TW201526277A - 二硒化/二硫化富銅的銅銦(鎵)奈米粒子的製備 - Google Patents

二硒化/二硫化富銅的銅銦(鎵)奈米粒子的製備 Download PDF

Info

Publication number
TW201526277A
TW201526277A TW103139658A TW103139658A TW201526277A TW 201526277 A TW201526277 A TW 201526277A TW 103139658 A TW103139658 A TW 103139658A TW 103139658 A TW103139658 A TW 103139658A TW 201526277 A TW201526277 A TW 201526277A
Authority
TW
Taiwan
Prior art keywords
cigs
salt
temperature
nanoparticles
reaction solution
Prior art date
Application number
TW103139658A
Other languages
English (en)
Other versions
TWI595680B (zh
Inventor
Christopher Newman
Ombretta Masala
Paul Kirkham
Cary Allen
Stephen Whitelegg
Original Assignee
Nanoco Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoco Technologies Ltd filed Critical Nanoco Technologies Ltd
Publication of TW201526277A publication Critical patent/TW201526277A/zh
Application granted granted Critical
Publication of TWI595680B publication Critical patent/TWI595680B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種用於製備二硒化/二硫化銅銦鎵(CIGS)奈米粒子之方法利用一富銅化學計量。該等富銅CIGS奈米粒子覆蓋有有機硫族配位體,致使該等奈米粒子可在有機溶劑中處理。該等奈米粒子可沈積於一基板上且在一富硫族大氣中經熱處理以促進過量銅轉化為可充當促進液相燒結及因此大晶粒之生長之一燒結焊劑之硒化銅或硫化銅。如此產生之該等奈米粒子可被用於製造基於CIGS之光伏打裝置。

Description

二硒化/二硫化富銅的銅銦(鎵)奈米粒子的製備 [相關申請案之交叉參考]
本申請案主張2013年11月15日申請之美國臨時申請案第61/904,780號之權利。
關於聯邦贊助研究或開發之陳述:不適用
本發明大體上係關於用於光伏打電池之材料。更特定言之,本發明係關於一種用於製備二硒化/二硫化銅銦鎵(CIGS)奈米粒子之方法。本發明進一步係關於由基於奈米粒子之前驅物油墨(ink)形成之基於CIGS之裝置。
對於商業可行性,光伏打(PV)電池必須產生與化石燃料具有一競爭成本之電力。為滿足此等成本,PV電池必須包括低成本材料連同一廉價裝置製造程序且具有日光至電力之中度至高度轉化效率。為使一裝置建造方法成功,材料合成及裝置製造必須為可在商業上擴展的。
目前光伏打市場仍由基於矽晶圓之太陽能電池(第一代太陽能電池)主導。然而,此等太陽能電池中之作用層由具有自幾微米至幾百微米之一厚度範圍之矽晶圓製成,此係因為矽係一相對較差之光吸收劑。生產此等單晶晶圓係十分昂貴的,此係因為程序涉及製造及切割 高純度、單晶矽錠且亦為十分耗費的。
單晶矽晶圓之高成本已導致行業考慮使用更廉價材料製成太陽能電池且出於此原因,許多開發工作已集中於生產其中材料成本相較於矽顯著減少之高效薄膜太陽能電池。
諸如二硒化及二硫化銅銦鎵(Cu(In,Ga)(S,Se)2,在本文中被稱為「CIGS」)之半導體材料係強光吸收劑且具有與用於PV應用之最佳光譜範圍良好匹配之能隙。此外,由於此等材料具有強吸收係數,故太陽能電池中之作用層被要求為僅幾微米厚。
二硒化銅銦(CuInSe2)歸因於其獨特結構及電性質成為用於薄膜PV應用之最具潛力候選之一。二硒化銅銦(CuInSe2)之1.0eV能隙與太陽光譜良好匹配。CuInSe2太陽能電池可由CuInS2膜之硒化製成,此係因為在硒化程序期間,Se取代S且該取代產生體積膨脹,其減小空隙空間且可再生產地導致高品質、緻密CuInSe2吸收劑層。[Q.Guo、G.M.Ford、H.W.Hillhouse及R.Agrawal、Nano Lett.,2009,9,3060]假定使用Se完全取代S,則所得晶格體積膨脹係~~14.6%,此可基於黃銅礦(正方的)CuInS2(a=5.52Å,c=11.12Å)及CuInSe2(a=5.78Å,c=11.62Å)之晶格參數而計算。此意謂可藉由在一富硒大氣中退火CuInS2奈米晶膜而將該膜容易地轉化為一主要硒化材料。因此,CuInS2係用於生產CuInSe2或CuIn(S,Se)2吸收劑層之一具潛力替代前驅物。
用於吸收劑材料之理論最佳能隙在1.2eV至1.4eV之區域中。藉由將鎵併入於CuIn(S,Se)2奈米粒子中,能隙可被操縱,使得繼硒化後,使用一最佳能隙形成一CuxInyGazSaSeb吸收劑層以用於太陽能吸收。
習知地,已使用昂貴氣相或蒸鍍技術(例如,金屬有機化學氣相沈積(MO-CVD)、射頻(RF)濺鍍及閃蒸)將CIGS膜沈積於一基板上。 雖然此等技術實現高品質膜,但按比例調整至較大面積沈積及較高程序處理量係困難且昂貴的。
使用CIGS奈米粒子之主要優點之一係其等可分散於一介質中以形成一油墨,該油墨可按一類似報紙之程序中之油墨之一類似方式印刷於一基板上。可使用低成本印刷技術(諸如旋轉塗佈、狹縫塗佈及刮墨刀片)沈積奈米粒子油墨或糊狀物。可印刷太陽能電池可替代太陽能電池製造之標準習知真空沈積方法,此係因為印刷程序(尤其在一捲輪式薄膜輸送(roll-to-roll)處理框架中實施時)實現一更高處理量。
目前為止開發之合成方法提供對粒子形態之有限控制,且粒子溶解度通常係差的,此使油墨配方變得困難。
挑戰係生產整體小且具有一低熔點、窄大小分佈且併入一揮發性覆蓋劑之奈米粒子,使得奈米粒子可分散於一介質中且可在膜烘烤程序期間容易地消除覆蓋劑。另一挑戰係避免包含來自合成前驅物或有機配位體之可危害最終裝置之總效率之雜質。公開為第2009/0139574號及第2014/0249324號之申請人之同在申請中之美國專利申請案描述覆蓋有有機硫族配位體之CIGS奈米粒子之可按比例合成以用作用於形成光伏打裝置之前驅物,且該等案之全部內容以引用的方式併入本文中。
相關聯於基於奈米粒子之CIGS沈積方法之挑戰之一者係在熱處理之後達成大晶粒。由於晶粒邊界充當電子-電洞復合中心,故可期望近似膜厚度之晶粒大小。
諸如鈉[R.Kimura、T.Mouri、N.Takuhai、T.Nakada、S.Niki、A.Yamada、P.Fons、T.Matsuzawa、K.Takahashi及A.Kunioka,Jpn.J.Appl.Phys.,1999,38,L899]及銻[M.Yuan、D.B.Mitzi、W.Liu、A.J.Kellock、S.J.Chey及V.R.Deline、Chem.Mater.,2010,22, 285]之基本摻雜劑已經報道為增強CIGS膜之晶粒大小及因此所得裝置之功率轉換效率(PCE)。
在另一方法中,二元銅硫屬化合物被添加至CIGS前驅物以促進晶粒生長。具有低於CIGS之一熔點之銅硫屬化合物可充當一燒結焊劑,以在極低於CIGS層之熔點之一溫度下促進CIGS層之晶粒生長。據說,在燒結溫度下,燒結焊劑係使CIGS晶粒變濕之一液體,使得晶粒溶解於液體中。據信此促進粒子鍵合,導致較高緻密化速率及較低燒結溫度,且被稱為「液相燒結」。
Casteleyn等人研究Cu、CuSe、Cu2Se及Se添加劑對CuInSe2之影響。[M.Casteleyn、M.Burgelman、B.Depuydt、A.Niemegeers及I.Clemminck,IEEE First World Conference on Photovoltaic Energy Conversion,1994,1,230]。經發現,在一富硒大氣中,富銅相形成CuSe,其充當高於富銅相之熔點(523℃)之一焊劑以促進液相燒結且因此促進晶粒生長。
Kim等人將一濺鍍Cu2Se層施加至一濺鍍Cu-In-Ga膜之表面上,該濺鍍Cu-In-Ga膜隨後經硒化以形成一CIGS層。[M.S.Kim、R.B.V.Chalapathy、K.H.Yoon及B.T.Ahn,J.Electrochem Soc.,2010,157,B154]發現在總Cu/(In+Ga)比率大於0.92時Cu2Se促進晶粒生長。
在硫化之前已將Cu2S粉末(熔點:435℃)添加至Cu2In2O5奈米粒子以促進轉化為黃銅礦CuInS2且促進晶粒生長。[C.-Y.Su、D.K.Mishra、C.-Y.Chiu及J.-M.Ting、Surf.Coat.Technol.,2013,231,517]
申請人之同在申請中之美國專利申請案第61/847,639號描述硒化銅奈米粒子之製備,硒化銅奈米粒子可被添加至CIGS材料以作為一焊劑以促進晶粒生長。奈米粒子之熔點低於對應塊狀硒化銅相之熔點,使得硒化銅奈米粒子能夠在一降低溫度下發生液相燒結。
在使用二元銅硫族前驅物促進晶粒生長之先前技術中,採用一預製銅硫屬化合物。因此,需要在原地形成銅硫族相之一方法,以減少相關聯於使用大晶粒形成一CIGS膜之處理要求。此處,描述一方法以使用一基於奈米粒子之沈積方法增強CIGS膜之晶粒大小,其中CIGS奈米粒子係富銅。可在一富硫族大氣中處理奈米粒子以促進過量銅轉化為硒化銅或硫化銅,硒化銅或硫化銅充當促進液相燒結及因此大晶粒之生長之一燒結焊劑。可藉由奈米粒子化學計量及後退火處理步驟(諸如KCN蝕刻)二者控制所得CIGS吸收劑層之化學計量。
在特定實施例中,本發明包括用於合成富銅CIGS奈米粒子之一方法。用有機硫族配位體覆蓋該等富銅CIGS奈米粒子,致使該等奈米粒子可在有機溶劑中處理。該等奈米粒子可沈積於一基板上且在一富硫族大氣中經熱處理,以促進過量銅轉化為硒化銅或硫化銅,硒化銅或硫化銅可充當促進液相燒結及因此大晶粒之生長之一燒結焊劑。可藉由奈米粒子化學計量及後退火處理步驟(諸如KCN蝕刻)二者控制該所得CIGS吸收劑層之化學計量,可採用該等步驟選擇性地消除過量二元銅硫族相。隨後可將該CIGS吸收劑層併入於一光伏打裝置中。
100‧‧‧流程圖
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
110‧‧‧步驟
112‧‧‧步驟
200‧‧‧流程圖
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
208‧‧‧步驟
210‧‧‧步驟
212‧‧‧步驟
214‧‧‧步驟
216‧‧‧步驟
300‧‧‧流程圖
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
308‧‧‧步驟
309‧‧‧步驟
310‧‧‧步驟
312‧‧‧步驟
314‧‧‧步驟
316‧‧‧步驟
318‧‧‧步驟
401‧‧‧CIGS膜之X射線繞射圖案
402‧‧‧CIGS膜之X射線繞射圖案
501‧‧‧CIGS膜之掃描電子顯微鏡影像
圖1係展示根據本發明之特定實施例之製備富銅CIGS奈米粒子之一第一方法之一流程圖。
圖2係展示根據本發明之特定實施例之製備富銅CIGS奈米粒子之一第二方法之一流程圖。
圖3係展示根據本發明之特定實施例之使用富銅CIGS奈米粒子製備一光伏打裝置之一方法之一流程圖。
圖4比較使用根據實例之富銅CIGS奈米粒子製備之一CIGS膜之X 射線繞射圖案401與使用近化學計量CIGS奈米粒子製備之一CIGS膜之X射線繞射圖案402。
圖5係由根據實例製備之富銅CIGS奈米粒子製備之一CIGS膜,501,之一掃描電子顯微鏡影像。
此處,描述用於製備CIGS奈米粒子之一方法。亦描述處理奈米粒子以形成一油墨,油墨可經沈積以形成一基於CIGS之膜,且隨後處理以形成一PV裝置。在裝置處理期間,奈米粒子中之過量銅可與一硫族源反應以形成充當促進CIGS層之液相燒結之一焊劑之二元硫屬化物。術語「CIGS」在本文中應被理解為描述形式為CuxInyGazSaSeb之任何材料。通常,xy+z1且a+b2,但該材料不需為化學計量的。舉例而言,在一些實施例中,描述CIGS奈米粒子,其中x>y+z。
在裝置處理期間,奈米粒子中之過量銅與一硫族源反應以在原地形成可充當促進大晶粒生長之一燒結焊劑之一或多個二元硫屬化物相。可藉由奈米粒子(例如,來自有機硫族覆蓋配位體)及/或藉由一外部硫族化程序(諸如硒化)提供與過量銅反應之硫族源。
在一第一實施例中,製備形式為CuxInyGazSa之奈米粒子,其中x>y+z且a2,且包含其等之摻雜衍生物。奈米粒子覆蓋有一或多個有機硫醇配位體,例如,1-辛硫醇。
在一第二實施例中,製備形式為CuxInyGazSeb之奈米粒子,其中x>y+z且b2,且包含其等之摻雜衍生物。奈米粒子覆蓋有一或多個有機硒醇配位體,例如,1-辛烷硒醇。
在一第三實施例中,製備形式為CuxInyGazSaSeb之奈米粒子,其中x>y+z且a+b2,且包含其等之摻雜衍生物。奈米粒子覆蓋有一或多個有機硫醇及/或有機硒醇配位體,例如,1-辛硫醇、1-辛烷硒醇等 等。
根據本發明之特定實施例,製備富銅CIGS奈米粒子之一第一方法如下(包含圖1之流程圖100之參考數字):
a)在一第一溫度下在一溶劑中加熱Cu鹽、In鹽及/或Ga鹽(102)。
b)添加一有機硫族前驅物(104)。
c)將反應溶液加熱至一第二溫度且攪拌持續一第一時間間隔(106)。
d)視情況,將反應溶液冷卻至一第三溫度且攪拌持續一第二時間間隔(108)。
e)將反應溶液冷卻至室溫(110)。
f)隔離奈米粒子(112)。
Cu鹽、In鹽及Ga鹽可包含(但不限於)醋酸鹽、乙醯丙酮化物及鹵化物,例如,氯化物、溴化物、碘化物。使用鹽之相對比率控制所得奈米粒子之化學計量。熟習此項技術者將明白,待被添加之前驅物鹽之莫耳比取決於所要奈米粒子化學計量及前驅物之相對反應性二者。在特定較佳實施例中,Cu鹽對In鹽及Ga鹽之組合總量之莫耳比介於約1:0.65與約1:0.85之間。
Cu鹽、In鹽及Ga鹽組合於一溶劑中。在一些實施例中,該溶劑係一非配位溶劑。實例包含(但不限於)1-十八烯、二芐醚、二苯醚及熱傳流體(例如,Therminol® 66)。
在溶劑中將Cu鹽、In鹽及Ga鹽加熱至一第一溫度。在一些實施例中,第一溫度介於室溫與150℃之間,例如100℃。
在第一溫度下將一有機硫族前驅物添加至反應混合物。有機硫族前驅物充當一硫族源及覆蓋奈米粒子表面以提供溶解度之一配位體二者。在一些實施例中,有機硫族前驅物可具有低於約250℃之一沸點,以促進在裝置處理期間從奈米粒子之表面移除有機硫族前驅物。 此係所期望的,因為在處理之前仍在CIGS層中之殘碳可對裝置效能具有一有害效應。合適有機硫族前驅物可呈R-X-H之形式,其中R係一烷基或芳基且X係S或Se。實例包含(但不限於)1-辛硫醇、1-辛烷硒醇及1-十二烷硒醇。
繼添加有機硫族前驅物後,反應溶液經加熱至一第二溫度且攪拌持續一第一時間間隔。在一些實施例中,第二溫度高於第一溫度。舉例而言,第二溫度可屬於160℃至240℃之範圍,更特定言之約200℃。在特定實施例中,第一時間間隔之範圍係自30分鐘至10小時,更特定言之約2小時至6小時。
視情況,反應溶液經冷卻至低於第二溫度之一第三溫度且退火反應溶液持續一第二時間間隔,例如,約4小時至24小時,更特定言之約18小時。
在冷卻至室溫之後,奈米粒子與反應溶液隔離。可藉由先前技術中已知之任何方法隔離奈米粒子,諸如添加一或多個溶劑以從溶液沉澱奈米粒子,隨後經由離心或過濾收集。熟習此項技術者將明白,對隔離奈米粒子之溶劑之選擇取決於其中進行奈米粒子合成之溶劑之化學性質。
根據特定實施例,製備富銅CIGS奈米粒子之一第二方法如下(含有圖2之流程圖200之參考數字):
a)將Cu鹽、In鹽及/或Ga鹽混合於一溶劑中(202)。
b)添加一有機硫族前驅物(204)。
c)將反應溶液加熱至一第一溫度且攪拌持續一第一時間間隔以蒸餾任何揮發性副產物(206)。
d)將反應溶液加熱至一第二溫度且添加一第二硫族前驅物超過一第二時間間隔(208)。
e)在第二溫度下攪拌反應溶液持續一第三時間間隔(210)。
f)將反應溶液冷卻至一第三溫度且攪拌持續一第四時間間隔(212)。
g)將反應溶液冷卻至室溫(214)。
h)隔離奈米粒子(216)。
Cu鹽、In鹽及Ga鹽可包含(但不限於)醋酸鹽、乙醯丙酮化物及鹵化物,例如,氯化物、溴化物、碘化物。使用鹽之相對比率控制所得奈米粒子之化學計量。熟習此項技術者將明白,待被添加之前驅物鹽之莫耳比取決於所要奈米粒子化學計量及前驅物之相對反應性二者。
Cu鹽、In鹽及Ga鹽組合於一溶劑中。在一些實施例中,該溶劑係一非配位溶劑。實例包含(但不限於)1-十八烯、二芐醚、二苯醚及諸如Therminol® 66之熱傳流體(Solutia,Inc.,St.Louis,Missouri 63141)。
將一有機硫族前驅物添加至反應混合物。有機硫族前驅物充當一硫族源及覆蓋奈米粒子表面以提供溶解度之一配位體二者。在一些實施例中,有機硫族前驅物可具有低於約250℃之一沸點,以促進其在裝置處理期間從奈米粒子之表面移除有機硫族前驅物。此係所期望的,因為在處理之前仍在CIGS層中之殘碳可對裝置效能具有一有害效應。合適有機硫族前驅物可呈R-X-H之形式,其中R係一烷基或芳基且X係S或Se。實例包含(但不限於)1-辛硫醇、1-辛烷硒醇及1-十二烷硒醇。
繼添加有機硫族前驅物後,反應溶液經加熱至一第一溫度且攪拌持續一第一時間間隔以蒸餾任何揮發性副產物。熟習此項技術者將認識到,第一溫度取決於金屬前驅物鹽之化學性質及因此形成之副產物之沸點。舉例而言,一有機硫族前驅物可與金屬醋酸鹽反應以形成作為一副產物之醋酸;可在高於醋酸沸點(117℃至118℃)之一第一溫度下蒸餾醋酸。第一時間間隔應足夠發生所有揮發性副產物之蒸餾。 在一些實施例中,第一時間間隔係30分鐘。
隨後將反應溶液加熱至一第二溫度,在該第二溫度下添加一第二硫族前驅物超過一第二時間間隔。在特定實施例中,第二溫度處於120℃至160℃之溫度範圍中,例如,140℃。在特定實施例中,第二硫族前驅物係溶解於一配位溶劑中之一基本硫族元素(elemental chalcogen),諸如(但不限於)三辛基硫化物(TOP/S)或三辛基硒化物(TOP/Se)。舉例而言,可以每分鐘0.5mmol至1mol之一速率逐滴添加第二硫族前驅物,更特定言之約每分鐘1mmol至10mmol,例如約每分鐘1.4mmol。
在第二溫度下攪拌反應溶液持續一第三時間間隔。在一些實施例中,第三時間間隔處於30分鐘至2小時之範圍中,例如,約1小時。
反應溶液經冷卻至低於第二溫度之一第三溫度,接著攪拌持續一第四時間間隔。在一些實施例中,第三溫度處於80℃至120℃之範圍中,例如,約90℃。在特定實施例中,第四時間間隔在3小時至6小時之間,例如,4½小時。
在冷卻至室溫之後,奈米粒子與反應溶液隔離。可藉由先前技術中已知之任何方法隔離奈米粒子,諸如添加一或多個溶劑以從溶液沉澱奈米粒子,隨後經由離心或過濾收集。熟習此項技術者將明白,對隔離奈米粒子之溶劑之選擇取決於其中進行奈米粒子合成之溶劑之化學性質。
根據特定實施例,由富銅奈米粒子製備一CIGS裝置,如下(含有圖3之流程圖300之參考數字):
a)將奈米粒子溶解/分散於一溶劑中以形成一油墨A(302)。
b)將油墨A沈積於一基板上以形成一膜(304)。
c)在一惰性大氣中退火(306)。
d)重複步驟b)及c)直至退火膜達到所要厚度(309)。
e)若需要,執行進一步膜處理步驟,例如,退火、燒結、硒化、KCN蝕刻(308)。
f)沈積一n型半導體層以形成一接面(310)。
g)沈積固有ZnO以形成一延伸空乏層(312)。
h)沈積一窗層(314)。
i)沈積一金屬格柵(316)。
j)囊封該裝置(318)。
在特定實施例中,奈米粒子係形式為CuInwGaxSeySz之三元、四元或五元硫屬化物,其中0w,x<1,w+x<1,y、z0且y+z2,包含其等之摻雜物種、合金及組合,但不限於此且可包含其等之非化學計量衍生物。在特定實施例中,0.7w+x<1,例如,0.7w+x0.8。奈米粒子必須為可溶解或分散於溶劑中的。
溶劑必須能夠溶解或分散奈米粒子。熟習此項技術者將明白,對溶劑之選擇取決於奈米粒子之表面塗層,諸如覆蓋配位體之化學性質。較佳地,溶劑係一有機溶劑。一特定實例係甲苯,但可使用熟習此項技術者所知之其他溶劑,包含(但不限於)烷烴(例如,已烷)、氯化溶劑(例如,二氯甲烷、三氯甲烷等等)、酮(例如,異佛酮)、醚(例如,苯甲醚)、萜(例如,α-萜品烯、檸檬烯等等)等等。
視情況,舉例而言,其他添加劑可併入於奈米粒子油墨中以修改諸如流變之塗層性質。在一些實施例中,按總油墨配方之2重量百分比至5重量百分比之間的一濃度添加十八烯酸(oleic acid,或稱「油酸」)。
任何合適方法可用於沈積奈米粒子油墨A。實例包含(但不限於)旋轉塗佈、狹縫塗佈、刮墨刀片及噴墨印刷。
奈米粒子油墨A可沈積於任何合適基板上。實例包含(但不限於)氧化銦錫(ITO)、塗佈鉬之原玻璃及塗佈鉬之鈉鈣玻璃(SLG)。
在一些實施例中,在沈積油墨A之前,一或多個陽極緩衝層沈積於基板上且經處理。舉例而言,陽極緩衝層可由具有與用於配製油墨A之奈米粒子之化學計量不同之一化學計量之CIGS奈米粒子組成。在特定實施例中,陽極緩衝層係富銦的,即,Cu/In比率<1。在特定實施例中,各陽極緩衝層之厚度100nm,例如,介於50nm至70nm之間。
在特定實施例中,重複步驟b)及c)直至CIGS膜厚度大於或等於1μm。舉例而言,膜厚度可處於1.0μm至2.0μm之範圍中。
熟習此項技術者將明白,繼沈積各CIGS層後之退火溫度及時間將取決於溶劑之性質及油墨配方之有機組分。在特定實施例中,在250℃至300℃(例如,約270℃)之區域中之一第一較低溫度下退火該膜持續3分鐘至7分鐘之間(例如約5分鐘),接著隨後在400℃至430℃(例如,約415℃)之區域中之一第二較高溫度下退火該膜持續3分鐘至7分鐘之間(例如,約5分鐘)。
在一些實施例中,膜處理步驟可包括一硫化程序,在硫化程序期間在一富硫大氣中退火CIGS膜。可使用任何合適硫源提供富硫大氣,諸如可被蒸發之一固態或液態硫化合物或一氣態硫源。在一特定實施例中,藉由以在諸如(但不限於)N2之一惰性載體氣體中之10%(例如,2%至5%)之一濃度之H2S氣體提供富硫大氣。
膜處理步驟包括一硒化程序,在硒化程序期間在一富矽大氣中退火CIGS膜。硒化程序可促進CIGS奈米粒子中之過量銅轉化為硒化銅,從而形成一焊劑以促進液相燒結及大晶粒之生長。當使用Cu(In,Ga)S2奈米粒子時,硒化程序亦可發生一CuInS2層至CuInSe2之部分或完全轉化。可使用任何合適硒源提供富硒大氣,諸如可被蒸發之一固態或液態硒化合物或一氣態硒源。在一特定實施例中,藉由以在諸如(但不限於)N2之一惰性載體氣體中之10%(例如,2%至5%)之 一濃度之H2Se氣體提供富硒大氣。
膜處理步驟可進一步包括一KCN蝕刻。在KCN溶液中蝕刻CIGS膜可用於從CIGS吸收劑層選擇性地移除過量硒化銅及/或硫化銅相。蝕刻程序可在5%至15% KCN溶液(例如,10% KCN溶液)中執行持續30秒至5分鐘之一時間週期(例如,3分鐘)。
可沈積任何合適n型半導體層。實例包含(但不限於)CdS、Zn(O,S)、ZnO及ZnS。
在一些實施例中,窗層由氧化鋅鋁(AZO)構成,但可使用熟習此項技術者所知之其他透明、傳導氧化物,諸如氧化銦錫(ITO)及摻雜硼之氧化鋅(BZO)。
實例
實例1:覆蓋有1-辛硫醇之富銅CuInS 2 奈米粒子(Cu:In=1:0.75)之合成
In(OAc)3(32.057g,120.0mmol)、Cu(OAc)(19.157g,156.3mmol)及240ml之二苄醚混合於配備有一李比希冷凝器及收集器之一1L圓底燒瓶中。在100℃使混合物脫氣90分鐘,接著使用N2回填。添加脫氣1-辛硫醇(192ml,1.10mol)且將混合物加熱至200℃且攪拌2小時,隨後冷卻至160℃且仍攪拌約18小時。混合物被冷卻至室溫。
奈米粒子經由溶劑之添加隨後離心而隔離於空氣中。
藉由CPS圓盤離心機分析(CPS Instruments Inc.,Prairieville,Pennsylvania)作出之奈米粒子特性化顯示近似3nm之一粒子大小。
實例2:覆蓋有1-辛硫醇之富銅CuInS 2 奈米粒子(Cu:In=1:0.84)之合成
In(OAc)3(3.995g,13.7mmol)、Cu(OAc)(2.422g,19.8mmol)混合於配備有一李比希冷凝器及收集器之一100ml圓底燒瓶中,使用N2淨化。添加30ml之脫氣二苄醚,接著將混合物加熱至100℃。添加 脫氣1-辛硫醇(24ml,138mmol)且將混合物加熱至200℃且攪拌6小時,隨後被允許冷卻至室溫。
奈米粒子經由溶劑之添加隨後離心而隔離於空氣中。
實例3:覆蓋有1-辛烷硒醇之富銅CuInSe 2 奈米粒子(Cu:In=1:0.84)之合成
在配備有一李比希冷凝器及收集器之一圓底燒瓶中在約110℃使15ml之1-十八烯脫氣45分鐘且接著在N2下冷卻至室溫。添加Cu(OAc)(0.79g,6.4mmol)及In(OAc)3(1.54g,5.3mmol),接著在140℃進一步使混合物脫氣10分鐘。混合物被冷卻至室溫。添加1-辛烷硒醇(12ml,68mmol)且加熱溶液。醋酸在120℃開始蒸餾,且使用一注射器從收集器移除。在135℃至145℃之間加熱溶液30分鐘以允許醋酸之剩餘物蒸餾,接著添加三辛基硒化物(1.71M,8ml,14mmol)超過10分鐘。在140℃攪拌溶液1小時。將溶液冷卻至90℃,接著退火4½小時,隨後冷卻至室溫。
奈米粒子經由溶劑之添加隨後離心而隔離於空氣中。
實例4:由富銅CuInS 2 奈米粒子製備之薄膜
覆蓋有1-辛硫醇之富銅CuInS2奈米粒子(Cu:In=1:0.76)溶解於甲苯中以形成一200mg/ml之溶液B。
藉由旋轉塗佈使用3000rpm之一旋轉速度將CuInS2之一陽極緩衝層沈積於塗佈鉬之SLG基板上。陽極緩衝層在270℃退火5分鐘且在415℃退火5分鐘以移除配位體,從而產生~50nm之一層厚度。
藉由旋轉塗佈使用1500rpm之一旋轉速度將油墨B沈積於陽極緩衝層之頂部上。該膜在270℃退火5分鐘,接著在415℃退火5分鐘以移除油墨配方之有機組分。進一步重複該程序四次直至膜厚度大於1μm。
在500℃使用N2中2.18體積百分比之H2Se在一富硒大氣下退火該 等膜60分鐘。
圖4比較膜之X射線繞射(XRD)圖案401與根據使用具有1:0.95之一Cu:In比率之近化學計量CuInS2奈米粒子之相同程序製備之一膜402。對(112)反射之半高全寬(FWHM)之分析展示:相較於使用近化學計量奈米粒子(2θ=0.36°)製備之膜,使用富銅奈米粒子(2θ=0.17°)製備之膜具有一顯著較窄峰寬。由於峰值FWHM與粒子大小成反比,故結果顯示富銅奈米粒子促進晶粒生長。
實例5:由具有一富銦緩衝層之富銅CuInS 2 奈米粒子製備之薄膜
覆蓋有1-辛硫醇之富銅CuInS2奈米粒子(Cu:In=1:0.85)溶解於甲苯中以形成一油墨C。
藉由旋轉塗佈使用3000rpm之一旋轉速度將覆蓋有1-正十二硫醇之富銦Cu(In,Ga)S2奈米粒子(Cu:In:Ga=1:1.13:0.16)之一緩衝層沈積於塗佈Mo之SLG基板上。陽極緩衝層在270℃退火5分鐘且在415℃退火5分鐘以移除配位體。再一次重複該程序。
藉由旋轉塗佈使用3000rpm之一旋轉速度將油墨C沈積於緩衝層之頂部上。該膜在270℃退火5分鐘,接著在415℃退火5分鐘以移除油墨配方之有機組分。將該程序重複七次,以便達成大於1μm之一總膜厚度。
在500℃使用N2中2.18體積百分比之H2Se在一富硒大氣下退火該等膜60分鐘。
圖5展示該膜之一掃描電子顯微鏡(SEM)影像。舉例而言,CIGS層展示具有近似1.1μm之晶粒大小之全結晶。
儘管已展示及描述本發明之特定實施例,但其等不旨在限制此專利涵蓋之內容。熟習此項技術者將理解,可在不脫離藉由隨附申請專利範圍字面地且等效地涵蓋之本發明之範疇之情況下做出各種改變及修改。
100‧‧‧流程圖
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
110‧‧‧步驟
112‧‧‧步驟

Claims (62)

  1. 一種用於製備二硒化/二硫化銅銦鎵(CIGS)奈米粒子之方法,其包括:在一第一溫度下在一溶劑中加熱一銅鹽連同選自由銦鹽及鎵鹽之群組之至少一個鹽以產生一反應溶液;將一有機硫族前驅物添加至該反應溶液;將該反應溶液加熱至一第二溫度同時攪拌持續一第一時間間隔;將該反應溶液冷卻至室溫;及將奈米粒子與該反應溶液隔離。
  2. 如請求項1之方法,其中Cu鹽對In鹽及Ga鹽之組合總量之莫耳比介於約1:0.65與約1:0.85之間。
  3. 如請求項1之方法,其進一步包括:在將該反應溶液加熱至一第二溫度之後,將該反應溶液冷卻至一第三溫度且攪拌持續一第二時間間隔。
  4. 如請求項1之方法,其中由銅鹽、銦鹽及鎵鹽構成之該群組包括選自由醋酸鹽、乙醯丙酮化物、氯化物、溴化物及碘化物構成之群組之鹽。
  5. 如請求項1之方法,其中該溶劑係一非配位溶劑。
  6. 如請求項5之方法,其中該非配位溶劑選自由1-十八烯、二苄醚、二苯醚及包括氫化三聯苯之熱傳流體構成之群組。
  7. 如請求項1之方法,其中該第一溫度介於室溫與約100℃之間。
  8. 如請求項1之方法,其中該有機硫族前驅物呈R-X-H之形式,其中R係一烷基或芳基,且X係硫或硒。
  9. 如請求項1之方法,其中該有機硫族前驅物選自由1-辛硫醇、1- 辛烷硒醇及1-十二烷硒醇構成之群組。
  10. 如請求項1之方法,其中該第二溫度高於該第一溫度。
  11. 如請求項10之方法,其中第二溫度介於約160℃與約240℃之間。
  12. 如請求項1之方法,其進一步包括在低於該第二溫度之一溫度下退火該反應溶液持續介於約4小時與約24小時之間的一週期。
  13. 如請求項1之方法,其中隔離該等奈米粒子包括:藉由添加至少一個其他溶劑而從溶液沉澱該等奈米粒子。
  14. 一種藉由程序製備之CIGS奈米粒子,該程序包括以下步驟:在一第一溫度下在一溶劑中加熱一銅鹽連同選自由銦鹽及鎵鹽之群組之至少一個鹽以產生一反應溶液;將一有機硫族前驅物添加至該反應溶液;將該反應溶液加熱至一第二溫度同時攪拌持續一第一時間間隔;將該反應溶液冷卻至室溫;及,將奈米粒子與該反應溶液隔離。
  15. 如請求項14之CIGS奈米粒子,其中Cu鹽對In鹽及Ga鹽之組合總量之莫耳比介於約1:0.65與約1:0.85之間。
  16. 如請求項14之CIGS奈米粒子,其中該製備程序進一步包括:在將該反應溶液加熱至一第二溫度之後,將該反應溶液冷卻至一第三溫度且攪拌持續一第二時間間隔。
  17. 一種用於製備CIGS奈米粒子之方法,其包括:在一第一溫度下在一溶劑中混合選自由銅鹽、銦鹽及鎵鹽構成之群組之鹽以產生一反應溶液;將一有機硫族前驅物添加至該反應溶液;將該反應溶液加熱至一第一溫度同時攪拌持續一第一時間間隔; 將該反應溶液加熱至一第二溫度且添加一第二硫族前驅物超過一第二時間間隔;在該第二溫度下攪拌該反應溶液持續一第三時間間隔;將該反應溶液冷卻至一第三溫度且攪拌持續一第四時間間隔;將該反應溶液冷卻至室溫;及,隔離該等奈米粒子。
  18. 如請求項17之方法,其中Cu鹽對In鹽及Ga鹽之組合總量之莫耳比介於約1:0.65與約1:0.85之間。
  19. 如請求項17之方法,其中由銅鹽、銦鹽及鎵鹽構成之該群組包括選自由醋酸鹽、乙醯丙酮化物、氯化物、溴化物及碘化物構成之群組之鹽。
  20. 如請求項17之方法,其中該溶劑係一非配位溶劑。
  21. 如請求項20之方法,其中該非配位溶劑選自由1-十八烯、二苄醚、二苯醚及包括氫化三聯苯之熱傳流體構成之群組。
  22. 如請求項17之方法,其中該有機硫族前驅物呈R-X-H之形式,其中R係一烷基或芳基且X係硫或硒。
  23. 如請求項17之方法,其中該有機硫族前驅物具有低於約250℃之一沸點。
  24. 如請求項22之方法,其中該有機硫族前驅物選自由1-辛硫醇、1-辛烷硒醇及1-十二烷硒醇構成之群組。
  25. 如請求項17之方法,其中該第一時間間隔足夠發生實質上所有揮發性副產物之蒸餾。
  26. 如請求項17之方法,其中該第二溫度介於約120℃與約160℃之間。
  27. 如請求項17之方法,其中該第二硫族前驅物包括溶解於一配位 溶劑中之一基本硫族元素。
  28. 如請求項27之方法,其中該配位溶劑選自由三辛基硫化物及三辛基硒化物構成之群組。
  29. 如請求項17之方法,其中第二溫度介於約120℃與約160℃之間。
  30. 如請求項17之方法,其中該第三時間間隔介於約30分鐘與約2小時之間。
  31. 如請求項17之方法,其中第三溫度介於約80℃與約120℃之間。
  32. 如請求項17之方法,其中該第四時間間隔介於約3小時與約6小時之間。
  33. 如請求項17之方法,其中隔離該等奈米粒子包括:藉由添加至少一個其他溶劑而從溶液沉澱該等奈米粒子。
  34. 一種藉由程序製備之CIGS奈米粒子,該程序包括以下步驟:在一第一溫度下在一溶劑中混合選自由銅鹽、銦鹽及鎵鹽構成之群組之鹽以產生一反應溶液;將一有機硫族前驅物添加至該反應溶液;將該反應溶液加熱至一第一溫度同時攪拌持續一第一時間間隔;將該反應溶液加熱至一第二溫度且添加一第二硫族前驅物超過一第二時間間隔;在該第二溫度下攪拌該反應溶液持續一第三時間間隔;將該反應溶液冷卻至一第三溫度且攪拌持續一第四時間間隔;將該反應溶液冷卻至室溫;及,隔離該等奈米粒子。
  35. 如請求項34之CIGS奈米粒子,其中Cu鹽對In鹽及Ga鹽之組合總量之莫耳比介於約1:0.65與約1:0.85之間。
  36. 一種藉由程序製備之一基於CIGS之光伏打裝置,該程序包括以下步驟:a.將奈米粒子混合於一溶劑中以形成一油墨;b.將該油墨沈積於一基板上以形成一膜;c.在一惰性大氣中退火該膜以產生一退火膜;d.重複步驟b及c直至退火膜獲得一預選厚度;e.將一n型半導體層沈積於該退火膜上以形成一接面;f.將固有ZnO沈積於該接面上以形成一延伸空乏層;g.將一窗層沈積於該延伸空乏層上;h.將一金屬格柵沈積於該窗層上以形成一總成;及,i.囊封該總成以形成一光伏打裝置。
  37. 如請求項36之基於CIGS之光伏打裝置,其中該製備程序進一步包括:在步驟d之後執行選自由退火、燒結、硒化及使用KCN蝕刻構成之膜處理步驟之群組中之至少一個進一步膜處理步驟。
  38. 如請求項36之基於CIGS之光伏打裝置,其中該等奈米粒子選自由形式為CuInwGaxSeySz之三元、四元及五元硫屬化物構成之群組,其中0w,x<1,w+x<1,y、z0且y+z2,包含摻雜物種、合金及其等之組合。
  39. 如請求項36之基於CIGS之光伏打裝置,其中0.7w+x<1。
  40. 如請求項36之基於CIGS之光伏打裝置,其中該等奈米粒子可溶解於該溶劑中。
  41. 如請求項36之基於CIGS之光伏打裝置,其中該等奈米粒子可分散於該溶劑中。
  42. 如請求項36之基於CIGS之光伏打裝置,其中該溶劑選自由甲苯、烷烴、二氯甲烷、三氯甲烷、異氟爾酮、苯甲醚、α-萜品烯 及檸檬烯構成之群組。
  43. 如請求項36之基於CIGS之光伏打裝置,其中該油墨另外包括以該總油墨配方之約2重量百分比至5重量百分比之間的一濃度之十八烯酸。
  44. 如請求項36之基於CIGS之光伏打裝置,其中該基板選自由氧化銦錫(ITO)、塗佈鉬之原玻璃及塗佈鉬之鈉鈣玻璃(SLG)構成之群組中。
  45. 如請求項36之基於CIGS之光伏打裝置,其中重複步驟b及步驟c直至該CIGS膜厚度係至少1μm。
  46. 如請求項36之基於CIGS之光伏打裝置,其中在該油墨之該沈積之前,至少一個緩衝層經沈積至該基板上且經處理。
  47. 如請求項46之基於CIGS之光伏打裝置,其中該至少一個緩衝層包括具有不同於用於配製該油墨之該等奈米粒子之化學計量之一化學計量之CIGS奈米粒子。
  48. 如請求項47之基於CIGS之光伏打裝置,其中銅對銦(Cu/In)之比率小於1。
  49. 如請求項46之基於CIGS之裝置,其中該緩衝層之厚度100nm。
  50. 如請求項36之基於CIGS之光伏打裝置,其中在介於250℃至300℃之間一第一較低溫度下退火該膜持續約3分鐘至7分鐘之間,接著隨後在介於400℃至430℃之間的一第二較高溫度下退火該膜持續約3分鐘至7分鐘之間。
  51. 如請求項36之基於CIGS之光伏打裝置,其中該製備程序進一步包括:在步驟d之後執行包括在其期間在一富硫大氣中退火該CIGS膜之一硫化程序之至少一個進一步膜處理步驟。
  52. 如請求項51之基於CIGS之光伏打裝置,其中藉由一惰性載體氣 體中之H2S氣體提供該富硫大氣。
  53. 如請求項36之基於CIGS之光伏打裝置,其中該製備程序進一步包括:在步驟d之後執行包括在其期間在一富硒大氣中退火該CIGS膜之一硒化程序之至少一個進一步膜處理步驟。
  54. 如請求項53之基於CIGS之光伏打裝置,其中藉由一惰性載體氣體中之H2Sc氣體提供該富硒大氣。
  55. 如請求項53之基於CIGS之光伏打裝置,其中該硒化程序發生該CIGS奈米粒子中之過量銅至硒化銅之轉化。
  56. 如請求項53之基於CIGS之光伏打裝置,其中該硒化程序亦發生一CuInS2層至CuInSe2之至少一部分轉化。
  57. 如請求項36之基於CIGS之光伏打裝置,其中該製備程序進一步包括在一KCN溶液中蝕刻該CIGS膜以從該CIGS吸收劑層選擇性地移除過量硒化銅及/或硫化銅相。
  58. 如請求項36之基於CIGS之光伏打裝置,其中該n型半導體層包括從CdS、Zn(O,S)、ZnO及ZnS構成之群組中選擇之一材料。
  59. 如請求項36之基於CIGS之光伏打裝置,其中該窗層由選自由氧化鋁鋅(AZO)及摻雜硼之氧化鋅構成之群組之一材料構成。
  60. 如請求項36之基於CIGS之裝置,其中該窗層由氧化銦錫(ITO)構成。
  61. 如請求項36之基於CIGS之裝置,其中該等奈米粒子係如請求項14之奈米粒子。
  62. 如請求項36之基於CIGS之裝置,其中該等奈米粒子係如請求項34之奈米粒子。
TW103139658A 2013-11-15 2014-11-14 用於製備二硒化/二硫化銅銦鎵(cigs)奈米粒子之方法、由該方法製備之cigs奈米粒子及基於其之光伏打裝置 TWI595680B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361904780P 2013-11-15 2013-11-15

Publications (2)

Publication Number Publication Date
TW201526277A true TW201526277A (zh) 2015-07-01
TWI595680B TWI595680B (zh) 2017-08-11

Family

ID=51945914

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106120360A TW201733153A (zh) 2013-11-15 2014-11-14 用於製備二硒化/二硫化銅銦鎵(cigs)奈米粒子之方法、由該方法製備之cigs奈米粒子及基於其之光伏打裝置
TW103139658A TWI595680B (zh) 2013-11-15 2014-11-14 用於製備二硒化/二硫化銅銦鎵(cigs)奈米粒子之方法、由該方法製備之cigs奈米粒子及基於其之光伏打裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106120360A TW201733153A (zh) 2013-11-15 2014-11-14 用於製備二硒化/二硫化銅銦鎵(cigs)奈米粒子之方法、由該方法製備之cigs奈米粒子及基於其之光伏打裝置

Country Status (8)

Country Link
US (2) US9960298B2 (zh)
EP (1) EP3068729A1 (zh)
JP (2) JP6411499B2 (zh)
KR (1) KR101815277B1 (zh)
CN (2) CN108840312A (zh)
HK (1) HK1222836A1 (zh)
TW (2) TW201733153A (zh)
WO (1) WO2015071671A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180355201A1 (en) 2017-06-07 2018-12-13 Nanoco Technologies Ltd. CIGS Nanoparticle Ink Formulation with a High Crack-Free Limit
CN110373641A (zh) * 2019-07-10 2019-10-25 桂林理工大学 一种太阳能电池cigs靶材的快速制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126740A (en) * 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
WO2005006393A2 (en) * 2003-05-27 2005-01-20 Triton Systems, Inc. Pinhold porosity free insulating films on flexible metallic substrates for thin film applications
JP5259178B2 (ja) * 2004-03-15 2013-08-07 ソロパワー、インコーポレイテッド 太陽電池製造のための半導体の薄層を堆積する方法および装置
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
CN101411000A (zh) * 2006-03-23 2009-04-15 索莱赞特公司 包括纳米颗粒敏化的碳纳米管的光伏器件
GB0723539D0 (en) * 2007-12-01 2008-01-09 Nanoco Technologies Ltd Preparation of nonoparticle material
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
GB0714865D0 (en) 2007-07-31 2007-09-12 Nanoco Technologies Ltd Nanoparticles
KR101144807B1 (ko) * 2007-09-18 2012-05-11 엘지전자 주식회사 태양전지 박막조성용 잉크와 그 제조방법, 이를 이용한cigs 박막형 태양전지, 및 그 제조 방법
CN101878535B (zh) * 2007-11-30 2014-03-05 纳米技术有限公司 纳米粒子材料的制备
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
KR101586506B1 (ko) * 2007-12-20 2016-01-18 시마 나노 테크 이스라엘 리미티드 충전제 재료를 포함하는 투명한 전도성 코팅
CN101299446A (zh) * 2008-05-30 2008-11-05 南开大学 硒化物前驱薄膜与快速硒硫化热处理制备薄膜电池方法
US7922804B2 (en) * 2009-03-25 2011-04-12 Jenn Feng Industrial Co., Ltd. Method for preparing sol-gel solution for CIGS solar cell
US8308973B2 (en) * 2009-07-27 2012-11-13 Rohm And Haas Electronic Materials Llc Dichalcogenide selenium ink and methods of making and using same
US20130087745A1 (en) * 2009-08-04 2013-04-11 Precursor Energetics, Inc. Soluble precursors and solution-based processes for photovoltaics
JP2011187920A (ja) * 2009-10-12 2011-09-22 Ryukoku Univ 化合物半導体薄膜の製造方法、太陽電池および化合物半導体薄膜製造装置
JP2011129564A (ja) * 2009-12-15 2011-06-30 Fujifilm Corp 光電変換半導体膜を形成する塗布膜及びその製造方法、光電変換半導体膜、光電変換素子、及び太陽電池
AU2010343092A1 (en) 2009-12-28 2012-08-16 Nanosolar, Inc. Low cost solar cells formed using a chalcogenization rate modifier
US8889469B2 (en) * 2009-12-28 2014-11-18 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
JP2011165790A (ja) * 2010-02-08 2011-08-25 Fujifilm Corp 太陽電池およびその製造方法
US20120073637A1 (en) * 2010-09-15 2012-03-29 Precursor Energetics, Inc. Deposition processes and photovoltaic devices with compositional gradients
TWI396782B (zh) * 2010-09-15 2013-05-21 Nat Univ Tsing Hua 一種製造顆粒狀多元奈米組合物之方法
WO2012075267A1 (en) * 2010-12-03 2012-06-07 E. I. Du Pont De Nemours And Company Inks and processes for preparing copper indium gallium sulfide/selenide coatings and films
CN102694057B (zh) * 2011-03-22 2015-02-18 昆山恒辉新能源有限公司 非真空预定量涂布法制备cigs太阳能电池光吸收层的方法
JP2013070032A (ja) * 2011-09-05 2013-04-18 Fujifilm Corp バッファ層の製造方法および光電変換素子の製造方法
CN105190836B (zh) 2013-03-04 2021-01-22 纳米技术有限公司 用于薄膜太阳能电池的铜-铟-镓-硫属化物纳米粒子前体

Also Published As

Publication number Publication date
TW201733153A (zh) 2017-09-16
JP6411499B2 (ja) 2018-10-24
US9960298B2 (en) 2018-05-01
KR101815277B1 (ko) 2018-01-05
TWI595680B (zh) 2017-08-11
CN105899462B (zh) 2018-06-22
EP3068729A1 (en) 2016-09-21
JP2017501952A (ja) 2017-01-19
HK1222836A1 (zh) 2017-07-14
KR20160086915A (ko) 2016-07-20
WO2015071671A1 (en) 2015-05-21
CN108840312A (zh) 2018-11-20
US20150136213A1 (en) 2015-05-21
US20180248057A1 (en) 2018-08-30
JP2019024106A (ja) 2019-02-14
CN105899462A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5867392B2 (ja) 化合物半導体薄膜作製用インクおよび太陽電池の製造方法
TWI609840B (zh) 用於薄膜光伏打裝置之無機鹽-奈米粒子墨水及相關方法
US20180366599A1 (en) Metal-doped Cu(In,Ga)(S,Se)2 Nanoparticles
TWI552373B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
WO2012090938A1 (ja) 化合物半導体薄膜太陽電池及びその製造方法
US20110023750A1 (en) Ink composition for forming absorbers of thin film cells and producing method thereof
WO2011118203A1 (ja) 化合物半導体粒子組成物、化合物半導体膜とその製造方法、光電変換素子、及び太陽電池
US20180248057A1 (en) Preparation of Copper-Rich Copper Indium (Gallium) Diselenide/Disulphide Nanoparticles
JPWO2013180137A1 (ja) 化合物半導体薄膜の作製方法およびその化合物半導体薄膜を備える太陽電池
JP2014167998A (ja) 化合物半導体薄膜、その製造方法、および太陽電池モジュール

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees