TW201350581A - 治療視網膜營養性萎縮之病毒載體 - Google Patents
治療視網膜營養性萎縮之病毒載體 Download PDFInfo
- Publication number
- TW201350581A TW201350581A TW102115806A TW102115806A TW201350581A TW 201350581 A TW201350581 A TW 201350581A TW 102115806 A TW102115806 A TW 102115806A TW 102115806 A TW102115806 A TW 102115806A TW 201350581 A TW201350581 A TW 201350581A
- Authority
- TW
- Taiwan
- Prior art keywords
- rlbp1
- seq
- vector
- sequence
- viral vector
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14171—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14311—Parvovirus, e.g. minute virus of mice
- C12N2750/14341—Use of virus, viral particle or viral elements as a vector
- C12N2750/14343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14311—Parvovirus, e.g. minute virus of mice
- C12N2750/14341—Use of virus, viral particle or viral elements as a vector
- C12N2750/14345—Special targeting system for viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14311—Parvovirus, e.g. minute virus of mice
- C12N2750/14371—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/6027—Vectors comprising as targeting moiety peptide derived from defined protein from viruses ssDNA viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/80—Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
- C12N2810/85—Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Marine Sciences & Fisheries (AREA)
- Toxicology (AREA)
- Ophthalmology & Optometry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本發明係關於能夠傳遞異源基因至視網膜且詳言之傳遞RLBP1至視網膜之RPE及穆勒細胞(Muller cell)之病毒載體。本發明亦關於適用於產生病毒載體之核酸、包含該等病毒載體之組合物及該等組合物及病毒載體之用途。本發明亦關於傳遞及/或表現異源基因至視網膜、提高個體之暗適應速率及治療RLBP1相關視網膜營養性萎縮之方法。
Description
本申請案主張2012年5月4日申請之美國臨時申請案第61/642,630號及2013年3月11日申請之美國臨時申請案第61/776,167號之優先權,該等臨時申請案之內容以全文引用的方式併入本文中。
色素性視網膜炎(RP)係指導致視力損失及失明之視網膜感光細胞(視桿細胞及視錐細胞)之一組遺傳退化。多種基因中之任一者之突變可導致RP,包括編碼光轉導(光子能量在感光細胞外部區段中轉換成神經元信號之過程)、視覺循環(視網膜中維生素A之產生及再循環)、感光器結構及轉錄因子中所涉及之蛋白質的基因(Phelan及Bok,2000)。
RLBP1相關視網膜營養性萎縮為染色體15上之視黃醛結合蛋白質1(RLBP1)基因突變所引起之罕見型RP。此基因之突變導致細胞視黃醛結合蛋白質(CRALBP)缺失或功能障礙,該細胞視黃醛結合蛋白質為視覺循環中重要之蛋白質(He等人2009)。CRALBP表現於視網膜色素上皮(RPE)及穆勒細胞(Müller cell)、睫狀上皮、虹膜、角膜、松果腺,及視神經及腦之寡樹突神經膠質細胞之子組中(Saari等人1997)。CRALBP接受來自異構酶RPE65之11-順-視黃醇且充當此受質之載運體以便由11-順-視黃醇去氫酶(RDH5)使該受質轉化成11-順-視黃醛。
在不存在功能性CRALBP之情況下,發色團再生速率急劇減小(Travis等人2007)。CRALBP在RPE外之功能並未得到充分瞭解,但已表明穆勒細胞中之CRALBP支持視錐特異性視覺路徑,允許視錐細胞迅速適應廣泛範圍之光強度(Wang及Kefalov 2011)。
RLBP1相關視網膜營養性萎縮之特徵為早期嚴重夜盲及緩慢暗適應,隨後進行性損失視覺敏銳度、視場及色彩視覺,通常大約在成年中期導致法定盲。眼底外觀之特徵為視網膜中之黃點或白點。視覺敏銳度及視場之減小顯著影響患者之生活品質(Burstedt及Mönestam,2010)。
導致RLBP1相關視網膜營養性萎縮之最常見RLBP1突變為隱性突變,稱為R234W及M226K(Golovleva I及Burstedt M 2012)。由此等隱性誤義突變中之一或兩者引起之RLBP1相關視網膜營養性萎縮亦稱為波斯尼亞營養性萎縮(Bothnia Dystrophy)。已報導RLBP1基因之若干其他功能損失突變導致RLBP1相關視網膜營養性萎縮。舉例而言,在紐芬蘭(Newfoundland),RLBP1之剪接突變導致視桿-視錐營養性萎縮。當前尚不存在可用於RLBP1相關視網膜營養性萎縮之治療(Eichers等人2002)。
本發明一部分係基於以下發現:由具有所選啟動子、AAV基因組及衣殼血清型之組合的重組腺相關病毒載體(rAAV)表現RLBP1提供用於RLBP1相關視網膜營養性萎縮之強力且有效之治療。
本發明大體上係關於重組病毒載體及使用重組病毒載體在罹患視網膜疾病及失明之個體之視網膜中表現蛋白質之方法。
本發明係關於能夠傳遞異源基因至視網膜之病毒載體。本發明亦關於能夠引導異源基因至視網膜之RPE及穆勒細胞之病毒載體。本發明進一步關於作為重組腺相關病毒載體(rAAV)之病毒載體。在某些
實施例中,rAAV病毒載體可選自此項技術中已知之任何AAV血清型,包括(但不限於)AAV1-AAV12。在某些實施例中,rAAV載體衣殼為AAV2血清型。在某些其他實施例中,rAAV載體衣殼為AAV8血清型。
本發明一部分係關於載運單股載體基因組之病毒載體。在單股病毒載體中,載體基因組可包括5' ITR、包含RLBP1編碼序列之重組核苷酸序列,及3' ITR。載體基因組之重組核酸序列亦可包括如本文所述之啟動子。在一個態樣中,啟動子為RLBP1(長)啟動子(SEQ ID NO:10),在另一態樣中,啟動子為RLBP1(短)啟動子(SEQ ID NO:3)。在本發明之某些特定態樣中,載體基因組在5'至3'方向上包含選自以下之核酸序列:a)SEQ ID NO:2、10、5、6、8及9;b)SEQ ID NO:2、11、5、6、8、14、9;c)SEQ ID NO:2、22、5、6、8、23及9;及d)SEQ ID NO:2、3、4、5、6、8、23及9。
本發明一部分亦關於載運自身互補基因組之病毒載體。自身互補載體基因組自5'至3'可包括5' ITR、第一重組核苷酸序列、不可解析ITR(例如:△ITR)、第二重組核苷酸序列及3' ITR,其中該第一重組核苷酸序列及該第二重組核苷酸序列為自身互補的。第二重組核苷酸序列在5'至3'方向上包含啟動子、RLBP1編碼序列及SV40 polyA序列。啟動子可為RLBP1啟動子且進一步可為RLBP1(短)啟動子(SEQ ID NO:3)。在本發明之某些態樣中,第二重組核苷酸序列在5'至3'方向上包含核酸序列SEQ ID NO:3、4、5、6及8,且第一重組核苷酸序列包含第二重組序列之自身互補或反向互補序列,例如SEQ ID NO:62、63、64、65及66。本發明亦關於一種包含自身互補載體基因組之病毒載體,其中該基因組在5'至3'方向上包含以下核酸序列:SEQ ID NO:36、62、63、64、65、66、1、3、4、5、6、8及9。上文所述之自身互補載體基因組可包裝於AAV衣殼中,該AAV衣殼係選自此項技
術中已知之任何AAV血清型,包括(但不限於)AAV1-12。在一個態樣中,自身互補基因組包裝於AAV8衣殼中。在另一態樣中,自身互補基因組包裝於AAV2衣殼中。
本發明亦關於一種能夠引導異源基因至視網膜之RPE及穆勒細胞中表現之病毒載體。預期病毒載體衣殼為AAV2或AAV8血清型衣殼且病毒載體包含載體基因組,其中該異源基因可操作地連接於RLBP1啟動子。進一步預期RLBP1啟動子為RLBP1(短)啟動子(SEQ ID NO:3)或RLBP1(長)啟動子(SEQ ID NO:10)。在本發明之另一態樣中,預期欲表現於RPE及穆勒細胞中之異源基因為具有例如序列SEQ ID NO:6之RLBP1編碼序列。
本發明亦關於一種能夠引導異源基因至視網膜之RPE及穆勒細胞中表現之病毒載體,其中病毒載體衣殼為AAV8血清型衣殼且病毒載體包含自身互補載體基因組,其中異源基因可依操作方式連接於RLBP1啟動子。進一步預期RLBP1啟動子為RLBP1(短)啟動子(SEQ ID NO:3)。在本發明之另一態樣中,預期欲表現於RPE及穆勒細胞中之異源基因為具有例如序列SEQ ID NO:6之RLBP1編碼序列。
本發明亦關於一種包含本文所述之病毒載體之組合物以及與醫藥學上可接受之載劑組合之病毒載體組合物。特定言之,本發明進一步關於包含如表4中所述之病毒載體之組合物。本發明更進一步關於包含病毒載體之組合物,該等病毒載體可使用表2中所述之質體,結合此項技術中已知及本文所述之rAAV產生方法來產生。本文所述之組合物適用於治療患有RLBP1相關視網膜營養性萎縮之個體及/或提高患有RLBP1相關視網膜營養性萎縮之個體的暗適應速率。
本發明亦關於可在此項技術中已知及本文所述之rAAV產生方法中用於產生本文所述之病毒載體之核酸。本發明係關於包含基因卡匣之核酸,其中該基因卡匣在5'至3'方向上包含:(i)5' ITR或不可解析
ITR,(ii)包含RLBP1編碼序列之重組核苷酸序列,及(iii)3' ITR。預期核酸可包含基因卡匣,該基因卡匣包含選自SEQ ID NO:51、52、53、54及55之核酸序列。預期本發明之核酸可為質體。進一步預期核酸可為包含選自SEQ ID NO:26、27、28、29、30及50之核酸序列之質體。
在本發明之某些特定態樣中,核酸可包含在5'至3'方向上包含選自以下之序列的基因卡匣:a)SEQ ID NO:2、10、5、6、8及9,b)SEQ ID NO:2、11、5、6、8、14及9,c)SEQ ID NO:2、22、5、6、8、23及9,d)SEQ ID NO:2、3、4、5、6、8、23及9,或e)SEQ ID NO:1、3、4、5、6、8及9。
本發明亦關於包含基因卡匣之核酸,其中該基因卡匣在5'至3'方向上包含:(i)5' ITR,(ii)包含可依操作方式連接於報導基因之啟動子之重組核苷酸序列,及(iii)3' ITR。預期核酸可包含基因卡匣,該基因卡匣包含選自SEQ ID NO:56、57、59及60之核酸序列。進一步預期核酸可為包含選自SEQ ID NO:31、32、34及35之核酸序列之質體。
本發明亦關於治療患有RLBP1相關視網膜營養性萎縮之個體的方法,其中該方法包含向有需要之個體投與包含如本文所述之病毒載體之組合物。
本發明亦關於一種提高患有RLBP1相關視網膜營養性萎縮之個體之暗適應速率的方法,其中該方法包含向有需要之個體投與包含如本文所述之病毒載體之組合物。
本發明更進一步關於一種引導RLBP1編碼序列在患有RLBP1相關視網膜營養性萎縮之個體之視網膜中之RPE及穆勒細胞中表現的方法,其中該方法包含以下步驟:使該個體之視網膜與病毒載體接觸,該病毒載體包含AAV8或AAV2血清型衣殼及包含可依操作方式連接於
RLBP1啟動子之RLBP1編碼序列之載體基因組,該RLBP1啟動子為諸如本文所述之RLBP1(短)(SEQ ID NO:3)或RLBP1(長)(SEQ ID NO:10)啟動子。
本發明更進一步關於一種傳遞RLBP1編碼序列至患有RLBP1相關視網膜營養性萎縮之個體之視網膜中之RPE及穆勒細胞中的方法,其中該方法包含以下步驟:使該個體之視網膜與病毒載體接觸,該病毒載體包含AAV8或AAV2血清型衣殼及包含可依操作方式連接於RLBP1啟動子之RLBP1編碼序列之載體基因組,該RLBP1啟動子為諸如本文所述之RLBP1(短)(SEQ ID NO:3)或RLBP1(長)(SEQ ID NO:10)啟動子。
本發明亦包括如表1或表4中所述之病毒載體以及表2中所述之質體。
除非另有規定,否則本文中所用之所有技術及科學術語均具有與一般熟習本發明所屬技術者通常所理解之含義相同的含義。
術語「衣殼」係指病毒或病毒載體之蛋白質包衣。術語「AAV衣殼」係指腺相關病毒(AAV)之蛋白質包衣,其由總共60個次單元構成;各次單元為一種胺基酸序列,其可為病毒蛋白1(VP1)、VP2或VP3(Muzyczka N及Berns KI 2001)。
術語「基因卡匣」係指載運及能夠表現一或多組限制性位點之間所關注的一或多個基因或編碼序列之可操縱DNA片段。基因卡匣可藉由使用限制酶『切』出片段且將該片段接合回新的環境中(例如新質體骨架中)而自一個DNA序列(常常在質體載體中)轉移至另一個DNA序列。
術語「異源基因」或「異源核苷酸序列」通常指代並非病毒中天然存在之基因或核苷酸序列。或者,異源基因或核苷酸序列可指代
置於非天然存在之環境中(例如:藉由與病毒中非天然相關之啟動子相關聯)之病毒序列。
術語「ITR」或「反向末端重複序列」係指存在於腺相關病毒(AAV)及/或重組腺相關病毒載體(rAAV)中且可形成完成AAV溶解及潛在生命週期所需之T形回折結構的核酸序列段(Muzyczka N及Berns KI 2001)。術語「不可解析ITR」係指經修飾以減少由Rep蛋白質解析之ITR。不可解析ITR可為不存在末端解析位點(terminal resolution site,TRS),從而導致不可解析ITR之低解析或無解析且將產生90-95%之自身互補AAV載體的ITR序列(McCarty等人2003)。不可解析ITR之特定實例為「△ITR」,具有序列SEQ ID NO:1。
術語「可依操作方式連接」係指兩個或兩個以上聚核苷酸(例如DNA)區段之間的功能關係。通常,該術語係指轉錄調控序列與欲轉錄序列之功能關係。舉例而言,若啟動子或強化子序列在適當宿主細胞或其他表現系統中刺激或調節編碼序列之轉錄,則該啟動子或強化子序列可依操作方式連接於該編碼序列。一般而言,可依操作方式連接於可轉錄序列之啟動子轉錄調控序列鄰接於該可轉錄序列,亦即該等序列順式作用(cis-acting)。然而,一些轉錄調控序列(諸如強化子)無須實體上鄰接於或緊密接近於其增強轉錄之編碼序列。
術語「啟動子」係指調控可依操作方式連接之基因或編碼蛋白質之核苷酸序列等之轉錄的序列。啟動子提供足以引導轉錄之序列以及RNA聚合酶之識別位點及有效轉錄所需之其他轉錄因子,且可引導細胞特異性表現。除足以引導轉錄之序列以外,本發明之啟動子序列亦可包括調節轉錄中所涉及之其他調控元件(例如:強化子、kozak序列及內含子)之序列。此項技術中已知且適用於本文所述之病毒載體之啟動子的實例包括CMV啟動子、CBA啟動子、smCBA啟動子,及來源於免疫球蛋白基因、SV40或其他組織特異性基因之彼等啟動子
(例如:RLBP1、RPE、VMD2)。特異性啟動子亦可包括表1中所述之彼等啟動子,例如「RLBP1(短)」啟動子(SEQ ID NO:3)、「RLBP1(長)」啟動子(SEQ ID NO:10)、RPE65啟動子(SEQ ID NO:11)、VMD2啟動子(SEQ ID NO:12)及CMV強化子+CBA啟動子(SEQ ID NO:22)。另外,此項技術中已知用於藉由混合並匹配已知調控元件來產生功能性啟動子之標準技術。「截短啟動子」亦可由啟動子片段產生或藉由混合並匹配已知調控元件之片段而產生;例如,smCBA啟動子為CBA啟動子之截短形式。
術語「RLBP1」係指「視黃醛結合蛋白質1」。人類RLBP1基因見於染色體15上且具有如表1中所陳述之核酸編碼序列:SEQ ID NO:6。「RLBP1基因產物」亦稱為「細胞視黃醛結合蛋白質」或「CRALBP」且為由RLBP1基因編碼之蛋白質。人類RLBP1基因產物(hCRALBP)具有如表1中所陳述之胺基酸序列:SEQ ID NO:7。來自其他物種之RLBP1編碼序列及RLBP1基因產物之實例可見於表1中(例如:SEQ ID NO:37-48)。術語「RLBP1編碼序列」或「RLBP1基因CDS」或「RLBP1 CDS」係指編碼RLBP1基因產物之核酸序列。熟習此項技術者應瞭解,RLBP1編碼序列可包括編碼RLBP1基因產物之任何核酸序列。RLBP1編碼序列可能包括或可能不包括插入調控元件(例如:內含子、強化子或其他非編碼序列)。
術語「個體」包括人類及非人類動物。非人類動物包括所有脊椎動物(例如:哺乳動物及非哺乳動物),諸如非人類靈長類動物(例如:食蟹獼猴)、小鼠、大鼠、綿羊、犬、牛、雞、兩棲動物及爬行動物。除非有註釋,否則術語「患者」或「個體」在本文中可互換使用。
如本文中所用之術語「治療」任何疾病或病症(例如色素性視網膜炎、RBLP1相關視網膜營養性萎縮)係指改善疾病或病症,諸如藉
由減緩或遏止或減少疾病或其至少一種臨床症狀之發展。「治療」亦可指代改良或改善至少一個身體參數,包括患者可能無法辨別之身體參數。「治療」亦可指代在身體上(例如穩定可辨別之症狀)、在生理上(例如穩定身體參數)或在兩方面調節疾病或病症。更特定言之,RLBP1相關視網膜營養性萎縮之「治療」意謂改良或保持患有RLBP1相關視網膜營養性萎縮之個體的視覺功能及/或局部解剖學構造之任何作用。如本文中所用之「預防」係指預防或延緩疾病或病症之發作或發展或進程。「預防」在涉及RLBP1相關視網膜營養性萎縮時意謂預防或減緩患有RLBP1相關視網膜營養性萎縮及處於該疾病惡化風險中之患者的如下文所述之視覺功能、視網膜解剖學構造及/或RLBP1相關視網膜營養性萎縮疾病參數之惡化的任何作用。評估疾病治療及/或預防之方法在此項技術中為已知的且描述於下文中。
術語「病毒載體」欲指代充當基因傳遞運載體且包含包裝於病毒(例如:AAV)衣殼內之重組病毒基因組的非野生型重組病毒粒子(例如:小病毒等)。特定類型之病毒載體可為「重組腺相關病毒載體」或「rAAV載體」。包裝於病毒載體中之重組病毒基因組在本文中亦稱為「載體基因組」。
圖1A及圖1B. 在使用每隻眼睛(a)1×109及(b)1×108個載體基因組(vg)粒子之劑量的多種病毒載體注射之眼睛中,載體介導之人類RLBP1 mRNA與內源性小鼠RLBP1 mRNA相比之相對表現。
圖2. RLBP1 KO(-/-)及野生型(+/+)小鼠之暗適應。
圖3A-D. 用多種病毒載體處理之RLBP1 KO小鼠之暗適應速率的量測值。
圖4A及圖4B. 用多種劑量之NVS2及NVS11處理之RLBP1 KO小鼠之提高之暗適應速率的量測值。水平軸劑量以科學記法(例如3E6=
3×106)指示。
圖5A及圖5B. 用多種劑量之NVS4及NVS11處理之RLBP1 KO小鼠之提高之暗適應速率的量測值。水平軸劑量以科學記法(例如3E6=3×106)指示。
圖6. 用不同純化方法製備之NVS2處理之RLBP1 KO小鼠之提高之暗適應速率的量測值。
本發明一部分係基於發現在視網膜之RPE及穆勒細胞中表現異源基因之病毒載體。本發明亦關於具有表現RLBP1基因產物(CRALBP)之異源基因的單股病毒載體與自身互補病毒載體兩者。
因此,本發明提供引導RLBP1編碼序列至視網膜中表現之重組病毒載體、病毒載體組合物、適用於產生該等病毒載體之質體、傳遞RLBP1編碼序列至視網膜之方法、在視網膜之RPE及穆勒細胞中表現RLBP1編碼序列之方法及使用該等病毒載體之方法。
除非另有指示,否則熟習此項技術者已知之標準方法可用於使用載運病毒基因卡匣之重組質體、表現小病毒rep及/或cap序列之包裝質體以及短暫且穩定地轉染之包裝細胞來構築重組小病毒及rAAV載體。該等技術為熟習此項技術者所知(例如:SAMBROOK等人,MOLECULAR CLONING:A LABORATORY MANUAL第2版(Cold Spring Harbor,N.Y.,1989);Choi VW等人CURRENT PROTOCOLS IN MOLECULAR BIOLOGY(2007))。
本發明係關於引導異源基因至視網膜中表現之病毒載體。在本發明之某些態樣中,將表現引導至視網膜之RPE及穆勒細胞中。此項技術中已知之多種病毒載體可由熟習此項技術者調整以用於本發明中,例如重組腺相關病毒、重組腺病毒、重組反轉錄病毒、重組痘病
毒、重組桿狀病毒等。
詳言之,預期本發明之病毒載體可為重組腺相關(rAAV)載體。AAV為需要輔助病毒以有助於有效複製之小型單股DNA病毒(Muzyczka N及Berns KI 2001)。病毒載體包含載體基因組及蛋白質衣殼。病毒載體衣殼可由此項技術中已知之任何AAV血清型提供,包括目前所鑑別之人類及非人類AAV血清型及有待鑑別之AAV血清型(參見:Choi VW等人2005;Schmidt等人2008)。病毒衣殼可與其他載體組分混合並匹配以形成雜交病毒載體,例如病毒載體之ITR及衣殼可來自不同AAV血清型。在一個態樣中,ITR可來自AAV2血清型,而衣殼來自例如AAV2或AAV8血清型。另外,熟習此項技術者應認識到,載體衣殼亦可為鑲嵌型衣殼(mosaic capsid)(例如:由來自不同血清型之衣殼蛋白質之混合物構成的衣殼)或甚至嵌合衣殼(例如:含有外來或無關蛋白質序列以產生標記及/或改變組織向性之衣殼蛋白質)。預期本發明之病毒載體可包含AAV2衣殼。進一步預期本發明可包含AAV8衣殼。
本發明一部分係關於載體基因組為單股之病毒載體。在某些態樣中,本發明係關於單股載體基因組,其在5'至3'方向上包含:(i)5' ITR,(ii)包含RLBP1編碼序列之重組核苷酸序列,及(iii)3' ITR。在本發明之某些態樣中,重組核苷酸序列在5'至3'方向上包含:(i)啟動子,(ii)RLBP1編碼序列,及(iii)SV40 polyA序列。在某些態樣中,啟動子可為RLBP1(短)啟動子、RLBP1(長)啟動子或截短RLBP1啟動子。詳言之,本發明係關於包含重組核苷酸序列之單股載體基因組,該重組核苷酸序列在5'至3'方向上包含:RLBP1(長)啟動子(SEQ ID NO:10)、RLBP1編碼序列及SV40 polyA序列。另外,本發明亦關於包含重組核苷酸序列之單股載體基因組,該重組核苷酸序列在5'至3'方向上包含:RLBP1(短)啟動子(SEQ ID NO:3)、RLBP1編碼序列及
SV40 polyA序列。本發明之某些態樣進一步關於單股載體基因組,其包含包裝於AAV2或AAV8衣殼中之重組核苷酸序列。
在本發明之某些態樣中,病毒載體包含AAV2衣殼(由SEQ ID NO:18編碼)及載體基因組,該載體基因組在5'至3'方向上包含選自以下之核苷酸序列:a)SEQ ID NO:2、10、5、6、8及9;b)SEQ ID NO:2、11、5、6、8、14、9;c)SEQ ID NO:2、22、5、6、8、23及9;及d)SEQ ID NO:2、3、4、5、6、8、23及9。在某些態樣中,AAV2衣殼包含分別具有胺基酸序列SEQ ID NO:19、68及69之衣殼蛋白質VP1、VP2及VP3。在某些其他態樣中,AAV2衣殼可包含衣殼蛋白質VP1、VP2及/或VP3之子組合。
在本發明之某些態樣中,病毒載體包含AAV8衣殼(由SEQ ID NO:20編碼)及載體基因組,該載體基因組在5'至3'方向上包含選自以下之核苷酸序列:a)SEQ ID NO:2、10、5、6、8及9;b)SEQ ID NO:2、11、5、6、8、14、9;c)SEQ ID NO:2、22、5、6、8、23及9;及d)SEQ ID NO:2、3、4、5、6、8、23及9。在某些態樣中,AAV8衣殼包含具有胺基酸序列SEQ ID NO:21、70及71之衣殼蛋白質VP1、VP2及VP3。在某些其他態樣中,AAV8衣殼可包含衣殼蛋白質VP1、VP2及/或VP3之子組合。
病毒載體亦可為包含自身互補基因組之AAV載體。自身互補rAAV載體先前已描述於此項技術中(US7465583及McCarty 2008)且可經調整以用於本發明中。自身互補基因組包含在該基因組任一端之5' ITR及3' ITR(亦即:可解析ITR或野生型ITR)以及插入5' ITR與3' ITR之間的不可解析ITR(例如:△ITR,如本文所述)。基因組之各部分(亦即在各可解析ITR與不可解析ITR之間)包含重組核苷酸序列,其中每一半(亦即:第一重組核苷酸序列及第二重組核苷酸序列)與另一者互補或自身互補。換言之,自身互補載體基因組基本上為具有由不可
解析ITR接合之兩個半部分的反向重複序列。在某些態樣中,本發明係關於自身互補載體基因組,其在5'至3'方向上包含(i)5' ITR,(ii)第一重組核苷酸序列,(iii)不可解析ITR,(iv)第二重組核苷酸序列,及(v)3' ITR。在本發明之某些態樣中,載體基因組之第二重組核苷酸序列包含RLBP1啟動子、RLBP1編碼序列及SV40 polyA序列,且第一重組核苷酸序列與第二核苷酸序列自身互補。在某些特定態樣中,RLBP1啟動子具有核苷酸序列SEQ ID NO:3。在本發明之某些態樣中,第二重組核苷酸序列在5'至3'方向上包含核酸序列SEQ ID NO:3、4、5、6及8,且第一重組核苷酸序列包含第二重組序列之自身互補或反向互補序列,例如SEQ ID NO:62、63、64、65及66。亦預期本發明之病毒載體可包含自身互補基因組,其中載體基因組之第一重組核苷酸序列包含RLBP1啟動子、RLBP1編碼序列及SV40 polyA序列,且第二重組核苷酸序列與第一重組核苷酸序列自身互補。
在本發明之某些態樣中,自身互補病毒載體包含AAV2衣殼(由SEQ ID NO:18編碼)及包含核苷酸序列之載體基因組,該核苷酸序列在5'至3'方向上包含序列SEQ ID NO:36、SEQ ID NO:62、SEQ ID NO:63、SEQ ID NO:64、SEQ ID NO:65、SEQ ID NO:66、SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:8及SEQ ID NO:9。在某些態樣中,AAV2衣殼包含分別具有胺基酸序列SEQ ID NO:19、68及69之衣殼蛋白質VP1、VP2及VP3。在某些其他態樣中,AAV2衣殼可包含衣殼蛋白質VP1、VP2及/或VP3之子組合。
在本發明之某些態樣中,自身互補病毒載體包含AAV8衣殼(由SEQ ID NO:20編碼)及包含核苷酸序列之載體基因組,該核苷酸序列在5'至3'方向上包含序列SEQ ID NO:36、SEQ ID NO:62、SEQ ID NO:63、SEQ ID NO:64、SEQ ID NO:65、SEQ ID NO:66、SEQ ID
NO:1、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:8及SEQ ID NO:9。在某些態樣中,AAV8衣殼包含具有胺基酸序列SEQ ID NO:21、70及71之衣殼蛋白質VP1、VP2及VP3。在某些其他態樣中,AAV8衣殼可包含衣殼蛋白質VP1、VP2及/或VP3之子組合。
因此,本發明亦關於如本文所述之包含截短RLBP1啟動子之病毒載體。
本發明進一步關於一種引導異源基因至視網膜之RPE及穆勒細胞中表現之病毒載體,其中該病毒載體包含AAV8衣殼及載體基因組,該載體基因組包含可依操作方式連接於異源基因之RLBP1(短)啟動子(SEQ ID NO:3)。在本發明之某些態樣中,載體基因組為自身互補基因組。
本發明亦關於在視網膜之RPE細胞及穆勒細胞中表現RLBP1之方法。在本發明之某些態樣中,該方法包含使視網膜細胞與包含AAV衣殼及載體基因組之病毒載體接觸,該載體基因組包含可依操作方式連接於RLBP1啟動子之RLBP1編碼序列,該RLBP1啟動子可為RLBP1(短)啟動子(SEQ ID NO:3)。在本發明之某些態樣中,AAV衣殼為AAV2。在某些其他態樣中,AAV衣殼為AAV8。在本發明之其他態樣中,該方法包含使視網膜細胞與包含AAV衣殼及載體基因組之病毒載體接觸,該載體基因組包含可依操作方式連接於RLBP1啟動子之RLBP1編碼序列,該RLBP1啟動子可為RLBP1(長)啟動子(SEQ ID NO:10)。在本發明之某些態樣中,AAV衣殼為AAV2。在某些其他態樣中,AAV衣殼為AAV8。
產生病毒載體之方法在此項技術中為熟知的,且將使得熟習此項技術者可使用表2及實例中所述之質體產生本發明之病毒載體(參見例如美國專利第7,465,583號),包括表4中所述之病毒載體。
一般而言,產生rAAV載體之方法可應用於產生本發明之病毒載體;該等方法之間的主要差異在於待包裝之遺傳元件之結構。為產生本發明之病毒載體,如表2中所述之遺傳元件及質體之序列可用於產生包裹衣殼之病毒基因組。
如表2中所述之遺傳元件係在環形質體之情形中,但熟習此項技術者應瞭解DNA受質可依此項技術中已知之任何形式提供,包括(但不限於)質體、裸DNA載體、細菌人工染色體(BAC)、酵母人工染色體(YAC)或病毒載體(例如腺病毒、疱疹病毒、埃-巴二氏病毒(Epstein-Barr Virus)、AAV、桿狀病毒、反轉錄病毒載體及其類似物)。或者,表2中對於產生本文所述之病毒載體所必需之遺傳元件可穩定地併入包裝細胞之基因組中。
本發明之病毒載體粒子可藉由此項技術中已知之任何方法產生,例如藉由將欲複製及包裝之序列引入容許細胞或包裝細胞中,而彼等術語為此項技術中所瞭解(例如,「容許」細胞可由病毒感染或轉導;「包裝」細胞為提供輔助功能之穩定轉型細胞)。
在一個實施例中,提供一種產生RLBP1病毒載體之方法,其中該方法包含在足以在細胞中產生包含包裹於小病毒衣殼內之載體基因組之病毒載體的條件下,向容許小病毒複製之細胞提供:(a)含有用於產生本發明之載體基因組之遺傳元件(如下文詳述及表2中所述)之核苷酸序列;(b)足以複製(a)之載體基因組序列以產生載體基因組之核苷酸序列;(c)足以將載體基因組包裝於小病毒衣殼中之核苷酸序列。小病毒複製及/或衣殼編碼序列較佳為AAV序列。
可採用將如下文所述之載運基因卡匣之核苷酸序列引入細胞宿主中以供複製及包裝之任何方法,包括(但不限於)電穿孔、磷酸鈣沈澱、顯微注射、陽離子或陰離子脂質體,及脂質體與細胞核定位信號之組合。
本文所述之病毒載體可使用此項技術中已知之方法產生,諸如三重轉染或桿狀病毒介導之病毒產生。可採用此項技術中已知之任何適合容許細胞或包裝細胞來產生載體。哺乳動物細胞較佳。提供複製缺陷型輔助病毒所缺失之功能的反式互補包裝細胞株亦較佳,例如293細胞或其他E1a反式互補細胞。如此項技術中已知之DNA修復有缺陷之哺乳動物細胞或細胞株亦較佳,該缺陷係因為此等細胞株在其修正引入本文所述之質體中之突變的能力方面受損。
基因卡匣可含有一些或所有小病毒(例如AAV)cap及rep基因。然而,一些或所有cap及rep功能較佳藉由將編碼衣殼及/或Rep蛋白質之包裝載體引入細胞中而以反式提供。基因卡匣最佳不編碼衣殼或Rep蛋白質。或者,使用穩定轉型之包裝細胞株以表現cap及/或rep基因(參見例如Gao等人,(1998)Human Gene Therapy 9:2353;Inoue等人,(1998)J.Virol.72:7024;美國專利第5,837,484號;WO 98/27207;美國專利第5,658,785號;WO 96/17947)。
另外,較佳為病毒載體提供輔助病毒功能以使新病毒粒子增殖。腺病毒與單純疱疹病毒均可充當AAV之輔助病毒。參見例如BERNARD N.FIELDS等人,VIROLOGY,第2卷,第69章(第3版,Lippincott-Raven Publishers)。例示性輔助病毒包括(但不限於)單純疱疹(HSV)、水痘帶狀疱疹、細胞巨大病毒及埃-巴二氏病毒。感染倍率(MOI)及感染持續時間將視所用病毒類型及所用包裝細胞株而定。可採用任何適合輔助載體。輔助載體較佳為質體,例如Xiao等人,(1998)J.Virology 72:2224所述。如上文所述,載體可藉由此項技術中已知之任何適合方法引入包裝細胞中。
不含污染輔助病毒之載體儲備物可藉由此項技術中已知之任何方法獲得。舉例而言,重組單股或自身互補病毒與輔助病毒可容易地基於尺寸而區分。病毒亦可基於對肝素受質之親和力而與輔助病毒分
開(Zolotukhin等人(1999)Gene Therapy6:973)。較佳使用有缺失之複製缺陷型輔助病毒,以使得任何污染輔助病毒不能勝任複製。作為另一替代方案,可採用缺乏後期基因表現之輔助腺病毒,因為介導雙螺旋病毒包裝僅需要腺病毒早期基因表現。後期基因表現有缺陷之腺病毒突變體在此項技術中為已知的(例如ts100K及ts149腺病毒突變體)。
一種提供輔助功能之方法採用載運有效產生AAV所需之所有輔助基因的非感染性腺病毒小質體(Ferrari等人,(1997)Nature Med.3:1295;Xiao等人,(1998)J.Virology 72:2224)。以腺病毒小質體獲得之rAAV效價為以野生型腺病毒感染之習知方法獲得之rAAV效價的四十倍(Xiao等人,(1998)J.Virology 72:2224)。此方法避免了需要進行與腺病毒之共轉染(Holscher等人,(1994),J.Virology 68:7169;Clark等人,(1995)Hum.Gene Ther.6:1329;Trempe及Yang,(1993),Fifth Parvovirus Workshop,Crystal River,Fla.)。
已描述產生rAAV儲備物之其他方法,包括(但不限於)將rep基因及cap基因分離至獨立表現卡匣上以防止產生複製勝任型AAV之方法(參見例如Allen等人,(1997)J.Virol.71:6816),採用包裝細胞株之方法(參見例如Gao等人,(1998)Human Gene Therapy 9:2353;Inoue等人,(1998)J.Virol.72:7024;美國專利第5,837,484號;WO 98/27207;美國專利第5,658,785號;WO 96/17947),及其他無輔助病毒系統(參見例如Colosi之美國專利第5,945,335號)。
疱疹病毒亦可在AAV包裝方法中用作輔助病毒。編碼AAV Rep蛋白質之雜交疱疹病毒可有利地促進較易縮放規模之AAV載體產生流程。已描述表現AAV-2 rep及cap基因之雜交I型單純疱疹病毒(HSV-1)載體(Conway等人,(1999)Gene Therapy 6:986及WO 00/17377)。
總而言之,向細胞(例如容許細胞或包裝細胞)提供欲複製及包裝之基因卡匣、小病毒cap基因、適當小病毒rep基因及(較佳)輔助功能
以產生載運載體基因組之rAAV粒子。由基因卡匣及/或包裝載體及/或穩定轉型包裝細胞編碼之rep及cap基因的組合表現會產生病毒載體衣殼包裝本發明之病毒載體基因組之病毒載體粒子。單股或自身互補病毒載體可得以在細胞內組裝,且可隨後藉由熟習此項技術者已知及實例中所述之任何方法回收。舉例而言,病毒載體可藉由標準CsCl離心法(Grieger JC等人2006)或藉由熟習此項技術者已知之多種管柱層析法(參見:Lock M等人(2010),Smith RH等人(2009),及Vadenberghe LH等人(2010))純化。
可採用本文中所揭示之試劑及方法產生本發明病毒載體之高效價儲備物,較佳處於基本上野生型效價。小病毒儲備物亦較佳具有至少約105個轉導單位(tu)/ml、更佳至少約106 tu/ml、更佳至少約107 tu/ml、甚至更佳至少約108 tu/ml、甚至更佳至少約109 tu/ml、甚至更佳至少約1010 tu/ml、甚至更佳至少約1011 tu/ml或1011 tu/ml以上之效價。
此外,本發明之RLBP1病毒載體可具有優於習知AAV載體之改良轉導單位/粒子比率。轉導單位/粒子比率較佳小於約1:50、小於約1:20、小於約1:15、小於約1:10、小於約1:8、小於約1:7、小於約1:6、小於約1:5、小於約1:4或1:4以下。轉導單位/粒子比率通常應大於約1:1、1:2、1:3或1:4。
本發明亦關於適用於產生病毒載體之核酸。在本發明之某些態樣中,適用於產生病毒載體之核酸可呈質體形式。適用於產生病毒載體之質體(亦稱為病毒載體質體)可含有基因卡匣。病毒載體質體之基因卡匣至少含有:異源基因及其調控元件(例如:啟動子、強化子及/或內含子等)以及5'及3' AAV反向末端重複序列(ITR)。
異源基因及其調控元件之組成應視所得載體將投入之用途而
定。舉例而言,一種類型之異源基因序列包括報導體序列,其在表現時產生可偵測信號。該等報導體序列包括(但不限於)編碼以下之DNA序列:β-內醯胺酶、β-半乳糖苷酶(LacZ)、鹼性磷酸酶、胸苷激酶、綠色螢光蛋白質(GFP)、氯黴素乙醯轉移酶(CAT)、螢光素酶、膜結合蛋白質(包括例如CD2、CD4、CD8、流感血球凝集素蛋白質,及此項技術中所熟知的存在針對其之高親和力抗體或可藉由習知方式產生之其他膜結合蛋白質)及包含與來自尤其血球凝集素或Myc之抗原標籤結構域適當融合之膜結合蛋白質的融合蛋白質。舉例而言,在報導體序列為LacZ基因之情況下,由β-半乳糖苷酶活性分析來偵測載運信號之載體的存在。在報導體序列為綠色螢光蛋白質或螢光素酶之情況下,可藉由在光度計中產生顏色或光而在視覺上量測載運信號之載體。
異源基因序列在與驅使其表現之調控元件相關聯時提供藉由習知方式可偵測之信號,該等方式包括酶促分析、射線照相分析、比色分析、螢光分析或其他光譜分析、螢光活化細胞分選分析及免疫分析,包括酶聯免疫吸附分析(ELISA)、放射免疫分析(RIA)及免疫組織化學。
異源基因亦可為編碼適用於生物學及醫藥學之產物(諸如蛋白質、肽、RNA、酶、顯性負性突變體或催化性RNA)之非標記序列。所需RNA分子包括tRNA、dsRNA、核糖體RNA、催化性RNA、siRNA、小髮夾RNA、反式剪接RNA及反義RNA。適用RNA序列之一個實例為抑制或消除靶向核酸序列在經處理動物中之表現的序列。
異源基因亦可用於修正或改善基因缺陷,其可包括正常基因以低於正常水準表現之缺陷或不表現功能性基因產物之缺陷。在本發明中預期,異源基因序列可為RLBP1編碼序列。RLBP1編碼序列之實例提供於表1中:SEQ ID NO:6、37、39、41、43、45或47。
除異源基因之外,基因卡匣可包括可依操作方式連接於異源基因之調控元件。此等調控元件可包括適當轉錄起始、終止、啟動子及強化子序列;有效RNA加工信號,諸如剪接及聚腺苷酸化(polyA)信號;穩定細胞質mRNA之序列;提高轉譯效率之序列;增強蛋白質穩定性之序列;及必要時,增加所編碼之產物分泌之序列。此項技術中已知且可利用大量調控序列,包括天然、組成性、誘導性及/或組織特異性啟動子。本發明之調控元件序列包括表1中所述之彼等序列,例如SEQ ID NO:3、4、5、8、10、11、12及22。
基因卡匣可包括可依操作方式連接於異源基因之具有核酸序列SEQ ID NO:3或10之RLBP1啟動子。詳言之,RLBP1短啟動子(SEQ ID NO:3)可依操作方式連接於RLBP1編碼序列(SEQ ID NO:6、37、39、41、43、45或47)。或者,RLBP1長啟動子(SEQ ID NO:10)可依操作方式連接於RLBP1編碼序列(SEQ ID NO:6、37、39、41、43、45或47)。
預期可使用AAV血清型2之ITR(例如:SEQ ID NO:2、9、16、17、36)。然而,來自其他適合血清型之ITR可選自此項技術中已知之任何AAV血清型,如本文所述。此等ITR或其他AAV組分可易於使用熟習此項技術者可用之技術自任何已知AAV血清型或有待鑑別之血清型分離,例如,AAV序列可藉由參考諸如文獻或資料庫(諸如GenBank、PubMed或其類似資料庫)中可用之公開序列,經合成方式或其他適合方式獲得。或者,該等AAV組分亦可自學院、商業或公共來源(例如美國菌種保存中心;American Type Culture Collection,Manassas,Va.)分離或獲得。
預期在本發明之某些態樣中,基因卡匣之一個ITR可為經修飾之ITR或不可解析ITR(無末端解析位點(TRS)之序列)。在包含不可解析ITR之基因卡匣複製期間,Rep蛋白質不能解析不可解析ITR將產生在
中間具有不可解析ITR(例如:△ITR)且在各端具有野生型ITR之二聚反向重複序列(亦即:自身互補)。所得序列為自身互補病毒基因組序列,使得基因組能夠在自衣殼釋放時形成髮夾結構(亦參見:US7465583及McCarty(2008))。不可解析ITR可藉由此項技術中已知之任何方法產生。舉例而言,插入ITR中將使TRS移位且產生不可解析ITR。插入較佳在TRS位點附近。或者,可藉由TRS位點缺失而促使ITR不可解析,特定實例包括△ITR(SEQ ID NO:1)。
本發明係關於包含基因卡匣之核酸,該基因卡匣在5'至3'方向上包含選自以下之核酸序列:a)SEQ ID NO:2、10、5、6、8及9;b)SEQ ID NO:2、11、5、6、8、14及9;c)SEQ ID NO:2、22、5、6、8、23及9;d)SEQ ID NO:2、3、4、5、6、8、23及9;e)SEQ ID NO:2、10、5、24、8及9;f)SEQ ID NO:2、11、24、8、14及9;及g)SEQ ID NO:2、12、24、8、14及9。在某些態樣中,包含基因卡匣之核酸可為質體。詳言之,質體序列可具有選自SEQ ID NO:27、28、29、30、32、33、34及35之序列。
本發明亦關於包含基因卡匣之核酸,該基因卡匣在5'至3'方向上包含選自以下之核酸序列:a)SEQ ID NO:1、3、4、5、6、8及9;及b)SEQ ID NO:1、3、4、5、24、8及9。在某些態樣中,包含基因卡匣之核酸可為質體。詳言之,質體序列可具有選自SEQ ID NO:26、31及50之序列。
併入表2中之元件的方法在此項技術中為熟知的且將使得熟習此項技術者可使用表3及實例中所概述之方法產生本發明之核酸及質體。
本發明提供醫藥組合物,其包含與醫藥學上可接受之載劑一起調配的本發明之病毒載體。組合物可另外含有一或多種適用於治療或
預防例如RLBP1相關視網膜營養性萎縮及/或視網膜色素變性(RP)之其他治療劑。醫藥學上可接受之載劑增強或穩定組合物,或可用於促進組合物之製備。醫藥學上可接受之載劑包括生理上相容之溶劑、界面活性劑、分散介質、包衣、抗細菌劑及抗真菌劑、等張劑及吸收延遲劑及其類似物。
本發明之醫藥組合物可藉由此項技術中已知之多種方法投與。投藥之途徑及/或模式視所需結果而變化。視網膜下投藥較佳。醫藥學上可接受之載劑應適於視網膜下、玻璃體內、靜脈內、皮下或局部投藥。
組合物應無菌且為流體。可例如藉由使用包衣(諸如卵磷脂)、藉由在分散液情況下維持所需粒徑及藉由使用界面活性劑來維持適當流動性。在許多情況下,較佳在組合物中包括等張劑,例如糖、多元醇(諸如甘露糖醇或山梨糖醇)及氯化鈉。
本發明之醫藥組合物可根據此項技術中所熟知且常規實施之方法製備。參見例如Remington:The Science and Practice of Pharmacy,Mack Publishing Co.,第20版,2000;及Sustained and Controlled Release Drug Delivery Systems,J.R.Robinson編,Marcel Dekker,Inc.,New York,1978。醫藥組合物較佳在GMP條件下製造。本發明之醫藥組合物中通常採用治療有效劑量或高效劑量之病毒載體。病毒載體可藉由熟習此項技術者已知之習知方法調配成醫藥學上可接受之劑型。調整給藥方案以提供最佳所需反應(例如治療反應)。舉例而言,可投與單次大丸劑(single bolus),可隨時間推移投與若干分次劑量,或可如治療情況之緊急性所指示按比例減少或增加劑量。尤其有利的是,將非經腸組合物調配成單位劑型以便於投藥及劑量均勻性。如本文中所用之單位劑型係指適合作為單位劑量用於所治療個體之物理離散單位;各單位含有預定量之計劃與所需醫藥載劑相關聯產生所需治療作
用之活性化合物。
可改變本發明之醫藥組合物中之活性成分的實際劑量,以便在對患者無毒之情況下獲得有效達成特定患者、組合物及投藥模式所需之治療反應之量的活性成分。所選劑量視多種藥物動力學因素而定,包括本發明所用之特定組合物之活性,投藥途徑,投藥時間,所用特定化合物之排泄速率,治療持續時間,與所用特定組合物組合使用之其他藥物、化合物及/或材料,欲治療患者之年齡、性別、體重、病狀、一般健康情況及前病史,及類似因素。
醫師或獸醫可以醫藥組合物中所用之本發明病毒載體在相比達成所需治療作用所需之水準較低之水準下的劑量開始,且逐漸增加劑量直至達成所需作用。一般而言,用於治療如本文所述之RLBP1相關視網膜營養性萎縮之本發明組合物之有效劑量視許多不同因素而變化,包括投藥方式、目標部位、患者生理狀態、患者為人類抑或動物、所投與之其他藥物及治療為預防性抑或治療性。需要滴定治療劑量以使安全性及功效最佳化。關於視網膜下投與病毒載體,劑量可在每隻眼睛1×108個載體基因組(vg)至1×1012 vg之範圍內。舉例而言,劑量可為每隻眼睛1×108 vg、2.5×108 vg、5×108 vg、7.5×108 vg、1×109 vg、2.5×109 vg、5×109 vg、7.5×109 vg、1×1010 vg、2.5×1010 vg、5×1010 vg、7.5×1010 vg、1×1011 vg、2.5×1011 vg、5×1011 vg、7.5×1011 vg、1×1012 vg。
本文所述之病毒載體主要以每隻眼睛給藥一次來使用,可能進行重複給藥以治療先前給藥中未覆蓋之視網膜區域。投藥之劑量可視治療為預防性抑或治療性而變化。
上述個別章節及實施例中所提及之本發明之多種特徵及實施例適當時適用於其他章節及實施例,加以必要的變更。因此,一個章節或實施例中規定之特徵適當時可與其他章節或實施例中規定之特徵組
合。
如本文所述之病毒載體可藉由向有需要之個體投與有效量之本發明病毒載體而以治療有用之濃度用於治療眼睛相關疾病。更特定言之,本發明提供一種藉由向有需要之個體投與有效量之包含RLBP1編碼序列之病毒載體來治療RLBP1相關視網膜營養性萎縮之方法。
本發明提供一種包含RLBP1編碼序列之病毒載體,其用於治療個體之RLBP1相關視網膜營養性萎縮。
使用重組AAV已顯示對於治療視網膜疾病為可行且安全的(參見例如Bainbridge等人2008,Houswirth等人2008,Maguire等人2008)。本發明之病毒載體可尤其用於治療及預防RLBP1相關視網膜營養性萎縮之進程及改良視力損失。本發明之病毒載體亦可用於RLBP1基因中之其他功能損失突變引起其他視網膜營養性萎縮(例如體染色體隱性色素性視網膜炎、白點狀視網膜炎及白點狀眼底)之患者。
本發明亦關於一種藉由向有需要之個體投與本發明之病毒載體而在視網膜之RPE及穆勒細胞中表現RLBP1編碼序列之方法。本發明亦關於用於在有需要之個體之視網膜之RPE及/或穆勒細胞中表現RLBP1編碼序列的本發明病毒載體。本發明亦涵蓋一種傳遞RLBP1編碼序列至患有RLBP1相關視網膜營養性萎縮之個體之視網膜,特定言之視網膜中之RPE及/或穆勒細胞之方法。預期藉由使有需要之個體之視網膜、RPE及/或穆勒細胞與如本文所述之病毒載體接觸而將RLBP1編碼序列傳遞至該個體。或者,藉由向個體投與如本文所述之病毒載體而將RLBP1編碼序列傳遞至該個體。
本發明進一步包括藉由使患有RLBP1相關視網膜營養性萎縮之個體之視網膜與本發明之病毒載體接觸而在該個體之視網膜中之RPE及/或穆勒細胞中表現RLBP1編碼序列的方法。在某些態樣中,使個體之視網膜之RPE及/或穆勒細胞與本發明之病毒載體接觸。
進一步預期本文所述之方法中所用之病毒載體包含AAV2或AAV8衣殼,且載體基因組包含可依操作方式連接於具有選自SEQ ID NO:3
或10之核苷酸序列之RLBP1啟動子的RLBP1編碼序列。進一步預期載體基因組可自身互補。
在一個態樣中,可使用熟習此項技術者已知之方法視網膜下或玻璃體內投與本文所述之病毒載體。
可由眼科醫師或健康護理專業人員使用視覺功能及/或視網膜解剖學構造之臨床上相關量測來確定諸如RLBP1相關視網膜營養性萎縮之眼病的治療及/或預防。治療RLBP1相關視網膜營養性萎縮意謂預期改良或保留視覺功能及/或視網膜解剖學構造之任何作用(例如投與本文所述之病毒載體)。另外,預防在涉及RLBP1相關視網膜營養性萎縮時意謂在處於如本文中所定義之視覺功能、視網膜解剖學構造及/或RLBP1相關視網膜營養性萎縮疾病表型惡化風險中之患者中預防或減緩該惡化之任何作用(例如投與本文所述之病毒載體)。
視覺功能可包括例如視覺敏銳度、低亮度下之視覺敏銳度、視場、中心視場、周邊視覺、對比敏感度、暗適應、光應力恢復、辨色能力、閱讀速度、對輔助裝置(例如大字體、放大裝置、望遠鏡)之依賴性、面部識別、操作機動車之熟練程度、進行一或多個日常活動之能力及/或患者報告的與視覺功能有關之滿意度。因此,色素性視網膜炎(RP),特定言之RLBP1相關視網膜營養性萎縮之治療,可被認為在個體達到預先規定之暗適應程度的時間減少至少10%或未增加10%或10%以上的情況下發生。另外,RLBP1相關視網膜營養性萎縮之治療可被認為在由合格健康護理專業人員(亦即眼科醫師)所確定,個體在年輕時顯示出早期嚴重夜盲症及緩慢暗適應,隨後進行性損失視覺敏銳度、視場及色覺,從而導致法定盲的情況下發生(Burstedt及Mönestam,2010)。
視覺功能之例示性量測包括斯內倫視覺敏銳度(Snellen visual acuity)、ETDRS視覺敏銳度、低亮度視覺敏銳度、阿姆斯勒方格表
(Amsler grid)、高德曼視場(Goldmann visual field)、標準自動視野檢查(standard automated perimetry)、微視野檢查(microperimetry)、貝利-羅布森圖表(Pelli-Robson chart)、SKILL卡片、石原顏色板(Ishihara color plate)、範斯沃斯D15或D100顏色測試(Farnsworth D15 or D100 color test)、標準視網膜電描記術、多焦點視網膜電描記術、閱讀速度之驗證測試、面部識別、駕駛模擬及患者報告之滿意度。因此,RLBP1相關視網膜營養性萎縮之治療可被認為在ETDRS量表上視力增加或未損失2行(或10個字母)或2行以上時達成。另外,RLBP1相關視網膜營養性萎縮之治療可被認為在個體顯示出閱讀速度(每分鐘字數)至少增加10%或未減少10%之情況下發生。另外,RLBP1相關視網膜營養性萎縮之治療可被認為在個體顯示出在石原測試時正確鑑別之板或在範斯沃斯測試時正確排序之圓盤的比例至少增加20%或未減少20%之情況下發生。因此,例如RLBP1相關視網膜營養性萎縮之治療可由例如暗適應速率之提高、或視覺敏銳度損失之改善、或視覺敏銳度損失速率之減緩來確定。
可治療或預防之視網膜解剖學構造之不當態樣包括例如視網膜萎縮、視網膜色素上皮萎縮、視網膜血管變窄、色素凝集、視網膜黃點/白點、視網膜下積液。
評估視網膜解剖學構造之例示性方式包括眼底鏡檢查、眼底照相、螢光素血管攝影術、吲哚菁綠血管攝影術、光學相干斷層攝影術(OCT)、譜域光學相干斷層攝影術、掃描雷射檢眼鏡檢查、共焦顯微術、自調光學、眼底自發螢光、活組織檢查、屍檢及免疫組織化學。因此,如由例如視網膜萎縮之發展速率減小所確定,個體之RLBP1相關視網膜營養性萎縮可被認為得到治療。
亦可向欲用本發明之治療劑治療之個體投與已知對治療視網膜營養性萎縮具有功效之其他治療劑或裝置,諸如維生素及礦物質製
劑、低視力助視器(low-vision aid)、導盲犬,或已知輔助低視力患者之其他裝置。
目前還沒有其他經過核准用於治療RLBP1相關視網膜營養性萎縮之治療劑。當出現其他新療法時,可依臨床指示按順序依次投與或同時投與兩者。
提供以下實例以進一步說明本發明,但不限制其範疇。本發明之其他變化形式將為一般熟習此項技術者顯而易知且由隨附申請專利範圍所涵蓋。
個別質體元件之核酸序列描述於表1中。該等序列係合成得到或購自商品。表2描述經過構築之各質體中所存在之元件。使用標準分子生物選殖技術產生如表3中所述之質體。使用具有胺比西林抗性(Ampicillin resistance)之pAAV-MCS(Stratagene®)質體骨架或具有卡那黴素抗性(Kanamycin resistance)之pUC57之質體骨架作為骨架及起始材料。在限制酶位點處選殖或使用鈍端選殖法來選殖個別序列元件。
由於質體骨架中所含之抗生素抗性基因卡匣在AAV載體之製造中沒有作用,故熟習此項技術者可使用替代之質體骨架及/或抗生素抗性基因卡匣且得到相同病毒載體。吾等已證明,可使用具有不同骨架之質體產生功能上等效之NVS2載體。舉例而言,質體序列SEQ ID NO:26及SEQ ID NO:50產生功能上等效之NVS2載體。
藉由三重轉染方法產生重組AAV(rAAV)病毒載體。三重轉染方法係此項技術中已知者(Ferrari FK等人1997)。簡言之,將含有AAV-ITR之質體(描述於表2中)、含有AAV-RepCap之質體(載運Rep2及Cap2
或Cap8)及腺輔助質體(載運輔助完成AAV複製週期之基因)共轉染至293細胞中。培養細胞4天。在培養期結束時,溶解細胞且藉由標準CsCl梯度離心法(基於Grieger JC等人2006修改之方法)純化培養物上清液及細胞溶解物中之載體。經純化之病毒載體描述於表4中。
或者,藉由上文所述之細胞轉染及培養方法產生GMP狀rAAV載體。接著,藉由基於Lock M等人(2010),Smith RH等人(2009)及Vadenberghe LH等人(2010)所述之方法進行管柱層析來處理所收集之細胞培養物。
如先前所述(Samulski等人,1983;Muzyczka等人,1984),在產生功能性AAV載體時完全容許AAV質體末端重複序列內之突變。即使質體缺失兩個ITR之一,只要構築體中所存在之ITR含有完整AAV ITR序列,AAV序列即可得到救助、複製且產生感染性病毒粒子(Samulski等人,1983;Muzyczka等人,1984)。因此,儘管SEQ.ID.NO.2用作本文獻中所述之所有單股AAV載體之5' ITR序列,仍預期載運末端解析位點之任何5'ITR序列(亦即:SEQ.ID.NO.2、16及17)將產生具有相同功能性之載體。
視網膜下注射rAAV載體可達成RPE及其他視網膜細胞之有效轉導,因為視網膜下注射誘導濃縮病毒皰與RPE細胞及神經視網膜緊密接觸。另外,視網膜下腔具有相對較高程度之免疫豁免(immunoprivilege)且通常在注射部位附近極少發現發炎跡象。因此,視網膜下注射為傳遞rAAV載體至小鼠視網膜中之較佳途徑。然而,可使用其他傳遞途徑,例如玻璃體內注射。
‧Leica M844 F40眼科手術顯微鏡
‧1%環戊通(cyclopentolate):Bausch & Lomb目錄號965911
‧2.5%-10%苯腎上腺素:Altaire Pharmaceuticals目錄號05626
‧0.5%丙美卡因(Proparacaine):Bausch & Lomb目錄號NDC 54799-500-12
‧10 μl Hamilton注射器:VWR目錄號89184-476
‧33G鈍端針:Hamilton目錄號7803-05
‧螢光素鈉鹽:Sigma目錄號F6377
‧scAAV8-pRLBP1(短)-eGFP病毒載體(每隻眼睛1×109 vg)
‧AAV8-pRLBP1(長)-eGFP病毒載體(每隻眼睛1×109 vg)
‧AAV8-pRPE-eGFP病毒載體(每隻眼睛1×109 vg)
‧AAV8-VMD2-eGFP病毒載體(每隻眼睛1×109 vg)
對兩隻眼睛或單側右眼進行視網膜下注射。在無菌條件下,使
用無菌試劑、注射器及適當個人防護設備進行所有程序。
‧由1滴1%環戊通且繼之以1滴2.5%-10%苯腎上腺素擴張小鼠瞳孔
‧藉由腹膜內使用阿佛丁(Avertin)(250 mg/kg)及在眼睛中局部使用一滴0.5%丙美卡因(局部麻醉劑)使小鼠麻醉
‧使用微解剖刀在角膜緣後方經鼻產生約0.5 mm切口
‧將10 μl Hamilton注射器上之鈍端針沿切線方向經鞏膜切口向顯半側視網膜插入。將針推進直至感受到阻力為止。接著,將1 μl稀釋之rAAV載體(含有1:50濃度之螢光素)緩慢注射至視網膜下腔中,且經切口抽出該針
‧檢查眼睛且藉由目測含有螢光素之皰來確認視網膜下注射之成果。對注射成果及視網膜損傷(出血)程度進行評分
‧在注射後即刻將抗生素軟膏塗覆於眼睛上
為研究小鼠視網膜中rAAV載體誘導之基因轉導及細胞類型特異性,檢查視網膜截面及RPE/視網膜鋪片(retina flatmount)中之eGFP表現。一種用於鑑別表現eGFP之細胞類型之方法為藉由在冷凍切片中進行免疫細胞化學染色而用視網膜細胞標記來輔助標記eGFP陽性細胞。
‧抗CRALBP抗體:Thermo目錄號MA1-813
‧抗GFAP抗體:Covance目錄號SMI-21
‧抗視蛋白藍色抗體:Millipore目錄號AB 5407
‧抗視蛋白紅色抗體:Millipore目錄號AB5405
‧抗波形蛋白(Vimentin)抗體:Santa Cruz目錄號sc-7557
‧抗PKC α抗體:C-20 Santa Cruz目錄號sc-208
‧山羊抗小鼠IgG:Invitrogen目錄號A11005
‧山羊抗大鼠IgG:Invitrogen目錄號A11007
‧驢抗兔IgG:Invitrogen目錄號A21207
‧具有DAPI之Vectashield封固劑:Vector Laboratories,Burlingame目錄號H-1200
‧Zeiss成像系統,AxioVision軟體
‧Zeiss LSM 510共焦顯微鏡,Zeiss軟體之ZEN版本
將小鼠眼球移出且在25℃下置於4% PFA(三聚甲醛)中2小時,接著在4℃下置於PBS緩衝液中1-3天直至進行解剖。自眼球中移出角膜、晶狀體及玻璃體,且使用Vectashield封固劑將視網膜及RPE/脈絡膜鋪片於載玻片上。由Zeiss成像系統擷取鋪片中之GFP表現且使用AxioVision軟體定量。成像之後,在25℃下將具有視網膜鋪片之載玻片置於0.25% triton緩衝液中30分鐘,接著自載玻片移出視網膜鋪片。切取視網膜鋪片之eGFP陽性區域且嵌入OCT中,接著冷凍切片。在冷凍切片中應用使用視網膜細胞標記之免疫細胞化學染色。由Zeiss LSM 510共焦顯微鏡及Zeiss軟體之ZEN版本擷取影像。
第1天
‧在室溫下風乾切片1小時
‧將載玻片置於PBS+0.25% Triton中15分鐘×2
‧在1% BSA+PBS+0.25% Triton中阻斷90分鐘
‧在4℃下使用含初級抗體之1% BSA+PBS+0.25% Triton培育載玻片隔夜
第2天
‧在4℃下取出載玻片,使其在25℃下靜置30分鐘
‧在PBS+0.25% Triton中洗滌載玻片15分鐘×2
‧在25℃下使用二級抗體1:800培育載玻片90分鐘
‧在PBS+0.25% Triton中洗滌載玻片15分鐘×2
‧使用具有DAPI之Vectashield封固劑封固載玻片
+,指示GFP在特定細胞類型中表現
-,無GFP表現
ND,未測定
‧所有測試病毒載體在小鼠視網膜中均具有功能。
‧scAAV8-pRLBP1(短)-eGFP載體使GFP選擇性表現在神經視網膜之RPE及穆勒細胞中。
‧AAV8-pRLBP1(長)-eGFP使GFP表現在神經視網膜之RPE、穆勒細胞及感光細胞中。
‧AAV8-pRPE65-eGFP及AAV8-pVMD2-eGFP使GFP表現在神經視網膜之RPE及感光細胞中。
此等結果顯示啟動子、AAV基因組構形及AAV衣殼序列之組合可在特異性細胞類型中產生不同轉導性質,從而達成所需作用RLBP1基因產物。在視網膜之RPE及穆勒細胞中之表現代表所需靶上細胞類型之表現。包裝於自身互補基因組結合AAV8血清型衣殼中之RLBP1短啟動子誘導基因在神經視網膜中之RPE及穆勒細胞中表現,而不在脫靶細胞中表現。
包裝於單股基因組結合AAV8血清型衣殼中之RLBP1長啟動子誘導基因在靶上細胞類型(RPE及穆勒細胞)中表現,且亦在脫靶細胞類型(感光細胞)中表現。
包裝於單股基因組結合AAV8血清型衣殼中之RPE65及VMD2啟動子誘導基因在RPE細胞中表現,但亦在脫靶細胞類型感光細胞中表現。
rAAV轉導之轉殖基因之表現量及組織特異性將視載體血清型、載體基因組、所用組織特異性啟動子及注射劑量而變化。基因替代療法之目標在於達到足以補償缺少之內源性基因表現但不會讓基因之表
現量超過毒性水準之表現程度。
已發展一種分析法,可在野生型小鼠之視網膜下注射不同劑量之多種AAV載體之後,相對於小鼠RLBP1 mRNA之內源性含量來測定載體所介導人類RLBP1 mRNA之表現。此分析利用含有特異性偵測人類或小鼠RLBP1 cDNA之引子及探針的Taqman®基因表現分析。在進行實驗之前,使用含有人類或小鼠RLBP1 cDNA序列之質體DNA由Taqman®基因表現分析來測試物種特異性。簡言之,在小鼠GAPDH cDNA作為內源性對照之情況下,使用Taqman®試劑輔助擴增小鼠或人類RLBP1 cDNA。針對內部GAPDH對照校正小鼠或人類RLBP1含量,接著相互比較此等經校正之含量。
‧RNA提取
○Qiagen RNeasy微套組(Qiagen目錄號74004)
○Qiagen RNase-Free DNase組(Qiagen目錄號79254)
○β-巰基乙醇(Sigma目錄號63689)
○Qiagen不鏽鋼5 mm珠粒(Qiagen目錄號69989)
○2.0 ml Seal Rite微離心管(USA Scientific目錄號1620-2700)
○Qiagen TissueLyser II(目錄號85300)
‧cDNA合成
○大容量cDNA反轉錄套組(Applied Biosystems目錄號4368814)
○RNase抑制劑(Applied Biosystems目錄號N8080119)
○BioRad熱循環儀
‧相對定量PCR
○2X TaqMan® Universal PCR母體混合物(Applied Biosystems目錄號4304437)
○人類RLBP1之20X TaqMan®基因表現分析物(Applied
Biosystems目錄號4331182:Hs00165632.m1)
○小鼠RLBP1之20X TaqMan®基因表現分析物(Applied Biosystems目錄號4331182:Mm00445129.m1)
○20X Applied Biosystems®小鼠GAPD(GAPDH)內源性對照(VIC®/MGB探針,有限引子)(Applied Biosystems目錄號4352339E)
○Applied Biosystems即時PCR機器型號7900HT。
‧此實例中所用之測試物品:
○NVS8病毒載體
○NVS10病毒載體
○NVS4病毒載體
○NVS2病毒載體
○NVS6病毒載體
在活體內實驗結束時,自眼睛中剖出神經視網膜,置於2 ml微離心管中且在乾冰上急驟冷凍。在獨立管中冷凍剩餘眼杯(除去視網膜及晶狀體)。將樣品儲存於-80℃下直至進行RNA分離。在DNase處理下使用Qiagen RNeasy微套組提取總RNA。為達到組織均質化及溶解,使用Qiagen TissueLyzer。詳言之,將5 mm不鏽鋼珠粒添加至各含有組織之管中,同時置於乾冰上。將樣品轉移至室溫下且添加350 μl含有1% β-巰基乙醇之緩衝液RLT。在TissueLyzer上以30 Hz之震盪頻率處理樣品,歷經兩個2分鐘循環。接著,遵循在DNase處理下進行RNA提取之標準Qiagen RNeasy微套組方案,具有一處微小修改。在溶離之前,使RNA管柱風乾>10分鐘以確保除去殘餘乙醇。將總RNA儲存於-80℃下直至準備用於cDNA合成。
使用Nanodrop分光光度計測定總RNA濃度。將各樣品調整至50 ng/μl之最終濃度。使用Applied Biosystems大容量cDNA反轉錄酶套組
產生cDNA。製備大容量cDNA RT套組之試劑的母體混合物,使得各10 μl含有2 μl 10X大容量RT緩衝液、0.8 μl 25X dNTPs(100 mM)、2 μl反轉錄酶隨機引子、0.4 μl RNase抑制劑、1 μl Multiscribe反轉錄酶及3.8 μl不含RNAse之水。將10 μl各總RNA之50 ng/μl儲備物施配至96孔PCR擴增板之孔中,接著添加10 μl RT母體混合物至各孔中。將該板置於Bio-Rad熱循環儀中且使用以下參數操作:25℃下維持10分鐘,37℃下維持120分鐘,85℃下維持5分鐘,接著保持於4℃下直至程式終止。在建立相對定量PCR反應之前,將cDNA儲存於-20℃下。
藉由添加5 μl不含RNAse之水至cDNA反應之各孔中而將cDNA濃度調整至20 ng/μl之最終濃度(此基於初始總RNA濃度且假定100%轉化成cDNA)。為各cDNA樣品建立兩個不同多重qPCR反應;一者使用小鼠RLBP1 Taqman表現分析探針與小鼠GAPDH內源性對照,且另一者使用人類RLBP1 Taqman表現分析探針與小鼠GAPDH內源性對照。對各樣品一式兩份進行此兩個反應中之每一者。對於各樣品,將5 μl 20 ng/μl cDNA樣品施配至385孔板之孔中。製備兩種獨立母體混合物,一種用於小鼠RLBP1 Taqman分析且一種用於人類RLBP1分析,使得各15 μl混合物含有10 μl 2X TaqMan® Universal PCR母體混合物、1 μl小鼠或人類RLBP1之20X TaqMan®基因表現分析物、1 μl 20X Applied Biosystems®小鼠GAPD(GAPDH)內源性對照及3 μl不含RNAse之水。將15 μl適當母體混合物施配至含有cDNA之孔中。將該板置於ABI 7900HT即時PCR機器中且使用具有以下參數之相對定量程式運作:在50℃下初始培育2分鐘,接著進行以下兩步之40個循環:在95℃下15秒及在60℃下1分鐘。
使用ABI RQ Manager 1.2將相對定量板結果輸入至RQ研究文件中。使用自動閾值設置來分析數據,得到平均值及平均△Ct,△Ct為RLBP1 cDNA(小鼠或人類)之Ct讀數減去內部內源性GAPDH之Ct。將
數據輸出至Microsoft Excel中且用於藉由自各樣品之人類RLBP1△Ct減去小鼠RLBP1△Ct值來計算△△Ct值。使用計算法2-△△Ct計算相對表現,此表示人類RLBP1之相對表現隨小鼠內源性RLBP1表現之倍數變化。為將結果描述為小鼠內源性表現之百分比形式的人類RLBP1表現,將相對表現值乘以100。
圖1A說明NVS8、NVS4、NVS2及NVS6成功轉導後眼杯(posterior eyecup)中之神經視網膜細胞與RPE細胞。載體NVS10轉導神經視網膜中之RPE細胞,但僅在偵測極限水準下。
圖1B說明NVS2為以每隻眼睛1×108 vg之較低劑量在神經視網膜中展示mRNA表現之唯一載體。
此等驚人結果顯示啟動子、AAV基因組構形及AAV衣殼序列之特定組合可在視網膜中之不同細胞類型中產生不同轉導性質。一般而言,所有測試載體成功達成載體介導之人類RLBP1 mRNA表現。更特定言之,NVS2為以兩種測試劑量(每隻眼睛1×109及1×108 vg)在RPE細胞(在後眼杯中)及神經視網膜中表現人類RLBP1 mRNA之最有效載體,而NVS4及NVS6以每隻眼睛1×109 vg之劑量達成可偵測之載體介導之人類RLBP1 mRNA表現,且以每隻眼睛1×108 vg之劑量僅在RPE中達成表現。NVS8及NVS10以每隻眼睛1×109 vg之劑量在RPE及神經視網膜中達成可偵測之mRNA表現,但以每隻眼睛1×108 vg之劑量幾乎處於偵測極限下。
一種評估改進視覺循環之治療的方法為在強光暴露後定量黑暗中視覺功能之恢復(亦即暗適應)。在大量光暴露後之暗適應主要由眼睛經由視覺循環再生感光色素之能力而推動。經治療達成之視覺循環
的改進將因此引起暗適應動力學變化。
已開發基於使用視網膜電流圖(ERG)定量暗適應來監測小鼠視覺功能恢復之分析。基於ERG之分析通常進行兩天,使用初始基線及後續追蹤量測來評估在曝光使一部分感光色素褪色(光褪色)後之恢復。經開發用於測試本發明之此程序首先在ERG跡線之a波部分中測定閃光後5 ms每隻眼睛的最大電反應。該測試隨後在光褪色後4小時比較5 ms a波振幅以評估彼時恢復之最大振幅分率。若視覺循環功能通常,則ERG振幅將在4小時內接近基線值。遲滯之視覺循環將導致在光褪色後感光色素之恢復率較低,而ERG a波振幅恢復率相應降低。
‧ERG系統:Diagnosys,Espion E2控制台與ColorDome全磁場甘茨菲爾德刺激器(full field ganzfeld stimulator)
‧氯胺酮(Ketamine)
‧甲苯噻嗪(Xylazine)
‧2.5%苯腎上腺素
‧1%環戊通
‧0.5%丙美卡因
‧有效電極:金環接觸鏡片電極(Mayo,部件號N30)
‧參考電極:鼻咽電極(Grass,部件號F-ERG-G)
‧接地電極:鉑針電極(Grass,部件號F-E2)
‧保濕滴劑:Novartis,Genteal輕度至中度滴劑
‧注射泵:Harvard Apparatus,部件號泵11 Plus
在記錄基線ERG之前,將小鼠置於黑暗中隔夜,持續約20小時。在即將記錄之前,用1-2滴1%環戊通及1-2滴2.5%苯腎上腺素擴張眼睛。亦施用1-2滴0.5%丙美卡因(局部麻醉劑)。接著,腹膜內注射氯
胺酮及甲苯噻嗪(分別為100-150 mg/kg及5-10 mg/kg)之混合液使小鼠麻醉。接著置放三個電極,從而能夠記錄每隻小鼠之一隻眼睛的ERG。眼睛上之有效電極為金環接觸鏡片,參考電極為置於口中之鼻咽電極,且接地電極為置於頭部正後方之背部上的皮下鉑針電極。使眼睛保持濕潤且藉由使用注射泵連續施用保濕滴劑(300微升/小時)來維持電接觸。藉由求取對甘茨菲爾德圓頂(ganzfeld dome)中之氙燈所傳遞之三個白色閃光(2.7 log暗視燭光秒/平方公尺)之電反應的平均值來記錄ERG振幅。如使用為此目的開發之軟體分析常式(Mathworks,Matlab)所評估,所報導之a波振幅為氙閃光後5 ms量測之電壓。
藉由在光褪色後4小時定量ERG a波振幅來評估暗適應。此等實驗通常在基線測定後48小時進行。正如基線量測一般,首先將小鼠在黑暗中圈養隔夜,以便在約20小時後進行ERG記錄。在即將光褪色之前,用1-2滴2.5%苯腎上腺素及1-2滴1%環戊通擴張眼睛。接著,將一系列16次閃光(3.7 log暗視燭光秒/平方公尺)傳遞至眼睛,引起感光色素褪色。將小鼠放回黑暗中4小時以恢復視覺功能。接著利用基線測定所用之相同方案記錄ERG。每隻眼睛之視覺功能恢復率定義為:
圖2說明當應用於RLBP1 -/-及RLBP1 +/+小鼠時分析之結果。RLBP1 +/+小鼠顯示在褪色後4小時幾乎完全恢復(升至96%)。相比之下,RLBP1 -/-小鼠由於嚴重遲滯之視覺循環動力學而在同一時間點恢復最小視覺功能(11%)(Saari等人2001)。RLBP1 +/+小鼠與RLBP1 -/-小鼠之間的此8-9倍窗口為注射至RLBP1 -/-小鼠中之測試載體可達到之分析窗口。
使用上述基於ERG之暗適應分析,在視網膜下引入治療性載體之情況下測試RLBP1基因敲除(KO)小鼠之暗適應效率的提高。由於視網
膜下注射涉及神經視網膜自RPE之移位,所以關鍵在於判定神經視網膜是否再附著於RPE以避免ERG分析中測試物品之假陰性結果。在將病毒載體視網膜下注射至小鼠眼睛中之後一週,進行光學相干斷層攝影術(OCT)以目測視網膜之情況。自ERG量測中排除未分辨出視網膜剝離之眼睛。
在各時間點,使小鼠暗適應隔夜(>12小時)且將每隻眼睛之ERG a波振幅確定為對光之最大暗適應反應(100%)。接著使充分暗適應之眼睛暴露於一系列強閃光(如先前章節中所述)且4小時後定量a波振幅。術語「正常值之百分比」定義為第二a波恢復量測值相對於由最大a波恢復量測獲得之值的百分比。
陽性功效或有效作用定義為在注射後之特定時間點,測試量測值與陰性(未處理)對照之間的差異為統計學上顯著的。
‧NVS1病毒載體
‧NVS2病毒載體
‧NVS3病毒載體
‧NVS4病毒載體
‧NVS5病毒載體
‧NVS11病毒載體
圖3A-D說明表現RLBP1之病毒載體提高RLBP1 KO小鼠之暗適應速率。在使用單因素ANOVA及紐曼-柯二氏多重比較測試(Newman-Keuls multiple comparison test)統計計算下,進行各組相對於未處理對照之功效評估。展示所有相關研究之未處理(未注射)眼睛及每隻眼睛接受1×109 vg陰性對照AAV空載體(NVS11)之眼睛的平均值+3個標準差(SD)以指示功效之近似閾值(超出此線之a波恢復率通常顯示出統計學上顯著之功效)。此用於展現功效程度之方法與基因療法出版物
中所呈現之方法類似(Jacobson等人2006及Roman等人2007)。
圖3A展示以每隻眼睛3×108 vg之劑量,NVS2早在處理後14天即有效提高暗適應速率,且功效持續至少350天。每隻眼睛3×108 vg劑量之NVS4亦在處理後至少持續30-204天有效。已在3個獨立實驗中在RLBP1 KO小鼠模型中測試每隻眼睛約3×108 vg之劑量的NVS2。在各實驗中,在注射後直至350天測試之所有時間點,載體均顯示有效。
圖3B展示相同劑量(每隻眼睛3×108 vg)之NVS1在注射後84天開始顯示功效,而功效持續至少350天。相同劑量之NVS5及NVS3在藥物投與後直至154天仍未顯示功效。圖3A及圖3B中所呈現之數據表明儘管病毒載體基因組等效,但載體在包裝於不同AAV衣殼血清型(NVS1相對於NVS2)中時可具有不同效能。另外,載體血清型、啟動子及載體基因組構形之特定組合可影響載體之效能(NVS1載運自身互補基因組,而NVS3及NVS4載運單股基因組,所有均具有不同啟動子序列)。此結果進一步確認基因組構形及衣殼血清型之組合可影響恢復結果之效率。
圖3C展示以每隻眼睛1×109 vg之劑量,NVS2早在處理後18天即有效,且功效持續至少375天。以每隻眼睛1×109 vg之劑量,陰性對照AAV空載體NVS11在與未注射對照相比時未展示暗適應速率提高之顯著差異(個別數據點未圖示,但顯示歷史平均值+3SD線以供比較)。每隻眼睛1×109 vg劑量之NVS4亦在處理後至少持續30-204天有效。
圖3D展示以每隻眼睛3×109 vg之劑量,NVS3及NVS5分別早在處理後第26天即有效提高暗適應速率,且功效持續至少371天。
圖4A顯示多種劑量之NVS2在注射後至少94天有效提高暗適應速率。基於單因素ANOVA與紐曼-柯二氏多重比較測試,每隻眼睛3×108及1×109 vg兩組與未處理對照相比均有效。圖4B以不同格局展示圖4A之數據。在此種情況下,繪圖展示每組眼睛之百分比,其中a波恢復
率大於若干實驗之未處理組之平均值+3SD所定義的恢復率。結果指示對於NVS2,50%之經每隻眼睛3×107 vg處理之眼睛及100%之經每隻眼睛3×108及1×109 vg處理之眼睛顯示有效a波恢復,且建立劑量-反應曲線。
圖5A顯示多種劑量之NVS4在注射後至少93天有效提高暗適應速率。基於單因素ANOVA與紐曼-柯二氏多重比較測試,每隻眼睛3×108及1×109 vg兩組與未處理對照相比均有效。圖5B以不同格局展示圖5A之數據。在此種情況下,繪圖展示每組眼睛之百分比,其中a波恢復率大於若干實驗之未處理組之平均值+3SD所定義的恢復率。結果表明對於NVS4,85%之經每隻眼睛3×108及1×109 vg處理之眼睛顯示出暗適應速率增加。
圖6顯示由多種產生方法產生之載體NVS2所達成之暗適應速率增加。NVS2與NVS2a均使用兩種不同CsCl梯度離心方法產生,而NVS2b係使用管柱層析來純化。基於單因素ANOVA與塔基檢驗(Tukey's test)無法區分使用全部三種純化方法在注射後84天達成之功效。此結果指示在2個獨立實驗室中3個獨立產生之NVS2得到在RLBP1 KO小鼠中產生類似功效之功能材料。
‧以每隻眼睛3×107至1×109 vg範圍內之劑量經病毒載體NVS2注射之眼睛顯示出增加之暗適應速率,其中在RLBP1 KO小鼠模型中之功效在注射後持續至少350天。
‧以每隻眼睛3×108至1×109 vg範圍內之劑量經病毒載體NVS4注射之眼睛顯示出增加之暗適應速率,且兩種劑量下之功效持續至少204天。
‧以每隻眼睛3×108 vg之劑量經病毒載體NVS1注射之眼睛顯示出增加之暗適應速率,且功效持續至少350天。
‧以每隻眼睛3×109 vg之劑量經病毒載體NVS3及NVS5注射之眼睛顯示出增加之暗適應速率,且功效持續至少371天。在每隻眼睛3×108 vg下測試之任何時間點均未觀察到NVS3及NVS5之功效。
病毒載體NVS2顯示出相比等效劑量之其他測試載體較高的最大恢復率。另外,當使用CsCl或管柱層析純化來製備時,似乎無法區分NVS2載體介導之功效。
結果顯示自身互補AAV8-pRLBP1(短)-eGFP載體,即治療性載體NVS2之報導基因替代型式,達成RPE及穆勒細胞類型特異性表現,而無可偵測之脫靶表現,其中治療性載體NVS2以每隻眼睛3×107至1×109 vg範圍內之劑量在RLBP1小鼠中達成由a波恢復所量測之至少350天的視覺功能恢復。如mRNA表現量之量測所顯示,此特異性基因卡匣在包裝於單股基因組中且用相同血清型衣殼8包裝時,在小鼠中顯示出顯著較低之基因表現量。與NVS2相同且包裝於AAV2衣殼中之自身互補基因組(NVS1)以每隻眼睛3×108 vg之劑量顯示有效a波恢復(亦即增加之暗適應速率),持續至少350天。此結果表明NVS2為比NVS1更有效之病毒載體,其可能歸因於AAV8衣殼比AAV2衣殼更有效地感染靶細胞類型。
結果亦顯示AAV8-pRLBP1(長)-eGFP載體,即治療性載體NVS4之報導基因替代型式,達成RPE及穆勒細胞表現,但亦達成感光細胞表現。治療性載體NVS4以每隻眼睛3×108至1×109 vg範圍內之劑量產生至少204天之功效。與NVS4相同但包裝於AAV2衣殼中之基因組(NVS3)以3×109之劑量達成有效a波恢復,但以較低測試劑量(每隻眼睛3×108 vg)無法達成。結果顯示AAV8-pRPE65-eGFP載體,即治療性載體NVS6之報導基因替代型式,達成RPE細胞類型表現以及大量感
光細胞脫靶表現。當在RLBP1 KO小鼠功效模型中測試治療性載體NVS5(其載運與NVS6相同之基因組但包裝於AAV2衣殼中)時,結果顯示NVS5以每隻眼睛3×109 vg之劑量持續陽性a波恢復功效,但以較低測試劑量(每隻眼睛3×108 vg)無法達成。
Burstedt MS, Forsman-Semb K, Golovleva I, et al (2001) Ocular phenotype of Bothnia dystrophy, an autosomal recessive retinitis pigmentosa associated with an R234W mutation in the RLBP1 gene. Arch Ophthalmol; 119:260-267.
Burstedt MS and Mönestam E (2010) Self-reported quality of life in patients with retinitis pigmentosa and maculopathy of Bothnia type. Clin Ophthalmol; 4:147-54.
Choi VW, Asokan A, Haberman RA, and Samulski RJ (2007) Production of Recombinant Adeno-Associated Viral Vectors for In Vitro and In Vivo Use. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY. 16:25, Supplement 78.
Choi VW, McCarty DM, and Samulski RJ (2005) AAV Hybrid Serotypes: Improved Vectors for Gene Delivery. Curr Gene Ther; 5(3):299-310.
Demirci FYK, Rigatti BW, Mah TS, et al (2004) A novel compound heterozygous mutation in the cellular retinaldehyde-binding protein gene (RLBP1) in a patient with retinitis punctata albescens. Am J Ophthalmol.; 138:171-173.
Eichers ER, Green JS, Stockton DW, et al (2002) Newfoundland rod-cone dystrophy, an early-onset retinal dystrophy, is caused by splice-junction mutations in RLBP1. Am J Hum Genet; 70:955-964.
Ferrari FK, Xiao X, McCarty D et al (1997) New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat Med 3(11); 1295-1297.
Fishman GA, Roberts MF, Derlacki DJ, et al (2004) Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Ophthalmol.; 122:70-75.
Golovleva I and Burstedt M (2012) Retinitis Pigmentosa in Northern Sweden - From Gene to Treatment. March 2012. Advances in Ophthalmology, chapter 25, p.451-472. Published by InTech.
Golovleva I, Köhn L, Burstedt M, et al (2010) Mutation spectra in autosomal dominant and recessive retinitis pigmentosa in northern Sweden. Adv Exp Med Biol. 664:255-262.
Grieger JC, Choi VW and Samulski RJ. (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc. 1(3); 1412-1428.
He X, Lobsiger J and Stocker A (2009) Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc. Natl Acad Sci USA. 106(44): 18545-50.
Jacobson SG, Acland GM, Aguirre GD et al (2006) Safety of Recombinant Adeno-Associated Virus Type 2-RPE65 Vector Delivered by Ocular Subretinal Injection. Molecular Therapy. 13(6); 1074-1084.
Katsanis N, Shroyer NF, Lewis RA, et al (2001) Fundus albipunctatus and retinitis punctata albescens in a pedigree with an R150Q mutation in RLBP1. Clin Genet; 59:424-429.
Köhn L, Burstedt MS, Jonsson F, et al (2008) Carrier of R14W in carbonic anhydrase IV presents Bothnia dystrophy phenotype caused by two allelic mutations in RLBP1. Invest Opthalmol Vis Sci. 49(7): 3172-3177.
Lock M, Alvira M, Vandenberghe LH, et al. (2010) Rapid, Simple, and Versatile Manufacturing of Recombinant Adeno-Associated Viral Vectors at scale. Human Gene Therapy. 21; 1-13.
Maw MA, Kennedy B, Knight A, et al (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet; 17:198-200.
McCarty DM (2008) Self-Complementary AAV Vectors; Advances and Applications. Molecular Therapy. 16(10): 1648-1656.
McCarty DM, Fu H, Monohan PE et al (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step t transduction in vivo. Gene Therapy. 10; 2112-2118.
Morimura H, Berson EL, Dryja TP (1999) Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. Invest Ophthalmol Visual Sci; 40:1000-1004.
Muzyczka N and Berns KI (2001) Chapter 69, Fields Virology. Lippincott Williams & Wilkins.
Naz S, Ali S, Riazuddin SA, et al (2011) Mutations in RLBP1 associated with fundus albipunctatus in consanguineous Pakistani families. Br J Ophthalmol; 95:1019-24.
Nojima K, Hosono K, Zhao Y, et al (2011) Clinical features of a
Japanese case with Bothnia dystrophy. Ophthalmic Genet [Epub ahead of print]
Phelan JK and Bok D (2000) A Brief Review of Retinitis Pigmentosa and the Identified Retinitis Pigmentosa Genes. Mol Vis; 6:116-124.
Roman AJ, Boye SL, Aleman TS, et al (2007) Electroretinographic Analyses of RPE65-mutant rd12 Mice: Developing an In Vivo Bioassay for Human Gene Therapy Trials of Leber Congenital Amaurosis. Mol Vis. 13; 1701-1710.
Saari JC, Huang J, Possin DE, et al (1997) Cellular retinaldehyde-binding protein is expressed by oligodendrocytes in optic nerve and brain. Glia.; 21:259-268.
SAMBROOK et al (1989) MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed. (Cold Spring Harbor, N.Y)
Saari JC, Nawrot M, Kennedy BN et al. (2001) Visual Cycle Impairment in Cellular Retinaldehyde Binding Protein (CRALBP) Knockout Mice Results in Delayed Dark Adaptation. Neuron; 29:739-748.
Samulski RJ, Srivastava A, Berns KI, et al. (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell. 33(1):135-143.
Schmidt M, Vouteaakis A, Afione S et al. (2008) Adeno-Associated Virus Type 12 (AAV12): a Novel AAV Serotype with Sialic Acid- and Heparan Sulfate Proteoglycan-Independent Transduction Activity. J of Virology. 82(3):1399-1406.
Smith RH, Levy JR and Kotin RM. (2009) A Simplified
Baculovirus-AAV Expression Vector System Coupled with One-Step Affinity Purification Yields High-Titer rAAV Stocks from Insect Cells. Molecular Therapy. 17(11); 1888-1896.
Travis GH, Golczak M, Moise AR, et al (2007) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol.; 47: 469-512.
Vandenberghe LH, Xiao R, Lock M, et al. (2010) Efficient Serotype-Dependent Release of Functional Vector into the Culture Medium During Adeno-Associated Virus Manufacturing. Human Gene Therapy. 21; 1251-1257.
Wang J and Kefalov JV (2011) The Cone-specific visual cycle. Progress in retinal and eye research. 30: 115-128.
Claims (30)
- 一種具有包含視黃醛結合蛋白質1(RLBP1)編碼序列之載體基因組之病毒載體,其中該載體適合於引導RLBP1編碼序列在視網膜之視網膜色素上皮(RPE)細胞及穆勒細胞(Müller cell)中表現。
- 如請求項1之病毒載體,其中該載體包含腺相關病毒(AAV)血清型2或8衣殼。
- 如請求項2之病毒載體,該載體基因組在5'至3'方向上包含:(i)5' ITR;(ii)包含RLBP1編碼序列之重組核苷酸序列;及(iii)3' ITR。
- 如請求項3之病毒載體,其中該重組核苷酸序列在5'至3'方向上包含:(i)啟動子;(ii)RLBP1編碼序列;及(iii)SV40 polyA序列。
- 如請求項4之病毒載體,其中該啟動子之核苷酸序列係選自SEQ ID NO:3及10。
- 如請求項4之病毒載體,其中該載體基因組在5'至3'方向上包含選自由以下組成之群的核酸序列:a)SEQ ID NO:2、10、5、6、8及9;b)SEQ ID NO:2、11、5、6、8、14、9;c)SEQ ID NO:2、22、5、6、8、23及9;及d)SEQ ID NO:2、3、4、5、6、8、23及9。
- 如請求項2之病毒載體,其中該載體基因組在5'至3'方向上包含:(i)5' ITR;(ii)第一重組核苷酸序列;(iii)不可解析ITR;(iv)第二重組核苷酸序列;及 (v)3' ITR,其中該第一重組核苷酸序列及該第二重組核苷酸序列為自身互補序列。
- 如請求項7之病毒載體,其中該第二重組核苷酸序列在5'至3'方向上包含:(i)啟動子;(ii)RLBP1編碼序列;及(iii)SV80 polyA序列。
- 如請求項8之病毒載體,其中該啟動子之核苷酸序列包含SEQ ID NO:3。
- 如請求項8之病毒載體,其中該載體基因組在5'至3'方向上包含以下核酸序列:SEQ ID NO:36、62、63、64、65、66、1、3、4、5、6、8及9。
- 一種包含能夠在視網膜之RPE細胞及穆勒細胞中表現異源基因之載體基因組之病毒載體,該載體包含a)AAV8或AAV2衣殼,及b)包含可依操作方式連接於該異源基因之RLBP1啟動子的該載體基因組,其中該RLBP1啟動子具有選自SEQ ID NO:3及10之序列。
- 如請求項11之病毒載體,其中該載體基因組為自身互補序列。
- 一種組合物,其包含如請求項1至12中任一項之病毒載體。
- 如請求項13之組合物,其進一步包含醫藥學上可接受之賦形劑。
- 一種病毒載體之用途,其係用於製造在視網膜細胞中表現異源基因之藥物,其中該載體包含:a)AAV2或AAV8衣殼,及b)包含可依操作方式連接於該異源基因之SEQ ID NO:3或SEQ ID NO:10之RLBP1啟動子的載體基因組。
- 如請求項15之用途,其中該等視網膜細胞為RPE細胞及穆勒細胞。
- 如請求項16之用途,其中該載體基因組為自身互補基因組。
- 如請求項15至17中任一項之用途,其中該異源基因為RLBP1。
- 一種包含基因卡匣之核酸,該基因卡匣在5'至3'方向上包含:(i)5' ITR或不可解析ITR;(ii)包含RLBP1編碼序列之重組核苷酸序列;及(iii)3' ITR。
- 如請求項19之核酸,其為質體。
- 如請求項19之核酸,其中:(i)該5' ITR或該不可解析ITR分別具有核酸序列SEQ ID NO:2或1;(ii)該重組核酸序列包含可依操作方式連接於具有核酸序列SEQ ID NO:3之該RLBP1編碼序列的啟動子,該啟動子具有選自以下之核酸序列:SEQ ID NO:3、10、11、12及22;或(ii)該3' ITR具有核酸序列SEQ ID NO:9。
- 如請求項19之核酸,其中該基因卡匣包含選自以下之核酸序列:SEQ ID NO:51、52、53、54及55。
- 如請求項19之核酸,其進一步包含選自以下之核酸序列:SEQ ID NO:26、27、28、29、30及50。
- 如請求項19之核酸,其中該基因卡匣在5'至3'方向上包含選自以下之序列:a)SEQ ID NO:2、10、5、6、8及9,b)SEQ ID NO:2、11、5、6、8、14及9,c)SEQ ID NO:2、22、5、6、8、23及9,d)SEQ ID NO:2、3、4、5、6、8、23及9,或e)SEQ ID NO:1、3、4、5、6、8及9。
- 一種如請求項13之組合物之用途,其係用於製造治療患有RLBP1相關視網膜營養性萎縮之個體的藥物。
- 一種如請求項13之組合物之用途,其係用於製造為患有RLBP1相關視網膜營養性萎縮之個體提高暗適應速率的藥物。
- 一種如請求項6或10之病毒載體之用途,其係用於製造在患有RLBP1相關視網膜營養性萎縮之個體之視網膜中之RPE細胞及穆勒細胞中表現RLBP1編碼序列的藥物。
- 如請求項13之組合物,其係用於治療患有RLBP1相關視網膜營養性萎縮之個體。
- 如請求項13之組合物,其係用於為患有RLBP1相關視網膜營養性萎縮之個體提高暗適應速率。
- 如請求項6或10之病毒載體,其係用於在患有RLBP1相關視網膜營養性萎縮之個體之視網膜中之RPE細胞及穆勒細胞中表現RLBP1編碼序列。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261642630P | 2012-05-04 | 2012-05-04 | |
US201361776167P | 2013-03-11 | 2013-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201350581A true TW201350581A (zh) | 2013-12-16 |
Family
ID=48670626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102115806A TW201350581A (zh) | 2012-05-04 | 2013-05-03 | 治療視網膜營養性萎縮之病毒載體 |
Country Status (10)
Country | Link |
---|---|
US (5) | US9163259B2 (zh) |
EP (2) | EP2844302B1 (zh) |
JP (4) | JP6290185B2 (zh) |
CN (2) | CN108753824B (zh) |
AR (1) | AR092317A1 (zh) |
CA (2) | CA2872447C (zh) |
ES (1) | ES2947159T3 (zh) |
TW (1) | TW201350581A (zh) |
UY (1) | UY34780A (zh) |
WO (1) | WO2013164793A2 (zh) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9163259B2 (en) * | 2012-05-04 | 2015-10-20 | Novartis Ag | Viral vectors for the treatment of retinal dystrophy |
US11028388B2 (en) | 2014-03-05 | 2021-06-08 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa |
US11339437B2 (en) * | 2014-03-10 | 2022-05-24 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
US11141493B2 (en) | 2014-03-10 | 2021-10-12 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
ES2745769T3 (es) | 2014-03-10 | 2020-03-03 | Editas Medicine Inc | Procedimientos y composiciones relacionados con CRISPR/CAS para tratar la amaurosis congénita de Leber 10 (LCA10) |
WO2015191508A1 (en) | 2014-06-09 | 2015-12-17 | Voyager Therapeutics, Inc. | Chimeric capsids |
BR112017009497A2 (pt) | 2014-11-05 | 2018-02-06 | Voyager Therapeutics, Inc. | polinucleotídeos de aadc para o tratamento da doença de parkinson |
ES2878451T3 (es) | 2014-11-14 | 2021-11-18 | Voyager Therapeutics Inc | Polinucleótidos moduladores |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
EP3230441A4 (en) | 2014-12-12 | 2018-10-03 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scaav |
GB201502137D0 (en) | 2015-02-09 | 2015-03-25 | Ucl Business Plc | Treatment |
GB201516066D0 (en) * | 2015-09-10 | 2015-10-28 | Young & Co Llp D | Treatment of retinitis pigmentosa |
CA3006569A1 (en) | 2015-12-02 | 2017-06-08 | Voyager Therapeutics, Inc. | Assays for the detection of aav neutralizing antibodies |
EP3210632B1 (en) * | 2016-02-23 | 2022-09-28 | EyeServ GmbH | Gene therapy for the treatment of a retinal degeneration disease |
WO2017189964A2 (en) | 2016-04-29 | 2017-11-02 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
KR20240056729A (ko) | 2016-05-18 | 2024-04-30 | 보이저 테라퓨틱스, 인크. | 조절성 폴리뉴클레오티드 |
EP3485005A1 (en) | 2016-07-12 | 2019-05-22 | The University Of Manchester | Gene therapy |
AU2017305404B2 (en) | 2016-08-02 | 2023-11-30 | Editas Medicine, Inc. | Compositions and methods for treating CEP290 associated disease |
CA3035522A1 (en) | 2016-08-30 | 2018-03-08 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
US10550405B2 (en) | 2017-03-15 | 2020-02-04 | The University Of North Carolina At Chapel Hill | Rational polyploid adeno-associated virus vectors and methods of making and using the same |
CA3054711A1 (en) * | 2017-03-15 | 2018-09-20 | The University Of North Carolina At Chapel Hill | Polyploid adeno-associated virus vectors and methods of making and using the same |
US20200113972A1 (en) * | 2017-04-14 | 2020-04-16 | Rhode Island Hospital | Vegf gene therapy for tendon and ligament injuries |
CA3061652A1 (en) | 2017-05-05 | 2018-11-08 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
CN111108198A (zh) | 2017-05-05 | 2020-05-05 | 沃雅戈治疗公司 | 治疗亨廷顿病的组合物和方法 |
JOP20190269A1 (ar) | 2017-06-15 | 2019-11-20 | Voyager Therapeutics Inc | بولي نوكليوتيدات aadc لعلاج مرض باركنسون |
AU2018302016A1 (en) | 2017-07-17 | 2020-02-06 | The Regents Of The University Of California | Trajectory array guide system |
JP7221275B2 (ja) | 2017-08-03 | 2023-02-13 | ボイジャー セラピューティクス インコーポレイテッド | Aavを送達するための組成物および方法 |
US20200237799A1 (en) | 2017-10-16 | 2020-07-30 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
TWI804518B (zh) | 2017-10-16 | 2023-06-11 | 美商航海家醫療公司 | 肌萎縮性脊髓側索硬化症(als)之治療 |
EP4186921A1 (en) * | 2018-03-23 | 2023-05-31 | The Trustees of Columbia University in the City of New York | Gene editing for autosomal dominant diseases |
JP2021520232A (ja) * | 2018-04-05 | 2021-08-19 | オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited | 黄斑ジストロフィーを処置するための組成物及び方法 |
JP7560447B2 (ja) * | 2018-10-25 | 2024-10-02 | バクスアルタ インコーポレイテッド | Aavトリプルプラスミドシステム |
US20220088222A1 (en) * | 2018-12-20 | 2022-03-24 | President And Fellows Of Harvard College | Compositions and methods for the treatment of degenerative ocular diseases |
US20220154210A1 (en) * | 2019-02-25 | 2022-05-19 | Novartis Ag | Compositions and methods to treat bietti crystalline dystrophy |
AU2020344449A1 (en) * | 2019-09-09 | 2022-04-07 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Methods of restoring lysosomal function of retinal pigment epithelial cells by activation of TFEB |
CN114650847A (zh) * | 2019-09-25 | 2022-06-21 | 犹他大学研究基金会 | 用于表达来自vmd2启动子的组成型活性rap1a的方法和组合物 |
WO2021064695A1 (en) | 2019-10-04 | 2021-04-08 | Novartis Ag | Methods for measuring cralbp activity |
BR112022013027A2 (pt) * | 2019-12-31 | 2022-09-06 | Swanbio Therapeutics Ltd | Construtos aav-abcd1 melhorados e uso para tratamento ou prevenção de adrenoleucodistrofia (ald) e/ou adrenomieloeuropatia (amn) |
CA3169945A1 (en) * | 2020-04-07 | 2021-10-14 | Dongsheng Duan | Cpg-free itrs for aav gene therapy |
WO2022051232A1 (en) * | 2020-09-02 | 2022-03-10 | 4D Molecular Therapeutics Inc. | Codon optimized rpgrorf 15 genes and uses thereof |
WO2022198138A1 (en) * | 2021-03-19 | 2022-09-22 | Intergalactic Therapeutic, Inc. | Ocular delivery of therapeutic agents |
US11603541B2 (en) * | 2021-05-06 | 2023-03-14 | Kinase Pharma Inc. | Compositions and method of making a complex able to increase production of a cetuximab-like protein (CLP) in a target cell |
US20240287493A1 (en) * | 2021-06-24 | 2024-08-29 | University Of Utah Research Foundation | Compositions and methods for treating pgm1 deficiency |
EP4377460A1 (en) | 2021-07-30 | 2024-06-05 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) |
CA3227103A1 (en) | 2021-07-30 | 2023-02-02 | Matthew P. GEMBERLING | Compositions and methods for modulating expression of frataxin (fxn) |
EP4437117A2 (en) * | 2021-12-10 | 2024-10-02 | Aavantibio, Inc. | Compositions comprising kozak sequences selected for enhanced expression |
WO2024015881A2 (en) | 2022-07-12 | 2024-01-18 | Tune Therapeutics, Inc. | Compositions, systems, and methods for targeted transcriptional activation |
WO2024110625A1 (en) * | 2022-11-24 | 2024-05-30 | Universität Bern | Cralbp based therapeutics for retinal disorders |
WO2024163683A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist) |
WO2024163678A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US124068A (en) * | 1872-02-27 | Improvement in corn-husking and shelling machines | ||
JP3952312B2 (ja) | 1993-11-09 | 2007-08-01 | メディカル カレッジ オブ オハイオ | アデノ関連ウイルス複製遺伝子を発現可能な安定な細胞株 |
US5658785A (en) | 1994-06-06 | 1997-08-19 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
WO1996017947A1 (en) | 1994-12-06 | 1996-06-13 | Targeted Genetics Corporation | Packaging cell lines for generation of high titers of recombinant aav vectors |
US5945335A (en) | 1995-11-09 | 1999-08-31 | Avigen, Inc. | Adenovirus helper-free system for producing recombinant AAV virions lacking oncogenic sequences |
JP2001506132A (ja) | 1996-12-18 | 2001-05-15 | ターゲティッド ジェネティクス コーポレイション | Aavベクターの産生における使用のためのリコンビナーゼ活性化可能aavパッケージングカセット |
NZ511037A (en) | 1998-09-17 | 2005-02-25 | Univ Florida | Methods for treatment of degenerative retinal diseases |
CA2347129A1 (en) | 1998-09-22 | 2000-03-30 | University Of Florida | Methods for large-scale production of recombinant aav vectors |
DE60117550T2 (de) * | 2000-06-01 | 2006-12-07 | University Of North Carolina At Chapel Hill | Doppelsträngige parvovirus-vektoren |
US20040208847A1 (en) * | 2003-03-28 | 2004-10-21 | Fabienne Rolling | Method and vectors for selectively transducing retinal pigment epithelium cells |
US7339042B2 (en) * | 2003-06-09 | 2008-03-04 | University Of Florida Research Foundation, Inc. | Gene delivery to tumors |
US7309487B2 (en) * | 2004-02-09 | 2007-12-18 | George Inana | Methods and compositions for detecting and treating retinal diseases |
JP2009519710A (ja) * | 2005-12-16 | 2009-05-21 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 遺伝子発現調節エレメントのハイスループットでの特徴付けのための機能性アレイ |
US7740836B2 (en) | 2006-05-03 | 2010-06-22 | Fondazione Telethon | Methods and compositions for recovering or improving visual function |
WO2008127675A1 (en) * | 2007-04-13 | 2008-10-23 | Tufts University | Compositions and methods for retinal transduction and photoreceptor specific transgene expression |
US20090011040A1 (en) * | 2007-05-02 | 2009-01-08 | Naash Muna I | Use of compacted nucleic acid nanoparticles in non-viral treatments of ocular diseases |
WO2008150459A1 (en) | 2007-05-30 | 2008-12-11 | The Trustees Of The University Of Pennsylvania | A method for transducing cells with primary cilia |
EP2287323A1 (en) | 2009-07-31 | 2011-02-23 | Association Institut de Myologie | Widespread gene delivery to the retina using systemic administration of AAV vectors |
WO2011034947A2 (en) | 2009-09-15 | 2011-03-24 | University Of Washington | Reagents and methods for modulating cone photoreceptor activity |
US9163259B2 (en) | 2012-05-04 | 2015-10-20 | Novartis Ag | Viral vectors for the treatment of retinal dystrophy |
-
2013
- 2013-04-30 US US13/873,558 patent/US9163259B2/en active Active
- 2013-05-02 EP EP13730648.6A patent/EP2844302B1/en active Active
- 2013-05-02 WO PCT/IB2013/053497 patent/WO2013164793A2/en active Application Filing
- 2013-05-02 ES ES13730648T patent/ES2947159T3/es active Active
- 2013-05-02 JP JP2015509557A patent/JP6290185B2/ja active Active
- 2013-05-02 CA CA2872447A patent/CA2872447C/en active Active
- 2013-05-02 EP EP17204499.2A patent/EP3326655A1/en active Pending
- 2013-05-02 CA CA3182080A patent/CA3182080A1/en active Pending
- 2013-05-02 CN CN201810593790.7A patent/CN108753824B/zh active Active
- 2013-05-02 CN CN201380035067.2A patent/CN104470545B/zh active Active
- 2013-05-03 AR ARP130101507A patent/AR092317A1/es unknown
- 2013-05-03 UY UY0001034780A patent/UY34780A/es not_active Application Discontinuation
- 2013-05-03 TW TW102115806A patent/TW201350581A/zh unknown
-
2015
- 2015-10-13 US US14/881,960 patent/US9803217B2/en active Active
-
2017
- 2017-09-22 US US15/713,021 patent/US10550404B2/en active Active
-
2018
- 2018-02-07 JP JP2018020063A patent/JP6629364B2/ja active Active
-
2019
- 2019-12-03 JP JP2019218839A patent/JP7100232B2/ja active Active
- 2019-12-23 US US16/725,081 patent/US20210047656A1/en not_active Abandoned
-
2022
- 2022-03-01 JP JP2022030531A patent/JP2022088372A/ja active Pending
-
2023
- 2023-01-26 US US18/160,241 patent/US20230323398A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20160097061A1 (en) | 2016-04-07 |
CN104470545B (zh) | 2018-07-06 |
JP7100232B2 (ja) | 2022-07-13 |
CA3182080A1 (en) | 2013-11-07 |
ES2947159T3 (es) | 2023-08-02 |
US20140017201A1 (en) | 2014-01-16 |
US20210047656A1 (en) | 2021-02-18 |
CN108753824B (zh) | 2023-04-11 |
JP6290185B2 (ja) | 2018-03-07 |
JP2020054358A (ja) | 2020-04-09 |
EP2844302A2 (en) | 2015-03-11 |
WO2013164793A2 (en) | 2013-11-07 |
JP2018108083A (ja) | 2018-07-12 |
US20180080046A1 (en) | 2018-03-22 |
WO2013164793A3 (en) | 2014-01-16 |
EP3326655A1 (en) | 2018-05-30 |
US9163259B2 (en) | 2015-10-20 |
UY34780A (es) | 2013-11-29 |
EP2844302B1 (en) | 2023-03-15 |
JP2015517301A (ja) | 2015-06-22 |
JP2022088372A (ja) | 2022-06-14 |
JP6629364B2 (ja) | 2020-01-15 |
CN104470545A (zh) | 2015-03-25 |
CN108753824A (zh) | 2018-11-06 |
US20230323398A1 (en) | 2023-10-12 |
US10550404B2 (en) | 2020-02-04 |
US9803217B2 (en) | 2017-10-31 |
CA2872447C (en) | 2023-02-21 |
CA2872447A1 (en) | 2013-11-07 |
AR092317A1 (es) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230323398A1 (en) | Viral vectors for the treatment of retinal dystrophy | |
US20210330816A1 (en) | Gene therapy for ocular disorders | |
JP2023116709A (ja) | 眼疾患のための遺伝子療法 | |
US20230233709A1 (en) | Gene therapy for ocular disorders | |
WO2023116745A1 (zh) | 优化的cyp4v2基因及其用途 | |
US20240091381A1 (en) | Abca4 trans-splicing molecules |