16
TWI646600B TWI646600B (zh) 2019-01-01

Family

ID=53198884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103140587A TWI646600B (zh) 2013-11-28 2014-11-24 氮化矽膜及其製造方法與其製造裝置

Country Status (7)

Country Link
US (1) US10280084B2 (zh)
EP (1) EP3076423A4 (zh)
JP (1) JPWO2015079938A1 (zh)
KR (1) KR102128589B1 (zh)
CN (1) CN105765705B (zh)
TW (1) TWI646600B (zh)
WO (1) WO2015079938A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559459B2 (en) 2016-03-11 2020-02-11 Taiyo Nippon Sanso Corporation Method for producing silicon nitride film and silicon nitride film
WO2018016131A1 (ja) * 2016-07-21 2018-01-25 株式会社日立国際電気 プラズマ生成装置、基板処理装置及び半導体装置の製造方法
US10950428B1 (en) * 2019-08-30 2021-03-16 Mattson Technology, Inc. Method for processing a workpiece

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637265B2 (ja) 1990-06-28 1997-08-06 株式会社東芝 窒化珪素膜の形成方法
JPH06132284A (ja) * 1992-10-22 1994-05-13 Kawasaki Steel Corp 半導体装置の保護膜形成方法
JP2641385B2 (ja) * 1993-09-24 1997-08-13 アプライド マテリアルズ インコーポレイテッド 膜形成方法
JP3488324B2 (ja) * 1995-09-08 2004-01-19 株式会社半導体エネルギー研究所 半導体装置の製造方法および半導体装置の製造装置
JP4119791B2 (ja) * 2003-05-30 2008-07-16 サムコ株式会社 カソードカップリング型プラズマcvd装置を用いた炭素含有シリコン系膜の製造方法
US20060045986A1 (en) 2004-08-30 2006-03-02 Hochberg Arthur K Silicon nitride from aminosilane using PECVD
US20060105106A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Tensile and compressive stressed materials for semiconductors
CN1940132A (zh) * 2005-09-30 2007-04-04 气体产品与化学公司 采用pecvd由氨基硅烷制备氮化硅
JP2007273094A (ja) * 2006-03-30 2007-10-18 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2011089186A (ja) 2009-10-26 2011-05-06 Tosoh Corp 炭窒化ケイ素含有膜、その製法、及びその用途

Also Published As

Publication number Publication date
KR102128589B1 (ko) 2020-06-30
CN105765705B (zh) 2019-09-03
JPWO2015079938A1 (ja) 2017-03-16
US10280084B2 (en) 2019-05-07
WO2015079938A1 (ja) 2015-06-04
EP3076423A4 (en) 2017-11-01
EP3076423A1 (en) 2016-10-05
KR20160091326A (ko) 2016-08-02
CN105765705A (zh) 2016-07-13
US20160251224A1 (en) 2016-09-01
TWI646600B (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US8479683B2 (en) Apparatus including a plasma chamber and controller including instructions for forming a boron nitride layer
TW201305380A (zh) 成膜方法
US9916974B2 (en) Amino-silyl amine compound and the manufacturing method of dielectric film containing Si—N bond by using atomic layer deposition
JP3701626B2 (ja) 半導体装置の製造方法
KR20170019668A (ko) 플라즈마 원자층 증착법을 이용한 실리콘 질화 박막의 제조방법
JP5614589B2 (ja) 絶縁膜材料を用いた成膜方法および絶縁膜
TWI646600B (zh) 氮化矽膜及其製造方法與其製造裝置
Ermakova et al. Study of Cu diffusion behavior in carbon rich SiCN: H films deposited from trimethylphenylsilane
Lee et al. Highly conformal carbon-doped SiCN films by plasma-enhanced chemical vapor deposition with enhanced barrier properties
JP6236709B2 (ja) シリコン窒化膜の製造方法及びシリコン窒化膜
TWI668740B (zh) 氮化膜成膜方法
Bae et al. Characterization on polymerized thin films for low-k insulator using PECVD
Choi et al. UV irradiation effects on the bonding structure and electrical properties of ultra low-k SiOC (–H) thin films for 45 nm technology node
US10559459B2 (en) Method for producing silicon nitride film and silicon nitride film
Yang et al. The effect of the CH4 plasma treatment on deposited SiOC (–H) films with low dielectric constant prepared by using TMS/O2 PECVD
Huang et al. The formation of a SiOx interfacial layer on low-k SiOCH materials fabricated in ULSI application
Hsiao et al. Etching characteristics of PECVD-prepared SiN films with CF 4/D 2 and CF 4/H 2 plasmas at different temperatures
US20240222115A1 (en) Method and system for depositing boron carbon nitride
TWI684668B (zh) 氮化矽膜之製造方法及氮化矽膜
WO2003023842A1 (fr) Procede et dispositif de fabrication d'un film a permittivite faible et appareil electronique faisant intervenir ce film
Tan et al. Low dielectric constant films deposited by PECVD using tetraethoxysilane and limonene as precursors
JP2002075980A (ja) 真空紫外光cvdによる低誘電体膜の製造方法
CN117364061A (zh) 一种碳氮化硅薄膜及其制备方法和应用