TW201405835A - A method for fabricating a thin film transistor - Google Patents

A method for fabricating a thin film transistor Download PDF

Info

Publication number
TW201405835A
TW201405835A TW102122061A TW102122061A TW201405835A TW 201405835 A TW201405835 A TW 201405835A TW 102122061 A TW102122061 A TW 102122061A TW 102122061 A TW102122061 A TW 102122061A TW 201405835 A TW201405835 A TW 201405835A
Authority
TW
Taiwan
Prior art keywords
layer
stack
metal
oxide semiconductor
metal oxide
Prior art date
Application number
TW102122061A
Other languages
Chinese (zh)
Other versions
TWI664734B (en
Inventor
Manoj Nag
Soeren Steudel
Original Assignee
Imec
Tno
Univ Leuven Kath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imec, Tno, Univ Leuven Kath filed Critical Imec
Publication of TW201405835A publication Critical patent/TW201405835A/en
Application granted granted Critical
Publication of TWI664734B publication Critical patent/TWI664734B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Abstract

A method for fabricating a bottom-gate top-contact metal oxide semiconductor thin film transistor, the method comprising: forming a gate electrode on a substrate; providing a gate dielectric layer covering the gate electrode; depositing a metal oxide semiconductor layer on the gate dielectric layer; depositing a metal layer on top of the metal oxide semiconductor layer; patterning said metal layer to form source and drain contacts, wherein patterning the metal layer comprises dry etching of the metal layer; and thereafter patterning the metal oxide semiconductor layer.

Description

製造薄膜電晶體的方法 Method of manufacturing thin film transistor

所揭示技術係關於製造金屬氧化物半導體薄膜電晶體之方法,更特定而言,係關於製造金屬氧化物半導體底閘極頂部接觸型(bottom-gate top-contact)薄膜電晶體之方法,以及係關於由此獲得之薄膜電晶體。 The disclosed technology relates to a method of fabricating a metal oxide semiconductor thin film transistor, and more particularly to a method of fabricating a metal oxide semiconductor bottom-gate top-contact thin film transistor, and a system Regarding the thin film transistor thus obtained.

金屬氧化物半導體由於其在低處理溫度下達成優良電學特性之能力而在諸如大面積顯示器及電路之薄膜電子器件中具有潛在應用。舉例而言,已展示了使用非晶形鎵銦鋅氧化物(amorphous gallium-indium-zinc-oxide;a-GIZO)作為主動層之薄膜電晶體(thin film transistor;TFT)。實現良好移動率(μ)及良好臨限電壓(VTH)控制為將顯示器中之習知非晶形Si TFT底板成功替換為非晶形金屬氧化物半導體TFT底板的重要參數。 Metal oxide semiconductors have potential applications in thin film electronic devices such as large area displays and circuits due to their ability to achieve excellent electrical characteristics at low processing temperatures. For example, a thin film transistor (TFT) using an amorphous gallium-indium-zinc-oxide (a-GIZO) as an active layer has been shown. Achieving good mobility (μ) and good threshold voltage (V TH ) control is an important parameter for successfully replacing a conventional amorphous Si TFT substrate in a display with an amorphous metal oxide semiconductor TFT substrate.

在製造底閘極頂部接觸型(BGTC)金屬氧化物半導體薄膜電晶體之製程中,通常使用蝕刻終止層以在進一步處理期間保護金屬氧化物半導體層不受電漿損害。在此類製程中,在提供閘極及閘極介電層於基板上之後,沈積金屬氧化物半導體層於閘極介電層上且圖案化。接著,沈積蝕刻終止層於金屬氧化物半導體層之頂部上,隨後圖案化蝕刻終止 層。隨後沈積金屬層且藉由乾式電漿蝕刻進行圖案化以形成源極接點及汲極接點。在用以界定源極接點及汲極接點之此圖案化期間,蝕刻終止層保護下伏金屬氧化物半導體層不受損害,該損害可能由金屬蝕刻製程引起。 In the fabrication of a bottom gate top contact type (BGTC) metal oxide semiconductor thin film transistor, an etch stop layer is typically used to protect the metal oxide semiconductor layer from plasma damage during further processing. In such a process, after the gate and gate dielectric layers are provided on the substrate, a metal oxide semiconductor layer is deposited over the gate dielectric layer and patterned. Next, depositing an etch stop layer on top of the metal oxide semiconductor layer, followed by patterning etch termination Floor. A metal layer is then deposited and patterned by dry plasma etching to form source and drain contacts. During this patterning to define the source and drain contacts, the etch stop layer protects the underlying metal oxide semiconductor layer from damage that may be caused by the metal etch process.

在一替代製程流程中,可藉由使用濕式蝕刻製程圖案化金屬氧化物半導體層之頂部上的金屬層來避免使用蝕刻終止層。然而,尋找在金屬層與金屬氧化物半導體層之間提供良好蝕刻選擇性之蝕刻劑為一大挑戰,其限制可使用之材料組合。 In an alternative process flow, the use of an etch stop layer can be avoided by patterning the metal layer on top of the metal oxide semiconductor layer using a wet etch process. However, finding an etchant that provides good etch selectivity between the metal layer and the metal oxide semiconductor layer is a major challenge that limits the combination of materials that can be used.

一個發明性態樣係關於一種製造良好金屬氧化物半導體薄膜電晶體之方法,其中金屬氧化物半導體層之頂部上之源極接點及汲極接點的圖案化係藉由乾式蝕刻進行,且其中不需要使用蝕刻終止層。 An inventive aspect relates to a method of fabricating a good metal oxide semiconductor thin film transistor, wherein patterning of source contacts and drain contacts on top of the metal oxide semiconductor layer is performed by dry etching, and There is no need to use an etch stop layer.

一個發明性態樣係關於一種製造底閘極頂部接觸型金屬氧化物半導體薄膜電晶體之方法,其中該方法包含:形成閘極電極於基板上,提供覆蓋閘極電極之閘極介電層,及沈積金屬氧化物半導體層於閘極介電層上。該方法可進一步包含:沈積金屬層或金屬層堆疊於金屬氧化物半導體層之頂部上;及圖案化金屬層或金屬層堆疊以形成薄膜電晶體之源極接點及汲極接點,其中圖案化金屬層或金屬層堆疊包含:乾式蝕刻金屬層或金屬層堆疊;及其後(例如其後立即)圖案化金屬氧化物半導體層。該方法可進一步包含額外處理,諸如沈積鈍化層及/或退火。退火步驟較佳地適用於恢復在裝置製造期間可能已經由電漿製程引起的損害及/或適用於獲得良好鈍化。 An inventive aspect relates to a method of fabricating a bottom gate top contact type metal oxide semiconductor thin film transistor, wherein the method comprises: forming a gate electrode on a substrate to provide a gate dielectric layer covering the gate electrode, And depositing a metal oxide semiconductor layer on the gate dielectric layer. The method may further comprise: depositing a metal layer or a metal layer on top of the metal oxide semiconductor layer; and patterning the metal layer or the metal layer stack to form a source contact and a drain contact of the thin film transistor, wherein the pattern The metal layer or metal layer stack comprises: a dry etched metal layer or a metal layer stack; and thereafter (eg, immediately thereafter) the patterned metal oxide semiconductor layer. The method can further include additional processing, such as depositing a passivation layer and/or annealing. The annealing step is preferably adapted to recover damage that may have been caused by the plasma process during device fabrication and/or to achieve good passivation.

金屬氧化物半導體層可例如為非晶形IGZO(銦鎵鋅氧化 物)層。然而,本發明不限於此,且可使用其他金屬氧化物半導體層,諸如InZnO層、HfInZnO層、SiInZnO層、ZnO層、CuO層或SnO層。 The metal oxide semiconductor layer can be, for example, amorphous IGZO (indium gallium zinc oxide) Layer). However, the present invention is not limited thereto, and other metal oxide semiconductor layers such as an InZnO layer, an HfInZnO layer, a SiInZnO layer, a ZnO layer, a CuO layer, or a SnO layer may be used.

在根據一個發明性態樣之方法中,圖案化金屬氧化物半導體層係在圖案化金屬氧化物半導體層之頂部上的金屬層或金屬層堆疊之後進行,亦即,在界定源極接點及汲極接點之後進行。使用此順序之製程步驟的優勢在於,在金屬乾式蝕刻期間,損害金屬氧化物半導體層(例如在薄膜電晶體之通道區域中)的風險相比其中圖案化金屬氧化物半導體層係在藉由乾式(電漿)蝕刻來圖案化金屬層或金屬層堆疊之前進行的製程順序可大大降低。 In a method according to an aspect of the invention, the patterned metal oxide semiconductor layer is performed after the metal layer or the metal layer stack on top of the patterned metal oxide semiconductor layer, that is, the source contact is defined and After the bungee contact. An advantage of the process steps using this sequence is that during metal dry etching, the risk of damaging the metal oxide semiconductor layer (eg, in the channel region of the thin film transistor) is compared to where the patterned metal oxide semiconductor layer is dried The process sequence (plasma) etched to pattern the metal layer or metal layer stack can be greatly reduced.

根據一個發明性態樣之方法的優勢在於,不需提供及圖案化蝕刻終止層,由此減少所需光罩之數量且因此減少製程步驟之數量及降低製造成本。 An advantage of the method according to one inventive aspect is that there is no need to provide and pattern an etch stop layer, thereby reducing the number of reticle required and thus reducing the number of process steps and reducing manufacturing costs.

根據一個發明性態樣之方法的優勢在於,相對於使用蝕刻終止層之方法,可降低電晶體大小,更詳言之縮短通道長度。舉例而言,視基板大小及所使用微影工具而定,可使用根據一個發明性態樣之方法製造具有大約2微米至5微米之通道長度之電晶體,而在使用蝕刻終止層之先前技術方法中,通道長度之下限為大約5微米至20微米。一般而言,相對於使用蝕刻終止層製造之薄膜電晶體,通道長度可降低至約1/3。因此,當在顯示器之製造製程中使用根據一個發明性態樣之方法時,可形成更緊湊的像素且可製造具有改良解析度之顯示器。 An advantage of the method according to one inventive aspect is that the transistor size can be reduced, and in more detail the channel length can be reduced, relative to the method using an etch stop layer. For example, depending on the size of the substrate and the lithography tool used, a transistor having a channel length of about 2 microns to 5 microns can be fabricated using a method according to an inventive aspect, while prior art using an etch stop layer In the method, the lower limit of the channel length is about 5 microns to 20 microns. In general, the channel length can be reduced to about 1/3 relative to a thin film transistor fabricated using an etch stop layer. Therefore, when a method according to an inventive aspect is used in a manufacturing process of a display, a more compact pixel can be formed and a display with improved resolution can be manufactured.

根據一個發明性態樣之方法的優勢在於,其允許製造具有良好特性(諸如,良好場效移動率(例如,範圍介於約2cm2/Vs與100cm2/Vs 之間)、低IOFF電流(例如,低於約10pA)及低亞臨限斜率(例如,低於約1V/十進位))之金屬氧化物半導體薄膜電晶體。 An advantage of the method according to an inventive aspect is that it allows manufacturing to have good characteristics (such as good field effect mobility (for example, ranging between about 2 cm 2 /Vs and 100 cm 2 /Vs), low I OFF current A metal oxide semiconductor thin film transistor (e.g., less than about 10 pA) and a low sub-threshold slope (e.g., less than about 1 V/decimal).

根據一個發明性態樣之方法的優勢在於,其與當前用於大量生產非晶形矽薄膜電晶體及電路之現存製造線(fabrication line)為相容的。更特定而言,可在用於非晶形矽TFT之現存生產線中執行根據本發明之態樣所使用之製造步驟。此亦暗示,可在用於非晶形矽TFT之現存生產線中使用根據本發明之具體實例的方法生產金屬氧化物TFT。 An advantage of the method according to one inventive aspect is that it is compatible with existing fabrication lines currently used for mass production of amorphous germanium thin film transistors and circuits. More specifically, the manufacturing steps used in accordance with aspects of the present invention can be performed in existing production lines for amorphous germanium TFTs. This also implies that the metal oxide TFT can be produced using a method according to a specific example of the present invention in an existing production line for an amorphous germanium TFT.

根據一個發明性態樣之方法可有利地用於製造金屬氧化物半導體薄膜電晶體之陣列,該等陣列例如用於選擇或驅動顯示器之像素。 The method according to an inventive aspect can be advantageously used to fabricate an array of metal oxide semiconductor thin film transistors, such as for selecting or driving pixels of a display.

本文已於上文描述一些發明性態樣之某些目的及優勢。當然,應瞭解不一定所有此等目標或優勢均可根據本發明之任何特定具體實例實現。因此,舉例而言,熟習此項技術者將認識到,可以達成或最佳化如本文中教示之一個優勢或優勢群之方式實施或進行本發明,而不必達成可如本文中教示或建議之其他目標或優勢。此外,應瞭解此概述僅為實例且不欲限制本發明之範疇。本發明(關於組織與操作方法)以及其特徵及優勢在結合隨附圖式閱讀時可參考以下實施方式最佳地得到理解。 Certain objects and advantages of some inventive aspects have been described herein above. Of course, it should be understood that not all such objectives or advantages may be realized in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the present invention can be implemented or carried out in a manner that achieves or optimizes an advantage or advantage. Other goals or advantages. In addition, it should be understood that this summary is only an example and is not intended to limit the scope of the invention. The invention (as regards to the organization and method of operation), as well as its features and advantages, may be best understood by reference to the following embodiments in conjunction with the accompanying drawings.

圖1示意性地說明根據本發明之具體實例的製程順序。 Figure 1 schematically illustrates a process sequence in accordance with a specific example of the present invention.

圖2(a)至圖2(e)說明根據本發明之具體實例之方法。 2(a) through 2(e) illustrate a method in accordance with a specific example of the present invention.

圖3展示以下兩種GIZO薄膜電晶體之經量測傳輸特性:具有藉由金屬起離(lift-off)形成之源極接點及汲極接點的GIZO薄膜電晶體(LO Mo), 及具有在不使用蝕刻終止層之情況下藉由在GIZO圖案化之後乾式蝕刻而沈積及圖案化之源極接點及汲極接點的GIZO薄膜電晶體(DE Mo)。 Figure 3 shows the measured transmission characteristics of two GIZO thin film transistors: a GIZO thin film transistor (LO Mo) having a source contact and a drain contact formed by metal lift-off. And a GIZO thin film transistor (DE Mo) having a source contact and a drain contact deposited and patterned by dry etching after GIZO patterning without using an etch stop layer.

圖4展示根據本發明之具體實例中之方法製造的GIZO薄膜電晶體的經量測傳輸特性。 4 shows the measured transmission characteristics of a GIZO thin film transistor fabricated in accordance with the method of the specific example of the present invention.

圖5展示在根據本發明之具體實例製造於6吋基板上之陣列的不同位置處量測的GIZO薄膜電晶體的傳輸特性。 Figure 5 shows the transmission characteristics of a GIZO thin film transistor measured at different locations of an array fabricated on a 6-inch substrate in accordance with an embodiment of the present invention.

圖6展示分別用標準BCE(IGZO蝕刻後之S/D蝕刻)、用根據本發明之態樣之BCE製程(IGZO蝕刻前之S/D蝕刻)及用習知起離製程處理的三個a-IGZO TFT的傳輸特性(VGS-IDS)的比較結果。 Figure 6 shows three different treatments using standard BCE (S/D etching after IGZO etching), BCE process according to the aspect of the invention (S/D etching before IGZO etching), and conventional lift-off process. - Comparison result of transmission characteristics (V GS -I DS ) of IGZO TFT.

圖7展示面積為500×500μm2之MIS(具有a-IGZO)及MIM(不具有a-IGZO)結構之電容比較,其展示小於5%之差異。 Figure 7 shows a capacitance comparison of MIS (with a-IGZO) and MIM (without a-IGZO) structures of area 500 x 500 μm 2 showing less than 5% difference.

圖8展示(a)在VGS=+12V及VDS=+12V下及(b)在VGS=-12V及VDS=0V下隨著應力時間變化之a-IGZO TFT(W/L=70/10μm/μm)之傳輸特性(VGS-IDS),及在正方向與反方向兩者上隨著應力時間變化之a-IGZO TFT之VTH偏移。 Figure 8 shows (a) a-IGZO TFT with W GS = +12V and V DS = +12V and (b) with V GS = -12V and V DS =0V with stress time (W/L = The transmission characteristic of 70/10 μm/μm) (V GS -I DS ), and the V TH shift of the a-IGZO TFT as a function of stress time in both the positive and negative directions.

圖9說明W/L=55/5μm/μm之驅動TFT之(a)傳輸(VGS-IDS)特性及(b)輸出(VDS-IDS)特性,(c)跨越150mm PEN箔基板量測之9個TFT之傳輸曲線(在VDS=10V下)。 Figure 9 illustrates (a) transmission (V GS -I DS ) characteristics and (b) output (V DS -I DS ) characteristics of a driving TFT of W/L = 55/5 μm/μm, (c) spanning a 150 mm PEN foil substrate The transmission curves of the nine TFTs were measured (at V DS = 10 V).

在不同圖式中,相同參考符號係指相同或相似元件。 In the different figures, the same reference numerals are used to refer to the same or similar elements.

在以下實施方式中,闡述許多特定細節以便全面理解本發明及其可於特定具體實例中如何實施。然而,應瞭解本發明可在無該等特 定細節下實施。在其他情況下,未詳細描述熟知方法、程序及技術,以便不使本發明晦澀難懂。雖然將關於特定具體實例且參考某些圖式來描述本發明,但本發明並不限於此。本文中包括及描述之圖式為示意性的且並不限制本發明之範疇。亦注意,在圖式中,一些元件之大小可能被放大,且因此,為了說明性目的,未按比例繪製。 In the following embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the invention However, it should be understood that the present invention may be without such special Implemented under the details. In other instances, well-known methods, procedures, and techniques have not been described in detail so as not to obscure the invention. Although the invention will be described with respect to particular embodiments and with reference to certain drawings, the invention is not limited thereto. The drawings included and described herein are illustrative and not limiting of the scope of the invention. It is also noted that the size of some of the elements may be exaggerated in the drawings and, therefore, are not drawn to scale for illustrative purposes.

另外,本說明書中之術語第一、第二、第三及其類似者用於區分相似元件且未必用於描述某一順序,無論時間上、空間上、等級上或任何其他方面。應瞭解,如此使用之術語在適當情況下可互換,且本文中描述之本發明具體實例能夠以除本文中所描述或說明之順序以外之順序操作。 In addition, the terms first, second, third and the like in this specification are used to distinguish similar elements and are not necessarily used to describe a certain order, regardless of time, space, level or any other aspect. It is understood that the terms so used are interchangeable under appropriate circumstances and the specific embodiments of the invention described herein are capable of operation other than the sequence described or illustrated herein.

另外,在本說明書中之術語頂部、底部、上面、下面及其類似者用於描述性目的且未必用於描述相對位置。應瞭解,如此使用之術語在適當情況下可互換,且本文中描述之本發明具體實例能夠以除本文中所描述或說明之定位以外之定位操作。 In addition, the terms top, bottom, upper, lower, and the like in this specification are used for descriptive purposes and are not necessarily used to describe relative positions. It is to be understood that the terms so used are interchangeable, where appropriate, and that the specific embodiments of the invention described herein are capable of operation other than the positioning described or illustrated herein.

應注意到,術語「包含(comprising)」不應被解釋為限於其後列出之構件;其不排除其他元件或步驟。其因此應被解釋為指定所提到的所述特徵、整數、步驟或組件之存在,但不排除一或多個其他特徵、整數、步驟或組件或其群組之存在或添加。因此,表述「一裝置包含構件A及B」之範疇不應限於裝置僅由組件A及B組成。 It should be noted that the term "comprising" should not be construed as being limited to the components listed hereinafter; it does not exclude other elements or steps. It is therefore intended to be interpreted as indicating that the described features, integers, steps, or components are present, but do not exclude the presence or addition of one or more other features, integers, steps or components or groups thereof. Therefore, the expression "a device includes components A and B" should not be limited to that the device consists only of components A and B.

某些具體實例提供一種製造底閘極頂部接觸型金屬氧化物半導體薄膜電晶體之方法,其中該方法包含:形成閘極電極於基板上,提供覆蓋閘極電極之閘極介電層,及沈積金屬氧化物半導體層於閘極介電 層上。在一個具體實例中,該方法進一步包含:沈積金屬層於金屬氧化物半導體層之頂部上;及圖案化金屬層以形成源極接點及汲極接點,其中圖案化金屬層包含:乾式蝕刻金屬層;及其後圖案化金屬氧化物半導體層。該方法可進一步包含額外步驟,諸如沈積鈍化層(諸如包含氧化矽、氮化矽及/或氧化鋁之層)及/或退火。 Some specific examples provide a method of fabricating a bottom gate top contact type metal oxide semiconductor thin film transistor, wherein the method comprises: forming a gate electrode on a substrate, providing a gate dielectric layer covering the gate electrode, and depositing Metal oxide semiconductor layer On the floor. In one embodiment, the method further includes: depositing a metal layer on top of the metal oxide semiconductor layer; and patterning the metal layer to form a source contact and a drain contact, wherein the patterned metal layer comprises: dry etching a metal layer; and a patterned metal oxide semiconductor layer thereafter. The method may further comprise additional steps such as depositing a passivation layer (such as a layer comprising hafnium oxide, tantalum nitride, and/or aluminum oxide) and/or annealing.

在根據一個具體實例之方法中,圖案化金屬氧化物半導體層係在(藉由乾式蝕刻)圖案化金屬氧化物半導體層之頂部上的金屬層之後進行,亦即,在界定源極接點及汲極接點之後進行。 In a method according to a specific example, the patterned metal oxide semiconductor layer is performed (by dry etching) after patterning the metal layer on top of the metal oxide semiconductor layer, that is, defining the source contact and After the bungee contact.

在圖1中示意性地展示且在圖2中進一步說明根據一個具體實例的用於製造金屬氧化物半導體薄膜電晶體之製程流程之實例。在沈積閘極金屬層或金屬堆疊(諸如約30nm至300nm厚的Mo層、Ti層、Cr層或Cu層,或者Ti/Mo堆疊或Mo/Al/Mo堆疊)於電絕緣基板10上(製程1)之後,藉助於光刻法及濕式或乾式蝕刻而圖案化閘極金屬層或金屬堆疊(製程2)以形成閘極電極11。接著沈積閘極介電層12(製程3),諸如氧化矽層、氮化矽層或氧化鋁層或熟習此項技術者已知之任何其他適合的介電層或層堆疊。在圖2(a)中說明所得結構。基板可為剛性基板、撓性基板或延伸基板。當在撓性基板或延伸基板上處理時,基板在處理期間可提供於(暫時)剛性載體上。 An example of a process flow for fabricating a metal oxide semiconductor thin film transistor according to one specific example is schematically illustrated in FIG. 1 and further illustrated in FIG. Depositing a gate metal layer or a metal stack (such as a Mo layer, a Ti layer, a Cr layer, or a Cu layer of about 30 nm to 300 nm thick, or a Ti/Mo stack or a Mo/Al/Mo stack) on the electrically insulating substrate 10 (process) 1) Thereafter, a gate metal layer or a metal stack (process 2) is patterned by photolithography and wet or dry etching to form a gate electrode 11. A gate dielectric layer 12 (process 3) is then deposited, such as a hafnium oxide layer, a tantalum nitride layer, or an aluminum oxide layer, or any other suitable dielectric layer or layer stack known to those skilled in the art. The resulting structure is illustrated in Figure 2(a). The substrate can be a rigid substrate, a flexible substrate, or an extended substrate. When processed on a flexible or extended substrate, the substrate can be provided on a (temporary) rigid carrier during processing.

可於閘極介電層中形成通孔(未說明)以接觸閘極。接著,將金屬氧化物半導體層13沈積(製程4)於閘極介電層12(諸如非晶形IGZO(銦鎵鋅氧化物)層)之頂部上(圖2(b))。然而,本發明並不限於此,且可使用其他金屬氧化物半導體層。較佳金屬氧化物半導體可為例如InZnO、 HfInZnO、SiInZnO、ZnO、CuO或SnO。沈積金屬氧化物半導體層可例如包含DC或RF濺射或蒸發。此半導體層13之厚度範圍可例如介於約10nm與80nm之間。 A via (not illustrated) may be formed in the gate dielectric layer to contact the gate. Next, the metal oxide semiconductor layer 13 is deposited (process 4) on top of the gate dielectric layer 12 (such as an amorphous IGZO (indium gallium zinc oxide) layer) (Fig. 2(b)). However, the present invention is not limited thereto, and other metal oxide semiconductor layers may be used. A preferred metal oxide semiconductor can be, for example, InZnO, HfInZnO, SiInZnO, ZnO, CuO or SnO. The deposited metal oxide semiconductor layer may, for example, comprise DC or RF sputtering or evaporation. The thickness of the semiconductor layer 13 can range, for example, between about 10 nm and 80 nm.

在下一製程中,例如藉由蒸發或濺射將金屬層14或金屬堆疊沈積(製程5)於金屬氧化物半導體層13上(圖2(c))。金屬層或金屬堆疊可例如包含Mo且可例如具有範圍介於約50nm與300nm之間的厚度。舉例而言,可使用Mo/Al/Mo堆疊、Mo/Au堆疊、Mo/Ti堆疊、Mo/Ti/Al/Mo堆疊或Mo/ITO堆疊,本發明並不限於此。藉由微影術及乾式(電漿)蝕刻來圖案化金屬層或金屬堆疊以形成源極接點141及汲極接點142(製程6),如圖2(d)中所說明。通道長度範圍可例如介於2微米與100微米之間。 In the next process, a metal layer 14 or a metal stack is deposited (process 5) on the metal oxide semiconductor layer 13 by evaporation or sputtering, for example (Fig. 2(c)). The metal layer or metal stack may, for example, comprise Mo and may, for example, have a thickness ranging between about 50 nm and 300 nm. For example, a Mo/Al/Mo stack, a Mo/Au stack, a Mo/Ti stack, a Mo/Ti/Al/Mo stack, or a Mo/ITO stack may be used, and the present invention is not limited thereto. The metal layer or metal stack is patterned by lithography and dry (plasma) etching to form source contact 141 and drain contact 142 (process 6), as illustrated in Figure 2(d). The channel length can range, for example, between 2 microns and 100 microns.

在蝕刻金屬層以形成源極接點及汲極接點之後,藉由微影術及濕式或乾式蝕刻來圖案化金屬氧化物半導體層13(製程7)(圖2(e))以形成電晶體之主動層131。 After etching the metal layer to form the source contact and the drain contact, the metal oxide semiconductor layer 13 is patterned by lithography and wet or dry etching (process 7) (FIG. 2(e)) to form The active layer 131 of the transistor.

接著,藉由濺射、ALD或CVD沈積鈍化層(諸如約50nm至300nm厚的氧化矽、氮化矽或氧化鋁層)(製程8)且使用電漿蝕刻或濕式蝕刻進行圖案化(製程9)。最後,例如在氮氣氛圍或空氣中於範圍介於約50℃與175℃之間的溫度下退火該結構(製程10)。 Next, a passivation layer (such as a germanium oxide, tantalum nitride or aluminum oxide layer of about 50 nm to 300 nm thick) is deposited by sputtering, ALD or CVD (process 8) and patterned using plasma etching or wet etching (process) 9). Finally, the structure is annealed, for example, in a nitrogen atmosphere or air at a temperature ranging between about 50 ° C and 175 ° C (Process 10).

當根據一個具體實例製造薄膜電晶體電路時,在此電路中形成之電容器除金屬層之間的介電層之外還包含金屬氧化物半導體層。 When a thin film transistor circuit is fabricated according to a specific example, the capacitor formed in this circuit further includes a metal oxide semiconductor layer in addition to the dielectric layer between the metal layers.

根據圖1之製程流程及圖2製造薄膜電晶體。在電絕緣基板上,提供圖案化Mo閘極(厚度為約100nm)。接著,藉由CVD沈積約100nm厚的SiN閘極介電層。在下一製程中,藉由於O2環境中RF/DC濺射 而沈積a-IGZO層(In:Ga:Zn=1:1:1原子%,厚度為約20nm)。隨後藉由DC濺射及使用乾式蝕刻製程(SF6+O2電漿)圖案化而於a-IGZO層之頂部上提供Mo源極-汲極接點(厚度為約100nm)。在以下製程中,藉由金屬氧化層之光刻法及濕式蝕刻而界定主動區(圖案化a-IGZO層)。最後,濺射鈍化層(約100nm SiOx)且隨後在N2環境中於150℃下將電晶體退火約1小時。 A thin film transistor was fabricated according to the process flow of FIG. 1 and FIG. On the electrically insulating substrate, a patterned Mo gate (having a thickness of about 100 nm) is provided. Next, a 100 nm thick SiN gate dielectric layer was deposited by CVD. In the next process, an a-IGZO layer (In:Ga:Zn = 1:1:1 atomic %, thickness of about 20 nm) was deposited by RF/DC sputtering in an O 2 environment. Mo source provides a DC sputtering and then by using a dry etching process (SF 6 + O 2 plasma) and patterned on the top layer of a-IGZO electrode - drain terminals (thickness of about 100nm). In the following process, the active region (patterned a-IGZO layer) is defined by photolithography of the metal oxide layer and wet etching. Finally, a passivation layer (about 100 nm SiO x ) was sputtered and then the transistor was annealed at 150 ° C for about 1 hour in an N 2 atmosphere.

在圖4中展示對於具有約10微米通道長度之電晶體所量測之電晶體特性。電晶體具有高移動率(約14.06cm2/V.s)、低亞臨限斜率(約0.24V/十進位)、低磁滯性、大於108之Ion/Ioff及接近零之VTH(約0.5V)。 The transistor characteristics measured for a transistor having a channel length of about 10 microns are shown in FIG. The transistor has a high mobility (about 14.06 cm 2 /Vs), a low sub-preventive slope (about 0.24 V / decimal), low hysteresis, I on /I off greater than 10 8 and V TH near zero ( About 0.5V).

作為參考,在不使用蝕刻終止層之情況下,但遵循不同的製程流程,製造GIZO薄膜電晶體,其中在金屬沈積之前而不是在源極與汲極金屬圖案化之後進行金屬氧化物半導體圖案化及蝕刻。作為額外參考,製造電晶體,其中藉助於起離(lift-off)製程(其歸因於產量問題而不適於增大規模)形成源極接點及汲極接點。於圖3中展示此等參考電晶體之電晶體特性。在無蝕刻終止層之情況下及在金屬沈積(圖3中之「DE Mo」)之前使用金屬氧化物半導體蝕刻製造的電晶體明顯具有低ION/IOFF比率、高亞臨限斜率及大磁滯性。此可能與用於源極與汲極蝕刻之電漿對於GIZO層的負面影響有關,更詳言之,與電漿在晶圓表面上之不均勻分佈有關,該不均勻分佈係歸因於分佈的半導電通道區域。 For reference, a GIZO thin film transistor is fabricated without using an etch stop layer, but following a different process flow, wherein metal oxide semiconductor patterning is performed prior to metal deposition rather than after source and drain metal patterning. And etching. As an additional reference, a transistor is fabricated in which a source contact and a drain contact are formed by means of a lift-off process which is not suitable for increasing the scale due to yield problems. The transistor characteristics of such reference transistors are shown in FIG. A transistor fabricated using a metal oxide semiconductor etch without an etch stop layer and before metal deposition ("DE Mo" in Figure 3) has a significantly low I ON /I OFF ratio, a high sub-slope slope, and a large hysteresis Sex. This may be related to the negative effects of the plasma for source and drain etching on the GIZO layer, and more specifically, the uneven distribution of the plasma on the wafer surface due to the distribution. Semi-conductive channel area.

在根據較佳具體實例之方法中,在蝕刻源極及汲極時,金屬氧化物半導體層未經圖案化。因此,電漿可更均勻地分佈於整個基板上,使得金屬氧化物半導體層上之局部電漿不均勻性降低及/或局部電漿充電效應降低。 In the method according to the preferred embodiment, the metal oxide semiconductor layer is unpatterned while etching the source and the drain. Therefore, the plasma can be more uniformly distributed over the entire substrate, resulting in a decrease in local plasma unevenness on the metal oxide semiconductor layer and/or a reduction in local plasma charging effect.

製造工作顯示器,其包括用於選擇及驅動像素陣列之薄膜GIZO電晶體陣列。GIZO電晶體具有約5微米之通道長度且係根據一個具體實例中之方法製造。於約6吋之基板上製造電晶體陣列。圖5展示來自此陣列之五個電晶體之經量測傳輸特性,一個電晶體位於基板之中心,且其他四個電晶體位於基板之相對邊緣。結果顯示基板上之電晶體特性之良好均勻性。 A working display is fabricated that includes a thin film GIZO transistor array for selecting and driving a pixel array. The GIZO transistor has a channel length of about 5 microns and is fabricated according to the method of one specific example. A transistor array is fabricated on a substrate of about 6 inches. Figure 5 shows the measured transmission characteristics of five transistors from the array, one transistor being located at the center of the substrate and the other four transistors being located at opposite edges of the substrate. The results show a good uniformity of the crystal characteristics on the substrate.

以下描述其他實驗結果。 Other experimental results are described below.

於高度摻雜型Si(共用閘極)基板之頂部上的熱生長SiO2(120nm)閘極介電質上實現試驗裝置。藉由於氬氣(Ar)中含有6% O2之DC濺鍍來沈積主動層,其為15nm厚的a-IGZO(In:Ga:Zn=1:1:1)薄膜。最佳化厚度及O2/Ar比率以便在低處理溫度下達成所要TFT效能。此外,藉由PVD形成100nm厚的Mo源極與汲極(S/D)接點且藉由SF6/O2乾式蝕刻化學法對其圖案化。在S/D形成後,藉由使用草酸溶液之濕式蝕刻程序圖案化主動層。在主動層之頂部上,藉由反應性脈衝DC PVD沈積100nm的SiO2鈍化層。 A test apparatus was implemented on a thermally grown SiO 2 (120 nm) gate dielectric on top of a highly doped Si (common gate) substrate. The active layer was deposited by DC sputtering containing 6% O 2 in argon (Ar), which was a 15 nm thick a-IGZO (In:Ga:Zn=1:1:1) film. The thickness and O 2 /Ar ratio are optimized to achieve the desired TFT performance at low processing temperatures. In addition, a 100 nm thick Mo source and drain (S/D) junction was formed by PVD and patterned by SF 6 /O 2 dry etching chemistry. After the S/D formation, the active layer was patterned by a wet etch procedure using an oxalic acid solution. On top of the active layer, a 100 nm SiO 2 passivation layer was deposited by reactive pulsed DC PVD.

在惰性N2環境中使用參數分析器量測個別TFT之電學特性。 Parameter analyzer measured the electrical characteristics of the individual TFT N 2 in an inert environment.

藉由相對於先前技術方法逆轉a-IGZO圖案化及S/D接點圖案化之處理順序,在本發明之方法中避免a-IGZO之孤立島狀物,從而在電漿蝕刻期間抑制電荷之局部累積。藉由以此方式修改標準BCE製程流程,主要TFT參數(諸如磁滯性、移動率及整體亞臨限斜率)展示顯著改良。於圖6中描繪三個系列之試驗TFT之I-V特性,該等試驗TFT分別用習知 起離流程、標準BCE流程(半導體圖案化後之S/D蝕刻)及根據本發明之態樣的經修改BCE流程(半導體圖案化前之S/D蝕刻)製造。於高度摻雜型Si(共用閘極)基板之頂部上的熱生長SiO2(120nm)閘極介電質上實現所有試驗裝置。用根據本發明之態樣的經修改BCE流程製造的a-IGZO試驗裝置在傳輸曲線中在正向閘極電壓掃描與反向閘極電壓掃描之間明顯僅顯示微量的磁滯性。事實上,結果與使用基於起離S/D之裝置獲得的結果十分類似。表1給出三個不同流程之主要效能參數之綜述。 By reversing the processing sequence of a-IGZO patterning and S/D contact patterning relative to prior art methods, isolated islands of a-IGZO are avoided in the method of the present invention, thereby suppressing charge during plasma etching Local accumulation. By modifying the standard BCE process flow in this way, major TFT parameters such as hysteresis, mobility, and overall sub-slope slope show significant improvements. The IV characteristics of three series of test TFTs are depicted in FIG. 6, which are respectively subjected to a conventional separation process, a standard BCE process (S/D etching after semiconductor patterning), and a mode according to the present invention. Modify the BCE process (S/D etching before semiconductor patterning) fabrication. All test devices were implemented on a thermally grown SiO 2 (120 nm) gate dielectric on top of a highly doped Si (common gate) substrate. The a-IGZO test apparatus fabricated using the modified BCE process according to the aspect of the present invention clearly showed only a slight amount of hysteresis between the forward gate voltage scan and the reverse gate voltage scan in the transmission curve. In fact, the results are very similar to those obtained using a device based on S/D. Table 1 gives an overview of the main performance parameters for three different processes.

由標準BCE處理之TFT之傳輸特性展示僅5cm2/(V.s)至12cm2/(V.s)之較低移動率、0.60V/十進位之下降的次臨界擺幅及-0.5V之負臨限電壓。此外,相對於其他兩個流程,傳輸曲線中之磁滯性顯著增加。後者指示,在乾式蝕刻a-IGZO之小型島狀物之頂部上的S/D金屬層期間,引起更多損害。該損害係歸因於在孤立主動區中在乾式蝕刻製程期間由於電漿暴露引起的局部電荷累積。總之,觀察到經修改BCE流程導致裝置特性之顯著改良。 The transmission characteristics of TFTs processed by standard BCE show a lower mobility of only 5cm 2 /(Vs) to 12cm 2 /(Vs), a subcritical swing of 0.60V/decimal drop, and a negative threshold of -0.5V Voltage. In addition, the hysteresis in the transmission curve is significantly increased relative to the other two processes. The latter indicates that more damage is caused during the dry etching of the S/D metal layer on top of the small island of a-IGZO. This damage is due to localized charge accumulation due to plasma exposure during the dry etch process in the isolated active region. In summary, it was observed that the modified BCE process resulted in a significant improvement in device characteristics.

經進一步證實,無論a-IGZO層是否處於金屬線下方,均可能潛在地影響信號線之寄生電容。此對於(TFT-)顯示器及電路應用尤其 重要。為證實該效應,對應於具有a-IGZO及不具有a-IGZO之閘極介電質,比較兩個電容器。量測到總電容僅有5%的變化,如圖7中展示。此外,研究偏壓應力對於TFT之電學效能的影響。在黑暗中於室溫下施加對應於在正方向及反方向上+/-1.0MV/cm之閘極電場,持續104秒之應力時間。在正閘極偏壓的情況下,對應於完全接通條件(VDS=12V及VGS=12V),觀察到0.9V之臨限電壓偏移。在負偏壓之情況下(VDS=0V及VGS=-12V),觀察到1.0V之臨限電壓偏移。圖8(a)及圖8(b)展示傳輸特性隨著正閘極偏壓與負閘極偏壓兩者之偏壓應力時間的變化。圖8(c)給出在正方向及反方向兩者上隨著應力時間變化之VTH偏移之比較。 It has been further confirmed that regardless of whether the a-IGZO layer is under the metal line, the parasitic capacitance of the signal line may be potentially affected. This is especially important for (TFT-) displays and circuit applications. To confirm this effect, two capacitors were compared corresponding to a gate dielectric having a-IGZO and no a-IGZO. Only a 5% change in total capacitance was measured, as shown in Figure 7. In addition, the effect of bias stress on the electrical performance of the TFT was investigated. Corresponding to the applied in the positive and reverse directions +/- 1.0MV / cm electric field of the gate in the dark at room temperature, the stress duration time 104 seconds. In the case of a positive gate bias, a threshold voltage shift of 0.9V is observed corresponding to the fully on condition (V DS = 12V and V GS = 12V). In the case of a negative bias (V DS =0 V and V GS = -12 V), a threshold voltage shift of 1.0 V was observed. Figures 8(a) and 8(b) show the variation of the transmission characteristics with the bias stress time of both the positive gate bias and the negative gate bias. Figure 8(c) gives a comparison of VTH shifts as a function of stress time in both the positive and negative directions.

最後,根據本發明之具體實例之經修改BCE製程流程整合在具有200nm ICP-CVD SiN作為閘極介電質及具有100nm MoCr作為閘極金屬化物的PEN箔上。 Finally, a modified BCE process flow in accordance with a specific embodiment of the present invention is integrated on a PEN foil having 200 nm ICP-CVD SiN as the gate dielectric and 100 nm MoCr as the gate metallization.

以來自商業供應商之25μm厚的熱穩定化PEN箔體現的箔基板層壓於150mm之剛性玻璃載體上。載體在數位電路及顯示器之整個製造過程期間提供支撐。在第一步驟中,藉由電感耦合電漿化學氣相沈積(ICP-CVD)於150℃下將200nm之SiN障壁層沈積於PEN箔之頂部上。閘極金屬化物係由100nm厚之MoCr合金層組成,該MoCr合金層藉由物理氣相沈積(PVD)及隨後的濕式蝕刻圖案化程序形成。接著,在150℃下藉由ICP-CVD沈積200nm厚的SiN閘極介電層。在電路中及在顯示器底板中用作構建塊之TFT需要低閘極漏電流及高擊穿電場。於在PEN箔上進行處理所需的低溫(<200℃)下使用習知CVD沈積達成良好介電特性是一大挑戰。因此,最佳化在150℃下藉由ICP-CVD沈積之SiN介電層之處理條件。 達成~8MV/cm之擊穿電場,及在2MV/cm(介電常數ε=7.1)下1.3e-6mA/cm2之洩漏。 A foil substrate embodied in a 25 [mu]m thick thermally stabilized PEN foil from a commercial supplier was laminated to a 150 mm rigid glass carrier. The carrier provides support during the entire manufacturing process of the digital circuitry and display. In the first step, a 200 nm SiN barrier layer was deposited on top of the PEN foil by inductively coupled plasma chemical vapor deposition (ICP-CVD) at 150 °C. The gate metallization consists of a 100 nm thick layer of MoCr alloy formed by physical vapor deposition (PVD) followed by a wet etch patterning process. Next, a 200 nm thick SiN gate dielectric layer was deposited by ICP-CVD at 150 °C. TFTs used as building blocks in circuits and in display backplanes require low gate leakage current and high breakdown electric field. Achieving good dielectric properties using conventional CVD deposition at low temperatures (<200 °C) required for processing on PEN foils is a major challenge. Therefore, the processing conditions of the SiN dielectric layer deposited by ICP-CVD at 150 ° C are optimized. A breakdown electric field of ~8 MV/cm was reached, and a leakage of 1.3e -6 mA/cm 2 at 2 MV/cm (dielectric constant ε = 7.1) was achieved.

隨後,藉由於氬氣(Ar)中含有6% O2之DC濺鍍來沈積主動層,其為15nm厚的a-IGZO(In:Ga:Zn=1:1:1)薄膜。最佳化厚度及O2/Ar比率以便在低處理溫度下達成所要TFT效能。此外,藉由PVD形成100nm厚的Mo源極與汲極(S/D)接點,且藉由SF6/O2乾式蝕刻化學法對其圖案化。在S/D形成後,藉由使用草酸溶液之濕式蝕刻程序圖案化主動層。在主動層之頂部上,藉由反應性脈衝DC PVD沈積100nm的SiO2鈍化層。於圖9中展示所得TFT(W/L=55/5μm/μm)之傳輸特性及輸出特性。TFT展示12cm2/(V.s)至15cm2/(V.s)之線性移動率(μ)、-1.0V之VTH、108之ION/OFF比率及0.3V/十進位之亞臨限擺幅。在圖9(c)中,跨越含有PEN箔之6吋晶圓展示9個經量測TFT之VON及ION散佈。VON及ION在VD=10V及VG=20V下之散佈小於5%。 Subsequently, an active layer was deposited by DC sputtering containing 6% O 2 in argon (Ar), which was a 15 nm thick a-IGZO (In:Ga:Zn=1:1:1) film. The thickness and O 2 /Ar ratio are optimized to achieve the desired TFT performance at low processing temperatures. In addition, a 100 nm thick Mo source and drain (S/D) junction was formed by PVD and patterned by SF 6 /O 2 dry etching chemistry. After the S/D formation, the active layer was patterned by a wet etch procedure using an oxalic acid solution. On top of the active layer, a 100 nm SiO 2 passivation layer was deposited by reactive pulsed DC PVD. The transmission characteristics and output characteristics of the obtained TFT (W/L = 55/5 μm/μm) are shown in FIG. TFT display 12cm 2 / (Vs) to 15cm 2 / (Vs) of the linear mobility (μ), - 1.0V of V TH, the alkylene 108 I ON / OFF ratio and 0.3V / decimal swing of the threshold . In Figure 9(c), the V ON and I ON spreads of nine measured TFTs are shown across a 6-inch wafer containing PEN foil. The dispersion of V ON and I ON at V D =10 V and V G =20 V is less than 5%.

以上描述詳述本發明之某些具體實例。然而,應瞭解,不管上述內容在本文中如何詳細地呈現,本發明均可以多種方式實施。應注意在描述本發明之某些特徵或態樣時所使用的特定術語不應被認為暗示該術語在本文中進行再定義,從而侷限於包括與該術語相關之本發明特徵或態樣之任何特定特性。 The above description details some specific examples of the invention. However, it should be understood that the present invention may be embodied in various forms, no matter how the foregoing is presented in detail herein. It should be noted that the specific terms used in describing certain features or aspects of the invention are not to be construed as a limitation that the term is to be re-defined herein, and is limited to any of the features or aspects of the invention that are associated with the term. Specific characteristics.

雖然以上實施方式已展示、描述及指出本發明在應用於各種具體實例時之新穎特徵,但應瞭解,在不背離本發明之精神之情況下,熟習此項技術者可對所說明的裝置或製程之形式及細節作出各種省略、替換及變化。 While the above-described embodiments have been shown, described and illustrated in the present invention, the invention may be Various forms, details and details of the process are omitted, replaced and changed.

1‧‧‧閘極金屬沈積 1‧‧‧ gate metal deposition

2‧‧‧閘極圖案化/蝕刻 2‧‧‧gate patterning/etching

3‧‧‧閘極介電質沈積 3‧‧‧ gate dielectric deposition

4‧‧‧金屬氧化物半導體層沈積 4‧‧‧ Metal oxide semiconductor layer deposition

5‧‧‧源極與汲極金屬沈積 5‧‧‧ Source and Deuterium Metal Deposition

6‧‧‧源極與汲極金屬圖案化/蝕刻 6‧‧‧Source and drain metal patterning/etching

7‧‧‧金屬氧化物半導體圖案化/蝕刻 7‧‧‧Metal Oxide Semiconductor Patterning/Etching

8‧‧‧鈍化層沈積 8‧‧‧ Passivation layer deposition

9‧‧‧鈍化層圖案化/蝕刻 9‧‧‧ Passivation layer patterning/etching

10‧‧‧退火 10‧‧‧ Annealing

Claims (11)

一種製造底閘極頂部接觸型金屬氧化物半導體薄膜電晶體之方法,該方法包含:形成閘極電極於基板上;提供覆蓋該閘極電極之閘極介電層;沈積金屬氧化物半導體層於該閘極介電層上;沈積金屬層或金屬層堆疊於該金屬氧化物半導體層之頂部上;圖案化該金屬層或金屬層堆疊以形成源極接點及汲極接點,其中圖案化該金屬層或金屬層堆疊包含乾式蝕刻該金屬層或金屬層堆疊;及其後圖案化該金屬氧化物半導體層。 A method for fabricating a bottom gate contact type metal oxide semiconductor thin film transistor, the method comprising: forming a gate electrode on a substrate; providing a gate dielectric layer covering the gate electrode; and depositing a metal oxide semiconductor layer Depositing a metal layer or a metal layer on top of the metal oxide semiconductor layer; patterning the metal layer or the metal layer stack to form a source contact and a drain contact, wherein the patterning The metal layer or metal layer stack comprises dry etching the metal layer or metal layer stack; and thereafter patterning the metal oxide semiconductor layer. 如申請專利範圍第1項之方法,其進一步包含沈積鈍化層及執行退火製程。 The method of claim 1, further comprising depositing a passivation layer and performing an annealing process. 如申請專利範圍第1項之方法,其中該金屬氧化物半導體層包含非晶形IGZO(銦鎵鋅氧化物)層或由非晶形IGZO(銦鎵鋅氧化物)層組成。 The method of claim 1, wherein the metal oxide semiconductor layer comprises an amorphous IGZO (indium gallium zinc oxide) layer or an amorphous IGZO (indium gallium zinc oxide) layer. 如申請專利範圍第1項之方法,其中該金屬氧化物半導體層包含InZnO層、HfInZnO層、SiInZnO層、ZnO層、CuO層或SnO層中之任一者或其任何組合,或由InZnO層、HfInZnO層、SiInZnO層、ZnO層、CuO層或SnO層中之任一者或其任何組合組成。 The method of claim 1, wherein the metal oxide semiconductor layer comprises any one or any combination of an InZnO layer, an HfInZnO layer, a SiInZnO layer, a ZnO layer, a CuO layer or a SnO layer, or an InZnO layer, Any one or any combination of an HfInZnO layer, a SiInZnO layer, a ZnO layer, a CuO layer, or a SnO layer. 如申請專利範圍第1項之方法,其中該金屬氧化物半導體層具有介於10nm與80nm之間的厚度。 The method of claim 1, wherein the metal oxide semiconductor layer has a thickness of between 10 nm and 80 nm. 如申請專利範圍第1項之方法,其中該金屬層包含Mo或由Mo組成,或其中該金屬層堆疊包含Mo/Al/Mo堆疊、Mo/Au堆疊、Mo/Ti堆疊、Mo/Ti/Al/Mo堆疊或Mo/ITO堆疊或由Mo/Al/Mo堆疊、Mo/Au堆疊、Mo/Ti堆疊、Mo/Ti/Al/Mo堆疊或Mo/ITO堆疊組成。 The method of claim 1, wherein the metal layer comprises or consists of Mo, or wherein the metal layer stack comprises a Mo/Al/Mo stack, a Mo/Au stack, a Mo/Ti stack, a Mo/Ti/Al /Mo stack or Mo/ITO stack or consist of Mo/Al/Mo stack, Mo/Au stack, Mo/Ti stack, Mo/Ti/Al/Mo stack or Mo/ITO stack. 如申請專利範圍第1項之方法,其中該金屬層或該金屬層堆疊具有範圍在約50nm與300nm之間的厚度。 The method of claim 1, wherein the metal layer or the metal layer stack has a thickness ranging between about 50 nm and 300 nm. 如申請專利範圍第1項之方法,其中圖案化該金屬氧化物半導體層發生在圖案化該金屬氧化物半導體層之頂部上的該金屬層或金屬層堆疊以界定該源極接點及該汲極接點之後。 The method of claim 1, wherein patterning the metal oxide semiconductor layer occurs on the metal layer or metal layer stack patterned on top of the metal oxide semiconductor layer to define the source contact and the germanium After the pole contact. 如申請專利範圍第1項之方法,其中該基板包含聚萘二甲酸乙二酯箔。 The method of claim 1, wherein the substrate comprises a polyethylene naphthalate foil. 如申請專利範圍第1項之方法,其進一步包含形成通孔於該閘極介電層中以接觸該閘極。 The method of claim 1, further comprising forming a via in the gate dielectric layer to contact the gate. 一種如申請專利範圍第1項之方法之用途,用於製造具有大約2微米至5微米之通道長度的電晶體。 Use of the method of claim 1 for the manufacture of a transistor having a channel length of from about 2 microns to 5 microns.
TW102122061A 2012-07-03 2013-06-21 A method for fabricating a thin film transistor TWI664734B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261667646P 2012-07-03 2012-07-03
US61/667,646 2012-07-03

Publications (2)

Publication Number Publication Date
TW201405835A true TW201405835A (en) 2014-02-01
TWI664734B TWI664734B (en) 2019-07-01

Family

ID=48672618

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122061A TWI664734B (en) 2012-07-03 2013-06-21 A method for fabricating a thin film transistor

Country Status (5)

Country Link
JP (2) JP2015521804A (en)
KR (1) KR102099860B1 (en)
CN (1) CN104685633B (en)
TW (1) TWI664734B (en)
WO (1) WO2014005841A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627815B1 (en) 2015-04-21 2016-06-08 인천대학교 산학협력단 An manufacturing method of a amorphous IGZO TFT-based transient semiconductor
CN106252359B (en) * 2016-08-26 2019-06-11 武汉华星光电技术有限公司 Array substrate and liquid crystal display panel
EP3367425A1 (en) * 2017-02-28 2018-08-29 IMEC vzw A method for direct bonding of semiconductor substrates
CN108206139B (en) * 2018-01-02 2021-09-10 京东方科技集团股份有限公司 Oxide thin film transistor, manufacturing method thereof and array substrate
EP3618103A1 (en) * 2018-08-30 2020-03-04 IMEC vzw A patterning method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410951B2 (en) * 2001-02-27 2010-02-10 Nec液晶テクノロジー株式会社 Pattern forming method and manufacturing method of liquid crystal display device
KR100683155B1 (en) * 2004-09-03 2007-02-15 비오이 하이디스 테크놀로지 주식회사 Method for fabricating array substrate of TFT-LCD
JP5064747B2 (en) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
JP2008262979A (en) * 2007-04-10 2008-10-30 Sharp Corp Thin-film transistor element, and manufacturing method thereof
JP5258467B2 (en) * 2008-09-11 2013-08-07 富士フイルム株式会社 Thin film field effect transistor and display device using the same
EP2180518B1 (en) * 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
KR101667909B1 (en) * 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP2012033516A (en) * 2008-11-26 2012-02-16 Ulvac Japan Ltd Transistor and method of manufacturing the same
JP5528734B2 (en) * 2009-07-09 2014-06-25 富士フイルム株式会社 ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD, DISPLAY DEVICE, AND SENSOR
WO2011027676A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101876470B1 (en) * 2009-11-06 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5437776B2 (en) * 2009-11-18 2014-03-12 三井金属鉱業株式会社 Thin film transistor using oxide semiconductor and method of manufacturing the same
US8623681B2 (en) * 2010-07-09 2014-01-07 Sharp Kabushiki Kaisha Thin film transistor substrate, method for manufacturing the same, and liquid crystal display panel
US8513720B2 (en) * 2010-07-14 2013-08-20 Sharp Laboratories Of America, Inc. Metal oxide semiconductor thin film transistors
US8546161B2 (en) * 2010-09-13 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor and liquid crystal display device
US8558960B2 (en) * 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
US9911857B2 (en) * 2010-10-29 2018-03-06 Cbrite Inc. Thin film transistor with low trap-density material abutting a metal oxide active layer and the gate dielectric

Also Published As

Publication number Publication date
KR20150028997A (en) 2015-03-17
JP6498745B2 (en) 2019-04-10
WO2014005841A1 (en) 2014-01-09
TWI664734B (en) 2019-07-01
KR102099860B1 (en) 2020-04-13
JP2015521804A (en) 2015-07-30
CN104685633A (en) 2015-06-03
CN104685633B (en) 2018-08-03
JP2018074178A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
TWI501403B (en) A thin film transistor structure, and a thin film transistor and a display device having the same
JP6498745B2 (en) Thin film transistor manufacturing method
Cai et al. High-performance transparent AZO TFTs fabricated on glass substrate
US8728861B2 (en) Fabrication method for ZnO thin film transistors using etch-stop layer
KR20160098360A (en) Thin-film transistor
KR20090002841A (en) Oxide semiconductor, thin film transistor comprising the same and manufacturing method
TW201248783A (en) Wiring structure and sputtering target
CN105981148B (en) Semiconductor devices and its manufacturing method
WO2015010825A1 (en) Method for improving the electrical conductivity of metal oxide semiconductor layers
KR20110080118A (en) Thin film transistor having etch stop multi-layers and method of manufacturing the same
CN111226307B (en) Oxide semiconductor thin film, thin film transistor, and sputtering target
KR102350155B1 (en) Oxide semiconductor thin film, thin film transistor and sputtering target
US11049881B2 (en) Method for manufacturing a top-gate self-aligned indium-tin-zinc oxide thin-film transistor
Duan et al. Impact of sputtering power of source/drain metal on performances of a-IGZO thin film transistors fabricated using wet back-channel-etch process
KR20080111736A (en) Oxide semiconductor and thin film transistor comprising the same
KR20150138881A (en) Oxide semiconductor thin film transistor and manufacturing method thereof
Song et al. P‐15: AZO Etch Buffer Layer based Back‐Channel‐Etch a‐IGZO TFT Technology
Jeon et al. Contact properties of a low-resistance aluminum-based electrode with metal capping layers in vertical oxide thin-film transistors
Zhang et al. High-performance ultrathin body TiO 2 TFTs with record on/off current ratio and subthreshold swinz
Mahmoudabadi et al. High performance IGZO TFTs with modified etch stop structure on glass substrates
TW201946874A (en) Thin film transistor including oxide semiconductor layer
Mahmoudabadi et al. P‐27: RF‐Sputtered Oxide TFTs and Circuits on Engineered Aluminum Substrates
KR20140090452A (en) Indium oxide based sputtering target containing gallium oxide and germanium oxide, thin film transistor using the same, and display device comprising the thin film transistor
Fan et al. Self-aligned amorphous indium-gallium-zinc-oxide thin-film transistor using a two-mask process without etching-stop layer
KR20180061751A (en) Display device, and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees