TW201503217A - 質譜儀、其使用方法、及氣體混合物的質譜分析方法 - Google Patents

質譜儀、其使用方法、及氣體混合物的質譜分析方法 Download PDF

Info

Publication number
TW201503217A
TW201503217A TW103105973A TW103105973A TW201503217A TW 201503217 A TW201503217 A TW 201503217A TW 103105973 A TW103105973 A TW 103105973A TW 103105973 A TW103105973 A TW 103105973A TW 201503217 A TW201503217 A TW 201503217A
Authority
TW
Taiwan
Prior art keywords
gas
mass spectrometer
ion trap
mass
gas mixture
Prior art date
Application number
TW103105973A
Other languages
English (en)
Other versions
TWI579888B (zh
Inventor
Gennady Fedosenko
Michel Aliman
Hin Yiu Anthony Chung
Albrecht Ranck
Leonid Gorkhover
Original Assignee
Zeiss Carl Smt Gmbh
Zeiss Carl Microscopy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeiss Carl Smt Gmbh, Zeiss Carl Microscopy Gmbh filed Critical Zeiss Carl Smt Gmbh
Publication of TW201503217A publication Critical patent/TW201503217A/zh
Application granted granted Critical
Publication of TWI579888B publication Critical patent/TWI579888B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/147Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers with electrons, e.g. electron impact ionisation, electron attachment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本發明係關於一種用於氣體混合物(2)之質譜分析的質譜儀(1),包含:離子化裝置(12)及用於該氣體混合物(2)之保存和質譜分析的離子阱(10)。在本發明之一態樣中,該離子化裝置(12)被體現用於供應離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)及/或用於供應電子(20a)至該離子阱(10),用以離子化待分析之該氣體混合物(2),以及該質譜儀(1)被體現來在分析該氣體混合物(2)之前測定存在於該離子阱(10)中的該離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)之數量及/或存在於該離子阱(10)中的殘餘氣體(14)之離子(14a)的數量。本發明還關於這種質譜儀(1)的用途及用於氣體混合物(2)之質譜分析的方法。

Description

質譜儀、其使用方法、及氣體混合物的質譜分析方法
本發明係關於一種用於氣體混合物之質譜分析的質譜儀,包含:離子化裝置及用於氣體混合物之保存和質譜分析的離子阱。本發明還有關這種質譜儀的用途及氣體混合物的質譜分析方法。
用於分析EUV微影設備中的殘餘氣體並具有用於保存至少一種污染物質的離子阱的質譜儀可從WO 2010/022815 A1得知。
質譜儀不僅被用於EUV微影術,而且還被用在許多其它的領域中,例如在醫療化學中特徵化化合物、在法醫檢驗中鑑別體液或器官中的物質、化學武器的添加劑檢測或軍事分析等。質譜儀也可用於藥物動力學和真空技術中的殘餘氣體分析。
在氣態物質或氣體混合物的質譜分析中,測定原子或分子的質量(更確切來說為質荷比)以獲得氣態物質的化學特性。待分析的物質或待分析的物質混合物不是已經存在氣相中就是被轉化為氣相,以藉由離子化單元進行離子化。在傳統的質譜儀中,以這種方式離子化的物質被供應到分析器,而且通常被導引通過電場及/或磁場,其中離子由於不同的荷 質比而畫出特徵軌道,因此得以區別該等離子。
由於目前可取得質譜儀的缺點,例如尺寸大、掃描量測緩慢、沒有特別高的靈敏度等,依據現有技術的質譜儀只能被使用於有限的範圍內,或甚至在許多應用中根本沒有運用。
舉例來說明,來自氣體分析儀或質譜儀的量測訊號之穩定性在很大程度上是取決於離子化的短暫穩定性。傳統的四極質譜儀通常使用熱燈絲離子化來操作,而且通常具有約10%-20%的誤差。替代類型的離子化,例如同樣可用於質譜術的電漿離子化,由於電漿氣體調節及/或電漿功率波動中的不精確,通常具有在5%-10%範圍中的誤差。
在離子化期間與時間相關的波動導致量測訊號中有成比例的變化,從而使得量測承受相應的誤差。假使氣體分析儀或質譜儀打算在半導體業或化學業中被用於定量量測及/或監測及/或分析氣相製程,則此誤差是特別不利的。
此外,在許多傳統質譜儀(例如四極質譜儀)的量測期間,連續掃描質量導致長的量測時間,在高解析度量測的情況下,長的量測時間會是在許多分鐘的範圍中,甚至是在多個小時的範圍中。
為了能夠檢測少量的分析物(即待檢測的氣體組分),在高壓下的殘餘氣體或製程氣體中需要有大的動態範圍。一般來說,傳統的質譜儀只能有約106到至多107的動態範圍(最大可測訊號對最小可測訊號的比值)。
為了檢測殘餘氣體中的少量分析物,質譜儀需要具有非常低的檢測限制。目前可得的質譜儀可實現10-13毫巴至10-14毫巴的檢測限制。 對於敏感性檢測往往會使用電荷倍增器,電荷倍增器具有超過20%的大量散射,此外通常不能在相對高壓(>10-4毫巴)下使用。
此外,質譜儀被用於具有不同壓力範圍的分析物及/或背景氣體的不同應用情況。商業質譜儀通常被設計用於一個壓力範圍或另一個壓力範圍,但沒有質譜儀是在不使用為此目的而必須進行的複雜特定壓力重組下可以涵蓋非常大的壓力範圍的。
本發明之目的
本發明之目的係提供一種質譜儀及一種簡化氣體或氣體混合物之分析的方法,特別是一種克服至少一個在開始時闡述的缺點的方法,使得質譜儀也可被用於迄今還不可能有這種用途或在很大困難下才有可能的應用領域中。
本發明所請之標的
依據本發明之第一態樣,此目的係藉由在開端闡述的類型的質譜儀來實現,其中該離子化裝置被體現用於供應離子化氣體之離子及/或介穩態粒子及/或用於供應電子至該離子阱,用以離子化待分析之該氣體混合物,其中該質譜儀(或其中設置的控制裝置)被體現或程式化來在分析該氣體混合物之前測定存在於該離子阱中的該離子化氣體之離子及/或介穩態粒子之數量及/或存在於該離子阱中的殘餘氣體之離子的數量。
依據本發明之此態樣,提出在量測單元中離子化該氣體混合物,該量測單元可以被體現為離子阱或可以含有離子阱。在此情況下,待 分析的該氣體混合物通常在非離子化狀態下被以氣流或氣體脈衝的形式供應到該離子阱或該量測單元,而且該離子化較佳係直接在該離子阱中(原位)進行;確切來說,在典型的方式中,藉由使用該離子化氣體之離子及/或介穩態粒子或使用該等電子來碰撞離子化或電荷交換離子化該氣體混合物。該離子化可以選擇性地在該離子阱外之量測室中進行。在此案例中,該離子化較佳在直接鄰近該離子阱處進行,並且該離子化氣體混合物之離子被輸入該離子阱中。
此處,用於供應待分析的該氣體混合物進入該離子阱的入口可以被設置在與用於供應該離子化氣體之該離子及/或該介穩態粒子或該等電子的入口相對,使得供應的氣體混合物之氣流和來自該離子化氣體之離子或介穩態粒子及/或該等電子的粒子束被對齊面向彼此並在該離子阱中或視情況在直接鄰近該離子阱處互相碰撞。
如上面進一步描述,待分析的氣體混合物可以被電子、離子化氣體之離子及/或離子化氣體之介穩態粒子離子化。介穩態粒子被理解為意指離子化氣體之原子或分子,該原子或分子為電中性的但處於激發(高能)電子態。在本案例中,待分析的氣體混合物係被理解為意指氣態物質之混合物,該氣態物質之混合物可以視情況地還包含粒子,即該氣態物質具有>100amu、視情況地>1000amu或>10000amu、甚至高達2000000的質量數(amu-原子質量單位(atomic mass unit)),即該粒子可具有巨分子結構且具有約0.001μm-10μm或更大的粒度。
典型地,諸如保羅離子阱(Paul ion trap)的3D離子阱被用來作為質譜儀的離子阱;此處,待分析的氣態組分或待分析的氣體混合物 陷於全部三個空間尺寸中,使得後者在全部三個空間尺寸中進行穩定的振盪,並因此可用於相對長時間(通常1ms或更久,較佳短於1秒或100ms)的量測。離子化氣態組分陷入的空間之尺寸通常為小於50cm x 50cm x 50cm,較佳為小於50mm x 50mm x 50mm。
該質譜儀較佳具有可控入口,用於脈衝式供應待分析之該氣體混合物至該離子阱,而且該質譜儀被體現或程式化來考量該離子化氣體的離子及/或介穩態粒子之測得數量及/或該殘餘氣體的離子之測得數量而測定在該質譜儀中的離子化氣體混合物之待分析組分或離子群體之粒子數。離子化氣體之主離子(即離子化氣體和殘餘氣體之離子)或介穩態粒子之測得數量用以在量測或檢測期間進行校正,以最小化時間相關的波動對提供用於離子化的離子化氣體之主離子或介穩態粒子之數量或殘餘氣體之離子數量的影響。在脈衝式操作離子阱的情況下,為達此目的可以在供應各別氣體脈衝之前憑藉離子及/或介穩態粒子之測得數量進行校正,離子及/或介穩態粒子之測得數量可用於離子化該氣體混合物之各別氣體脈衝,並在測定待分析的該氣體混合物之氣體脈衝之待分析的離子化組分之粒子數量時被考量。舉例來說,離子或介穩態粒子之測得數量可以在藉由將該數量涵括在比例常數(校正因子)中來測定粒子數時被考量,藉由該比例常數乘以量測結果(即量測訊號位準)以校正待分析的氣體混合物之離子化組分的測得粒子數。
一般來說,該離子阱經由可控入口(例如可控閥形式的)被連接到腔室(例如處理室),在該腔室中含有待分析的氣體混合物。該可控入口與該離子阱之操作同步,該離子阱通常被體現為ETIT(傅立葉轉換離 子阱)。因此,該離子化裝置還可以具有特別是用於脈衝式供應離子化氣體之離子或介穩態粒子及/或電子的可控入口。
為了檢測待分析的氣體混合物,電子或該離子化氣體之離子及/或介穩態粒子最初被射入離子阱中,且該離子阱中通常存在離子化之殘餘氣體。產生的殘餘氣體離子及該離子化氣體之離子(以下一起被指稱為主離子)被陷在或保存在離子阱中。該主離子現在被交流電訊號激發,使得該主離子進行密閉的三維移動(雲霄飛車式移動)。該雲霄飛車式移動在該離子阱之覆蓋電極或量測電極上誘發圖像電流,從該圖像電流之大小可以以小於5%的精確度測定該離子阱中的主離子數量。在本申請案的意義內,主離子的數量也被理解為意指與主離子的數量成比例的值。
替代地或另外地,還可以測定該離子阱中該離子化氣體之(中性)介穩態粒子的數量,例如藉由測定該離子阱中的普遍壓力,如藉由離子瞬態(即量測電極上的圖像電流)的時間縮短(時間常數),因為此係直接與平均自由路徑長度相關並因此與壓力相關。該離子阱中的壓力基本上是由為了離子化的目地被引入該離子阱的離子化氣體(例如氦)所測定的,使得由此可以測定存在於該離子阱中的介穩態粒子之實際數量,因為該離子化氣體之離子數同樣可以藉由圖像電流的大小來測定(參見以上)。假使離子化氣體主要由介穩態粒子所組成,則還可以視情況地省略測定離子化氣體之離子數(反之亦然)。在此情況下由於殘餘氣體(例如水)的壓力通常明顯較低(一般約3-4個量級),故可以忽略殘餘氣體中的介穩態粒子數量。另外用於測定介穩態粒子之數量的選擇係由測定位於該離子阱中的殘餘氣體(例如水)之粒子數量所組成,該殘餘氣體係被該離子化 氣體之介穩態粒子離子化,以由此間接測定已使該殘餘氣體離子化的介穩態粒子之數量。
如此說來,以上述的方式,可以測定在該離子阱的氣體混合物的後續分析期間的背景雜訊。量測背景雜訊之後,打開可控氣體入口並將待分析氣體或氣體混合物從腔室以氣體脈衝的形式引入量測室(或引入離子阱)。氣體脈衝通過離子阱中的開口進入離子阱,並在離子阱中經由電荷交換處理或藉由碰撞離子化被電子及/或主離子或介穩態粒子離子化,並保持陷入該離子阱中用於質譜分析。
待分析的氣體混合物離子化之後,待分析的氣體混合物之離子或離子化組分被電脈衝訊號(激發訊號)激發。在過程中,待分析的氣體混合物之離子被帶入雲霄飛車式移動,其中每個質荷比(m/z)具有不同的雲霄飛車式頻率。如同在主離子的情況,這些雲霄飛車式移動在覆蓋電極或量測電極上產生圖像電流。可以對此被指配給離子的量測訊號施加傅立葉轉換,其中每個傅立葉頻率可以被指配到一個質荷比m/z,而且在相應的質荷比m/z下,被指配到每個頻率的訊號位準(Hf)係與待分析離子化組分之各別離子群體的離子數或粒子數成正比。
為了最小化離子化期間時間波動對主離子或介穩態粒子的影響,可以採用以下的程序:每個頻率f或每個質荷比m/z之粒子數或訊號位準Hf係藉由以下方程式測定或校正:Hf(校正)=K * Hf(未校正)*H1/ΣHf, (1)
其中K表示與質量和頻率無關的校正因子,H1表示在離子阱中被穩定保存和激發的所有離子之訊號位準,Hf(未校正)表示感興趣的 離子或待分析的離子化組分之頻譜位準或訊號位準,以及Σ Hf表示存在於量測光譜中的光譜線之所有訊號位準的總和。校正因子K考量了離子化氣體及/或殘餘氣體及離子化氣體之介穩態粒子的離子數、被以上述方式測定、以及通常為每個氣體脈衝重新計算,以消除或減少可用於離子化將在複數個氣體脈衝之量測上進行分析的氣體混合物的離子或介穩態粒子之波動的影響。在此,量測頻譜之頻譜線可以被限制於位在離子化氣體或殘餘氣體之離子的頻譜之外的質荷比m/z,但此並非強制的。
該質譜儀較佳被體現或程式化來產生氣體混合物之激發離子,而不需激發離子化氣體及/或殘餘氣體之離子,以測定待分析氣體混合物之離子化組分的粒子數。為此目的,選擇該離子阱之激發訊號(電脈衝訊號),其選擇方式使得在離子化待分析的氣體混合物之後,除了主離子之外所有的離子皆被激發。舉例來說,可以構設此激發訊號,其方式使得離子阱中的主離子變成不穩定並因此離開離子阱,使得只有待分析氣體混合物之離子仍然被激發並保持在阱中。
在進一步的具體實施例中,該質譜儀被體現為測定該離子阱中的待分析離子化氣體混合物之組分的離子數具有小於5%的不精確度。以上進一步描述的、包括測定主離子數的量測程序理論上可以被重複任何次數。由於在每個量測程序中預先對主離子數H1進行正規化並且由於依據方程式(1)用於測定校正的量測訊號的轉換被用在每個量測程序中,故理論上可以完全消除由於離子化的變化或漂移所造成的時間波動。
在本發明的進一步態樣中,特別是還可以結合上述態樣來實現的進一步態樣中,該離子化氣體為介穩態的鈍氣,尤其是氦。為了加速 量測,前案中嘗試在離子阱中心盡可能快地藉由氣體制動來收集離子。舉例來說,US 2010/0084549 A1描述可以在操作過程中將緩衝氣體引入離子阱,以冷卻離子並將這些離子集中在離子阱的中心。然而,這導致原位量測中的質量解析度大幅衰退(即在離子阱中量測的情況下),此為先前技藝中的離子檢測通常是在離子阱外部進行的原因。
為了實現不變的高質量解析度而不需在該程序中由於離子阱中故意低的工作壓力而等待過長的時間,本發明的態樣提出質譜儀被體現用於以介穩態鈍氣的形式供應離子化氣體之介穩態粒子至離子阱。介穩態鈍氣粒子是處於激發電子態的中性粒子(剛好在實際離子化之前)。結果,介穩態粒子獲得了特別大的橫截面,從而在離子阱中產生較大的、與待分析氣體混合物之組分碰撞的機率。結果,待分析的離子被更迅速地收集在離子阱的中央,而不需要為此目的所需的緩衝氣體產生的較高壓力,所以可以比已知的解決方案明顯更快速地進行量測。發現到氦氣作為介穩態鈍氣是特別有利的。然而,除了諸如He、Ar、Kr及Xe等鈍氣之外,還可以使用例如氫氣(H2)、氮氣(N2)或其混合物作為離子化氣體。這些氣體也可以被引入離子阱中作為介穩態粒子,以將待分析的氣體混合物收集在離子阱的中心。
在一個發展中,該質譜儀被體現來在每種情況下以至少500amu或1000amu的質量帶寬記錄至少10個頻譜/秒。如以上進一步說明的,使用介穩態粒子可以增加離子化氣體的橫截面或離子化氣體與待分析氣體混合物或與待分析氣體組分的碰撞機率,因而將量測速度提高至上述值。
在進一步的具體實施例中,該離子化裝置具有用於產生該離 子化氣體之離子及/或介穩態粒子的電漿源,以供應這些到該離子阱中。舉例來說,該離子化氣體可以被電漿源離子化,該電漿源將該離子化氣體之氣體組分轉化成介穩態電子狀態或離子化。舉例來說,在處理中,鈍氣(例如氦原子)可以被轉化成介穩態狀態或被離子化。該離子化氣體之氣體分子被轉化成離子的部分與被轉化成介穩態粒子的部分之比率可以被具有適當設計的電漿源或適當的製程控制影響,例如被電漿源和離子化氣體之氣流影響。
發現若電漿及因此離子化氣體之離子或介穩態粒子在離子阱外部的電漿源中產生將是有利的,即若電漿源中的電漿產生及離子阱中待分析氣體混合物之離子化(藉由碰撞離子化或電荷交換離子化)是以空間分離的方式進行,因為此可明顯減少由離子阱中的電漿導致的溫度上升。
該電漿源可被體現為射頻電漿源、中頻電漿源、DC電漿源、介電質阻障放電電漿源、大氣壓電漿源、電暈放電電漿源等。
在有利的發展中,電漿源被體現來在低於100℃的溫度下產生離子化氣體的離子及/或介穩態粒子,亦即電漿源中的電漿放電在低溫下(在100℃下)發生。舉例來說,這可以藉由施加交變射頻場(頻率在1MHz和30MHz之間)來實現,因為相應的RF放電可以在10℃和200℃之間的溫度下有利地發生。可以理解的是,也可以使用能夠將(中性)離子化氣體轉化或離子化成激發電子態的不同類型離子化裝置來取代電漿源,以在離子阱中引發氣體混合物的碰撞或電荷交換離子化。特別是可以藉由分析物和介穩態鈍氣粒子之間的電荷交換來實現特別稀少的(冷的)且具有小碎片分析物的離子化。
由於小碎片分析物的結果,在離子阱中還可以有質量數高達2000000amu的大粒子之粒子量測和特徵化。為此目的,可以利用待檢測質荷比m/z如以下所述取決於離子阱中的保存幅值Vrf(軌跡的直徑)和場頻frf的事實:m/z~Vrf/(frf)2
因此,可以藉由在離子阱中增加保存幅值Vrf及/或藉由減小場頻frf來量測質量非常大的粒子。
在進一步的具體實施例中,該離子化裝置具有用於產生電子的電子束源。特別的是,該電子束源可以被體現來產生具有可變電子能量的電子,該可變電子能量例如在1eV和100eV之間的範圍中。該電子束源(例如處於電子槍形式)還可以配備有聚焦裝置或束導引,以將電子對齊到待分析氣體混合物之氣流上。該電子束源可以被用來取代用於離子化氣體混合物的電漿源,或除了該電漿源之外還可以使用該電子束源。
本發明的進一步態樣(特別是還可以與前述態樣中之一者結合的態樣)係以開端所提出類型的質譜儀實現,其被體現來選擇性移除或抑制離子阱中的具有一質荷比的離子,該離子阱中的離子數超過預定臨界值。為了增加質譜儀的動態範圍,提出了抑制或移除該離子阱中的大離子群體,使得可以更精確地量測離子群體之特定子集。
舉例來說,在「傅立葉轉換離子迴旋共振」(Fourier Transform Ion Cyclotron Resonance,FT-ICR)阱中,可以藉由所謂的SWIFT(保存波形逆傅立葉轉換(Stored Waveform Inverse Fourier Transform))激發來移除或抑制離子群體,該SWIFT激發例如Tan-Chin Lin Wang等人在Anal.Chem. 1986,58,2935-2938中的文章「傅立葉轉換離子迴旋共振質譜儀中的動態範圍經由保存波形逆傅立葉轉換激發之延伸(Extension of Dynamic Range in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry via Stored Waveform Inverse Fourier Transform Excitation)」所述。此處可以進行同步量測,尤其是在複數個具有不同質荷比的量測區域中。
該動態範圍還可以在本發明的進一步態樣中增加,尤其是該進一步態樣可以與上述態樣中之一者或更多者結合,而且在該進一步態樣中,開端所提出類型的質譜儀被體現來在質荷比之預定量測範圍中選擇性檢測待分析氣體混合物之離子或離子化組分。這使質量選擇性時間多工量測得以實現,從而同樣使得動態範圍增加成為可能。
還可以使用進一步更複雜的量測模式(例如兩個上述程序之任意組合(SWIFT或時間多工)),以提高動態。此處,總是必須小心的是量測裝置不超過負荷。
在一個發展中,該質譜儀具有108(或108:1)或更大的動態範圍。這樣的動態範圍可以藉由使用一個量測方法或兩個上述量測方法的組合來實現。
在一個發展中,該離子阱被體現來累積該氣體混合物之各個離子,並且該質譜儀具有10-15毫巴或更低的(即<10-15毫巴)檢測限制。離子阱質譜儀通常不連續地操作,即離子數的分析可以在預定的累積時間(例如少於100ms)之後發生。特別是,可以視情況地使用離子阱來進行待檢測氣體組分的累積及待檢測氣體組分與其他氣態組分的分離。
藉由組合上述用於增加動態響應的程序(SWIFT或時間多 工量測)與離子阱的累積能力,可以檢測特別小的/弱的離子群體。在程序中,可以累積個別的離子直到足夠大的量測訊號出現。在已知量測訊號和已知累積時間的情況下,待分析離子群體可以被定量測定。以此方式,質譜儀的檢測極限可以被降到10-15毫巴或更低。
本發明之進一步態樣,特別是可以與一個前述態樣結合的進一步態樣係藉由具有壓力降低單元的質譜儀來實現,該壓力降低單元具有至少一個、較佳至少兩個、特別是三個或更多的模組化壓力階段,該等模組化壓力階段可以被串聯連接,用於降低待分析氣體混合物之氣體壓力。依據此態樣,提出了使用一個、兩個或三個(或視情況更多的)壓力階段之模組化設計來實現壓力降低單元,該等壓力階段可以被連接在量測腔室(通常具有離子阱,視情況地還具有傳統的質譜儀,例如四極質譜儀)與具有待分析氣體混合物的腔室之間。取決於應用,這使得能夠串聯連接一個、兩個或三個壓力階段,以降低氣體壓力,使得氣體混合物可以被供應到量測腔室。在具有待分析氣體混合物的腔室中的氣體壓力足夠低(例如<10-5毫巴)的情況下,視情況地可以省略壓力降低單元,即在具有待分析氣體混合物的腔室和量測腔室之間不需要或引入壓力階段。
舉例來說,壓力降低單元可以由三個(或更多的)彼此協調的壓力階段組成,其中該協調可以藉由在每個壓力階段中約100-1000毫巴的壓力降低來實現。在待分析氣體混合物具有高氣體壓力(100巴-10-2毫巴)的情況下可以使用全部三個壓力階段,在該氣體混合物具有中度壓力(10-2毫巴-10-5毫巴)的情況下可以使用兩個該壓力階段,以及在低氣體壓力(<10-5毫巴)的情況下可以只使用一個壓力階段。視情況地,在具 有待分析氣體混合物的腔室中壓力為10-5毫巴或更低的情況下可以省略壓力階段的設置。該等壓力階段具有模組化設計而且可以藉由彼此互連而被串聯連接,例如藉由這些壓力階段以氣密的方式在凸緣上彼此旋緊。以此方式,可以非常快速地拆卸或重組壓力階段,以提供待檢測氣體混合物所需的壓力範圍。
藉由使用一個或更多的壓力階段或藉由不使用壓力階段,能夠使用質譜儀來分析氣體壓力在10-5毫巴和10-15毫巴之間的氣體混合物,而且特別是可以以特別簡單的方式適用於所需的壓力範圍。
本發明之進一步態樣,特別是可以與一個前述態樣結合的進一步態樣係在質譜儀中實現,該質譜儀被體現來在離子阱中重複激發待分析氣體混合物之離子化組分,並在每個激發的情況下在預定的持續時間期間記錄待分析離子化組分之質譜。依據此態樣,提出了利用離子阱質譜儀的選擇來進行多次重複的離子激發,而不需要為此目地使用其他的元件。可以在每個激發期間檢測待分析的離子化組分或記錄質譜。
在一個發展中,用於記錄質譜的持續時間為5ms或更短。由於待分析氣體混合物之組分只必須被激發而不是被重新離子化,故可以藉由相應的量測窗口非常快速地記錄質譜,以測得被置換或與離子化組分之激發同步的質譜。這使得可以在化學反應過程中、在這些彼此反應之前量測分析物分子,或可以檢測中間產物,使得可以藉由平移量測窗口來檢測反應動態響應,而且化學反應過程可以被實時成像。
在進一步的具體實施例中,該離子阱係選自於包含以下之群組:傅立葉轉換離子阱,尤其是傅立葉轉換離子迴旋共振阱、潘寧阱(Penning trap)、環形阱(toroidal trap)、保羅阱(Paul trap)、線性阱、軌域阱(orbitrap)、EBIT及RF聚束器。該離子阱較佳係被體現用來檢測該離子阱中保存或累積的離子,特別是藉由使用傅立葉轉換。
這種離子阱(例如FT離子阱)的使用使得能夠實施快速量測(掃描時間在秒的範圍中或更快,例如在毫秒的範圍中)。在這種類型的阱中,由量測電極上的陷入離子產生的感應電流係以時間相關的方式進行檢測和放大。隨後,此時間相關性被頻率轉換(例如快速傅立葉轉換)轉換進入頻率空間,並且使用離子之共振頻率的質量相關性來將頻譜轉換成質譜。可以進行藉助傅立葉轉換的質譜儀來進行快速量測,原則上使用不同類型的離子阱(例如使用上述的類型),其中使用所謂離子迴旋共振阱的組合是最常見的。FT-ICR阱構成潘寧阱的發展,其中離子被包圍在交流電場和靜態磁場中。在FT-ICR阱(磁或電ICR阱)中,質譜儀可以藉由迴旋共振激發來操作。在其發展中,潘寧阱也可以使用不同的緩衝氣體進行操作,其中由空間離子分隔進行的質量選擇可以藉由緩衝氣體與利用電雙極場的磁控管激發和利用電四極場的迴旋激發之組合來產生,使得潘寧阱也可以被用於將待檢測物質與其他物質分離。由於在這種類型的阱中的緩衝氣體通常具有運動阻尼,並因此對包圍的離子具有「冷卻」效應,故這種類型的阱也可被稱為「冷卻阱」。
所謂的環形阱可以實現比傳統的四極阱更緊湊的設計,同時基本上具有相同的離子保存容量。線性阱是四極阱或保羅阱發展出的,其中離子不是被保持在三維的四極場中,而是由另外的邊緣場保持在二維的四極場中,以增加離子阱的保存容量。所謂的軌道阱具有一個中心的紡錘 狀電極,由於電吸引的結果離子圍繞該紡錘狀電極並被保持在軌域上,其中沿著中心電極軸的振盪係由偏離中心的離子注射所產生,該振盪在檢測器板中產生訊號,該訊號可以像在FT-ICR阱的情況一樣被檢測(藉由FT)。電子束離子阱(electron beam ion trap,EBIT)是一種離子阱,其中利用離子槍藉由碰撞離子化來產生離子,其中這樣產生的離子被電磁場吸引並被後者捕獲。這些離子也可以被保存在RF(射頻)聚束器,例如所謂的RFQ(四極)聚束器。可以理解的是,除了上面所列類型的阱之外,也可以使用其它類型的離子阱來進行氣體分析,該等其它類型的阱可以被視情況地與使用傅立葉轉換的評估結合。
上述以離子阱為基礎(特別是使用電漿離子化)的質譜儀可以被用於在不同領域中檢測最小量的微量元素:舉例來說,該質譜儀可被用於EUV微影中的氣體混合物之質譜分析。在此用途中,特別是可以分析EUV微影系統(例如在EUV微影設備中)中所含的殘餘氣體,例如檢視其中所含的污染物質。質譜儀在EUV微影中的用途可藉由上面另外列出的以下特徵來致能或促進:●使用連續的、高精準的線上原位校正(不準確度小於5%)之定量量測,用於測定在特定尖峰(質荷比)有多少離子存在於離子阱中,●高動態範圍:高達108或更大(最強和最弱訊號之間的比率),●低檢測極限:下至10-15毫巴,●待分析的中度壓力範圍:10-15毫巴-103毫巴,具有不變的檢測極限, ●電子碰撞離子化、利用電漿離子化的冷離子化或利用具有少碎片的介穩態粒子的離子化、在低溫(<100℃)下的單一離子化。
舉例來說,當在EUV微影設備中使用質譜儀時,在EUV微影設備之投影系統中的質譜儀之連接位置可以形成在與該投影系統之至少一反射鏡相距小於50cm的距離處,在該EUV微影設備之照明系統中的連接位置可以形成在與該照明系統之至少一反射鏡相距小於50cm的距離處,或在該EUV微影設備之輻射產生系統中的連接位置可以形成在與收集器(反射鏡)、EUV光源、或用於讓來自該輻射產生系統的EUV輻射通過而進入該照明系統的開口相距小於1m、較佳小於50cm的距離處。
若質譜儀的連接位置(其由真空殼體的壁中的開口界定,通常是投影系統、照明系統或輻射產生系統的真空殼體,待分析物質可以經由該開口進入質譜儀)被形成在EUV微影設備的反射鏡附近將是有利的,以能夠以針對性的方式檢測可能會累積在反射鏡之光學表面上的污染物質。連接位置在輻射產生系統和照明系統之間的開口附近的質譜儀配置是有利的,因為能夠測定從輻射產生系統通過進入照明系統的污染物質之比例大小。連接位置在EUV光源附近的質譜儀配置使得能夠檢測或量測EUV光源產生的污染物質。
在發展中,藉由真空連接將質譜儀與EUV微影設備的殼體分開,EUV微影設備的殼體容納殘餘氣體氛圍並導引EUV輻射,該真空連接具有小於100mm、較佳小於5mm、尤其是小於1mm或小於500μm而且通常超過50μm的橫截面。對於質譜分析,若不將質譜儀和投影系統、照明系統、輻射產生系統或圍繞這些的真空殼體之殼體間的真空連接之橫 截面選擇得太大會是有利的。特別是,這樣的真空連接允許質譜儀的內部被真空泵或真空產生裝置排空,該真空泵或真空產生裝置只有或主要排空質譜儀的內部。
在進一步的發展中,在該EUV微影設備之殘餘氣體氛圍的殼體中,以下污染物質或其混合物中之至少一者係在該質譜分析期間進行量測或檢測,該殘餘氣體氛圍尤其含有氫及/或氦及/或空氣:氧、臭氧、水、高達10Mamu的CXHYOZ、高達10Mamu的粒子、高達10Mamu的金屬-CXHYOZ化合物,其中1Mamu=1000000amu。
本發明還包含EUV微影設備,該EUV微影設備被體現作為上述的EUV微影設備並結合使用該質譜儀。
該質譜儀之進一步用途係關於在塗佈設備之塗佈製程期間進行氣體混合物之質譜分析,該氣體混合物可以含有例如製程氣體。特別是,上述質譜儀可以具有自清洗功能,以去除在量測室或離子阱中形成的沉積物,該沉積物係由待分析氣體混合物、尤其是製程氣體所形成的。由於選擇自清洗的結果,該質譜儀可被用於許多的塗佈製程。其小的安裝空間(約300mm高×約300mm寬及約200-300mm深)構成了本文所述質譜儀之進一步特別的特徵。這使得能夠將該質譜儀使用在安裝空間扮演重要角色的許多應用中(例如MOCVD,參見以下)。
舉例來說,自清洗可以如WO 02/00962 A1中所說明的發生,WO 02/00962 A1描述一種用於移除晶圓生產設備中的製程監測單元之樣品室中的製程氣體所產生的沉積物之原位清洗系統。當必要時,在樣品室中的一個或更多個分析期間沉積的沉積物可以藉由清洗氣體移除。在樣 品室產生電漿的過程中,清洗氣體與沉積物形成氣態的清洗產物,該清洗產物被從樣品室移除。
在上述用途的發展中,該塗佈製程係選自於包含以下製程之群組:化學氣相沉積(chemical vapour deposition,CVD)、金屬有機化學氣相沉積(metal organic chemical vapour deposition,MOCVD)、金屬有機化學氣相磊晶(metal organic chemical vapour phase epitaxy,MOVPE)、電漿輔助化學氣相沉積(plasma enhanced chemical vapour deposition,PECVD)、原子層沉積(atomic layer deposition,ALD)、物理氣相沉積(physical vapour deposition,PVD)、(特別是電漿輔助的)蝕刻和植入製程及分子束磊晶(molecular beam epitaxy,MBE)製程。
質譜儀在此應用領域的用途可藉由上面另外列出的以下特徵來致能或促進:●高動態範圍:高達108或更大(最大/最小訊號之間的比率),●高掃描速度:高達10個頻譜/秒或更高,且質量帶寬高達約1000amu,●低檢測極限:下至10-15毫巴,●待分析的中度壓力範圍:10-15毫巴-103毫巴,具有不變的檢測極限,●電子碰撞離子化、利用電漿離子化的冷離子化或利用具有少碎片的介穩態粒子的離子化、在低溫(<100℃)下的單一離子化,●適當的快速量測程序(在毫秒範圍)使得能夠實時拍攝實際的化學製程,●製程室中的粒子量測和特徵化, ●藉由適當的清洗製程進行質譜儀的自清洗。
在一個發展中,在塗佈設備中質譜儀的納入位置被形成在氣體供應系統中、在氣體混合系統中或在氣體處置系統中,特別是在氣體處置系統的真空泵的上游或下游,及/或與製程室相距短於1m、較佳短於50cm處。特別的是,質譜儀可以被直接連接到製程室。此外,該質譜儀(或其他的質譜儀)可以被連接在氣體供應系統中、在氣體混合系統中或在氣體處置系統中,特別是在製程室和真空泵之間的真空管線中,直接在真空泵的上游或在真空泵下游的排氣管線中。藉由適當地選擇納入位置,該製程可以視需要而被影響,也就是說可以在質譜分析結果的基礎上(特別是)控制或調節該製程。
當在塗佈設備中使用該質譜儀時,在質譜分析期間可以量測以下物質、其混合物及/或反應產物、團簇及/或化合物中之至少一者:H2、He、N2、O2、PH3、AsH3、B、P、As、CH4、CO、CO2、Ar、SCl4、SiHCl3、SiH2Cl2、H2O、CxHy、三甲基鎵、三乙基鎵、三甲基鋁、三乙基鋁、三甲基銦、三乙基銦、Cp2Mg、SiH4、Si2H6、四丁基銨、四丁基矽烷、Xe同位素、Kr同位素、六甲基二矽氧烷、叔丁基胂、三甲基胂、二乙基-叔丁基胂、二乙基-叔丁基膦、二-叔丁基膦、叔丁基肼、二甲基肼、銦、鋁、鎵、硼、矽、金、銻、鉍。
在一個發展中,該至少一種物質、混合物、反應產物、團簇及/或化合物係在15℃和5000℃之間、較佳在100℃和2000℃之間的製程室溫度並在10-10毫巴和5巴之間、較佳在10-8毫巴和1巴之間的製程室壓力下進行量測。
本發明還包含塗佈設備,該塗佈設備被體現作為上述的塗佈設備並結合使用該質譜儀。
上述質譜儀之進一步用途在於樣品之分析、製備、處理、修飾及/或操作的領域。在此情況下,該質譜儀可供例如用於氣體及/或殘餘氣體監測或用於監測、分析及/或調整供用於樣品之分析、製備、處理、修飾及/或操作的裝置。舉例來說,該裝置可以是多光束儀器,其中例如電子束及/或離子束柱、雷射束、x射線束、光子束等可被替代使用,以製備、處理、修飾及/或操作以及視情況地分析樣品。該裝置也可以是用於表面掃描分析的裝置,該用於表面掃描分析的裝置也可以視情況地被整合到多光束儀器。
上述質譜儀之進一步用途在於化學學科中的氣體分析領域,更精確來說是在化學製程分析的領域。
質譜儀在此應用領域的用途可藉由上面另外列出的以下特徵來致能或促進:●使用連續的、高精準的線上原位校正(不準確度小於5%)之定量量測,用於測定在特定尖峰(質荷比)有多少離子存在於離子阱中,●高掃描速度:高達10個頻譜/秒或更高,且質量帶寬高達約1000amu,●高動態範圍:高達108或更大(最大/最小訊號之間的比率),●低檢測極限:下至10-15毫巴,●待分析的中度壓力範圍:10-15毫巴-103毫巴,具有不變的檢測 極限,●電子碰撞離子化、利用電漿離子化的冷離子化或利用具有少碎片的介穩態粒子的離子化、在低溫(<100℃)下的單一離子化,●適當的快速量測程序(在毫秒範圍)使得能夠實時拍攝實際的化學製程。
上述質譜儀之進一步用途在於通常是機械振動之振動檢測或振動分析的領域。特別是,該質譜儀可被用於檢測或分析範圍在約1Hz和約15kHz之間的振動。特別是,振動可以是設置或裝置的自然振動,將質譜儀安裝於該設置或裝置的內部,即在質譜儀的使用點檢測振動,而且質譜儀被用來作為振動感測器。為此目的,使用質譜儀來記錄待分析的振動頻率所在的頻率範圍內的頻譜。舉例來說,這種頻譜可以在約1Hz和約15kHz之間。複數個寄生頻率通常位在此頻率範圍內,該等寄生頻率是由機械振動產生的,而且可以藉由例如FT離子阱(特別是FT-ICR阱)的量測電極進行檢測和分析。舉例來說,為了分析振動,一旦質譜儀被安裝到裝置中即可記錄頻譜。假使該裝置在安裝的時候是處在良好的工作秩序中,則此頻譜可以作為參考頻譜。可以在稍後的時間或在幾個稍後的時間重複量測頻譜,並將測得的頻譜與參考頻譜進行比較。假使在測得的頻譜中檢測到一個或更多個另外的線或尖峰,則表示在裝置中的某處發生不良的振動,該不良的振動例如可被回溯到機械問題。舉例來說,振動可以是配置在質譜儀附近、例如(真空)泵的滑動軸承或球軸承之不良自然振動,或由電源單元引起的振動(電源的嗡嗡聲)。
理解的是,上述質譜儀的用途並不限於上述的使用領域,而 是該質譜儀也可被有利地使用於其它的使用領域。
本發明還關於一種用於氣體混合物之質譜分析的方法,包含以下的方法步驟:供應離子化氣體之離子及/或介穩態粒子及/或電子至離子阱,測定存在於該離子阱中的該離子化氣體之離子及/或介穩態粒子的數量及/或測定存在於該離子阱中的殘餘氣體之離子的數量,供應待分析的該氣體混合物至該離子阱,特別是以脈衝的方式,以及考量該離子化氣體的離子及/或介穩態粒子之測得數量及/或該殘餘氣體的離子之數量來測定待分析氣體混合物之離子化組分的粒子數(或與該粒子數成比例的訊號)。
如以上結合本發明的第一態樣進一步說明的,可以使用連續的高精度原位校正藉由測定存在於離子阱中的主離子數量來定量分析待分析氣體混合物之組分,所以可以測定離子的數量(對應於頻譜中的尖峰),該離子數量係在特定的質荷比下以高精度檢測到的。通常情況下,此處可實現小於5%的不準確度,即所量測的值與存在離子阱的樣品容積中的氣體組分之實際(離子化)粒子數量相差不超過5%(高於或低於實際數量)。
在該方法的過程中,通常進行以下的程序:最初,在離子阱中累積主離子。在該累積之後激發該等主離子,然後量測主離子的數量。另外地或替代地,可以測定離子阱中的介穩態粒子之數量。在離子化氣體大致上以介穩態粒子的形式存在的前提下,介穩態粒子之數量係與離子阱中的整體壓力成比例,因為可以忽略殘餘氣體的壓力。舉例來說,可以藉由縮短離子瞬態的時間(時間常數)來以高精度測定整體壓力。然後可以在壓力的基礎上推算實際存在於離子阱中的離子化氣體之介穩態粒子數 量。
在激發主離子和量測主離子及/或介穩態粒子的數量同時,平行產生待分析氣體混合物的氣體脈衝,並且後者移動到離子阱。此處,所生產的氣體脈衝通常與主離子數量及/或介穩態粒子數量的量測同步,其方式使得氣體脈衝在主離子及/或介穩態粒子的數量量測完成的時候(或正好之後)到達離子阱。
氣體脈衝輸送的氣體混合物正好在要進入離子阱之前在離子阱中或視情況地在量測室中利用主離子及/或介穩態粒子或電子藉由碰撞離子化及/或電荷交換離子化進行離子化。在隨後的步驟中,氣體混合物的離子被激發。在氣體混合物的離子的激發過程中或之前,可以憑藉所產生的適當激發訊號移除或抑制離子阱中的主離子。在隨後的步驟中,量測或檢測氣體混合物的激發離子。原則上,以上規範的製程可以視需要時常重複進行。由於在檢測過程中離子沒有被轉化成中性粒子,故也可以在氣體混合物離子化之後重複激發離子阱中的氣體混合物之離子,而沒有必要為此目的進行氣體混合物的新離子化。
在顯示本發明必要細節的圖式中的圖之基礎上,本發明的進一步特徵和優點可從以下本發明的示例性具體實施例之描述及申請專利範圍中顯現。在每種情況下,各個特徵可以自行實現或在本發明的變型中以任意的組合一起實現。
1‧‧‧質譜儀
2‧‧‧氣體混合物
2a‧‧‧氣體脈衝
3a‧‧‧物質
3b‧‧‧粒子
3a、3b‧‧‧離子化組分
4‧‧‧出口
5‧‧‧可控閥
6‧‧‧入口
7‧‧‧量測室
8‧‧‧腔室
10‧‧‧離子阱
11‧‧‧壓力降低單元
11a‧‧‧模組化壓力階段
11b‧‧‧模組化壓力階段
11c‧‧‧模組化壓力階段
12‧‧‧離子化裝置
13‧‧‧離子化氣體
13a‧‧‧離子
13b‧‧‧介穩態粒子
14‧‧‧殘餘氣體
14a‧‧‧離子
15‧‧‧計量閥
16‧‧‧氣體供應管線
17‧‧‧氣體貯槽
18‧‧‧電漿源
19‧‧‧控制裝置
20‧‧‧電子束源
20‧‧‧電極
20a‧‧‧電子
21‧‧‧電極
22‧‧‧放大器
23‧‧‧FFT光譜儀
101‧‧‧EUV微影設備
102‧‧‧殼體
102‧‧‧輻射產生系統
102a‧‧‧殘餘氣體氛圍
103‧‧‧照明系統
103a‧‧‧殘餘氣體氛圍
104‧‧‧投影系統
104a‧‧‧殘餘氣體氛圍
105‧‧‧EUV光源
106‧‧‧EUV輻射
107‧‧‧準直器
107‧‧‧收集器
108‧‧‧單色器
109‧‧‧第一反射光學元件
109‧‧‧反射鏡
110‧‧‧第二反射光學元件
110‧‧‧反射鏡
111‧‧‧光學元件
111‧‧‧光罩
112‧‧‧晶圓
113‧‧‧第三反射光學元件
113‧‧‧反射鏡
114‧‧‧第四反射光學元件
114‧‧‧反射鏡
115‧‧‧真空泵
116‧‧‧光學元件
116‧‧‧通道開口
201‧‧‧裝置
202‧‧‧基板
203‧‧‧架座
204‧‧‧內部
205‧‧‧製程室
206‧‧‧容器
207‧‧‧可控閥
208‧‧‧容器
209a‧‧‧可控閥
209b‧‧‧可控閥
210‧‧‧分配器歧管
211‧‧‧可控閥
212‧‧‧真空泵
213‧‧‧氣體處置系統
214‧‧‧HfO2塗層
215‧‧‧控制裝置
215‧‧‧氣體混合系統
216‧‧‧氣體供應系統
216a‧‧‧供應管線
216b‧‧‧供應管線
A‧‧‧橫截面
B‧‧‧磁場
D‧‧‧距離
EA-EG‧‧‧納入位置
H1‧‧‧訊號位準
Hf‧‧‧訊號位準
I‧‧‧電流
MB1...MBx‧‧‧預定量測範圍
MS1...MSx‧‧‧質譜
P0‧‧‧氣體壓力
PB‧‧‧連接位置
PL1‧‧‧第一連接位置
PL2‧‧‧第二連接位置
PL3‧‧‧第三連接位置
PS‧‧‧連接位置
SA‧‧‧脈衝激發訊號
SW‧‧‧臨界值
d‧‧‧厚度
f‧‧‧頻率
t0‧‧‧時間
t1-tx‧‧‧時間
τ‧‧‧時間常數
△Tm1、...△Tmx‧‧‧預定持續時間
λB‧‧‧操作波長
示例性的具體實施例被描繪在示意圖中,而且將在以下的描 述中進行說明。其細節在於:圖1顯示用於氣體混合物之質譜分析的質譜儀之示意圖;圖2顯示圖1中的質譜儀之離子阱的示例性具體實施例之示意圖;圖3顯示離子阱中的量測程序之時間的示意圖;圖4顯示用於評估質譜的量測程序,其中量測窗口被移動以實現快速量測;圖5a、圖5b顯示藉由SWIFT方法或藉由質量選擇時間多工量測評估的2個質譜;圖6顯示具有質譜儀的EUV微影設備之示意圖;以及圖7顯示用於在基板上進行原子層沉積且具有質譜儀的裝置之示意圖。
在以下對圖式的描述中,相同的元件符號用於相同或功能上等同的元件。
圖1示意性圖示質譜儀1,質譜儀1被連接到腔室8,或質譜儀1可以被連接到腔室8,腔室8中放置將被分析的氣體混合物2。舉例來說,腔室8(在圖1中僅繪示一部分的腔室8)可以是形成工業設備的一部分的製程腔室,該工業設備中係進行工業製程。或者,腔室8可以是例如微影設備的(真空)殼體或其中放置待分析氣體混合物2的不同類型腔室。在圖示的實例中,氣體混合物2具有物質3a和粒子3b,物質3a以氣 相存在(即氣體)並具有<100的原子質量數,粒子3b的質量數在100以上。
腔室具有出口4,出口4可以經由屬於質譜儀1的可控閥5被連接到量測室7的入口6。在圖1圖示的質譜儀1中,氣體混合物2未經先前離子化即被直接引入作為量測單元的離子阱10中。離子化裝置12用以在離子阱10中借助被供應到離子阱10的離子化氣體13之離子13a及/或介穩態或激發的粒子13b來直接離子化氣體混合物2,該等離子及/或粒子藉由電荷交換或碰撞離子化來離子化氣體混合物2,通常是在離子阱10中進行。圖1中圖示的離子化裝置12還具有形式為產生電子20a的電子束槍之電子束源20,電子20a具有範圍在例如1eV和100eV之間的可變電子能量,該電子束源可以外加於電漿源18使用或用作電漿源18的替代件,並以虛線繪示於圖1中。電子20a用以在離子阱10中藉由電子碰撞離子化直接離子化氣體混合物2。在此方式,待分析的氣體混合物2可以在量測單元(離子阱10)中直接被離子化、視情況累積及量測,而不需要將離子化的氣體混合物輸入離子阱10中。或者,也可以在直接鄰近離子阱10處離子化氣體混合物2,其中在後者的情況下需要將離子化的氣體混合物輸送到離子阱10。
為了產生主離子13a或激發的粒子13b,(中性的)離子化氣體13藉由計量閥15和氣體供應管線16被從氣體貯槽17移出並被供應到電漿源18。離子化氣體13在電漿源18中被離子化或激發,而且藉此產生的離子13a及/或介穩態/激發的粒子13b被供應到離子阱10,以引發氣體混合物2的電荷交換離子化或碰撞離子化。電漿源18可以是射頻電漿源、中頻電漿源、直流電漿源、介電質阻障放電電漿源、大氣壓電漿源、電暈 放電電漿源等。
在本實例中,電漿源18被體現來在低於100℃的溫度下產生離子化氣體13的離子13a及/或介穩態粒子13b,亦即電漿源中的電漿放電在低溫下(在100℃下)發生。舉例來說,這可以藉由施加交變射頻場(頻率在1MHz和30MHz之間)來實現,因為相應的RF放電可以在10℃和200℃之間的溫度下有利地發生,或者可以藉由使用為此特地開發的直流電漿源來實現。可以理解的是,也可以使用能夠將(中性)離子化氣體13轉化或離子化成激發電子態的不同類型離子化裝置來取代電漿源18,以在離子阱10中引發氣體混合物2的碰撞或電荷交換離子化。
可以使用複數種氣體和氣體混合物來作為離子化氣體13,例如He、H2、Ar、N2、Xe、Kr、O2等。發現特別有利的是使用鈍氣(特別是氦氣)作為離子化氣體13,該鈍氣被電漿源18轉化成介穩態鈍氣13b,即轉化成鈍氣粒子(例如He*),該鈍氣粒子是處在正好要離子化之前的激發電子態。特別是可以藉由分析物(即待分析的氣體組分3a、3b)和介穩態鈍氣粒子13b之間的電荷交換來實現特別稀少的(冷的)且具有小碎片分析物的離子化。
這也使得能夠離子化原子質量數介於100和20 000之間的粒子3b,特別是原子質量數介於20 000和2 000 000之間作為鏈接大分子結構,因為這些鏈接大分子結構不會被介穩態鈍氣粒子13b的冷RF電漿進一步分段。舉例來說,粒子3b可以是大分子的混合物,並具有約0.001-10μm或更大的粒度。或者可以理解的是,離子化氣體(例如氦氣)可以以大致上完全離子化的形式存在(即作為He+),而且混合的形式也是可能的,例 如使用具有不可忽略比例的He+和He*的離子化氣體。
對於在離子阱10中質量數高達2 000 000amu的大粒子3b之粒子量測和特徵化,可以利用待檢測質荷比m/z如以下所述取決於離子阱10中的保存幅值Vrf(軌跡的直徑)和場頻frf的事實:m/z~Vrf/(frf)2
因此,可以藉由在離子阱10中增加保存幅值Vrf及/或藉由減小場頻frf來量測質量非常大的粒子3b。
在離子阱10中使用介穩態鈍氣粒子13b(即處在激發電子態的中性粒子)來離子化氣體混合物2的進一步優點包含這些介穩態鈍氣粒子13b的截面特別大的事實,導致在離子阱10中與待分析氣體混合物2之組分碰撞的機率較大。其結果是,待分析的離子化粒子3a、3b可更快被收集在離子阱10的中心,而不需使用為達此目的所要求的較高緩衝氣體壓力。因此,藉由使用介穩態的鈍氣粒子13b來離子化氣體混合物2可以在離子阱10中比已知解決方案明顯更迅速地進行量測,所以可以在每種情況下使用質譜儀1以至少500amu或1000amu的質量帶寬來記錄至少10個光譜/秒。
如以上進一步描述的,特別是也可以使用可以產生電子20a(具有範圍在例如1eV和100eV之間的可變電子能量)的電子束源20來以針對性的方式離子化氣體混合物2中具有特定質荷比的組分3a、3b。可以理解的是,作為圖1所圖示實例的替代例,離子化裝置12可以只有電漿源或只有電子束源20,以在離子阱10中離子化待分析的氣體混合物2。電子20a及/或離子化氣體13的介穩態粒子13b還可以離子化存在於離子阱 10中的殘餘氣體14,即產生殘餘氣體離子14a。
同樣可以在圖1中識別出的是,質譜儀1具有壓力降低單元11,壓力降低單元11被連接到量測室7的入口6,而且壓力降低單元11將量測室7與腔室8的出口4連接。在圖示的實例中,壓力降低單元11具有三個串聯的模組化壓力階段11a-c,用以降低腔室8中待分析氣體混合物2的氣體壓力P0。在圖示的實例中,質譜儀1藉由在腔室8之出口4區域中的凸緣連接。三個壓力階段11a-c各自具有兩個端側的凸緣,藉由該等凸緣可以將三個壓力階段11a-c連接到往量測室7的入口6或連接到其他地方。
取決於應用,即取決於腔室8中氣體混合物2的氣體壓力P0,可以串聯壓力階段11a-c中的一個、兩個或三個或不連接壓力階段來降低到目前為止氣體混合物2可以供應到量測室7中以供分析之用的氣體壓力。這三個壓力階段11a-c被相互協調。舉例來說,在每個壓力階段11a-c中該協調可以藉由係數約100-1000毫巴的壓力降低來實現。在待分析的氣體混合物具有高的氣體壓力P0(100巴-10-2毫巴)的情況下可以使用全部三個壓力階段11a-c,在腔室8中的氣體混合物2具有中度壓力(10-2毫巴-10-5毫巴)的情況下可以使用2個壓力階段11a、11b,而且在腔室8中的氣體混合物2具有低度氣體壓力(<10-5毫巴)的情況下可以只使用1個壓力階段11a或不使用壓力階段,氣體混合物2被輸送通過該等壓力階段。
壓力階段11a-c可借助於彼此以氣密方式連接而串聯連接,例如借助於在凸緣上相互旋緊。以此方式,可以非常快速地拆卸或重組壓力階段11a-c,以提供待檢測氣體混合物2的預定壓力範圍的氣體壓力p0,並確保氣體壓力p0在離子阱10的方向上降低到約10-5毫巴或到10-9毫巴, 使得離子阱10可被用於氣體分析。藉由使用一個或更多個壓力階段11a-c,可以使用質譜儀1來分析氣體壓力p0在105毫巴和10-15毫巴之間的氣體混合物2,並具有不變的檢測極限,其中特別是質譜儀1可以以特別簡單的方式適用於所需的壓力範圍。在此,(下)檢測極限可以被定義如下:可以在量測室7中在10-8毫巴的壓力下每秒量測約100個離子。
在圖1所示的實例中,離子阱10被體現為磁FT-ICR阱,在下文中將結合圖2更詳細地說明磁FT-ICR阱。在磁FT-ICR阱10中,離子13a陷在均勻的磁場B中,磁場B沿著XYZ坐標系統的Z方向延伸,並迫使陷在FT-ICR阱10中Z方向上的離子13a到達具有質量相關軌域頻率的軌域上。此外,FT-ICR阱10具有交流電場被垂直於磁場B施加並因此產生迴旋共振的配置。在圖示的實例中,該配置具有6個電極21。假使被施加的交流電場之頻率與角迴旋頻率相符,則發生共振而且相關離子13a的迴旋半徑藉由從交流電場取得能量而增加。這些變化導致FT-ICR阱10的電極20上可量測的訊號(其導致電流I)經由放大器22被提供到FFT(快速傅立葉轉換)光譜儀23,FFT光譜儀23同樣是質譜儀1的元件。
在FFT光譜儀23中接收的、隨時間變化的電流I經受傅立葉轉換,以獲得頻率f相關的質譜圖,該質譜圖被圖示在圖2的右下方。因此,FT-ICR阱10可以直接檢測或直接記錄質譜,使得快速的氣體分析成為可能。也可以從FT-ICR阱10選擇性地去除個別離子或具有特定質量數或質荷比m/z的離子,例如借助被施加到電極21的交流電場來引導所選擇的離子被從阱10移出而抵達不穩定的軌道。
同樣可以從圖2識別的是,時間相關的圖像電流I的包線之 振幅在激發後隨著時間降低,其中電流I在時間或瞬間的降低直接相關於平均自由路徑長度,並因此直接相關於FT-ICR阱10中的壓力。若假設電流I的振幅呈指數下降,則有可能在例如時間常數τ的基礎上以高精度測定FT-ICR阱10中的壓力,在時間常數τ期間振幅減少到原始值的1/e(即約37%)的水平;這尤其可以用於測定介穩態粒子的數量(見下文),因為這個數量與壓力相關。
在傅立葉光譜術的幫助下快速記錄質譜不僅可以在上述FT-ICR阱10中發生,而且還可以在圖2所示的阱類型發展中發生。舉例來說,FT-ICR離子阱10可以被體現為所謂的電FT-ICR阱,該電FT-ICR阱包含環形電極和兩個覆蓋電極,射頻高電壓被施加於該環形電極,該兩個覆蓋電極既可作為圖像電荷檢測器亦可作為激發電極。在FT-ICR阱10的緊湊電變型中,離子被保持陷於射頻高電壓。假使離子經歷脈衝激發,則該等離子會在高真空中進行特徵振動,取決於質/荷比(m/z),該等振動在覆蓋電極由圖像電荷檢測記錄。藉由從兩個覆蓋電極的圖像電荷訊號形成差異來獲得低失真的離子訊號。藉由低雜訊放大器22和光譜儀23來快速傅立葉分析(FFT)離子輸出訊號可以描繪出特徵離子頻率及其強度。頻譜隨後可以被轉換成質譜,其中描繪出檢測到的粒子數目與質荷比m/z相關。
為了盡可能準確地獲得待分析氣體混合物2或其組分3a、3b的定量分析,也就是為了盡可能精確地測定在特定的質荷比m/z下有多少離子13a存在於離子阱10中,可以進行連續的線上原位質譜儀1校準。在這個過程中,測定主離子(即離子化氣體13的離子13a和殘餘氣體的離子14a)的數量和離子化氣體13的介穩態粒子(可用於在離子阱10中電荷 或碰撞離子化氣體混合物2)的數量13b,因此幾乎可以完全消除由於提供用於離子化的主離子13a、14a或介穩態粒子13b的變化或漂移所產生的時間波動。
由於特定的量測程序和適當地控制質譜儀1的電子元件,上述的結果是可能的,該控制係由控制裝置19(參見圖1)進行。以下在圖3的基礎上更詳細地說明量測程序的時機,其中指定示例性的持續時間t1到t7用於量測方法的各個步驟。
在第一步驟中(持續時間t1約為1毫秒),在離子阱10中累積了主離子13a、14a。為了累積的目的,控制裝置19打開計量閥15,並讓離子化氣體13流進電漿源18,在電漿源18中該氣體被離子化並以離子13a的形式進入離子阱10。此外,存在於離子阱10中的殘餘氣體14可以被離子化氣體13的介穩態粒子13b及/或供應到離子阱10的電子20a(部分地)離子化,使得形成殘餘氣體離子14a。
一旦離子阱10中累積了足夠數量的主離子13a、14a,則在第二步驟中(持續時間t2約0.01毫秒)藉由激發訊號激發主離子13a、14a,該激發訊號同樣由控制裝置19產生並被施加到離子阱10的相應電極21。在第三步驟中(持續時間t3約為0.1毫秒)量測或檢測離子阱10中的主離子13a、14a之數量。
就在第二步驟結束之前和在第三步驟期間,第四步驟(持續時間t4<1毫秒)同時發生,確切地說是從量測室7的入口6輸送(非離子化的)氣體混合物2進入離子阱10,更確切地說是從量測室7的入口6輸送氣體混合物2的氣體脈衝2a進入離子阱10。為了產生氣體脈衝2a,藉由 控制裝置19簡單地致動並打開閥5,閥5打開的持續時間通常在小於約1微秒或小於幾毫秒的區間。控制裝置19將氣體混合物2之氣體脈衝2a的產生與量測主離子13a之數量的步驟同步,其同步方式使得氣體脈衝在主離子13a、14a的數量完成量測時到達離子阱10。視情況,氣體混合物2也可以在直接鄰近離子阱10處被離子化。在這種情況下,氣體脈衝到達離子阱10時有一個時間差,也就是剛好在主離子的數量完成量測之後。由於氣體脈衝2a往離子阱10的入口移動,視情況地可以不用提供輸送裝置來將離子化的氣體混合物2輸入離子阱10。
為了便於氣體混合物2或氣體脈衝從腔室8流入離子阱10,可以在閥5的區域、在腔室8的出口4的區域、在進入量測室7的入口6的區域及/或在入口6和離子阱10之間的區域設置例如風扇類型的輸送裝置。為了將氣體混合物2或氣體脈衝輸送到離子阱10的目地,量測室7也可以被連接到泵送裝置(圖1中未圖示)。
在第五步驟中(持續時間t5約為0.1毫秒),以氣體脈衝2a輸送的氣體混合物2在離子阱10中藉由碰撞離子化及/或藉由電荷交換離子化由主離子13a、14a或介穩態粒子13b進行離子化。在這個過程中發現的是,假使離子化氣體13或離子化氣體13的離子13a和介穩態粒子13b的流動方向與氣體脈衝2a的流動方向相反是有利的,使得離子化氣體13的流動和氣體脈衝2a在離子阱10的內部互相碰撞。為了達到這個目的,如圖1所示,假使供應氣體脈衝2a的入口6和供應離子化氣體13之氣流的離子化裝置12的入口被設置成彼此相對是有利的。這同樣適用於電子源20或電子束20a,電子源20或電子束20a同樣應對齊氣體脈衝2a或應被設置 在用於供應氣體脈衝2a的入口6之相對處,如圖1所繪示。
在隨後的第六步驟中(持續時間t6約1ms),氣體混合物2的離子被激發。在激發氣體混合物2的離子之前或過程中,可以憑藉產生並被施加到電極20的適當激發訊號來移除或抑制離子阱10中的主離子13a、14a。在隨後的第七步驟中(持續時間t7=高達100毫秒),量測或檢測氣體混合物2的激發離子或離子化組分3a、3b,其中所量測的訊號位準Hf正比於在相應質荷比m/z中各別離子群體的離子數。
為了最小化時間相關的波動對提供用於離子化的主離子13a、14a之數量或測定離子數Hf的介穩態粒子13b的影響,採用以下的程序:對於每個頻率f或每個質荷比m/z,訊號位準Hf係由以下的表達式決定:Hf(校正)=K * Hf(未校正)*H1/ΣHf, (1),其中H1表示在離子阱中被穩定保存和激發的所有離子之訊號位準,Hf(未校正)表示感興趣的離子或待分析的離子化組分3a、3b之頻譜位準或訊號位準,ΣHf表示存在於量測光譜中的光譜線之所有訊號位準的總和,以及K表示與質量和頻率無關的校正因子,其包括提供用於離子化的主離子13a、14a或確切的說為介穩態粒子13b之測定數目,其方式為較大的測定數目帶來較小的校正係數K,反之亦然。應當理解的是,在離子化氣體13大體上以介穩態粒子13b(例如He*)的形式存在的情況下通常足以測定介穩態粒子13b的數量,而且在離子化氣體13大體上以主粒子13a(例如He+)的形式存在的情況下通常足以測定用於校準的數量。
藉由檢測量測電極21上的感應訊號之位準Hf,乘以在離子 阱中穩定保存和激發的全部離子13a、14a之激發度或數量H1,並考量校正因子K,可以以具有高精度的預定質荷比決定位在離子阱10中的氣體混合物2的離子化組分3a、3b之實際數目,即通常具有小於5%的不準確度。激發度表示雲霄飛車式移動的半徑對離子單元的芯半徑之比。對於任何選定的氣體種類,上述校準可以在任何時候進行,特別是可以在實際量測期間的任何時候進行。
原則上,以上所說明的程序可以被重複多次或任何次數。然而,假使在氣體混合物2離子化之後,氣體混合物2的離子化組分3a、3b在離子阱10中被重複激發可以是有利的,而不用在程序中再離子化氣體混合物2,如下面在圖4的基礎上描述的。
圖4圖示量測離子阱10中的氣體混合物2之離子化組分3a、3b的說明,其中在碰撞或電荷交換離子化完成之後,在時間t0使用脈衝激發訊號SA來幫助激發(視需要一次到幾十次)氣體混合物2之離子化組分3a、3b,在圖4中以「I」表示。在每個激發期間或之後記錄在固定的時段△Tm1至△Tmx(約5ms或更短)間的質譜MS1到MSx(在本實例中)。換句話說,預定的量測窗口(具有恆定的持續時間)被重複移動,以在幾個連續的激發期間分別記錄質譜MS1到MSx,而不需要進一步的離子化。
這使得可以非常快速地進行位於離子阱10中的氣態組分3a、3b之質譜分析,結果可以實時觀察在量測過程中進行的化學製程。特別是,可以在分析物分子相互反應之前量測分析物分子,而且可以檢測在化學反應過程中形成的中間產物。應用上述量測原理的質譜儀1尤其適用於化學製程分析。
為了增加動態範圍,即質譜儀1的最大可檢測訊號強度與最小可檢測訊號強度之間的比率,可以如下所述在圖5a圖5b的基礎上評估質譜。
圖5a圖示其中有所謂用於提高動態響應的SWIFT激發的質譜圖,其中相對大的離子群,即其中在給定質荷比m/z的粒子數超過預定閾值SW的離子群(參見圖5a),在量測過程中被從離子阱10移出或抑制。特別是,SWIFT激發可以被用來實現梳狀濾波器,其中每個對應於不同量測區域MB1至MBx(即對應於幾個質荷比區間)的離子群之幾個亞群被同時量測,如圖5a所示。
也可以藉由切換量測區域來增加動態響應,如圖5b所繪示。在圖5b中,質譜被分成量測區域MB1至MBx,而且在每種情況下具有不同的質荷比,其中每個量測區域MB1至MBx是在不同的量測時間t1到tx評估。同樣可以藉由量測範圍MB1至MBx之間的這種時間切換或藉由以此方式實現的質量選擇性時間多工量測來增加動態範圍。
可以理解的是,也可以將結合圖5a和圖5b所描述的量測模式組合,以提高動態範圍。也可以使用比本文所述更複雜的量測方法類型,以進一步增加動態範圍。當使用了結合圖5a和圖5b所描述的兩種量測原理中之一種時,可以視情況地能夠實現108:1或更大的質譜儀1的動態範圍。
可以將在離子阱10中累積氣體混合物2的個別離子化氣體組分的選擇與上述量測方法組合使用來增加動態範圍,以降低質譜儀的檢測極限。這裡所使用的是離子阱質譜儀在不連續的基礎上操作,而且離子 數的分析只在預定的累積時間(例如少於約5毫秒)之後進行。藉由將上述用於提高動態響應的方法(SWIFT或時間多工量測,參見圖5a和圖5b)與離子阱10的累積能力組合,能夠累積個別的離子直到存在足夠大的量測訊號。在已知(校準的)量測訊號和已知累積時間的情況下,待分析離子群體可以被定量測定。以這種方式,可以降低質譜儀的檢測極限到10-15毫巴或更小。
除了上述的離子阱類型之外,也可以在質譜儀1中使用其它類型的離子阱,該等離子阱能夠三維保存或累積離子及藉由傅立葉轉換進行評估,例如潘寧阱(Penning trap)、環形阱(toroidal trap)、保羅阱(Paul trap)、線性阱、軌域阱(orbitrap)、EBIT及RF聚束器。
上述質譜儀1可以在各個應用領域中找到用途。除了化學製程分析之外(此已結合圖4被描述為可能的應用),質譜儀1可以例如被用在EUV微影術中,EUV微影術係用於分析EUV系統(例如EUV微影設備)中的殘餘氣體,以測定其中存在的殘餘氣體氛圍中的污染物質濃度或量。
圖6示意性圖示這樣的EUV微影設備101。EUV微影設備101包含被容置在獨立的真空殼體中並依序被配置在由EUV光源105產生的EUV輻射106之光束路徑上的輻射產生系統102、照明系統103及投影系統104,該光束路徑從輻射產生系統102的EUV光源105出發。舉例來說,電漿源或同步加速器可作為EUV光源105。從EUV光源105射出、在約5nm和約20nm之間的波長範圍中的輻射首先集中在準直器107。在下游單色器108的幫助之下,藉由改變入射角來濾出所需的操作波長λB(在 本實例中約13.5nm),如雙箭頭所示。準直器107和單色器108被體現為反射光學元件。
在輻射產生系統102中針對波長和空間分佈進行處理的EUV輻射被引入照明系統103,照明系統103具有第一和第二反射光學元件109、110(反射鏡)。兩個反射光學元件109、110將輻射導向光罩111,光罩111作為進一步的反射光學元件,並具有以縮小比例被投影系統104成像在晶圓112上的結構。為此目的,在投影系統104中設置第三和第四反射光學元件113、114(反射鏡)。
反射光學元件109、110、111、113、114各具有曝露於光源105之EUV輻射106的光學表面。光學元件109、110、111、113、114分別在輻射產生系統102的殘餘氣體氛圍102a、照明系統103的殘餘氣體氛圍103a及投影系統104的殘餘氣體氛圍104a中的真空條件下操作,其中該等殘餘氣體氛圍通常含有小部分的空氣、氫氣(H2)及/或氦(He)以及視情況的其他殘餘氣體。由於EUV微影設備1的內部不能進行烘烤,故無法完全避免不良的污染組分存在於各個殘餘氣體氛圍102a、103a、104a中。
在EUV微影設備1的操作過程中,包含真空泵115的真空產生單元產生的殘餘氣體氛圍104a通常在投影系統104中具有大於10-5毫巴的整體壓力。真空或殘餘氣體氛圍103a、102a也可以相應地被產生在照明系統103或在輻射產生系統102中。
為了測定投影系統104的殘餘氣體氛圍104a中整體污染物質及/或個別的每種污染物質之比例,特別是在第二反射鏡114的附近,藉由凸緣將質譜儀1連接到投影系統104,質譜儀1具有如上面進一步描述的 設計,即質譜儀1具有入口6,以將位在投影系統104中的殘餘氣體混合物直接引入離子阱10,即不需先前的離子化,離子阱10作為量測單元並被配置在量測室7中,以藉由例如電荷交換或碰撞離子化來離子化該氣體。
入口6在投影系統104的殘餘氣體氛圍104a和質譜儀1之間形成真空連接。入口6(即真空連接(真空管))具有小於100mm的橫截面A,較佳小於5mm,特別是小於1mm。如圖1所示,質譜儀1可以具有一個或多個站,以確保殘餘氣體壓力往離子阱10降低到<10-5毫巴,使得傳統的殘餘氣體分析儀可被用於殘餘氣體分析。
同樣可以在圖6中確定的是,第二反射鏡114和質譜儀1的連接位置PS(在真空連接或入口6的中間形成在投影光學單元104的殼體上)之間的距離D小於50cm。這是有利的,因為能夠盡可能精確地檢測存在於第二反射鏡114附近(更精確是在其光學表面附近)的污染物質的部分或分壓。在質譜分析期間,特別的是可以量測或檢測以下污染物質或其混合物中之至少一者:氧氣(O2)、臭氧(O3)、水(H2O)、CXHYOZ(通常高達10Mamu),及金屬-CXHYOZ化合物(通常高達10Mamu)。
另外地或替代地,其他的質譜儀或質譜儀1可以被設置在照明系統103的連接位置PB,連接位置PB與設置在照明系統103中的反射鏡109、110(例如第一反射鏡109)的距離D小於50cm。
因此,質譜儀1或其他的質譜儀可以被設置在輻射產生系統102中的第一連接位置PL1,第一連接位置PL1被設在與通道開口116的距離小於1m處,較佳為小於50cm,通道開口116用於讓EUV輻射106通過而進入照明系統103。質譜儀1也可以位在第二連接位置PL2,第二連接 位置PL2被設在距離收集器107(通常是處在收集器反射鏡的形式)的相應距離D小於100cm、較佳為小於50cm處,或被設在第三連接位置PL3,第三連接位置PL3被設在與EUV光源105的距離小於100cm、較佳為小於50cm處。以上述的方式可以以高精度測定在各個光學元件114、109、116、107附近或在EUV光源105附近的污染水平。
圖7示意性圖示用於在基板202(在此案例中:矽晶圓)上進行原子層沉積的裝置201,基板202被放在製程室205(反應室)內部204的架座203上。架座203和製程室205的壁都可被加熱到(視情況不同的)溫度。架座203可以被連接到馬達,以在塗佈期間將基板202置入旋轉運動中。裝置201還包含容器206,容器206中容置金屬有機前驅物材料,在本實例中,該金屬有機前驅物材料為肆(乙基甲基胺基)鉿(tetrakis(ethylmethylamino)hafnium,TEMAH)或另一種金屬有機前驅物。為了將前驅物材料從容器206移到製程室205,使用了惰性載氣,例如氬氣或氫氣,該惰性載氣可以藉由可控閥207供應到容器206。另一個容器208用以提供臭氧氣體O3或另一種摻雜氣體作為原子層沉積中的反應物。
在每種情況下,帶有前驅物和摻雜氣體(例如臭氧氣體)的載氣可以被處在可控閥209a、209b形式的可控入口引入製程室205。分配器歧管210被設置在腔室205中,以朝基板202的方向上盡可能均勻地分配進入的氣體。藉由可控閥209a、209b也可以供應淨化氣體(例如氬氣)到製程室205,以淨化製程室205和各別的供應管線。另一個形成氣體出口的可控閥211被連接到真空泵212,以從製程室205移除氣體。為了監測製程室205中的殘餘氣體氛圍,質譜儀1被設置在氣體處置系統213的真空 管線中的納入位置EE,氣體處置系統213形成在出口閥211的下游,準確地說是直接在真空泵212的上游。也可以將質譜儀1附加於真空泵212下游的氣體處置系統213的排氣管線中的納入位置EG
另外地或替代地,質譜儀1也可以被形成在氣體供應系統216中的納入位置EA、EB,用於例如在相應的供應管線216a、216b中供應反應物到製程室205。另外,或作為替代,質譜儀1還可以被整合在氣體混合系統215的納入位置EC,即在形成於兩個供應管線216a、216b的會合點下游的供應管線中。後者是有利的,因為在此處描述的塗佈製程中兩個供應管線216a、216b不會被同時使用來供應氣體到製程室205。在分配器歧管210中的納入位置ED也是可以的,其中在這種情況下納入位置ED較佳與製程室205間隔小於1m的距離D,特別是小於50cm。另外,或作為替代,質譜儀1或其他的質譜儀和1也可以被附接於製程室205殼體上的納入位置EF,如結合圖6所述。
質譜儀1用於檢測或測定腔室205的殘餘氣體氛圍中所含的(納入位置EF)、腔室205中將含的(製程室205上游的納入位置EA、EB、EC、ED)或腔室205中已含的(製程室205下游的納入位置EE、EG)至少一種氣態組分的分壓量。如在設置於氣體處置系統213中的質譜儀1之基礎上所示,該質譜儀具有離子阱10,其中待分析的氣體或氣體混合物可以藉由例如電荷交換或碰撞離子化進行離子化。為了將離子化氣體組分的氣流帶入離子阱10中,質譜儀1可以被連接到真空泵(未圖示)。保存在離子阱10中的離子可以在離子阱10中直接進行檢測。
為了將氧化鉿(HfO2)的塗層214施加於基板202上,進 行以下的程序:首先將帶有TEMAH前驅物的載氣經由第一閥209a供應到製程室205。然後,切換第一閥209a並藉由第一閥209a將淨化氣體供應到製程室205(參見箭頭),而後者連同載氣或前驅物的殘餘物則藉由真空泵212抽出通過打開的出口閥211。淨化之後,出口閥211被關閉,而臭氧或摻雜氣體則經由第二閥209b被引入腔室205,該臭氧或摻雜氣體在基板202的曝露表面上與前驅物進行化學反應。接著,藉由淨化氣體來淨化腔室205,淨化氣體經由第二閥209b(參見箭頭)被供應到腔室,並在出口閥211打開時連同臭氧或摻雜氣體殘餘物或可能形成的反應產物被真空泵212抽出。在上述的程序中,由氧化鉿製成的單層被沉積在基板202上。關閉出口閥211之後,此程序可被重複數次,準確地說是直到HfO2塗層214已經達到所需厚度d。
供應帶有前驅物的載氣的持續時間、供應臭氧或摻雜氣體的持續時間及淨化程序的持續時間通常在幾秒的範圍中。控制裝置215用於致動閥207、209a、209b、211,以便在沉積製程的上述步驟之間進行切換。可以理解的是,控制裝置215不僅可以在打開位置和關閉位置之間切換閥207、209a、209b、211,而且還可以視情況地藉由電子控制裝置215來控制流過各個閥207、209a、209b、211的質量流量。
在製程室205中殘餘氣體的總壓力通常在約10-3毫巴和1000毫巴之間,其中相對高的、超過500毫巴或超過900毫巴的總壓力也是可能的。腔室205中的總壓力可以藉由壓力感測器(未圖示)進行監測,並且可以視情況地藉由控制裝置215以適當的控制閥207、209a、209b、211進行修改。
氣態組分的檢測,更確切地說是測定各別檢測氣態組分的量或分壓,可被用於控制或調節沉積製程。舉例來說,在金屬有機前驅物或製程相關反應物(例如臭氧、摻雜氣體或殘餘氣體氛圍中的視情況金屬有機物及/或H2O)之濃度的基礎上,能夠識別淨化步驟何時可以完成(例如一旦各別的分壓落在預定臨界值以下時)。然後控制單元215(其具有到製程氣體分析器213a的訊號連接)可以在適當的時間打開或關閉各別的入口閥209a、209b或出口閥211,從而最佳化淨化步驟使用的持續時間。可以理解的是,類似地,最佳化上述兩個供應步驟的持續時間也是可能的。
在質譜儀1的幫助下,不僅可以最佳化原子層沉積過程中的製程,而且還可以最佳化其它的塗佈製程,例如當在金屬有機化學氣相磊晶的情況下或在分子束磊晶的情況下進行(視情況以電漿輔助的)CVD製程、金屬有機CVD製程時,該等製程通常同樣地可以在來自圖1的(視情況稍微修改的)裝置1中進行。這同樣適用於基於物理氣相沉積的塗佈製程。在所有的這些情況下,可以在殘餘氣體氛圍中檢測到的氣體組分的基礎上以適當的方式採用或最佳化製程參數(溫度、壓力等)。
當質譜儀1被用在塗佈設備時,特別的是可以在質譜分析期間量測或檢測以下物質、其混合物及/或反應產物、團簇及/或化合物中之至少一者:H2、He、N2、O2、PH3、AsH3、B、P、As、CH4、CO、CO2、Ar、SCl4、SiHCl3、SiH2Cl2、H2O、CxHy、三甲基鎵、三乙基鎵、三甲基鋁、三乙基鋁、三甲基銦、三乙基銦、Cp2Mg、SiH4、Si2H6、四丁基銨、四丁基矽烷、Xe同位素、Kr同位素、六甲基二矽氧烷、叔丁基胂、三甲基胂、二乙基-叔丁基胂、二乙基-叔丁基膦、二-叔丁基膦、叔丁基肼、二甲基肼、 銦、鋁、鎵、硼、矽、金、銻、鉍。
該至少一種物質、混合物、反應產物、團簇及/或化合物特別是可以在15℃和5000℃之間的製程室205的溫度並在10-10毫巴和5巴之間的製程室205壓力下進行量測或檢測,該溫度較佳為在100℃和2000℃之間,該壓力較佳為在10-8毫巴和1巴之間。
特別的是,當在塗佈製程的過程中使用質譜儀1來分析(製程)氣體混合物時,若質譜儀1具有自清洗功能會是有利的,以去除沉積在量測室7或離子阱10中的製程氣體組分。用於實現這種原位自清洗的選擇被描述在WO 02/00962 A1中,其中清洗氣體被用來去除由製程氣體產生的沉積物。在圖1的質譜儀1中,可以在電漿源18中憑藉由氣體供應(此處未繪示)供應的清洗氣體來取代離子化氣體13而將清洗氣體轉化成電漿。離子化或激發的清洗氣體在與離子化氣體13相同的路徑上進入離子阱10中。視情況,清洗氣體也可以經由其他的氣體供應(此處未繪示)進入量測室7,並在量測室7中形成氣態的清洗產物與沉積物,該清洗產物可以被從離子阱10或從量測室7移出。
特別的是,若離子阱10被體現為電FT-ICR阱(其需要小的安裝空間),則質譜儀1也可以被使用在安裝空間扮演著重要角色的應用中,例如被使用在MOCVD製程或類似的製程。
可以理解的是,由於上述的性質,質譜儀1也可以被用在其他的領域中,例如在其它的塗佈或蝕刻或植入製程中、在氣體分析中、在摻雜測試中、在法醫檢驗中等。
除了使用上述的質譜儀來進行氣體的質譜分析之外,也可以 將質譜儀使用在通常為機械振動的振動檢測或振動分析的領域中。特別的是,振動可以是設置或裝置的自然振動,將質譜儀安裝於該設置或裝置的內部,即在質譜儀的使用點檢測振動,而且質譜儀被用來作為振動感測器。為此目的,使用質譜儀來記錄待分析的振動頻率所在的頻率範圍內的頻譜。舉例來說,這種頻譜可以在約1Hz和約15kHz之間。複數個寄生頻率通常位在此頻率範圍內,該等寄生頻率是由機械振動產生的,而且可以藉由例如FT離子阱(特別是FT-ICR阱)的量測電極進行檢測和分析。舉例來說,為了分析振動,一旦質譜儀被安裝到裝置中即可記錄頻譜。假使該裝置在安裝的時候是處在良好的工作秩序中,則此頻譜可以作為參考頻譜。可以在稍後的時間或在幾個稍後的時間重複量測頻譜,並將測得的頻譜與參考頻譜進行比較。假使在測得的頻譜中檢測到一個或更多個另外的線或尖峰,則表示在裝置中的某處發生不良的振動,該不良的振動例如可被回溯到機械問題。舉例來說,振動可以是配置在質譜儀附近的滑動軸承或球軸承的不良自然振動,或由電源單元引起的振動(電源的嗡嗡聲)。舉例來說,在圖7繪示的塗佈設備201中,可以分析或檢測設置在質譜儀1附近的真空泵212(特別是該泵的滑動軸承或球軸承)的自然頻率f。
1‧‧‧質譜儀
2‧‧‧氣體混合物
2a‧‧‧氣體脈衝
3a‧‧‧物質
3b‧‧‧粒子
3a、3b‧‧‧離子化組分
4‧‧‧出口
5‧‧‧可控閥
6‧‧‧入口
7‧‧‧量測室
8‧‧‧腔室
10‧‧‧離子阱
11‧‧‧壓力降低單元
11a‧‧‧模組化壓力階段
11b‧‧‧模組化壓力階段
11c‧‧‧模組化壓力階段
12‧‧‧離子化裝置
13‧‧‧離子化氣體
13a‧‧‧離子
13b‧‧‧介穩態粒子
14‧‧‧殘餘氣體
14a‧‧‧離子
15‧‧‧計量閥
16‧‧‧氣體供應管線
17‧‧‧氣體貯槽
18‧‧‧電漿源
19‧‧‧控制裝置

Claims (31)

  1. 一種用於氣體混合物(2)之質譜分析的質譜儀(1),包含:一離子化裝置(12);及一離子阱(10),用於該氣體混合物(2)之保存和質譜分析;其特徵在於:該離子化裝置(12)被體現用於供應一離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)及/或用於供應電子(20a)至該離子阱(10),用以離子化待分析之該氣體混合物(2);以及在於該質譜儀(1)被體現來在分析該氣體混合物(2)之前測定存在於該離子阱(10)中的該離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)之數量及/或存在於該離子阱(10)中的一殘餘氣體(14)之離子(14a)之數量。
  2. 如申請專利範圍第1項之質譜儀,該質譜儀具有一可控入口(5、6),用於脈衝式供應待分析之該氣體混合物(2)至該離子阱(10),而且該質譜儀被體現為考量該離子化氣體(13)的離子(13a)及/或介穩態粒子(13b)之測得數量及/或該殘餘氣體(14)的離子(14a)之測得數量來測定以脈衝方式供應至該離子阱(10)的待分析氣體混合物(2)之離子化組分(3a、3b)的粒子數。
  3. 如申請專利範圍第1或2項之質譜儀,該質譜儀被體現為測定待分析之該氣體混合物(2)之離子化組分(3a、3b)的粒子數具有小於5%的不精確度。
  4. 如申請專利範圍第1項之前言之質譜儀,尤其是如前述申請專利範圍中任一項所述之質譜儀,其中該離子化裝置(12)被體現來以一介穩態鈍氣的形式供應一離子化氣體(13)之介穩態粒子(13b)。
  5. 如申請專利範圍第4項之質譜儀,該質譜儀被體現來在每種情況下以一至少500amu、較佳至少1000amu的質量帶寬記錄至少10個頻譜/秒。
  6. 如前述申請專利範圍中任一項之質譜儀,其中該離子化裝置(12)具有一電漿源(18),用以產生該離子化氣體(13)之該離子(13a)及/或該介穩態粒子(13b)。
  7. 如申請專利範圍第6項之質譜儀,其中該電漿源(18)被體現來在一低於100℃的溫度下產生該離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)。
  8. 如前述申請專利範圍中任一項之質譜儀,其中該離子化裝置(12)具有一電子束源(20),用以產生該電子(20a)。
  9. 如申請專利範圍第1項之前言之質譜儀,尤其是如前述申請專利範圍中任一項所述之質譜儀,該質譜儀被體現來選擇性移除或抑制該離子阱(10)中的該氣體混合物(2)之離子化組分(3a、3b),在該離子阱(10)中該等離子化組分之數量超過一臨界值(SW)。
  10. 如申請專利範圍第1項之前言之質譜儀,尤其是如前述申請專利範圍 中任一項所述之質譜儀,該質譜儀被體現來在質荷比(m/z)之預定量測範圍(MB1、...、MBx)中選擇性檢測待分析氣體混合物(2)之離子化組分(3a、3b)。
  11. 如申請專利範圍第9和10項中任一項之質譜儀,該質譜儀具有一108或更大的動態範圍。
  12. 如申請專利範圍第9至11項中任一項之質譜儀,其中該離子阱(10)被體現來累積該氣體混合物(2)之各個離子化氣體組分(3a、3b),並且該質譜儀(1)具有一10-15毫巴或更低的檢測限制。
  13. 尤其是如前述申請專利範圍中任一項之質譜儀(1),該質譜儀(1)具有一壓力降低單元(11),該壓力降低單元(11)具有至少一、較佳至少二、尤其是三個或更多的模組化壓力階段(11a-c),該等模組化壓力階段可以被串聯連接,用以降低待分析的氣體混合物(2)之氣體壓力(p0)。
  14. 如申請專利範圍第13項之質譜儀,該質譜儀被體現來分析具有一氣體壓力(p0)的氣體混合物(2),該氣體壓力(p0)介於105毫巴和10-15毫巴之間。
  15. 如申請專利範圍第1項之前言之質譜儀,尤其是如前述申請專利範圍中任一項所述之質譜儀,該質譜儀被體現來在該離子阱(10)中重複激發待分析氣體混合物(2)之離子化組分(3a、3b),並在每次激發的情況下在一預定持續時間(△Tm1、...△Tmx)期間記錄待分析的離子化組分(3a、3b) 之一質譜(MS1、...、MSx)。
  16. 如申請專利範圍第15項之質譜儀,其中用於記錄一質譜(MS1、...、MSx)的該持續時間(△Tm1、...△Tmx)為5ms或更短。
  17. 如前述申請專利範圍中任一項之質譜儀,其中該離子阱(10)係選自於包含以下之群組:傅立葉轉換離子阱,尤其是傅立葉轉換離子迴旋共振阱、潘寧阱(Penning trap)、環形阱(toroidal trap)、保羅阱(Paul trap)、線性阱、軌域阱(orbitrap)、EBIT及RF聚束器。
  18. 一種如前述申請專利範圍中任一項之質譜儀(1)的用途,用在EUV微影中一氣體混合物(2)之質譜分析,由其是用在EUV微影設備(101)。
  19. 如申請專利範圍第18項之用途,其中在該EUV微影設備(101)之一投影系統(104)中該質譜儀(1)之一連接位置(PS)係形成在與該投影系統(104)之至少一反射鏡(114)相距一小於50cm的距離(D),在該EUV微影設備(101)之一照明系統(103)中的一連接位置(PB)係形成在與該照明系統(103)之至少一反射鏡(109)相距一小於50cm的距離(D),或在該EUV微影設備(101)之一輻射產生系統(102)中的一連接位置(PL1、PL2、PL3)係形成在與一收集器(107)、一EUV光源(105)、或一用於讓來自該輻射產生系統(102)的EUV輻射(106)通過而進入該照明系統(103)的開口116相距一小於1m、較佳小於50cm的距離(D)。
  20. 如申請專利範圍第18或19項之用途,其中該質譜儀(1)係藉由一真空連接(6)與該EUV微影設備(101)含有一殘餘氣體氛圍(102a、103a、104a)的一殼體(102、103、104)分隔,該真空連接(6)具有一小於100mm、較佳為小於5mm、尤其是小於1mm的橫截面。
  21. 如申請專利範圍第18至20項中任一項之用途,其中在該EUV微影設備(101)之一殘餘氣體氛圍(102a、103a、104a)的殼體中,以下污染物質或其混合物中之至少一者係在該質譜分析期間進行量測,該殘餘氣體氛圍(102a、103a、104a)尤其含有氫及/或氦及/或空氣:氧、臭氧、水、高達10Mamu的CXHYOZ、高達10Mamu的粒子、高達10Mamu的金屬-CXHYOZ化合物。
  22. 一種如申請專利範圍第1至17項中任一項之質譜儀(1)的用途,用於在一塗佈設備(201)之一塗佈製程期間進行一氣體混合物(2)之質譜分析。
  23. 如申請專利範圍第19項之用途,其中該塗佈製程係選自於包含以下之群組:CVD、MOCVD、MOVPE、PECVD、ALD、PVD、蝕刻和植入製程及MBE製程。
  24. 如申請專利範圍第22或23項之用途,其中在該塗佈設備(201)中該質譜儀(1)之一納入位置(EA至EG)係形成在一氣體供應系統(216)、一氣體混合系統(215)或一氣體處置系統(213)中,尤其是在該氣體處置系統(213)之一真空泵(212)的上游或下游,及/或與一製程室(205)相距一小於1m、較佳小於50cm的距離(D)。
  25. 如申請專利範圍第22至24項中任一項之用途,其在於在質譜分析期間量測以下物質、其混合物及/或反應產物、團簇及/或化合物中之至少一者:H2、He、N2、O2、PH3、AsH3、B、P、As、CH4、CO、CO2、Ar、SCl4、SiHCl3、SiH2Cl2、H2O、CxHy、三甲基鎵、三乙基鎵、三甲基鋁、三乙基鋁、三甲基銦、三乙基銦、Cp2Mg、SiH4、Si2H6、四丁基銨、四丁基矽烷、Xe同位素、Kr同位素、六甲基二矽氧烷、叔丁基胂、三甲基胂、二乙基-叔丁基胂、二乙基-叔丁基膦、二-叔丁基膦、叔丁基肼、二甲基肼、銦、鋁、鎵、硼、矽、金、銻、鉍。
  26. 如申請專利範圍第25項之用途,其中在該製程室(205)中一介於15℃和5000℃、較佳介於100℃和2000℃的溫度及在該製程室(205)中一介於10-10毫巴和5巴、較佳介於10-8毫巴和1巴的壓力下量測該至少一物質、該混合物、該反應產物、該團簇及/或該化合物。
  27. 一種如申請專利範圍第1至17項中任一項之質譜儀(1)在樣品之分析、製備、處理、修飾及/或操作、較佳在一多光束儀器或在一用於表面掃描分析的裝置中的用途。
  28. 一種如申請專利範圍第1至17項中任一項之質譜儀(1)用於氣體分析的用途。
  29. 一種如申請專利範圍第1至17項中任一項之質譜儀(1)用於化學製程分析的用途。
  30. 一種如申請專利範圍第1至17項中任一項之質譜儀(1)用於檢測振動、尤其是機械振動的用途,該振動較佳具有一介於1Hz和15kHz的振動頻率。
  31. 一種用於一氣體混合物(2)之質譜分析的方法,包含以下步驟:供應一離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)及/或電子(20a)至一離子阱(10);測定存在於該離子阱(10)中的該離子化氣體(13)之離子(13a)及/或介穩態粒子(13b)的數量及/或測定存在於該離子阱(10)中的一殘餘氣體(14)之離子(14a)的數量;供應待分析的該氣體混合物(2)至該離子阱(10);以及考量該離子化氣體(13)的離子(13a)及/或介穩態粒子(13b)之測得數量及/或該殘餘氣體(14)的離子(14a)之數量來測定供應至該離子阱(10)的待分析氣體混合物(2)之離子化組分(3a、3b)的粒子數。
TW103105973A 2013-07-10 2014-02-21 質譜儀、其使用方法、及氣體混合物的質譜分析方法 TWI579888B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310213501 DE102013213501A1 (de) 2013-07-10 2013-07-10 Massenspektrometer, dessen Verwendung, sowie Verfahren zur massenspektrometrischen Untersuchung eines Gasgemisches

Publications (2)

Publication Number Publication Date
TW201503217A true TW201503217A (zh) 2015-01-16
TWI579888B TWI579888B (zh) 2017-04-21

Family

ID=50156760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103105973A TWI579888B (zh) 2013-07-10 2014-02-21 質譜儀、其使用方法、及氣體混合物的質譜分析方法

Country Status (7)

Country Link
US (1) US10304672B2 (zh)
EP (1) EP3020063A1 (zh)
JP (1) JP6535660B2 (zh)
KR (1) KR102219556B1 (zh)
DE (1) DE102013213501A1 (zh)
TW (1) TWI579888B (zh)
WO (1) WO2015003819A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801573A (zh) * 2018-03-27 2020-10-20 信越半导体株式会社 样品分析方法、样品导入装置
CN113862641A (zh) * 2021-08-16 2021-12-31 江汉大学 一种原子层沉积前驱体用量的监测系统及其方法与应用
TWI767371B (zh) * 2015-03-03 2022-06-11 荷蘭商Asml荷蘭公司 用於判定輻射光束之功率之輻射感測器裝置及方法
TWI768447B (zh) * 2020-03-02 2022-06-21 台灣積體電路製造股份有限公司 半導體處理系統、金屬-絕緣體-金屬電容器及其形成方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208188A1 (de) 2015-05-04 2016-11-24 Carl Zeiss Smt Gmbh Verfahren zur massenspektrometrischen Untersuchung eines Gases und Massenspektrometer
CN104882352B (zh) * 2015-05-18 2017-04-05 中国计量科学研究院 气相分子‑离子反应的质谱装置及分析方法
KR101780398B1 (ko) * 2016-01-13 2017-10-11 서울대학교산학협력단 비활성가스 음이온 생성장치 및 생성방법
EP3316278A1 (de) * 2016-10-26 2018-05-02 NovionX UG (haftungsbeschränkt) Verfahren zur spektrometrie
EP3586352B1 (en) 2017-02-21 2021-04-07 Leybold GmbH Method for real-time monitoring of a process and mass spectrometer
DE102017208996B4 (de) 2017-05-29 2024-05-08 Leybold Gmbh Verfahren zur massenspektrometrischen Untersuchung eines Gases
JP6344783B1 (ja) * 2017-06-21 2018-06-20 エフビートライアングル株式会社 ガス分析に基づく評価システム
GB201802917D0 (en) 2018-02-22 2018-04-11 Micromass Ltd Charge detection mass spectrometry
DE102018216623A1 (de) 2018-09-27 2020-04-02 Carl Zeiss Smt Gmbh Massenspektrometer und Verfahren zur massenspektrometrischen Analyse eines Gases
DE102019204694A1 (de) * 2019-04-02 2020-10-08 Carl Zeiss Smt Gmbh Massenspektrometer mit einer Ionisierungseinrichtung
US11842891B2 (en) 2020-04-09 2023-12-12 Waters Technologies Corporation Ion detector
DE102020209157A1 (de) 2020-07-21 2022-01-27 Carl Zeiss Smt Gmbh Restgasanalysator und EUV-Lithographiesystem mit einem Restgasanalysator
KR102450029B1 (ko) * 2020-11-06 2022-10-05 한국과학기술연구원 질량 스펙트럼 분석 방법
GB2612580A (en) * 2021-10-29 2023-05-10 Thermo Fisher Scient Bremen Gmbh Method for determining a measure of a rate of decay and mass spectrometry system
DE102022204996A1 (de) 2022-05-19 2023-11-23 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Bestimmung eines Restgases mittels eines Restgasanalyseverfahrens in einem Vakuum einer Vakuumkammer

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107109A (en) * 1986-03-07 1992-04-21 Finnigan Corporation Method of increasing the dynamic range and sensitivity of a quadrupole ion trap mass spectrometer
DE69333589T2 (de) 1992-05-29 2005-02-03 Varian, Inc., Palo Alto Verfahren zum Betreiben eines Ionenfallen-Massenspektrometers
US5572022A (en) * 1995-03-03 1996-11-05 Finnigan Corporation Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer
US5625184A (en) * 1995-05-19 1997-04-29 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
DE19930894B4 (de) * 1999-07-05 2007-02-08 Bruker Daltonik Gmbh Verfahren zur Regelung der Ionenzahl in Ionenzyklotronresonanz-Massenspektrometern
WO2002000962A1 (en) 2000-06-28 2002-01-03 Mks Instruments, Inc. System and method for in-situ cleaning of process monitor of semi-conductor wafer fabricator
CA2448332C (en) * 2001-05-25 2009-04-14 Analytica Of Branford, Inc. Multiple detection systems
US7095019B1 (en) * 2003-05-30 2006-08-22 Chem-Space Associates, Inc. Remote reagent chemical ionization source
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US7189967B1 (en) * 2004-06-16 2007-03-13 Analytica Of Branford, Inc. Mass spectrometry with multipole ion guides
GB0416288D0 (en) 2004-07-21 2004-08-25 Micromass Ltd Mass spectrometer
GB2427067B (en) * 2005-03-29 2010-02-24 Thermo Finnigan Llc Improvements relating to ion trapping
EP1932164B1 (en) 2005-09-15 2013-04-24 Phenomenome Discoveries Inc. Method and apparatus for fourier transform ion cyclotron resonance mass spectrometry
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
TWI271771B (en) 2006-01-27 2007-01-21 Univ Nat Sun Yat Sen Electrospray-assisted laser desorption ionization devices, mass spectrometers, and methods for mass spectrometry
US7465919B1 (en) * 2006-03-22 2008-12-16 Itt Manufacturing Enterprises, Inc. Ion detection system with neutral noise suppression
US20070224697A1 (en) * 2006-03-24 2007-09-27 Bruker Daltonics, Inc. Means and method for analyzing samples by mass spectrometry
GB0607542D0 (en) * 2006-04-13 2006-05-24 Thermo Finnigan Llc Mass spectrometer
TWI484529B (zh) 2006-11-13 2015-05-11 Mks Instr Inc 離子阱質譜儀、利用其得到質譜之方法、離子阱、捕捉離子阱內之離子之方法和設備
US8178833B2 (en) * 2007-06-02 2012-05-15 Chem-Space Associates, Inc High-flow tube for sampling ions from an atmospheric pressure ion source
KR101260631B1 (ko) * 2007-10-10 2013-05-06 엠케이에스 인스트루먼츠, 인코포레이티드 사중극 또는 비행시간형 질량 분석기를 이용한 화학적 이온화 반응 또는 양자 전이 반응 질량 분석법
GB0820308D0 (en) 2008-11-06 2008-12-17 Micromass Ltd Mass spectrometer
DE102008041592A1 (de) * 2008-08-27 2010-03-04 Carl Zeiss Smt Ag Detektion von kontaminierenden Stoffen in einer EUV-Lithographieanlage
US9202678B2 (en) * 2008-11-14 2015-12-01 Board Of Trustees Of Michigan State University Ultrafast laser system for biological mass spectrometry
CN104779132B (zh) 2009-05-06 2018-04-13 Mks仪器公司 静电离子陷阱
JP5406621B2 (ja) 2009-08-06 2014-02-05 勝 堀 レーザー脱離イオン化質量分析用試料基板、これを用いたレーザー脱離イオン化質量分析方法及び装置
JP5600430B2 (ja) * 2009-12-28 2014-10-01 株式会社日立ハイテクノロジーズ 質量分析装置及び質量分析方法
JP5781545B2 (ja) * 2010-02-02 2015-09-24 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 飛行時間型質量分析検出システムを操作する方法およびシステム
CN102169791B (zh) * 2010-02-05 2015-11-25 岛津分析技术研发(上海)有限公司 一种串级质谱分析装置及质谱分析方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767371B (zh) * 2015-03-03 2022-06-11 荷蘭商Asml荷蘭公司 用於判定輻射光束之功率之輻射感測器裝置及方法
CN111801573A (zh) * 2018-03-27 2020-10-20 信越半导体株式会社 样品分析方法、样品导入装置
CN111801573B (zh) * 2018-03-27 2023-11-28 信越半导体株式会社 样品分析方法、样品导入装置
TWI768447B (zh) * 2020-03-02 2022-06-21 台灣積體電路製造股份有限公司 半導體處理系統、金屬-絕緣體-金屬電容器及其形成方法
US11502160B2 (en) 2020-03-02 2022-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for forming metal-insulator-metal capacitors
CN113862641A (zh) * 2021-08-16 2021-12-31 江汉大学 一种原子层沉积前驱体用量的监测系统及其方法与应用
CN113862641B (zh) * 2021-08-16 2023-09-12 江汉大学 一种原子层沉积前驱体用量的监测系统及其方法与应用

Also Published As

Publication number Publication date
DE102013213501A1 (de) 2015-01-15
KR20160030186A (ko) 2016-03-16
WO2015003819A1 (de) 2015-01-15
JP2016530502A (ja) 2016-09-29
EP3020063A1 (de) 2016-05-18
US10304672B2 (en) 2019-05-28
KR102219556B1 (ko) 2021-02-24
TWI579888B (zh) 2017-04-21
JP6535660B2 (ja) 2019-06-26
US20160111269A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
TWI579888B (zh) 質譜儀、其使用方法、及氣體混合物的質譜分析方法
JP6663407B2 (ja) ガス混合物の質量分析試験のための方法および質量分析計
US20140299577A1 (en) Apparatus and method for surface processing of a substrate
US5087815A (en) High resolution mass spectrometry of recoiled ions for isotopic and trace elemental analysis
US7355171B2 (en) Method and apparatus for process monitoring and control
US7153362B2 (en) System and method for real time deposition process control based on resulting product detection
US11791147B2 (en) Mass spectrometer and method for analysing a gas by mass spectrometry
US20110210243A1 (en) Metastable CID
US5397895A (en) Photoionization mass spectroscopy flux monitor
Yasumatsu et al. Ultrahigh-sensitive detection of molecules produced in catalytic reactions by uni-atomic-composition bi-element clusters supported on solid substrate
Fachinger et al. The ion trap aerosol mass spectrometer: field intercomparison with the ToF-AMS and the capability of differentiating organic compound classes via MS-MS
WO2023074480A1 (ja) ガス分析装置および制御方法
Fuke Preparation of ultracold ions in strong magnetic field and application to gas-phase NMR spectroscopy II
Johnsen Recombination of cluster ions
Gasc et al. Novel Time-of-Flight Residual Gas Analyzer (TOF-RGA) for in situ Real-time Process Monitoring
CN113169028B (zh) 质谱仪和通过质谱分析气体的方法
De Urquijo et al. Drift and proton transfer reactions of positive ions in methane parent gas
KR20240088888A (ko) 가스 분석 장치 및 제어 방법
Pontoh ECR plasma analysis: correlation between plasma conditions and growth rate
JPH0581858B2 (zh)
Binetti Non-adiabatic reaction pathways in the dissociative adsorption of Oxygen on an Al (111) surface
CN116783481A (zh) 气体分析装置和控制方法
JPH08315767A (ja) 微量ガス分析装置
Guha Study of the plasma surface interactions by the “spinning wall” technique

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees