TW201412642A - p型金屬氧化物半導體材料 - Google Patents

p型金屬氧化物半導體材料 Download PDF

Info

Publication number
TW201412642A
TW201412642A TW102134951A TW102134951A TW201412642A TW 201412642 A TW201412642 A TW 201412642A TW 102134951 A TW102134951 A TW 102134951A TW 102134951 A TW102134951 A TW 102134951A TW 201412642 A TW201412642 A TW 201412642A
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide semiconductor
semiconductor material
indium gallium
based metal
Prior art date
Application number
TW102134951A
Other languages
English (en)
Other versions
TWI495615B (zh
Inventor
Tzu-Chi Chou
Kuo-Chuang Chiu
Show-Ju Peng
Shan-Haw Chiou
Yu-Tsz Shie
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102134951A priority Critical patent/TWI495615B/zh
Publication of TW201412642A publication Critical patent/TW201412642A/zh
Application granted granted Critical
Publication of TWI495615B publication Critical patent/TWI495615B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本揭露提供一種p型金屬氧化物半導體材料,具有化學式:In1-xGa1-yMx+yZnO4+m,其中M為鈣(Ca)、鎂(Mg)或銅(Cu),0<x+y≦0.1,0≦m≦3,且0<x,0≦y或0≦x,0<y,其中該p型金屬氧化物半導體材料之電洞載子濃度介於1×1015~6×1019cm-3之間。

Description

p型金屬氧化物半導體材料
本揭露係有關於一種金屬氧化物半導體材料,且特別是有關於一種p型氧化銦鎵鋅系之金屬氧化物半導體材料。
隨著顯示技術的快速發展,各種新世代的產品及材料也應運而生。在這些產品中,透明顯示器(transparent display)因具有可透光性、商品互動特性等特點,近年來其相關技術備受矚目。其中,氧化銦鎵鋅(indium gallium zinc oxide,IGZO)為一種可用以製作透明薄膜電晶體之金屬氧化物半導體材料,與利用非晶矽材料所製作之薄膜電晶體相比,藉由將利用氧化銦鎵鋅系之透明金屬氧化物半導體材料所製作之薄膜電晶體與顯示技術結合,可縮小薄膜電晶體尺寸、提高畫素開口率、實現高精細化、提高解析度、以及提供較快的載子(例如電子)遷移率。再者,亦可將簡單的外部電路整合至顯示器中,使電子裝置更加輕薄並降低耗電量。
若將氧化銦鎵鋅系之n型透明金屬氧化物半導體材料及p型透明金屬氧化物半導體材料結合,不僅可實現透明互補式金屬氧化物半導體元件(CMOS)、透明智慧窗(smart window)等應用,亦可將其它例如變頻器(inverter)、發光二 極體等裝置製作為透明狀態。然而,目前所研發出的氧化銦鎵鋅系之透明金屬氧化物半導體材料仍以n型透明金屬氧化物半導體材料為主。
因此,亟需尋求一種新的氧化銦鎵鋅系之p型透明金屬氧化物半導體材料,其能夠解決上述的問題,以提供透明金屬氧化物半導體更多的應用空間。
本揭露提供一種p型金屬氧化物半導體材料,具有化學式:In1-xGa1-yMx+yZnO4+m,其中M為鈣(Ca)、鎂(Mg)或銅(Cu),0<x+y≦0.1,0≦m≦3,且0<x,0≦y或0≦x,0<y,其中p型金屬氧化物半導體材料之電洞載子濃度(hole carrier concentration)介於1×1015~6×1019cm-3之間。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。
第1A~1F圖繪示了本發明中不同摻雜元素之氧化銦鎵鋅系之金屬氧化物半導體材料的模擬計算結果。
第2圖為本發明中鈣取代銦之鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料之數實施例的電洞載子濃度量測結果。
第3圖為本發明中鈣取代銦之鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料之數實施例的電阻率量測結果。
第4圖為本發明中鈣取代銦之鈣摻雜氧化銦鎵鋅系金屬氧 化物半導體材料之數實施例的電洞載子遷移率量測結果。
本揭露提供數個實施例以說明本發明之技術特徵,實施例之內容及繪製之圖式僅作為例示說明之用,並非用以限縮本發明保護範圍。
本揭露一實施例提供一種p型金屬氧化物半導體材料,具有化學式:In1-xGa1-yMx+yZnO4+m,其中M為鈣(Ca)、鎂(Mg)或銅(Cu),0<x+y≦0.1,0≦m≦3,且0<x,0≦y或0≦x,0<y,其中上述p型金屬氧化物半導體材料之電洞載子濃度(hole carrier concentration)介於1×1015~6×1019cm-3之間。
本揭露之實施例係先藉由模擬計算,得到將鈣、鎂、銅等元素摻雜於氧化銦鎵鋅系金屬氧化物半導體材料中可形成p型金屬氧化物半導體的初步計算結果,再利用軟性化學法分別合成摻雜有鈣、鎂、或銅之p型氧化銦鎵鋅系金屬氧化物半導體材料。
首先針對模擬計算的過程說明如下。本揭露係利用全始量子分子動力學模擬軟體套件(VASP,Vienna Ab-initio Simulation Package)計算在氧化銦鎵鋅系金屬氧化物半導體材料中摻雜不同元素時,其能態密度(DOS,Density of States)對能量之變化關係,並將其結果係繪示於第1A~1F圖中。
第1A圖為摻雜鈣之氧化銦鎵鋅系金屬氧化物半導體材料經VASP模擬所得之能態密度對能量關係圖,經由模擬計算可知此摻雜鈣之氧化銦鎵鋅系金屬氧化物半導體材料的費米能階(EF,Fermi level)係降至價電帶(VB,valence band) 處,故其應為一p型金屬氧化物半導體材料。需注意的是,第1A圖中設定鈣原子半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的銦原子(即,In0.5GaCa0.5ZnO4),是因為實務上在進行模擬計算時,為避免電腦處理數據過於龐大、耗時過久等問題,通常會先以半數取代的條件針對選定之摻雜物進行初步的模擬計算,待確認此摻雜物的初步計算結果後,再實際合成並調整摻雜物比例,以驗證模擬結果,並非代表此摻雜物需在半數取代的條件下才可使氧化銦鎵鋅系金屬氧化物半導體材料展現p型半導體材料之特性。第1B~1C圖分別為摻雜鎂之氧化銦鎵鋅系金屬氧化物半導體材料及摻雜銅之氧化銦鎵鋅系金屬氧化物半導體材料藉由VASP模擬所得之結果,其中在摻雜鎂之氧化銦鎵鋅系金屬氧化物半導體材料中,將鎂原子設定為半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的銦原子(即,In0.5GaMg0.5ZnO4),在摻雜銅之氧化銦鎵鋅系金屬氧化物半導體材料中,將銅原子設定為半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的銦原子(即,In0.5GaCu0.5ZnO4)。由第1B~1C圖之模擬計算結果可知,由於上述半數取代銦原子的摻雜鎂之氧化銦鎵鋅系金屬氧化物半導體材料及摻雜銅之氧化銦鎵鋅系金屬氧化物半導體材料的費米能階係降至價電帶處,故其亦應為一p型金屬氧化物半導體材料。
第1D~1F圖亦為摻雜鈣、鎂、銅之氧化銦鎵鋅系金屬氧化物半導體材料藉由VASP模擬所得之結果,但此處在摻雜鈣之氧化銦鎵鋅系金屬氧化物半導體材料中,將鈣原子設定為半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的鎵原 子(即,InGa0.5Ca0.5ZnO4),在摻雜鎂之氧化銦鎵鋅系金屬氧化物半導體材料中,將鎂原子設定為半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的鎵原子(即,InGa0.5Mg0.5ZnO4),在摻雜銅之氧化銦鎵鋅系金屬氧化物半導體材料中,將銅原子設定為半數取代氧化銦鎵鋅系金屬氧化物半導體材料中的鎵原子(即,InGa0.5Cu0.5ZnO4)。由第1D~1F圖之模擬計算結果可知,由於上述半數取代鎵原子的摻雜鈣之氧化銦鎵鋅系金屬氧化物半導體材料、摻雜鎂之氧化銦鎵鋅系金屬氧化物半導體材料及摻雜銅之氧化銦鎵鋅系金屬氧化物半導體材料的費米能階亦降至價電帶處,故其亦應為一p型金屬氧化物半導體材料。
隨後,根據上述模擬結果,利用軟性化學法分別合成摻雜有不同含量之鈣、鎂、銅的氧化銦鎵鋅系金屬氧化物半導體材料。
在一實施例中,此合成方法係先混合(1-x)莫耳份的銦鹽、(1-y)莫耳份的鎵鹽、1莫耳份的鋅鹽、(x+y)莫耳份的摻雜金屬鹽(例如鈣、鎂、或銅之鹽類)、及螯合劑於一溶液中,其中0<x+y≦0.1,且0<x,0≦y或0≦x,0<y,並於常溫下混合60~70分鐘,以形成一包含銦、鎵、鋅、及摻雜金屬之錯合物的溶液,其中各金屬鹽可使用包含銦、鎵、鋅、或摻雜金屬之硝酸鹽或檸檬酸鹽,螯合劑可使用酒石酸(tartaric acid)。接著,升溫至155℃~175℃,以蒸發溶液中的液體而使溶液成為凝膠態,再將其乾燥成粉狀,繼而進行燒結步驟使金屬錯合物氧化,以形成金屬氧化物粉體。之後,可進行陶瓷製程之模壓、射出、冷均壓(CIP,cold isostatic press)、注漿等相關製 程,並進行燒結和機械加工製程,以製作摻雜之氧化銦鎵鋅系金屬氧化物半導體材料(例如,In1-xGa1-yMx+yZnO4+m,其中M為鈣(Ca)、鎂(Mg)或銅(Cu),0<x+y≦0.1,0≦m≦3,且0<x,0≦y或0≦x,0<y)的塊材或靶材。
在形成上述塊材或靶材後,可藉由濺鍍等方法,形成摻雜之氧化銦鎵鋅系金屬氧化物半導體材料的薄膜,以應用於電子裝置(例如透明顯示器、透明場效電晶體、發光二極體、透明積體電路半導體元件)的製作。
實施例1~7:鈣取代銦之鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料
首先,在保持金屬總含量為0.5 mol的條件下,將0.167 mol之鎵鹽(Ga(NO3)3)、0.167 mol之鋅鹽(Zn(NO3)2)以及依照表1之化學劑量所分別秤取之數種含量比例之銦鹽(In(NO3)3)及鈣鹽(Ca(NO3)2)加入濃度為1.4 N之硝酸(HNO3)水溶液中,並加入0.55mol之酒石酸作為螯合劑,於常溫下混合1小時,以合成本發明之實施例1~7。上述反應係在混合金屬離子析出後,藉由螯合劑將銦、鎵、鋅、鈣結合而形成一金屬錯合物。
隨後,升溫至155℃,蒸發溶液中的液體使溶液成為凝膠態,並進行乾燥步驟將其乾燥成粉狀,繼而進行燒結步驟使上述金屬錯合物氧化以形成金屬氧化物半導體粉體,此金屬氧化物半導體具有In1-xGa1-yCax+yZnO4+m之化學式,其中0.0005≦x≦0.1,y=0,0≦m≦3。
接著,進行陶瓷製程之模壓、射出、冷均壓、注 漿等相關製程,以製作鈣取代銦之鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料的塊材或靶材。
藉由對合成出的鈣摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行X光能量散射光譜(Energy-Dispersive X-Ray Spectroscopy,EDS)分析,可得到各成份元素的含量。其中,鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料中金屬成份元素的含量(莫耳比)如表1所示,非金屬成份元素之氧的含量(莫耳比)在實施例1~7中則落在0≦m≦3之範圍內。例如,在實施例5中,藉由X光能量散射光譜分析,可得到鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各成份元素的莫耳比為In:Ca:Ga:Zn:O=0.995:0.005:1:1:6。
再者,藉由對合成出的鈣摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行霍爾量測(Hall measurement),可得到鈣摻雜氧化銦鎵鋅系金屬氧化物之主要載子型態、載子濃度、電阻率、載子遷移率等特性,如表1及第2~4圖所示。霍爾量測係使用Nano Metrics所生產之HL 5550 LN2 Cryostat霍爾量測儀。
表1顯示了本發明之實施例1~7的鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各金屬成份之比例及主要載子型態,第2圖則為本發明中鈣摻雜氧化銦鎵鋅材料之實施例的電洞載子濃度量測結果。由第2圖可知,當鈣取代銦使氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yCax+yZnO4+m中0.0005≦x≦0.1,y=0,0≦m≦3時,藉由霍爾量測所得之主要載子型態為電洞,且其電洞載子濃度在約1×1015~6×1019 cm-3之半導體範圍內,故可確定實施例1~7所合成之鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料為p型。
第3圖為本發明中鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料之數實施例的電阻率量測結果,由第3圖可知,當鈣取代銦使氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yCax+yZnO4+m中0.0005≦x≦0.1,y=0,0≦m≦3時,可得到在約0.89×10-2~1.44×102 ohm-cm之範圍內的電阻率。第4圖則為本發明中鈣摻雜氧化銦鎵鋅系金屬氧化物半導體材料之數實施例的電洞載子遷移率量測結果,如第4圖所示,當鈣取代銦使氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yCax+yZnO4+m中0.0005≦x≦0.1,y=0,0≦m≦3時,可得到大於約1.0 cm2/V-s的電洞載子遷移率。因此,藉由本揭露之方法,可製作出具有良好電性之p型氧化銦鎵鋅系金屬氧化物半導體材料。
實施例8~9:鎂取代銦之鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料
首先,在保持金屬總含量為0.5 mol的條件下,將0.167 mol 之鎵鹽(Ga(NO3)3)、0.167 mol之鋅鹽(Zn(NO3)2)以及依照表2之化學劑量所分別秤取之數種含量比例之銦鹽(In(NO3)3)及鎂鹽(Mg(NO3)2)加入濃度為1.4 N之硝酸水溶液中,並加入0.55 mol之酒石酸作為螯合劑,於常溫下混合1小時,以合成本發明之實施例8~9。上述反應係在混合金屬離子析出後,藉由螯合劑將銦、鎵、鋅、鎂結合而形成一金屬錯合物。
隨後,升溫至155℃,蒸發溶液中的液體使溶液成為凝膠態,並進行乾燥步驟將其乾燥成粉狀,繼而進行燒結步驟使上述金屬錯合物氧化以形成金屬氧化物半導體粉體,此金屬氧化物半導體具有In1-xGa1-yMgx+yZnO4+m之化學式,其中0.001≦x≦0.005,y=0,0≦m≦3。
接著,進行陶瓷製程之模壓、射出、冷均壓、注漿等相關製程,以製作鎂取代銦之鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料的塊材或靶材。
藉由對合成出的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行X光能量散射光譜分析,可得到鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料中金屬成份元素的含量(莫耳比),如表2所示,以及非金屬成份元素之氧的含量(莫耳比),其在實施例8~9中皆落在0≦m≦3之範圍內。再者,藉由對合成出的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行霍爾量測,可得到鎂摻雜氧化銦鎵鋅系金屬氧化物半導體之主要載子型態等特性,如表2所示。
[表2]
表2顯示了本發明之實施例8~9的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各金屬成份之比例及主要載子型態。當鎂取代銦使鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yMgx+yZnO4+m中0.001≦x≦0.005,y=0,0≦m≦3時,藉由霍爾量測所得之主要載子型態為電洞,其電洞載子濃度大於1015cm-3,故可確定實施例8~9所合成之鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料為p型,如表2所示。
實施例10~12:銅取代銦之銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料
首先,在保持金屬總含量為0.5 mol的條件下,將0.167 mol之鎵鹽(Ga(NO3)3)、0.167 mol之鋅鹽(Zn(NO3)2)以及依照表3之化學劑量所分別秤取之數種含量比例之銦鹽(In(NO3)3)及銅鹽(Cu(NO3)2)加入濃度為1.4 N之硝酸水溶液中,並加入0.55 mol之酒石酸作為螯合劑,於常溫下混合1小時,以合成本發明之實施例10~12。上述反應係在混合金屬離子析出後,藉由螯合劑將銦、鎵、鋅、銅結合而形成一金屬錯合物。
隨後,升溫至155℃,蒸發溶液中的液體使溶液成為凝膠態,並進行乾燥步驟將其乾燥成粉狀,繼而進行燒結步驟使上述金屬錯合物氧化以形成金屬氧化物半導體粉體,此金屬氧化物半導體具有In1-xGa1-yCux+yZnO4+m之化學式,其中0.001≦x≦0.1,y=0,0≦m≦3。
接著,進行陶瓷製程之模壓、射出、冷均壓、注漿等相關製程,以製作銅取代銦之銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料的塊材或靶材。
藉由對合成出的銅摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行X光能量散射光譜分析,可得到銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料中金屬成份元素的含量(莫耳比),如表3所示,以及非金屬成份元素之氧的含量(莫耳比),其在實施例10~12中皆落在0≦m≦3之範圍內。再者,藉由對合成出的銅摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行霍爾量測,可得到銅摻雜氧化銦鎵鋅系金屬氧化物半導體之主要載子型態等特性,如表3所示。
表3顯示了本發明之實施例10~12的銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各金屬成份之比例及主要載子型態。當銅取代銦使銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yCux+yZnO4+m中0.001≦x≦0.1,y=0,0≦m≦3時,藉由霍爾量測所得之主要載子型態為電洞,其電洞載子濃度大於1015cm-3,故可確定實施例10~12所合成之銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料為p型,如表3所示。
實施例13~14:鎂取代鎵之鎂摻雜氧化銦鎵鋅系 金屬氧化物半導體材料
首先,在保持金屬總含量為0.5 mol的條件下,將0.167 mol之銦鹽(In(NO3)3)、0.167 mol之鋅鹽(Zn(NO3)2)以及依照表4之化學劑量所分別秤取之數種含量比例之鎵鹽(Ga(NO3)3)及鎂鹽(Mg(NO3)2)加入濃度為1.4 N之硝酸水溶液中,並加入0.55 mol之酒石酸作為螯合劑,於常溫下混合1小時,以合成本發明之實施例13~14。上述反應係在混合金屬離子析出後,藉由螯合劑將銦、鎵、鋅、鎂結合而形成一金屬錯合物。
隨後,升溫至155℃,蒸發溶液中的液體使溶液成為凝膠態,並進行乾燥步驟將其乾燥成粉狀,繼而進行燒結步驟使上述金屬錯合物氧化以形成金屬氧化物半導體粉體,此金屬氧化物半導體具有In1-xGa1-yMgx+yZnO4+m之化學式,其中x=0,0.001≦y≦0.1,0≦m≦3。
接著,進行陶瓷製程之模壓、射出、冷均壓、注漿等相關製程,以製作鎂取代鎵之鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料的塊材或靶材。
藉由對合成出的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行X光能量散射光譜分析,可得到鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料中金屬成份元素的含量(莫耳比),如表4所示,以及非金屬成份元素之氧的含量(莫耳比),其在實施例13~14中皆落在0≦m≦3之範圍內。再者,藉由對合成出的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行霍爾量測,可得到鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料之主要載子型態等特性,如表4所示。
表4顯示了本發明之實施例13~14的鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各金屬成份之比例及主要載子型態。當鎂取代鎵使鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yMgx+yZnO4+m中x=0,0.001≦y≦0.1,0≦m≦3時,藉由霍爾量測所得之主要載子型態為電洞,其電洞載子濃度大於1015cm-3,故可確定實施例13~14所合成之鎂摻雜氧化銦鎵鋅系金屬氧化物半導體材料為p型,如表4所示。
實施例15~18:銅取代鎵之銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料
首先,在保持金屬總含量為0.5 mol的條件下,將0.167 mol之銦鹽(In(NO3)3)、0.167 mol之鋅鹽(Zn(NO3)2)以及依照表5之化學劑量所分別秤取之數種含量比例之鎵鹽(Ga(NO3)3)及銅鹽(Cu(NO3)2)加入濃度為1.4 N之硝酸水溶液中,並加入0.55 mol之酒石酸作為螯合劑,於常溫下混合1小時,以合成本發明之實施例15~18。上述反應係在混合金屬離子析出後,藉由螯合劑將銦、鎵、鋅、銅結合而形成一金屬錯合物。
隨後,升溫至155℃,蒸發溶液中的液體使溶液成為凝膠態,並進行乾燥步驟將其乾燥成粉狀,繼而進行燒結步驟使上述金屬錯合物氧化以形成金屬氧化物半導體粉體,此金屬氧化物半導體具有In1-xGa1-yCux+yZnO4+m之化學式,其中 x=0,0.025≦y≦0.1,0≦m≦3。
接著,進行陶瓷製程之模壓、射出、冷均壓、注漿等相關製程,以製作銅取代鎵之銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料的塊材或靶材。
藉由對合成出的銅摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行X光能量散射光譜分析,可得到銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料中金屬成份元素的含量(莫耳比),如表5所示,以及非金屬成份元素之氧的含量(莫耳比),其在實施例15~18中皆落在0≦m≦3之範圍內。再者,藉由對合成出的銅摻雜氧化銦鎵鋅系金屬氧化物半導體塊材或靶材進行霍爾量測,可得到銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料之主要載子型態等特性,如表5所示。
表5顯示了本發明之實施例15~18的銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料中各金屬成份之比例及主要載子型態。當銅取代鎵使銅摻雜氧化銦鎵鋅系金屬氧化物半導體材料In1-xGa1-yCux+yZnO4+m中x=0,0.025≦y≦0.1,0≦m≦3時,藉由霍爾量測所得之主要載子型態為電洞,其電洞載子濃度大於1015cm-3,故可確定實施例15~18所合成之銅摻雜氧化 銦鎵鋅系金屬氧化物半導體材料為p型,如表5所示。
雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (6)

  1. 一種p型金屬氧化物半導體材料,具有化學式:In1-xGa1-yMx+yZnO4+m,其中M為鈣(Ca)、鎂(Mg)或銅(Cu),0<x+y≦0.1,0≦m≦3,且0<x,0≦y或0≦x,0<y,其中該p型金屬氧化物半導體材料之電洞載子濃度介於1×1015~6×1019cm-3之間。
  2. 如申請專利範圍第1項所述之p型金屬氧化物半導體材料,其中M為鈣(Ca),0.0005≦x≦0.1,y=0。
  3. 如申請專利範圍第1項所述之p型金屬氧化物半導體材料,其中M為鎂(Mg),0.001≦x≦0.005,y=0。
  4. 如申請專利範圍第1項所述之p型金屬氧化物半導體材料,其中M為銅(Cu),0.001≦x≦0.1,y=0。
  5. 如申請專利範圍第1項所述之p型金屬氧化物半導體材料,其中M為鎂(Mg),x=0,0.001≦y≦0.1。
  6. 如申請專利範圍第1項所述之p型金屬氧化物半導體材料,其中M為銅(Cu),x=0,0.025≦y≦0.1。
TW102134951A 2012-09-28 2013-09-27 p型金屬氧化物半導體材料 TWI495615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102134951A TWI495615B (zh) 2012-09-28 2013-09-27 p型金屬氧化物半導體材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101135764 2012-09-28
TW102134951A TWI495615B (zh) 2012-09-28 2013-09-27 p型金屬氧化物半導體材料

Publications (2)

Publication Number Publication Date
TW201412642A true TW201412642A (zh) 2014-04-01
TWI495615B TWI495615B (zh) 2015-08-11

Family

ID=50384322

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102134951A TWI495615B (zh) 2012-09-28 2013-09-27 p型金屬氧化物半導體材料

Country Status (3)

Country Link
US (1) US8927986B2 (zh)
CN (1) CN103715234B (zh)
TW (1) TWI495615B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116652A1 (en) * 2013-06-20 2016-04-28 Merck Patent Gmbh Method for controlling the optical properties of uv filter layers
JP6547273B2 (ja) * 2013-12-26 2019-07-24 株式会社リコー p型酸化物半導体、p型酸化物半導体製造用組成物、p型酸化物半導体の製造方法、半導体素子、表示素子、画像表示装置、及びシステム
US9224599B2 (en) * 2013-12-31 2015-12-29 Industrial Technology Research Institute P-type metal oxide semiconductor material and method for fabricating the same
CN106458759A (zh) * 2014-06-26 2017-02-22 住友金属矿山株式会社 氧化物烧结体、溅射靶及使用该靶得到的氧化物半导体薄膜
KR101705406B1 (ko) * 2014-09-11 2017-02-10 경희대학교 산학협력단 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법
JP6415363B2 (ja) * 2015-03-16 2018-10-31 国立大学法人室蘭工業大学 Igzoの製造方法
US10566483B2 (en) * 2015-03-17 2020-02-18 Lg Electronics Inc. Solar cell
KR102467802B1 (ko) * 2016-06-30 2022-11-16 가부시키가이샤 플로스피아 산화물 반도체 막 및 그 제조 방법
EP3823043A4 (en) * 2018-07-12 2022-04-13 Flosfia Inc. SEMICONDUCTOR DEVICE

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179242A (ja) 2001-12-12 2003-06-27 National Institute Of Advanced Industrial & Technology 金属酸化物半導体薄膜及びその製法
US7141489B2 (en) 2003-05-20 2006-11-28 Burgener Ii Robert H Fabrication of p-type group II-VI semiconductors
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
JP4488184B2 (ja) * 2004-04-21 2010-06-23 出光興産株式会社 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
JP2008538164A (ja) 2005-03-30 2008-10-09 モクストロニクス,インコーポレイテッド 金属酸化物半導体膜、構造および方法
KR100711203B1 (ko) 2005-08-23 2007-04-24 한국과학기술연구원 산화아연을 이용한 p형-진성-n형 구조의 발광 다이오드제조방법
JP4560502B2 (ja) * 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
US7329915B2 (en) * 2005-11-21 2008-02-12 Hewlett-Packard Development Company, L.P. Rectifying contact to an n-type oxide material or a substantially insulating oxide material
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101699968B1 (ko) * 2006-12-13 2017-01-26 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟 및 산화물 반도체막
EP2115770B1 (en) 2007-02-05 2018-10-10 Universidade Nova de Lisboa ELECTRONIC SEMICONDUCTOR DEVICE BASED ON COPPER NICKEL AND GALLIUM-TIN-ZINC-COPPER-TITANIUM p AND n-TYPE OXIDES, THEIR APPLICATIONS AND CORRESPONDING MANUFACTURE PROCESS
TWI435846B (zh) 2008-01-31 2014-05-01 Univ Nat Chunghsing A method for preparing transparent conductive zinc oxide thin film by dipping stitch doping technique
TWI385716B (zh) 2008-11-28 2013-02-11 Univ Nat Chiao Tung 以水溶液製備金屬氧化物薄膜之方法
TWI388506B (zh) 2008-12-16 2013-03-11 Ind Tech Res Inst P型金屬氧化物半導體材料之製備方法
JP4571221B1 (ja) 2009-06-22 2010-10-27 富士フイルム株式会社 Igzo系酸化物材料及びigzo系酸化物材料の製造方法
JP2011181722A (ja) 2010-03-02 2011-09-15 Idemitsu Kosan Co Ltd スパッタリングターゲット
CN102290443B (zh) * 2011-07-28 2016-03-30 京东方科技集团股份有限公司 一种非晶薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
US8927986B2 (en) 2015-01-06
US20140091302A1 (en) 2014-04-03
CN103715234A (zh) 2014-04-09
TWI495615B (zh) 2015-08-11
CN103715234B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
TWI495615B (zh) p型金屬氧化物半導體材料
Wei et al. Synthesis and characterization of nanostructured stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for thermoelectric applications
Lyons et al. Carbon as a shallow donor in transparent conducting oxides
Sanctis et al. Toward an understanding of thin-film transistor performance in solution-processed amorphous zinc tin oxide (ZTO) thin films
Liang Thermoelectric transport properties of Fe-enriched ZnO with high-temperature nanostructure refinement
Peng et al. Structure, binding energy and optoelectrical properties of p-type CuI thin films: The effects of thickness
Valério et al. Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films
Pujar et al. Trends in low‐temperature combustion derived thin films for solution‐processed electronics
Tsay et al. Improved electrical properties of p-type CuGaO2 semiconductor thin films through Mg and Zn doping
Pham et al. DFT+ U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS
Park et al. Improvement of bias stability of oxyanion-incorporated aqueous sol–gel processed indium zinc oxide TFTs
Dung et al. Experimental and theoretical studies on induced ferromagnetism of new (1− x) Na0. 5Bi0. 5TiO3+ x BaFeO3− δ solid solution
Wang et al. Gallium-doped zinc oxide nanostructures for tunable transparent thermoelectric films
Gayner et al. Effects of Co-doping and microstructure on charge carrier energy filtering in thermoelectric titanium-doped zinc aluminum oxide
Chander Joshi et al. Sol–gel-derived Cu-doped ZnO thin films for optoelectronic applications
TWI534089B (zh) p型金屬氧化物半導體材料及其製造方法
Hui et al. Low resistivity p-type Zn1− xAlxO: Cu2O composite transparent conducting oxide thin film fabricated by sol–gel method
Liao et al. Synergistic effect of co-doping of nano-sized ZnO and Nb2O5 on the enhanced nonlinear coefficient of TiO2 varistor with low breakdown voltage
Lee et al. Conductive polymer-assisted metal oxide hybrid semiconductors for high-performance thin-film transistors
Jayaram et al. Structural and physical property analysis of ZnO–SnO2–In2O3–Ga2O3 quaternary transparent conducting oxide system
Nayek et al. Ferromagnetic property of copper doped ZnO: A first-principles study
Liau et al. Effect of indium-and gallium-doped ZnO fabricated through sol-gel processing on energy level variations
Musaeva et al. Effect of oxygen content and nonstoichiometry defects on the phase transformations in manganites of the La 0.65 Sr 0.35 Mn 1− x− y Ni x Ti y O 3+ γ system
Lin et al. Effects of Mg doping on structural and optoelectronic properties of p-type semiconductor CuCrO2 thin films
Kanmani et al. Influence of Ti dopant on the properties and dye sensitized solar cell performance of ZnO chunk-shaped nanostructures