TW201313557A - 個人飛機 - Google Patents
個人飛機 Download PDFInfo
- Publication number
- TW201313557A TW201313557A TW101125915A TW101125915A TW201313557A TW 201313557 A TW201313557 A TW 201313557A TW 101125915 A TW101125915 A TW 101125915A TW 101125915 A TW101125915 A TW 101125915A TW 201313557 A TW201313557 A TW 201313557A
- Authority
- TW
- Taiwan
- Prior art keywords
- rotors
- aircraft
- fuselage
- coupled
- wing
- Prior art date
Links
- 230000005484 gravity Effects 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 6
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 12
- 239000002131 composite material Substances 0.000 description 12
- 229920000049 Carbon (fiber) Polymers 0.000 description 8
- 230000000712 assembly Effects 0.000 description 8
- 238000000429 assembly Methods 0.000 description 8
- 239000004917 carbon fiber Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 230000003993 interaction Effects 0.000 description 5
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 229920000271 Kevlar® Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000004761 kevlar Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/10—Shape of wings
- B64C3/16—Frontal aspect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/46—Arrangements of, or constructional features peculiar to, multiple propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/12—Canard-type aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
- B64D31/16—Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/10—Drag reduction
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Toys (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Wind Motors (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本發明揭示一種安全、噪音低、易於控制、高效及緊湊型飛機組態,可透過組合多個垂直升降轉子、串聯式機翼及前推進螺旋槳促成此組態。該等垂直升降轉子與一前機翼及一後機翼組合可容許對於垂直飛行及水平飛行而言均可達成升力中心與重心平衡。此機翼及多轉子系統具有容忍盤旋、轉向或巡航飛行時有效載荷重量發生相當大幅度之變動,同時仍提供垂直推力冗餘之能力。該推進系統使用多個尺寸小至足以避免可能被葉片擊打之升降轉子及前推進螺旋槳且提高乘客所感受之安全性及實際安全性。使用多個獨立轉子可提供冗餘且消除可能導致飛機在飛行中發生故障之單點故障模式。
Description
本發明係大體上關於一種個人飛機,其經組態以實現安全操作,同時達成穩健之控制。明確而言,本文所述之實施例包含一種飛機,其具有垂直起飛及降落能力,且該飛機在盤旋、轉向及巡航飛行中以一有控制之方式提供垂直及水平推力。
本申請案主張於2011年7月19日申請之臨時申請案第61/509,530號之權利,該申請案之全文係以引用之方式併入本文中。
(飛機)垂直起飛及降落並不使用一跑道來使機翼在地面上形成足夠之速度來提供合適的升力,而是需要飛機同時提供垂直推力及向前推力。在垂直方向產生之推力向飛機提供升力;水平產生之推力提供向前移動。一種垂直起飛及降落(VTOL)飛機可同時產生垂直推力及水平推力,且能夠以一平衡之方式控制此等力。
旋轉翼飛機或直升機係一種常見類型之VTOL飛機。直升機具有可同時提供垂直推力及水平推力之大型轉子。為了使該等轉子在不同空速下執行此雙重功能,該等轉子一般相當複雜。根據載具飛行條件,轉子葉片必須在約360度之旋轉方位角內位於不同之定向角,以提供所需之推力。因此,轉子之葉片定向角可具有總體變動及週期性變動。獨立於360度旋轉方位角,均等地總體變動各個葉片
之角。根據360度旋轉方位角週期性變動葉片攻角。週期性控制允許該轉子在不同之方向中傾斜且因此向前、向後、向左或向右地引導該轉子之推力。此引導提供控制力來使該直升機在水平面中移動且可對諸如陣風之干擾做出回應。
直升機轉子相當大且可能撞擊附近之障礙物。此外,該等轉子使用機械性複雜之系統來控制該總體葉片角及週期葉片角。此等轉子機械複雜性高且需要維護。該等轉子一般以低速旋轉;此導致該轉子與該馬達之間需要沉重之傳動器。傳動器或齒輪箱會減小飛機之有效載重潛能,亦會降低飛機之安全性。由於整個飛機系統之機械複雜性,許多部件係單點故障。由於缺乏此冗餘,需要頻繁地進行檢測及維護以保持飛機安全性。
本文所述之實施例提供一種個人飛機,其組態安全、低噪音且高效,且易於控制、高度緊湊,且能夠自向前飛行轉換及轉換至向前飛行之方式完成垂直起飛及降落。在一實施例中,該飛機組態包含多個轉子,其經定向以在起飛、轉換至向前飛行及自向前飛行轉換及降落期間提供垂直推力用於升力及控制。該等轉子係以一固定非平面定向方式附接至該機身。該等轉子之定向使得無需改變(飛機之)姿態即可對該飛機進行側向及在一些實施例中縱向(fore and aft)控制,且使飛機在巡航時遭受之氣流干擾最小化。在多個實施例中,該等轉子具有前、後、左及右定
向,且係沿該機身之左舷側及右舷側而縱向地定位,且兩個或多個轉子位於各個側上。
該機身承載一重量可變之有效載荷。飛機在前部及後部具有串聯式翼。在飛機巡航期間,該等翼提供升力及控制,且一個或多個螺旋槳提供向前推力。垂直升降轉子與約束該等轉子之前串聯式翼及後串聯式翼之組合使得飛機之重心可移動,同時仍促成飛機維持垂直飛行控制及水平飛行控制。該等前翼及後翼亦經定位以提供避免外來物對該等升降轉子造成損壞(FOD)之一邊界。控制表面(包含升降舵及副翼)可用於藉由調整升力中心,且改變攻角及姿態來補償飛機飛行期間發生之飛機CG之變化。該等垂直升降轉子圍繞CG而配置,且各個轉子之推力係可調整,此可允許在垂直飛行中在CG移位之情形下使升力中心重新定位。
由於該等垂直升降轉子之數量多及具獨立性,該垂直推力係冗餘且即使任何單一轉子發生故障,仍可獲得推力及控制。由於具有提供較大控制力之多個垂直轉子,該等轉子較小,且即使在陣風條件下,對操作仍具有更快的反應速度。在一實施例中,一獨立電動馬達及控制器對各個垂直升降轉子供電,以提供由於該一或多個升降轉子之故障而發生之升力系統冗餘。在其他實施例中,該等垂直推力轉子係嵌入導管中,該等導管使得該等推力轉子隱藏且提供增加之升力。其他實施例相對開放性,具有保護性護罩作為防護裝置,以防止與其他物體接觸且防止對該等轉子
造成FOD。該保護性護罩與對齊之垂直升降轉子組合可提供低巡航阻力,以進行高效之飛行。在多種實施例中使用低葉頂速度垂直升降轉子,使得在起飛、轉向及降落期間產生較低之社區噪音。具有一低前翼及一高後翼(具有小翼)之實施例提供高空氣動力學效率,同時使飛機達成偏航穩定性。在一些實施例中,該等翼摺疊以在盤旋或在地面上時提供緊湊之飛機覆蓋面積。該翼之一些實施例僅在翼摺疊器之內部上具有控制表面,使得無需鉸接控制連桿。由於用於垂直升降之該等升降轉子係與該等向前推進螺旋槳分離,各個升降轉子針對其特定之操作條件而最佳化。此飛機可用於各種體型大小之乘客及有效載荷之有人駕駛實施例或無人駕駛實施例。
圖1繪示根據一實施例之一個人飛機100。飛機100包含具有固定定向之垂直升降轉子總成101a及101b(大體上以101指示);向前飛行螺旋槳103;一前翼104;一後翼105,其具有小翼106a及106b(大體上用106指示);導流片110a及110b(大體上用110指示),一駕駛艙區域112及一機身107。機身107亦包含起落架、一飛行電腦及電源(圖中未繪示),下文將進一步描述其各者。圖2繪示個人飛機100之一第二視圖,其包含推進尾桁114、左舷側主起落架202及前起落架204。圖3繪示個人飛機100之一前視圖,其中可見左舷起落架202a、右舷起落架202b及前輪204。圖4繪示根據一實施例之飛機100之左(舷)側之一視圖。
在多個實施例中,飛機100之大小適於容納一位飛行及個人貨品。例如,在多個實施例中,飛機之機頭至飛機之最尾端表面之間之長度為15英尺至20英尺,且飛機之翼幅為15英尺至20英尺。熟悉此項技術者可理解,在替代性實施例中,在不脫離本文所述之原理之基礎上,飛機可更長或更短、更寬或更窄。
在多個實施例中,飛機100主要係由複合物材料構造。機身107及機翼104、105係由碳纖維複合物材料製成。在替代性實施例中,該等機翼可具有金屬配件及肋件,其附接至一碳纖維複合物機翼表層之內側及外側。在一些實施例中,該等機翼表層可包括由碳纖維組合其他複合物材料,諸如凱夫拉爾(Kevlar)製成之複合物材料。在其他替代性實施例中,該機身可包括由鋼或鋁製成之一金屬機架,且具有覆蓋該機架之一複合物表層。熟悉此項技術者可理解,在此實施例中,該複合物機身表層可由碳纖維、Kevlar或其他複合物材料製成。在一實施例中,駕駛艙窗戶係由聚碳酸酯製成,但亦可使用其他輕質透明塑膠。導流片110係由Kevlar及碳纖維複合物製成。
轉子總成101包含轉子,在一實施例中,該轉子之半徑為16英寸,且係由碳纖維複合物材料製成,且在一替代性實施例中,係由附接至一鋁翼轂之碳纖維複合物葉片製成。在其他實施例中,轉子係由附接至一鋁翼轂之木製葉片,或者附接至一碳纖維複合物翼轂之木質葉片製成。該等轉子可為螺栓至該轉子總成之單片式(轉子)。下文將進
一步描述轉子總成101。
飛機100包含一前翼104及一後翼105。為了維持最小長度及寬度且使CG在該轉子系統之中心,該前翼及該後翼之跨度類似。該後翼向後掃掠且在其端具有小翼106。該等小翼提供橫向穩定性且減小由於該後翼上之升力而造成之拖曳力。該機翼向後掃掠可改良飛機之俯仰穩定性且給該等小翼帶來之益處在於增加其橫向穩定性。在一些實施例中,該後翼可摺疊,且因此將飛機總長度維持等於一飛機之後翼未掃掠時該飛機之長度。此外,後翼之掃掠可提供更大之空間供安裝該等轉子。在多個實施例中,前翼104亦係於遠遠低於後翼105之一點處附接至機身107。一非共平面翼升力系統促成該等翼在巡航飛行期間達成高效之升力。在一實施例中,考慮到(該等翼)僅可附接至該機身,選擇使該兩個翼之間之垂直分離距離儘可能大。藉由使垂直分離距離最大,可減小該前翼與該後翼之間之負面之空氣動力學相互作用。因此,由於飛機之升力造成之拖曳被大幅度減小,例如,相較一單一面內翼升力系統,可減小15%至20%。
該等小翼106係位於後翼105之尖端,以減小由於該後翼上之升力造成之拖曳,且提供偏航或方向穩定性及控制。熟悉此項技術者將理解,建立特定之小翼形狀目的在於達成合適之穩定性。在一些實施例中,如圖3中所繪示,該等小翼向下延伸且藉由減小飛機之側滑角與氣流在該飛機上產生之偏航力矩之間之關聯而達成改良之可控性。
在一實施例中,該串聯式翼系統具有接頭,於此各個翼上之該等翼尖摺疊,因而允許使飛機100安放於一有限之空間中。例如,在一實施例中,摺疊該等翼使得該飛機100可存放於8英尺乘以7英尺乘以16英尺之空間中,或者藉由一典型之單輛車車庫提供之該空間中。在一實施例中,該後翼105具有8.4度之一個兩面角。在其他實施例中,該兩面角可在負10度至正10度之範圍內。
垂直升降轉子總成101係安裝於飛機100之各個側上。在一實施例中,一推進尾桁114(圖2)係緊固至該機身107之各個側。在此實施例中,向前飛行螺旋槳103係附接至該等尾桁114之後端,且該等垂直升降轉子總成101係安裝於該等尾桁114之頂部上。用撐桿116將推進尾桁114附接至該機身107。該等撐桿116經定位使得來自該等轉子之氣流下洗不會撞擊於該等撐桿上。在一些實施例中,使用三個撐桿將各個尾桁連接至該機身。在替代性實施例中,使用一或兩個撐桿將各個尾桁連接至該機身。在其他實施例中,該等撐桿可向前、向後、向上或者向下掃掠,以改良該等尾桁至該機身之附接。例如,在一替代性實施例中,一垂直定向之支撐結構使得在(飛機)盤旋期間對由於垂直升降轉子負載造成之彎曲之抗曲剛度增大。
各個垂直升降轉子總成101包含一轉子及一馬達。該轉子可包括葉片,其附接至一翼轂,或者可製作為具有一整合翼轂之一單件。該翼轂提供可允許該等葉片連接至其之一中央結構,且在一些實施例中,其係製成可包封該馬達
之一形狀。該馬達包含一旋轉部分及一固定部分。在一實施例中,該旋轉部分係與該固定部分同心,該固定部分係稱為徑向通量馬達。在此實施例中,該固定部分可形成該馬達之外環部,其被稱為管殼內無刷馬達(inrunner motor),或者該固定部分可形成該馬達之內環部,其被稱為管殼外無刷馬達(outrunner motor)。在其他實施例中,該旋轉部分及該固定部分係平坦且彼此相對置地配置,被稱為一軸向通量馬達。在一些實施例中,該等馬達部件不顯眼,使得整個馬達安裝於該轉子之轂內,因此當向前飛行時遇到較小之氣流阻力。該轉子係附接至該馬達之該旋轉部分。該馬達之固定部分係附接至該推進尾桁114。在一些實施例中,該馬達係一永磁體馬達且係由一電子馬達控制器控制。該電子馬達控制器以一精確之序列向該馬達運送電流,以允許該轉子以一所要之速度或一所要之力矩轉動。
如上所述,飛機100於每側包含多個轉子總成101。該等垂直升降轉子產生推力,該推力獨立於在水平巡航期間由向前飛行螺旋槳103產生之推力。該等垂直升降轉子提供足夠之推力使該飛機飛離地面且維持控制。在一實施例中,各個轉子產生比盤旋時所需之推力多出例如40%之推力,以維持對飛行包線之所有部分之控制。藉由選擇直徑、葉片翼弦及葉片傾角分佈而使該等轉子最佳化,以在盤旋及低速飛行條件下提供所需之推力,且功率消耗最小。在多個實施例中,該等轉子之一半者在一方向上旋
轉,且該等轉子之另一半者在相反之方向上旋轉以平衡飛機上之反作用力矩。在一些實施例中,在該飛機之左舷側及右舷側上彼此正面對之轉子具有相反之旋轉方向。在其他實施例中,彼此正面對之該等轉子具有相同之旋轉方向。在一些實施例中,可對該等轉子進行個別調適,以負責該等轉子之間或機身與該等轉子之間不同之相互作用。在此等實施例中,該調適包含調整該等葉片上之傾角分佈或翼弦分佈,以負責順向或逆向之相互作用且自該轉子達成必要之效能。在圖1中所示之實施例中,繪示每側具有四個垂直升降轉子總成101。在替代性實施例中,使用更多或更少之垂直升降轉子提供該垂直升降及控制。當每側存在至少兩個轉子時,即使一個轉子發生故障,仍可保持產生圍繞重心均衡之一垂直力之能力。此係藉由減小施加於至該發生故障之轉子之相反直角轉向桿上之推力達成。當每側存在三個轉子時,可圍繞所有三個軸或者所有飛行方向達成控制。隨著每側之轉子之數目增加,遺失任何一個轉子將導致總垂直推力損失不斷減小。然而,每增加一對額外轉子時,複雜性且發生故障之可能性將不斷增加,且增加成本及重量。
在一實施例中,每側之兩個垂直升降轉子總成101係位於CG之前方且兩個係位於CG之後方。以此方式,在盤旋期間該等轉子之升力中心與飛機100之重心位置相同。此配置允許機身107中之有效載荷之縱向定位或橫向定位發生變動。飛行電腦500獨立地修改由各個垂直升降轉子產
生之推力,因此提供一平衡之垂直升降或者非平衡升降,以提供控制。
在一些實施例中,該轉子定向實現在無需改變飛機姿態之情形下對該飛機進行橫向控制及縱向控制。由於轉子總成101各者係安裝而向外、向內、向前或向後斜面,轉子推力之一合適組合將導致在水平面中產生一淨力,及所需的垂直升力。例如,此有助於當接近地面時進行操縱。此外,當一葉片受損或分離而發生轉子故障時,不同之斜面角使得另一轉子受損之可能性減小,因此使得設計對故障之容忍度更高。亦選擇該等定向以使當飛機巡航時因氣流造成之干擾最小。在一些實施例中,該等轉子之定向向前、向後、向左及向右變動,以促成該飛機無需改變姿態即可在任何方向上操縱。在其他實施例中,該定向僅可向左及向右變動,因此使得在巡航期間遭受之氣流干擾最小,但意味著在不改變姿態之情形下,該飛機僅可側至側地操縱,而無法向前及向後操縱。在每側具有四個轉子之一實施例中,該等轉子自前向後以10出度(10 degrees out)、10入度(10 degrees in)、10入度及10出度之方式定向。
向前飛行螺旋槳103提供用於實現轉換至向前飛行、爬升、下降及巡航所需之推力。在一實施例中,沿該後翼105之跨度安裝兩個或多個向前推進螺旋槳103。在替代性實施例中,將一單一向前推進螺旋槳安裝於該機身107之後部上,位於跨度之中心。在其他實施例中,將一或多個
螺旋槳安裝至該等翼之前部或推進尾桁之前部,作為牽引器螺旋槳。該等螺旋槳可在相反之方向上旋轉,使得螺旋槳轉動所需的力矩不會對該飛機產生一淨力矩。同樣地,該兩個螺旋槳的推力可不同地變動,以提供一偏航控制力矩。在該機翼上之定位導致對該等螺旋槳產生較小之入流干擾。在該機身上使用一單一螺旋槳使得組件更少且重量更小,但具有一不同大小之馬達及包含來自該機身之干擾之入流。在一實施例中,該向前螺旋槳具有固定間距。該翼弦及傾角分佈經最佳化以當飛機緩慢飛行或者由轉子之推力而在空中盤旋時及當飛機快速飛行且完全由該等翼之升力而支撐時同時提供用於加速及爬升之合適推力。此外,該翼弦及傾角分佈經選擇而在該飛機之巡航速度下提供有效的推力。在其他實施例中,該等向前螺旋槳使用允許根據飛行條件調整各個葉片之傾角之一間距可變機構。
該等垂直升降轉子及該等向前螺旋槳係由電動馬達驅動,該等電動馬達係由一動力系統供電。在一實施例中,該動力系統包含一電池,其係附接至用於各個馬達之一馬達控制器。在一實施例中,該電池包括位於該飛機之機身內之一或多個模組。在其他實施例中,該等電池模組係位於該等推進尾桁中。該電池提供一DC電壓及電流,該等馬達控制器將該DC電壓及電流轉化成AC訊號,其使得該等馬達旋轉。在一些實施例中,該電池包括鋰聚合物電池,其並聯且串聯地連接在一起,以產生所需之電壓及電流。或者,亦可使用其他化學電池。在一實施例中,該等
電池係連接成93個串聯電池串,且此等串之6者係並聯地連接。在其他實施例中,該等電池係與更多或更少之電池串聯地連接且與更多或更少之電池並聯地連接。在替代性實施例中,該等轉子及螺旋槳係由一動力系統供電,該動力系統包含一混合電力系統,其具有一小型之基於碳水化合物之燃料引擎及一更小之電池。該碳水化合物引擎使得向前飛行之航程更長且可使該電池系統再充電。
在多個實施例中,該等垂直升降轉子總成101係由保護性導流片110保護而免受意外之葉片擊打。在一些實施例中,該保護性導流片經設計以藉由提供遞增之升力而使得該導流片附近之所有轉子之推力最大化。在此實施例中,該導流片110經塑形使得由該轉子系統101誘發之流過該導流片之氣流在該導流片110上產生一向上力。此係由相對於產生該向上力之該導流片之垂直方向選擇一截面形狀及角度來完成。在一些實施例中,該導流片經設計以藉由使旁立者免受該等轉子之噪音而減小該轉子系統之明顯之噪音。在此等實施例中,可用一習知之吸音材料填充該等導流片,或者用一習知之吸音材料塗敷該等導流片。在一些實施例中,飛機100並不包含導流片110。
如上所述,使用多個經獨立控制之轉子提供一冗餘升力系統。例如,包含六個或多個轉子之一系統使得即使一個或若干個別組件發生故障時,可用安全操作進行盤旋及垂直上升/降落而無需向前空速。
圖5係根據一實施例之一飛行電腦500之一方塊圖。飛行
電腦500係位於飛機100上,一般位於機身107內。飛行電腦500包含一轉子控制模組502、螺旋槳控制模組504、位置感測器介面506及一資料庫508。位置感測器介面506係通信地耦合至該飛機之儀器且在一實施例中接收感測器資料,包含飛機之位置、海拔高度、姿態及速度。轉子控制模組502接收來自位置感測器介面506之資料及來自駕駛艙中之控制輸入之資料且判定達成所指令之回應需要來自該等垂直升降轉子101之各者之多大推力。轉子控制模組502獨立地對各個轉子總成101發出指令,以產生所判定之所需推力。在一轉子發生故障之情形下,轉子控制模組502調整該推力需求,以補償所損失之轉子。螺旋槳控制模組504接收來自位置感測器介面506之資料及來自駕駛艙中之控制輸入之資料,判定需要來自該等螺旋槳103之各者之多大之向前推力,且對該等螺旋槳發出指令以產生所需之推力。一般熟悉此項技術者將理解,資料庫508包含在轉向期間用於上升及下降之程式化航線,且亦可包含用於對飛機100進行導航及控制之額外特徵。飛行電腦500亦包含用於執行導航及飛行操作之其他組件及模組,熟悉此項技術者已知該等組件及模組,但該等組件及模組並不與此描述密切相關。
圖6繪示根據一實施例之自垂直飛行轉換至向前飛行之一方法。開始時,飛行電腦500之轉子控制模組502對該等轉子施加動力602。在一實施例中,在此初始起飛階段期間,對該等轉子之各者施加相等之動力。在替代性實施例
中,在初始起飛階段期間,對各個轉子施加不同之動力,以促成自一斜坡或在側風中起飛。位置感測器介面506自飛機儀器接收姿態及海拔高度資料604。一旦已經達到一最小海拔高度(例如,地面以上200英尺)606,則螺旋槳控制模組504致動該等向前螺旋槳608且在一些實施例中致動該駕駛艙內側之該等前螺旋槳之控制輸入。此防止飛機在當地面障礙物可能形成安全威脅之海拔高度時由於動力而向前加速。在一替代性實施例中,無需最小海拔高度驅動向前推進。在其他實施例中,最小海拔高度係可調整及/或可置換。例如,面對高大之樹木,在開始加速之前可能需要較高之初始斜度。
在一些實施例中,飛行員將一初始海拔高度程式化至飛行電腦500中。或者,飛行員使用飛行控制輸入來指示需要一更高之海拔高度。若需要增加海拔高度610,則位置感測器介面502判定該飛機之姿態及速度612且轉子控制模組502如需地對提供至該等轉子之動力進行個別調整614,以維持垂直推力及一水平定向。
一旦該飛機100已經獲得所要之初始海拔高度610,則位置感測器介面506判定該飛機之向前速度是否大至足以產生升力616,即,該飛機之速度是否大於飛機之失速速度。若否,則飛行電腦500判定需要自該等轉子獲得多大之升力618,且施加所需之動力620。在一實施例中,所需之升力之量等於考慮到該等副翼產生之升力而維持飛機之海拔高度所需之升力量。當速度增加時,該等機翼形成升
力且對該等垂直升降轉子之推力需求減小。在一實施例中,調整來自該等轉子之推力,以在轉向期間維持一最佳航線且抵抗由於交互作用或環境作用(諸如,陣風)而產生之任何干擾。在一實施例中,在飛行之前判定最佳航線且由飛行電腦500儲存於資料庫508中。飛行電腦500繼續判定該飛機之姿態、海拔高度及速度且調整轉子動力622,直到達到所需之一速度或者該等副翼產生最小位準之升力。一旦該速度大於該失速速度616,即,該速度高至足以使得該等機翼可支撐該飛機之總重量,或者在一替代性實施例中,達到一不同之最小速度,則該等垂直升降轉子完全停用624。
為了使該飛機100自向前飛行轉換至垂直飛行,螺旋槳控制模組504減小該等向前螺旋槳103之推力,以減小速度。當該飛機100之速度減小時,轉子控制模組502自動對該等轉子發出指令,要求開始產生垂直升力。當該等機翼上之升力減小時,對等垂直升降轉子之推力需求增加。藉由轉子控制模組502回應於來自位置感測器介面506之讀數而調整來自該等轉子之推力,以在轉向期間維持一最佳航線(該最佳航線係由飛行電腦例如基於儲存於資料庫508中之一航線判定),且抵抗由於相互作用或環境作用(諸如,陣風)造成之任何干擾。最終向前速度為零或者趨於零且該等垂直升降轉子提供全部升力。接著飛機經由來自飛行員或者由飛行電腦500發出之一降落指令下降至地面上,因此自動地將到達各個轉子之動力減小以維持一所要之降
落速度及一水平定向。
如上所述,在一些實施例中,機翼104及105摺疊。一些實施例具有一機翼摺疊器,其係定位於負載小之一位置(在翼幅之50%之外),例如,以允許使用一重量較輕之鉸鏈。在其他實施例中,該前翼並不摺疊。在其他實施例中,該等機翼摺疊使得飛機可存放至一個8英尺寬之空間中,諸如一典型之單輛車車庫。替代性實施例亦包含以其他方式摺疊該前翼,諸如,在該機身之下方或者沿該機身之側以一剪刀運動進行摺疊。此剪刀摺疊係藉由該前翼之中心處之樞軸及銷達成,該樞軸及銷允許圍繞中心樞轉點向後旋轉。此實施例允許機翼圍繞一單一點鉸接,以減小該機翼結構深度最大之一位置處之重量,且促成該前翼藉由一機電致動器摺疊而完全折疊在飛機之側邊,以在盤旋或在地面上時飛行員獲得更好之視野。在包含一剪刀摺疊前翼之一實施例中,該起落架包含一單一前輪204,其具有兩個主後起落架輪202。
在一實施例中,飛機100能夠在該前翼及該後翼摺疊之情形下起飛及降落。在垂直飛行中,在機翼摺疊時起飛及降落透過降低之機翼升起效能及較短翼幅而降低了飛機因不穩定風況之陣風反應。由於在盤旋飛行中無需機翼升力,而只是在向前飛行中需要機翼升力,則可等到距離地面達成足夠之海拔高度之後使該等機翼展開。避免在地面上進行機翼展開對於可利用之地面起飛及降落空間及風況不利之一些操作係有利。一機電致動器提供在開始向前飛
行之前使該機翼展開所需之致動力。
在一實施例中,控制表面係位於該前翼摺疊器301及該後翼摺疊器302之內部上,以允許在該摺疊鉸接結構之外側無需控制線之情形下進行摺疊,因此由於移動部件較少而降低機械複雜性。該等控制表面提供在藉由空氣動力學達成之向前飛行期間之俯仰、搖晃及偏航控制,使得僅需在向前速度小或為零之情形下控制該等垂直升降轉子。需要更大之向前飛行控制回應性之其他實施例亦具有位於機翼摺疊機構之外側之控制表面。其他實施例僅在該機翼之外側區段上具有控制表面。
起落架202、204具有輪子,以允許飛機在地面上移動。一前主起落架204及兩個後主起落架202在該前翼上產生減小之拖曳及減少之升力干擾。在其他實施例中,該起落架係一防滑墊且不具有輪子,因為飛機能夠無需向前移動而起飛及降落。替代性實施例包含兩個前主起落架及一個後主起落架,以允許該前起落架可間隔較遠,以在地面上獲得穩定性。在一些實施例中,一些或所有該等輪配備有可驅動該等輪之電動馬達。此等馬達允許飛機在地面上時進行自我推進。
除了上文明確所述之該等實施例之外,熟悉此項技術者將理解,亦可在其他實施例中實踐本發明。例如,在一替代性實施例中,飛機100經設計以容納兩位或更多乘客。在此一實施例中,翼幅較大,該等轉子具有一較大之直徑,且該機身107較寬。在一替代性實施例中,飛機100為
可在未搭載飛行員或乘客之情形下飛行之無人駕駛飛機。未搭載乘客之實施例具有額外之控制系統,其替代駕駛員提供方向控制輸入,無論透過一地面鏈路或透過一預定之飛行航線。
儘管在特定之實施例之情境中提供對此描述,熟悉此項技術者可理解,鑑於所提供之教示,可實踐許多替代性實施例。此外,除非另有明確說明,在此書面描述中,組件之特定稱謂、術語之大寫、屬性、資料結構或任何其他結構性或程式化態樣並非強制性或本質性,且實施本發明或本發明之特徵之該等機構可具有不同之名稱、格式或協議。此外,可經由組合硬體與軟體之一組合或完全以硬體元件實施該系統之包含該飛行電腦500之組件之一些態樣。同樣地,本文所述之多個系統組件之間之特定的功能性之分工亦並非強制性;由一單一模組或系統組件執行之功能可替代地由多個組件執行,且由多個組件執行之功能可替代地由一單一組件執行。類似地,除非另有說明或具有邏輯上要求,執行方法步驟之順序亦非強制性。
除非另有說明,使用諸如「選擇」(selecting)、或「計算」(computing)或「判定」(determining)或類似術語之討論係指一電腦系統或類似之電子計算裝置操縱且轉換由電腦系統記憶體或暫存器或其他此等資訊儲存器、傳送器或顯示裝置內之物理(電子)量表示之資料之動作及程序。
所述之實施例之電子組件可針對所需目的特定地構造,或者可包括一或多個通用電腦,其由儲存於該電腦中之一
電腦程式選擇性地致動或再組態。此一電腦程式可儲存於一電腦可讀儲存媒體中,諸如但不限於,任何類型之磁碟,包含軟碟、光碟、DVD、CD-ROM、光磁碟、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、EPROM、EEPROM、磁卡或光卡、特殊應用積體電路(ASIC)或者適於儲存電子指令之任何類型之媒體,且各者係耦合至一電腦系統匯流排。
最後,應注意,本說明書中所使用之語言原則上係出於可讀性及指示性目的選擇,且並非為了詳述或限制本發明之標的物而選擇。因此,本文之揭示內容意在闡釋性,而非限制本發明之範疇。
100‧‧‧個人飛機
101a‧‧‧垂直升降轉子總成
101b‧‧‧垂直升降轉子總成
103‧‧‧向前飛行螺旋槳
104‧‧‧前翼
105‧‧‧後翼
106a‧‧‧小翼
106b‧‧‧小翼
107‧‧‧機身
110a‧‧‧導流片
110b‧‧‧導流片
112‧‧‧駕駛艙區域
114‧‧‧推進尾桁
116‧‧‧撐桿
202‧‧‧左舷側主起落架
202a‧‧‧左舷起落架
202b‧‧‧右舷起落架
204‧‧‧前起落架
500‧‧‧飛行電腦
502‧‧‧轉子控制模組
504‧‧‧螺旋槳控制模組
506‧‧‧位置感測器介面
508‧‧‧資料庫
圖1係根據一實施例之一個人飛機之俯視圖。
圖2繪示根據一實施例之一個人飛機之一第二視圖。
圖3繪示根據一實施例之一個人飛機之一前視圖。
圖4繪示根據一實施例之一個人飛機之左側之一視圖。
圖5係繪示根據一實施例之一飛行電腦之一方塊圖。
圖6係繪示根據一實施例自垂直起飛轉換至向前飛行之一方法之一流程圖。
100‧‧‧個人飛機
103‧‧‧向前飛行螺旋槳
104‧‧‧前翼
105‧‧‧後翼
106a‧‧‧小翼
106b‧‧‧小翼
107‧‧‧機身
110a‧‧‧導流片
110b‧‧‧導流片
112‧‧‧駕駛艙區域
114‧‧‧推進尾桁
116‧‧‧撐桿
202‧‧‧左舷側主起落架
204‧‧‧前起落架
Claims (17)
- 一種個人飛機,其包括:一機身,其具有一縱軸及一垂直軸;一前翼,其係耦合至該機身且位於飛機之一重心之前方;一後翼,其係耦合至該機身且係位於該飛機之該重心之後方;一左舷推進尾桁,其係耦合至該機身且係實質上沿該機身之左舷側平行於該機身之該縱軸而定向;一左舷螺旋槳,其係耦合至該左舷推進尾桁且經調適於提供向前推力;第一複數個轉子,其係耦合至該左舷推進尾桁,該第一複數個轉子係實質上平行於該機身之該縱軸而配置,各個轉子係耦合至一馬達且經調適於在主要沿該垂直軸之一方向上提供推力;一右舷推進尾桁,其係耦合至該機身且係沿該機身之右舷側而實質上平行於該機身之該縱軸而定向;一右舷螺旋槳,其係耦合至該右舷推進尾桁且經調適於提供向前推力;第二複數個轉子,其係耦合至該右舷推進尾桁,該第二複數個轉子係實質上平行於該機身之該縱軸而配置,各個轉子係耦合至一馬達且經調適於在主要沿該垂直軸之一方向上提供推力;其中耦合至該複數個轉子之各個馬達經調適於獨立於 其他馬達而被控制;且其中該第一複數個轉子之至少一者及該第二複數個轉子之至少一者係以可在並非處於該垂直軸之一方向上提供一非零升力分量之定向而耦合。
- 如請求項1之個人飛機,其中該第一複數個轉子包含至少4個轉子且該第二複數個轉子包含至少4個轉子。
- 如請求項1之個人飛機,其進一步包括一飛行電腦,其係耦合至該機身且經調適於:判定該個人飛機之一當前定向;判定該個人飛機之一所要定向;及根據該個人飛機之該當前定向與該個人飛機之該所要定向之間之差異對附接至該等轉子之該複數個馬達之各者獨立地發出指令。
- 一種飛機,其包括:一機身;一前翼,其係耦合至該機身且係位於一重心之前方;一後翼,其係耦合至該機身且係位於該重心之後方;第一複數個升降轉子,其位於該機身之一左舷側上之該前翼與該後翼之間,該第一複數個升降轉子之至少一者具有一第一斜面且該第一複數個升降轉子之至少一者具有一第二斜面;第二複數個升降轉子,其位於該機身之一右舷側上之該前翼與該後翼之間,該第二複數個升降轉子之至少一者具有一第三斜面且該第二複數個升降轉子之至少一者 具有一第四斜面;一螺旋槳,其係耦合至該機身且經調適於提供向前推力;及一飛行電腦,其係耦合至該機身,且經調適於獨立地控制由該第一複數個升降轉子之各者及該第二複數個升降轉子之各者提供之一推力之量。
- 如請求項4之飛機,其中該第一複數個升降轉子中之轉子之數目係4且該第二複數個升降轉子中之轉子之數目係4。
- 如請求項4之飛機,其中該第一複數個升降轉子中之轉子之數目係3且該第二複數個升降轉子中之轉子之數目係3。
- 如請求項4之飛機,其中該後翼包含小翼特徵。
- 如請求項7之飛機,其中該等小翼係實質上定向於一垂直向上方向。
- 如請求項7之飛機,其中該等小翼係實質上定向於一垂直向下方向。
- 如請求項4之飛機,其中該等升降轉子係由電動馬達驅動。
- 如請求項4之飛機,其進一步包括位於該飛機之該左舷側上之一第一導流片及位於該飛機之該右舷側上之一第二導流片,各個導流片基本上平行於安裝尾桁且係於該複數個轉子之一舷外側上耦合至該機身。
- 如請求項11之飛機,其中該等導流片經調適於減小該飛 機之一噪音覆蓋區域。
- 如請求項4之飛機,其中該前翼與該後翼並不共平面。
- 如請求項4之飛機,其中該等翼係可摺疊。
- 如請求項4之飛機,其中一自動駕駛儀可實現無人操作。
- 如請求項4之飛機,其中升降轉子葉片具有固定間距。
- 一種飛機,其包括:一機身;一前翼,其係耦合至該機身且位於一重心之前方;一後翼,其係耦合至該機身且位於該重心之後方;一第一安裝尾桁,其係耦合至該機身之一左舷側;一第二安裝尾桁,其係耦合至該機身之一右舷側;第一複數個升降轉子,各個轉子係安裝於介於該機身之該左舷側上之該前翼與該後翼之間之該第一安裝尾桁上,該第一複數個升降轉子之至少一者具有一第一斜面且該第一複數個升降轉子之至少一者具有一第二斜面;第二複數個升降轉子,各個轉子係安裝於介於該機身之該右舷側上之該前翼與該後翼之間之該第二安裝尾桁上,該第二複數個升降轉子之至少一者具有一第三斜面且該第二複數個轉子之至少一者具有一第四斜面;一第一螺旋槳,其係耦合至該第一安裝尾桁且經調適於提供向前推力;一第二螺旋槳,其係耦合至該第二安裝尾桁且經調適於提供向前推力;及 一飛行電腦,其係耦合至該機身,且經調適於獨立地控制由該第一複數個升降轉子之各者及該第二複數個升降轉子之各者提供之一推力之量。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161509530P | 2011-07-19 | 2011-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201313557A true TW201313557A (zh) | 2013-04-01 |
TWI538852B TWI538852B (zh) | 2016-06-21 |
Family
ID=47555117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101125915A TWI538852B (zh) | 2011-07-19 | 2012-07-18 | 個人飛機 |
Country Status (11)
Country | Link |
---|---|
US (5) | US8485464B2 (zh) |
EP (1) | EP2734444A4 (zh) |
JP (1) | JP5676824B2 (zh) |
KR (2) | KR101502290B1 (zh) |
CN (1) | CN103796917B (zh) |
AU (1) | AU2012283923B2 (zh) |
BR (1) | BR112014001325A2 (zh) |
CA (1) | CA2841315C (zh) |
IL (2) | IL230343A (zh) |
TW (1) | TWI538852B (zh) |
WO (1) | WO2013013084A1 (zh) |
Families Citing this family (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013001425A2 (pt) | 2010-07-19 | 2016-05-31 | Zee Aero Inc | aeronave e método para voar uma aeronave e vtol |
TWI538852B (zh) | 2011-07-19 | 2016-06-21 | 季航空股份有限公司 | 個人飛機 |
FR2990684B1 (fr) * | 2012-05-21 | 2014-11-21 | Eurocopter France | Procede de commande des volets d'ailes et de l'empennage horizontal d'un helicoptere hybride |
FR2990685B1 (fr) * | 2012-05-21 | 2014-11-21 | Eurocopter France | Procede de commande des volets d'ailes et de l'empennage horizontal d'un helicoptere hybride |
AU2013327362B2 (en) * | 2012-10-05 | 2017-04-20 | Marcus LENG | Electrically powered aerial vehicles and flight control methods |
US9527597B1 (en) | 2013-01-11 | 2016-12-27 | Jaime Sada | Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods |
JP6027939B2 (ja) * | 2013-05-02 | 2016-11-16 | 香山 恒夫 | 飛行機 |
JP6076833B2 (ja) * | 2013-05-27 | 2017-02-08 | 富士重工業株式会社 | 垂直離着陸飛行体の制御方法 |
CN108516082B (zh) * | 2013-06-09 | 2021-06-18 | 瑞士苏黎世联邦理工学院 | 遭遇影响效应器的故障的多旋翼器的受控飞行 |
DE102013109392A1 (de) * | 2013-08-29 | 2015-03-05 | Airbus Defence and Space GmbH | Schnellfliegendes, senkrechtstartfähiges Fluggerät |
US10005554B2 (en) | 2013-12-24 | 2018-06-26 | Singapore Technologies Aerospace Ltd. | Unmanned aerial vehicle |
US10124890B2 (en) * | 2014-04-11 | 2018-11-13 | Dronetechuav Corporation | Modular nacelles to provide vertical takeoff and landing (VTOL) capabilities to fixed wing aerial vehicles, and associated systems and methods |
HUE049822T2 (hu) * | 2014-05-01 | 2020-10-28 | Alakai Tech Corporation | Tiszta üzemanyagos több rotoros (multirotor) légi jármû személyes légi szállításra pilótával ellátott és pilóta nélküli mûködéssel |
WO2016018486A2 (en) * | 2014-05-07 | 2016-02-04 | XTI Aircraft Company | Vtol aircraft |
US9878257B2 (en) * | 2014-06-10 | 2018-01-30 | University Of Kansas | Aerial vehicles and methods of use |
US9296477B1 (en) | 2014-07-21 | 2016-03-29 | Glenn Coburn | Multi-rotor helicopter |
US20160031554A1 (en) * | 2014-07-30 | 2016-02-04 | Siniger LLC | Control system for an aircraft |
IL233942B (en) | 2014-08-04 | 2020-01-30 | Israel Aerospace Ind Ltd | Assembly of the drive system |
WO2016022040A1 (ru) * | 2014-08-05 | 2016-02-11 | Ардн Технолоджи Лимитед | Аэромобиль |
US10046853B2 (en) | 2014-08-19 | 2018-08-14 | Aergility LLC | Hybrid gyrodyne aircraft employing a managed autorotation flight control system |
US9664175B2 (en) | 2014-08-30 | 2017-05-30 | X Development Llc | Carbon fiber motor rotor integrating propeller mount |
US9889930B2 (en) | 2014-11-24 | 2018-02-13 | Amazon Technologies, Inc. | Unmanned aerial vehicle protective frame configuration |
US9868524B2 (en) * | 2014-11-11 | 2018-01-16 | Amazon Technologies, Inc. | Unmanned aerial vehicle configuration for extended flight |
WO2016077297A1 (en) | 2014-11-12 | 2016-05-19 | Sikorsky Aircraft Corporation | High-authority yaw control for a tandem vehicle with rigid rotors |
US11485488B1 (en) * | 2014-12-07 | 2022-11-01 | L3Harris Latitude Llc | Vertical take-off and landing aircraft with rotor thrust yaw control |
KR101755278B1 (ko) * | 2014-12-09 | 2017-07-07 | 한국항공우주연구원 | 하이브리드 프로펠러 장치를 구비하는 고정익 수직 이착륙 무인기 |
WO2016153580A2 (en) * | 2015-01-02 | 2016-09-29 | Marcel Jesse Antoine | Multi-rotor personal air vehicle with a central lifting fan |
DE102015001704B4 (de) * | 2015-02-13 | 2017-04-13 | Airbus Defence and Space GmbH | Senkrechtstartfähiges Fluggerät |
FR3032687B1 (fr) * | 2015-02-16 | 2018-10-12 | Hutchinson | Aerodyne vtol a soufflante(s) axiale(s) porteuse(s) |
US20160236775A1 (en) * | 2015-02-18 | 2016-08-18 | Siniger LLC | Vertical takeoff and landing aircraft |
US10640204B2 (en) | 2015-03-03 | 2020-05-05 | Amazon Technologies, Inc. | Unmanned aerial vehicle with a tri-wing configuration |
US9946267B2 (en) | 2015-04-06 | 2018-04-17 | Thomas A. Youmans | Control and stabilization of a flight vehicle from a detected perturbation by tilt and rotation |
DE102015006511A1 (de) * | 2015-05-26 | 2016-12-01 | Airbus Defence and Space GmbH | Senkrechtstartfähiges Fluggerät |
JP6435991B2 (ja) * | 2015-05-28 | 2018-12-12 | 株式会社村田製作所 | 電動式航空機 |
EP3124379B1 (de) | 2015-07-29 | 2019-05-01 | Airbus Defence and Space GmbH | Hybrid-elektrischer antriebsstrang für vtol drohnen |
RU2603302C1 (ru) | 2015-08-20 | 2016-11-27 | Общество с ограниченной ответственностью "АвиаНовации" | Летательный аппарат вертикального взлета и посадки |
EP3141478B1 (en) * | 2015-09-11 | 2018-11-07 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Compound helicopter |
EP3374263A4 (en) * | 2015-11-10 | 2019-05-08 | Matternet, Inc. | METHODS AND TRANSPORT SYSTEMS USING PILOT-FREE AIR VEHICLES |
US20180162525A1 (en) | 2016-12-08 | 2018-06-14 | Aurora Flight Sciences Corporation | Double-Blown Wing Vertical Takeoff and Landing Aircraft |
KR20180090300A (ko) * | 2015-12-09 | 2018-08-10 | 아이디어포지 테크놀로지 피브이티. 엘티디. | 단일 팔 장애 리던던시를 갖는 멀티-로터 항공기 |
CN108602554B (zh) * | 2015-12-18 | 2022-01-07 | 亚马逊科技公司 | 操作具有第一组螺旋桨和第二组螺旋桨的飞行器的方法 |
EP3184425B1 (en) | 2015-12-21 | 2018-09-12 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Multirotor aircraft |
US11807356B2 (en) | 2016-02-17 | 2023-11-07 | SIA InDrones | Multicopter with different purpose propellers |
CN109415120B (zh) * | 2016-04-19 | 2022-10-11 | 先进飞机公司 | 无人机 |
US9840327B1 (en) * | 2016-04-29 | 2017-12-12 | Rfrank Llc | Vertical takeoff and landing (VTOL) aircraft and system |
US9944387B2 (en) | 2016-05-24 | 2018-04-17 | Kitty Hawk Corporation | Stopped rotor aircraft |
US9975629B2 (en) | 2016-05-24 | 2018-05-22 | Kitty Hawk Corporation | Control system for a stopped rotor aircraft |
US10220944B2 (en) | 2016-07-01 | 2019-03-05 | Bell Helicopter Textron Inc. | Aircraft having manned and unmanned flight modes |
US11104446B2 (en) | 2016-07-01 | 2021-08-31 | Textron Innovations Inc. | Line replaceable propulsion assemblies for aircraft |
US10618647B2 (en) * | 2016-07-01 | 2020-04-14 | Textron Innovations Inc. | Mission configurable aircraft having VTOL and biplane orientations |
US10737778B2 (en) | 2016-07-01 | 2020-08-11 | Textron Innovations Inc. | Two-axis gimbal mounted propulsion systems for aircraft |
US10214285B2 (en) | 2016-07-01 | 2019-02-26 | Bell Helicopter Textron Inc. | Aircraft having autonomous and remote flight control capabilities |
US10227133B2 (en) | 2016-07-01 | 2019-03-12 | Bell Helicopter Textron Inc. | Transportation method for selectively attachable pod assemblies |
US10737765B2 (en) | 2016-07-01 | 2020-08-11 | Textron Innovations Inc. | Aircraft having single-axis gimbal mounted propulsion systems |
US10011351B2 (en) | 2016-07-01 | 2018-07-03 | Bell Helicopter Textron Inc. | Passenger pod assembly transportation system |
US11027837B2 (en) | 2016-07-01 | 2021-06-08 | Textron Innovations Inc. | Aircraft having thrust to weight dependent transitions |
US10501193B2 (en) | 2016-07-01 | 2019-12-10 | Textron Innovations Inc. | Aircraft having a versatile propulsion system |
US10625853B2 (en) | 2016-07-01 | 2020-04-21 | Textron Innovations Inc. | Automated configuration of mission specific aircraft |
US10232950B2 (en) * | 2016-07-01 | 2019-03-19 | Bell Helicopter Textron Inc. | Aircraft having a fault tolerant distributed propulsion system |
US11142311B2 (en) | 2016-07-01 | 2021-10-12 | Textron Innovations Inc. | VTOL aircraft for external load operations |
US10633087B2 (en) | 2016-07-01 | 2020-04-28 | Textron Innovations Inc. | Aircraft having hover stability in inclined flight attitudes |
US10183746B2 (en) * | 2016-07-01 | 2019-01-22 | Bell Helicopter Textron Inc. | Aircraft with independently controllable propulsion assemblies |
US10633088B2 (en) | 2016-07-01 | 2020-04-28 | Textron Innovations Inc. | Aerial imaging aircraft having attitude stability during translation |
US11608173B2 (en) | 2016-07-01 | 2023-03-21 | Textron Innovations Inc. | Aerial delivery systems using unmanned aircraft |
US10604249B2 (en) | 2016-07-01 | 2020-03-31 | Textron Innovations Inc. | Man portable aircraft system for rapid in-situ assembly |
US11124289B2 (en) | 2016-07-01 | 2021-09-21 | Textron Innovations Inc. | Prioritizing use of flight attitude controls of aircraft |
US10870487B2 (en) | 2016-07-01 | 2020-12-22 | Bell Textron Inc. | Logistics support aircraft having a minimal drag configuration |
US11084579B2 (en) | 2016-07-01 | 2021-08-10 | Textron Innovations Inc. | Convertible biplane aircraft for capturing drones |
US10981661B2 (en) | 2016-07-01 | 2021-04-20 | Textron Innovations Inc. | Aircraft having multiple independent yaw authority mechanisms |
US10597164B2 (en) | 2016-07-01 | 2020-03-24 | Textron Innovations Inc. | Aircraft having redundant directional control |
US10315761B2 (en) | 2016-07-01 | 2019-06-11 | Bell Helicopter Textron Inc. | Aircraft propulsion assembly |
RU2627220C1 (ru) * | 2016-07-26 | 2017-08-04 | Общество с ограниченной ответственностью "АвиаНовации" | Летательный аппарат вертикального взлета и посадки |
US10252796B2 (en) * | 2016-08-09 | 2019-04-09 | Kitty Hawk Corporation | Rotor-blown wing with passively tilting fuselage |
US10301016B1 (en) * | 2016-08-09 | 2019-05-28 | Vimana, Inc. | Stabilized VTOL flying apparatus and aircraft |
TWI605978B (zh) * | 2016-08-10 | 2017-11-21 | 元智大學 | 固定翼飛行器 |
NL2017611B1 (en) * | 2016-10-12 | 2018-04-20 | Univ Delft Tech | Aerial vehicle with angularly displaced propulsion units |
US10364036B2 (en) * | 2016-10-18 | 2019-07-30 | Kitty Hawk Corporation | Multicopter with boom-mounted rotors |
US10364024B2 (en) * | 2016-10-18 | 2019-07-30 | Kitty Corporation | Multicopter with angled rotors |
US10399673B1 (en) | 2016-10-24 | 2019-09-03 | Kitty Hawk Corporation | Integrated float-wing |
EP3535185B1 (en) * | 2016-11-02 | 2022-01-05 | Joby Aero, Inc. | Vtol aircraft using rotors to simulate rigid wing dynamics |
US10689105B2 (en) * | 2016-11-21 | 2020-06-23 | John Daniel Romo | Passenger-carrying rotorcraft with fixed-wings for generating lift |
CN106741932B (zh) * | 2016-11-22 | 2020-11-03 | 四川尚航智能科技有限公司 | 一种基于垂直起降的混合型九轴无人机 |
JP2018134908A (ja) * | 2017-02-20 | 2018-08-30 | 株式会社菊池製作所 | 無人航空機 |
IL250996A0 (en) * | 2017-03-07 | 2017-06-29 | Colugo Systems Ltd | A multi-bladed multi-bladed rifle with a folding wing |
US20180290735A1 (en) * | 2017-04-06 | 2018-10-11 | John Uptigrove | Vtol high speed aircraft |
USD822579S1 (en) | 2017-04-24 | 2018-07-10 | AFS-DV VTOL Technologies Corporation | Aircraft |
US10577091B2 (en) * | 2017-04-24 | 2020-03-03 | Bcg Digital Ventures Gmbh | Vertical take-off and landing aircraft |
CN110506003B (zh) * | 2017-05-08 | 2024-01-05 | 英西图公司 | 具有垂直起飞和着陆能力的模块化飞行器及其操作方法 |
JP6955280B2 (ja) * | 2017-05-22 | 2021-10-27 | オーバーエアー インコーポレイテッドOverair,Inc. | 電動vtol航空機 |
US10442522B2 (en) | 2017-05-26 | 2019-10-15 | Bell Textron Inc. | Aircraft with active aerosurfaces |
US10618646B2 (en) | 2017-05-26 | 2020-04-14 | Textron Innovations Inc. | Rotor assembly having a ball joint for thrust vectoring capabilities |
US10661892B2 (en) | 2017-05-26 | 2020-05-26 | Textron Innovations Inc. | Aircraft having omnidirectional ground maneuver capabilities |
US10351232B2 (en) | 2017-05-26 | 2019-07-16 | Bell Helicopter Textron Inc. | Rotor assembly having collective pitch control |
US10329014B2 (en) | 2017-05-26 | 2019-06-25 | Bell Helicopter Textron Inc. | Aircraft having M-wings |
US11634211B2 (en) * | 2017-06-07 | 2023-04-25 | Joseph R. Renteria | Aircraft with linear thruster arrangement |
US20180354609A1 (en) * | 2017-06-07 | 2018-12-13 | Joseph R. Renteria | Aircraft with linear thruster arrangement |
US10730622B2 (en) | 2017-06-14 | 2020-08-04 | Bell Helicopter Textron Inc. | Personal air vehicle with ducted fans |
US10737797B2 (en) * | 2017-07-21 | 2020-08-11 | General Electric Company | Vertical takeoff and landing aircraft |
US10745099B2 (en) * | 2017-08-31 | 2020-08-18 | Wisk Aero Llc | Conductor in composite |
KR102683337B1 (ko) * | 2017-10-02 | 2024-07-08 | 캘리포니아 인스티튜트 오브 테크놀로지 | 자율 비행 앰뷸런스 |
USD843889S1 (en) * | 2017-10-04 | 2019-03-26 | Elroy Air, Inc. | Unmanned cargo delivery aircraft |
USD852092S1 (en) * | 2017-10-12 | 2019-06-25 | Wing Aviation Llc | Unmanned aerial vehicle |
WO2019084487A1 (en) * | 2017-10-27 | 2019-05-02 | Elroy Air, Inc. | COMPOSITE MULTICOPTER AIRCRAFT |
USD858352S1 (en) * | 2017-10-30 | 2019-09-03 | Shenzhen Valuelink E-Commerce Co., Ltd. | Drone |
KR102669208B1 (ko) * | 2017-11-03 | 2024-05-28 | 조비 에어로, 인크. | Vtol m-날개 구성 |
US10723433B2 (en) | 2017-11-27 | 2020-07-28 | Wing Aviation Llc | Assembly systems and methods for unmanned aerial vehicles |
US11034445B2 (en) * | 2017-11-27 | 2021-06-15 | Wing Aviation Llc | Wing structure and attachment to frame for unmanned aerial vehicles |
WO2019109215A1 (zh) * | 2017-12-04 | 2019-06-13 | 深圳市大疆创新科技有限公司 | 动力装置、无人飞行器及飞行控制方法 |
US11447248B2 (en) | 2017-12-21 | 2022-09-20 | Elroy Air, Inc. | Unmanned vehicle cargo handling and carrying system |
US11008093B2 (en) * | 2018-03-22 | 2021-05-18 | Aurora Flight Sciences Corporation | Systems and methods for reducing the propeller noise |
US12044699B2 (en) | 2018-04-24 | 2024-07-23 | Fuelle Landing Systems, Inc. | Ground-based vectored thrust system |
US11091260B2 (en) | 2018-04-27 | 2021-08-17 | Wing Aviation Llc | Counter-rotating propellers for aerial vehicle |
US11511854B2 (en) * | 2018-04-27 | 2022-11-29 | Textron Systems Corporation | Variable pitch rotor assembly for electrically driven vectored thrust aircraft applications |
WO2019211875A1 (en) * | 2018-05-04 | 2019-11-07 | Anthony Alvin | Hybrid vertical takeoff and landing (vtol) aircraft with vehicle assist |
EP3802322A4 (en) | 2018-05-31 | 2022-02-23 | Joby Aero, Inc. | POWER SYSTEM ARCHITECTURE AND FAULT TOLERANT VTOL AIRPLANE WITH IT |
US12006048B2 (en) | 2018-05-31 | 2024-06-11 | Joby Aero, Inc. | Electric power system architecture and fault tolerant VTOL aircraft using same |
EP3581490B1 (en) * | 2018-06-13 | 2021-01-13 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor aircraft with a thrust producing unit that comprises an aerodynamically optimized shrouding |
US10775784B2 (en) * | 2018-06-14 | 2020-09-15 | Wing Aviation Llc | Unmanned aerial vehicle with decentralized control system |
US11136115B2 (en) * | 2018-06-20 | 2021-10-05 | Textron Innovations Inc. | Tilted propellers for enhanced distributed propulsion control authority |
US10710741B2 (en) | 2018-07-02 | 2020-07-14 | Joby Aero, Inc. | System and method for airspeed determination |
EP3830521A4 (en) | 2018-07-27 | 2022-04-27 | Airborne Motor Works Inc. | METHOD AND APPARATUS FOR SPLIT-FLYWHEEL GYROSCOPE PRODUCING THRUST |
US11230386B2 (en) | 2018-08-26 | 2022-01-25 | Airborne Motor Works Inc. | Electromagnetic gyroscopic stabilizing propulsion system method and apparatus |
US11708157B2 (en) * | 2018-09-11 | 2023-07-25 | Eve Uam, Llc | Vertical take-off and landing (VTOL) aircraft with cruise rotor positioning control for minimum drag |
US10556704B1 (en) | 2018-09-17 | 2020-02-11 | Kitty Hawk Corporation | Health based actuator allocation |
US11323214B2 (en) | 2018-09-17 | 2022-05-03 | Joby Aero, Inc. | Aircraft control system |
FR3086641B1 (fr) | 2018-09-28 | 2020-09-04 | Airbus Helicopters | Aeronef multirotor a motorisation electrique ou hybride avec une consommation energetique optimisee |
WO2020069582A1 (en) * | 2018-10-02 | 2020-04-09 | Embraer S.A. | Vertical and short takeoff and landing (vstol) aircraft |
JP6648802B2 (ja) * | 2018-10-26 | 2020-02-14 | 株式会社村田製作所 | 電動式航空機 |
US10640212B1 (en) * | 2018-11-18 | 2020-05-05 | Faruk Dizdarevic | Double wing aircraft |
US20220001970A1 (en) * | 2018-11-27 | 2022-01-06 | Yanmar Power Technology Co., Ltd. | Control target generation device and ship-steering control device |
US10787255B2 (en) | 2018-11-30 | 2020-09-29 | Sky Canoe Inc. | Aerial vehicle with enhanced pitch control and interchangeable components |
JP7401545B2 (ja) | 2018-12-07 | 2023-12-19 | ジョビー エアロ インク | 回転翼とその設計方法 |
AU2019433213A1 (en) | 2018-12-07 | 2021-07-22 | Joby Aero, Inc. | Aircraft control system and method |
US10845823B2 (en) | 2018-12-19 | 2020-11-24 | Joby Aero, Inc. | Vehicle navigation system |
CN113316443A (zh) | 2019-01-20 | 2021-08-27 | 航空电机有限责任公司 | 医疗稳定器束带方法和设备 |
CN111688920B (zh) * | 2019-02-20 | 2024-02-02 | 上海峰飞航空科技有限公司 | Vtol固定翼飞行平台系统 |
US12103670B2 (en) | 2019-02-28 | 2024-10-01 | Beta Air, Llc | Vertical take-off and landing (VTOL) aircraft |
US20200277080A1 (en) * | 2019-02-28 | 2020-09-03 | Beta Air Llc | Systems and methods for in-flight operational assessment |
US11628942B2 (en) | 2019-03-01 | 2023-04-18 | Pratt & Whitney Canada Corp. | Torque ripple control for an aircraft power train |
WO2020180377A1 (en) | 2019-03-01 | 2020-09-10 | United Technologies Advanced Projects, Inc. | Cooling system configurations for an aircraft having hybrid-electric propulsion system |
US11148852B2 (en) | 2019-04-11 | 2021-10-19 | Elroy Air, Inc. | Modular aerial cargo aerodynamic encasement |
WO2020219747A2 (en) | 2019-04-23 | 2020-10-29 | Joby Aero, Inc. | Battery thermal management system and method |
EP3730404B1 (en) * | 2019-04-23 | 2021-08-18 | LEONARDO S.p.A. | Vertical take-off and landing aircraft and related control method |
US11230384B2 (en) | 2019-04-23 | 2022-01-25 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
US11574548B2 (en) | 2019-04-25 | 2023-02-07 | Pratt & Whitney Canada Corp. | Aircraft degraded operation ceiling increase using electric power boost |
EP3959127A4 (en) | 2019-04-25 | 2023-01-11 | Joby Aero, Inc. | VTOL AIRCRAFT |
US11829161B2 (en) | 2019-04-26 | 2023-11-28 | Aergility Corporation | Hybrid gyrodyne aircraft |
US11643199B2 (en) * | 2019-05-10 | 2023-05-09 | Eve Uam, Llc | Vertical take-off and landing (VTOL) aircraft |
KR20220029575A (ko) * | 2019-05-21 | 2022-03-08 | 조비 에어로, 인크. | 강성 날개 공기역학을 시뮬레이션하기 위해 고정된 전방으로 기울어진 회전자를 사용하는 수직 이착륙 항공기 |
US12006033B1 (en) | 2019-06-10 | 2024-06-11 | Joby Aero, Inc. | Boom assembly for aerial vehicle |
JP2020158100A (ja) * | 2019-06-25 | 2020-10-01 | 株式会社A.L.I.Technologies | 飛行体 |
US11148791B2 (en) * | 2019-06-27 | 2021-10-19 | Harry Messimore | Hybrid power tri-propeller helicopter apparatus |
GB201909464D0 (en) * | 2019-07-01 | 2019-08-14 | Rolls Royce Plc | Aircraft control method |
US11661193B2 (en) * | 2019-07-18 | 2023-05-30 | Elroy Air, Inc. | Unmanned aerial vehicle optimization |
US11347242B2 (en) * | 2019-08-05 | 2022-05-31 | The Boeing Company | Methods and apparatus for flight control prioritization |
US11912422B2 (en) | 2019-08-26 | 2024-02-27 | Hamilton Sundstrand Corporation | Hybrid electric aircraft and powerplant arrangements |
US11667391B2 (en) | 2019-08-26 | 2023-06-06 | Pratt & Whitney Canada Corp. | Dual engine hybrid-electric aircraft |
EP3800723A1 (en) * | 2019-10-02 | 2021-04-07 | Rolls-Royce Deutschland Ltd & Co KG | Battery module and aircraft with a battery module |
WO2021072070A1 (en) * | 2019-10-09 | 2021-04-15 | Kitty Hawk Corporation | Short takeoff and landing vehicle with forward swept wings |
US11738881B2 (en) | 2019-10-21 | 2023-08-29 | Hamilton Sundstrand Corporation | Auxiliary power unit systems |
US11312491B2 (en) | 2019-10-23 | 2022-04-26 | Textron Innovations Inc. | Convertible biplane aircraft for autonomous cargo delivery |
RU2726391C1 (ru) * | 2019-11-22 | 2020-07-13 | Федор Александрович Рябков | Летательный аппарат |
US20210253248A1 (en) * | 2020-02-08 | 2021-08-19 | Samir Hanna Safar | Aircraft wings with reduced wingspan |
KR20220137029A (ko) | 2020-02-10 | 2022-10-11 | 위스크 에어로 엘엘씨 | 푸셔 프로펠러를 가진 항공기 |
DE102020104783A1 (de) * | 2020-02-24 | 2021-08-26 | Volocopter Gmbh | Batteriehaltevorrichtung, Batteriesystem, Fluggerät und Verfahren zum Wechseln einer Batterie für ein Fluggerät |
JP7104427B2 (ja) * | 2020-02-27 | 2022-07-21 | 義郎 中松 | 翼付ドローン |
CN115210463A (zh) | 2020-02-28 | 2022-10-18 | 航空电机工程有限公司 | 摩擦限制涡轮发电机陀螺仪的方法和装置 |
KR20210122476A (ko) * | 2020-04-01 | 2021-10-12 | 이광무 | 항공기용 쌍 뫼비우스 날개 형태의 프로펠러 구조 |
US20210309354A1 (en) * | 2020-04-07 | 2021-10-07 | MightyFly Inc. | System and method for package transportation |
EP3907131A1 (en) * | 2020-05-07 | 2021-11-10 | BAE SYSTEMS plc | Piloted rotorcraft |
US11794889B2 (en) | 2020-05-07 | 2023-10-24 | Bae Systems Plc | Rotorcraft |
US12116104B2 (en) | 2020-05-07 | 2024-10-15 | Bae Systems Plc | Rotorcraft |
US20210362849A1 (en) * | 2020-05-19 | 2021-11-25 | Archer Aviation, Inc. | Vertical take-off and landing aircraft |
US11053017B1 (en) | 2020-08-20 | 2021-07-06 | Kitty Hawk Corporation | Rotor noise reduction using signal processing |
US11530035B2 (en) | 2020-08-27 | 2022-12-20 | Textron Innovations Inc. | VTOL aircraft having multiple wing planforms |
CN116096634A (zh) * | 2020-09-07 | 2023-05-09 | 株式会社爱隆未来 | 飞行体 |
US11319064B1 (en) | 2020-11-04 | 2022-05-03 | Textron Innovations Inc. | Autonomous payload deployment aircraft |
US11630467B2 (en) | 2020-12-23 | 2023-04-18 | Textron Innovations Inc. | VTOL aircraft having multifocal landing sensors |
US20220212788A1 (en) * | 2021-01-05 | 2022-07-07 | Chiu-Shia Fen | Solar unmanned aircraft |
FR3118622B1 (fr) * | 2021-01-06 | 2022-12-09 | Ascendance Flight Tech | Aéronef à source d’énergie hybride |
US11919631B2 (en) | 2021-02-08 | 2024-03-05 | Archer Aviation, Inc. | Vertical take-off and landing aircraft with aft rotor tilting |
EP4291489A1 (en) * | 2021-02-09 | 2023-12-20 | Joby Aero, Inc. | Aircraft propulsion unit |
US20220306292A1 (en) * | 2021-03-29 | 2022-09-29 | Bell Textron Inc. | Tilting hexrotor aircraft |
US20240199203A1 (en) * | 2021-04-14 | 2024-06-20 | Aeronext Inc | Flight body, landing method, and program |
US11208206B1 (en) * | 2021-05-17 | 2021-12-28 | Beta Air, Llc | Aircraft for fixed pitch lift |
US11383831B1 (en) * | 2021-06-01 | 2022-07-12 | Hoversurf, Inc. | Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation |
US11541999B2 (en) * | 2021-06-01 | 2023-01-03 | Hoversurf, Inc. | Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation |
US11299287B1 (en) * | 2021-06-29 | 2022-04-12 | Beta Air, Llc | Methods and systems for orienting a thrust propulsor in response to a failure event of a vertical take-off and landing aircraft |
US20230002034A1 (en) * | 2021-07-01 | 2023-01-05 | Beta Air, Llc | System for fixed-pitch lift configured for use in an electric aircraft |
US11623743B2 (en) | 2021-07-23 | 2023-04-11 | Beta Air, Llc | System and method of rotor management |
US20230039018A1 (en) * | 2021-08-09 | 2023-02-09 | InSitu, Inc., a subsidiary of the Boeing Company | Unmanned aerial vehicles including wing capture devices and related methods |
CN117715827A (zh) * | 2021-08-27 | 2024-03-15 | 深圳市大疆创新科技有限公司 | 飞行器及其控制方法、控制装置、存储介质 |
US11377220B1 (en) | 2021-09-27 | 2022-07-05 | Hoversurf, Inc. | Methods of increasing flight safety, controllability and maneuverability of aircraft and aircraft for implementation thereof |
KR102606817B1 (ko) * | 2021-11-02 | 2023-11-29 | 주식회사 새안알엔디 | 제트엔진 클러스터 유니트를 추진체로 갖는 유인드론 |
KR102606816B1 (ko) * | 2021-11-02 | 2023-11-29 | 주식회사 새안알엔디 | 제트엔진 클러스터 유니트를 추진체로 갖는 유인드론 |
US12084200B2 (en) | 2021-11-03 | 2024-09-10 | Textron Innovations Inc. | Ground state determination systems for aircraft |
US11932387B2 (en) | 2021-12-02 | 2024-03-19 | Textron Innovations Inc. | Adaptive transition systems for VTOL aircraft |
US11643207B1 (en) | 2021-12-07 | 2023-05-09 | Textron Innovations Inc. | Aircraft for transporting and deploying UAVs |
CN116331482A (zh) | 2021-12-22 | 2023-06-27 | 本田技研工业株式会社 | 航空器 |
US20230207901A1 (en) * | 2021-12-29 | 2023-06-29 | Beta Air, Llc | System for transmitting battery pack data of an electric aircraft and method for its use |
US11673662B1 (en) | 2022-01-05 | 2023-06-13 | Textron Innovations Inc. | Telescoping tail assemblies for use on aircraft |
US12103673B2 (en) | 2022-01-10 | 2024-10-01 | Textron Innovations Inc. | Payload saddle assemblies for use on aircraft |
US11912430B2 (en) * | 2022-04-28 | 2024-02-27 | BETA Technologies, Inc. | Systems and methods for displaying a pilot display for an aircraft |
US11827346B1 (en) | 2022-05-04 | 2023-11-28 | Beta Air, Llc | Electric aircraft |
TR2022010974A2 (tr) * | 2022-07-03 | 2022-07-21 | Buelent Oran | Deni̇z taşitlari i̇çi̇n pervane-i̇çi̇ sirali eş-eksenli̇ elektri̇k motor grubu (solucan motor) montaj tahri̇k si̇stemi̇ |
US20240239531A1 (en) * | 2022-08-09 | 2024-07-18 | Pete Bitar | Compact and Lightweight Drone Delivery Device called an ArcSpear Electric Jet Drone System Having an Electric Ducted Air Propulsion System and Being Relatively Difficult to Track in Flight |
US11613350B1 (en) | 2022-10-07 | 2023-03-28 | Archer Aviation, Inc. | Systems and methods for lifter motor cooling in eVTOL aircraft |
CN115806072B (zh) * | 2022-12-21 | 2024-01-26 | 南方科技大学 | 一种基于矢量控制旋翼飞行器及其控制方法 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1425555A (en) * | 1922-08-15 | Airship | ||
US3081964A (en) | 1958-12-08 | 1963-03-19 | Boeing Co | Airplanes for vertical and/or short take-off and landing |
SE340200B (zh) | 1970-06-12 | 1971-11-08 | Skf Ind Handel En Onwikkeling | |
US3856238A (en) * | 1972-04-14 | 1974-12-24 | F Malvestuto | Aircraft transporter |
JPS5676824U (zh) | 1979-11-20 | 1981-06-23 | ||
JPH0382699A (ja) | 1989-08-28 | 1991-04-08 | Aretsukusu Denshi Kogyo Kk | 小形垂直離着陸航空機 |
JPH06502364A (ja) | 1990-07-25 | 1994-03-17 | サドレアー・ヴィートール・エアクラフト・カンパニー・プロプライエタリー・リミテッド | Vtol航空機のための推進ユニット |
US5244167A (en) * | 1991-08-20 | 1993-09-14 | John Turk | Lift augmentation system for aircraft |
JP2700734B2 (ja) | 1991-09-20 | 1998-01-21 | 川崎重工業株式会社 | 垂直離着陸航空機 |
CH685692A5 (de) | 1992-01-29 | 1995-09-15 | Sky Disc Holding Sa C O Norasi | Fluggerät. |
US5419514A (en) * | 1993-11-15 | 1995-05-30 | Duncan; Terry A. | VTOL aircraft control method |
US6460810B2 (en) * | 1996-09-06 | 2002-10-08 | Terry Jack James | Semiautonomous flight director |
DE19745492B4 (de) * | 1997-10-15 | 2005-06-09 | Wobben, Aloys, Dipl.-Ing. | Senkrecht startendes Flugzeug |
JP3368377B2 (ja) * | 1999-06-29 | 2003-01-20 | 六郎 細田 | 航空機 |
US6655631B2 (en) * | 2000-07-28 | 2003-12-02 | John Frederick Austen-Brown | Personal hoverplane with four tiltmotors |
DE10040577B4 (de) | 2000-08-18 | 2006-02-23 | König, Helmut, Ing. | Antriebseinrichtung für Flugzeuge |
US6568630B2 (en) | 2001-08-21 | 2003-05-27 | Urban Aeronautics Ltd. | Ducted vehicles particularly useful as VTOL aircraft |
US6886776B2 (en) * | 2001-10-02 | 2005-05-03 | Karl F. Milde, Jr. | VTOL personal aircraft |
US20030062443A1 (en) * | 2001-10-02 | 2003-04-03 | Joseph Wagner | VTOL personal aircraft |
US6561456B1 (en) | 2001-12-06 | 2003-05-13 | Michael Thomas Devine | Vertical/short take-off and landing aircraft |
JP4085716B2 (ja) | 2002-06-26 | 2008-05-14 | トヨタ自動車株式会社 | 垂直離着陸機 |
US6732972B2 (en) * | 2002-09-13 | 2004-05-11 | Frank S. Malvestuto, Jr. | High-lift, low-drag, stall-resistant airfoil |
JP3881982B2 (ja) * | 2002-12-20 | 2007-02-14 | 恒夫 香山 | 飛行機 |
US6969026B2 (en) * | 2002-12-20 | 2005-11-29 | Tsuneo Kayama | Aircraft |
US6843447B2 (en) * | 2003-01-06 | 2005-01-18 | Brian H. Morgan | Vertical take-off and landing aircraft |
FR2853064B1 (fr) * | 2003-03-28 | 2005-06-24 | Systeme embarque de gestion du vol pour aeronef | |
US7472863B2 (en) * | 2004-07-09 | 2009-01-06 | Steve Pak | Sky hopper |
US7159817B2 (en) * | 2005-01-13 | 2007-01-09 | Vandermey Timothy | Vertical take-off and landing (VTOL) aircraft with distributed thrust and control |
US7267300B2 (en) * | 2005-02-25 | 2007-09-11 | The Boeing Company | Aircraft capable of vertical and short take-off and landing |
JP4506543B2 (ja) * | 2005-04-13 | 2010-07-21 | トヨタ自動車株式会社 | 垂直離着陸機 |
WO2006113877A2 (en) * | 2005-04-20 | 2006-10-26 | Lugg Richard H | Hybrid jet/electric vtol aircraft |
US20070252029A1 (en) | 2005-09-06 | 2007-11-01 | Abe Karem | Electronics for manned or unmanned vehicles |
CN1978277A (zh) * | 2005-12-09 | 2007-06-13 | 赵润生 | 组合式旋翼飞机 |
DE102006019300B4 (de) * | 2006-04-26 | 2009-10-08 | Reinhardt, Gaby Traute | Flugzeug |
US20080054121A1 (en) | 2006-05-11 | 2008-03-06 | Urban Aeronautics Ltd. | Ducted fan VTOL vehicles |
US8453962B2 (en) * | 2007-02-16 | 2013-06-04 | Donald Orval Shaw | Modular flying vehicle |
US20090216392A1 (en) | 2007-07-11 | 2009-08-27 | Piasecki Aircraft Corporation | Vectored thruster augmented aircraft |
JP2009083798A (ja) | 2007-10-03 | 2009-04-23 | Japan Aerospace Exploration Agency | 電動垂直離着陸機の制御方法 |
US8690096B2 (en) * | 2009-06-04 | 2014-04-08 | Alberto Alvarez-Calderon F. | Aircraft with dual flight regimes |
FR2959208B1 (fr) * | 2010-04-22 | 2012-05-25 | Eurl Jmdtheque | Engin gyropendulaire a propulsion compensatoire et collimation de gradient fluidique multi-milieux multimodal a decollage et atterrissage vertical |
US9132915B2 (en) * | 2010-05-07 | 2015-09-15 | Ohio Univeristy | Multi-modal vehicle |
BR112013001425A2 (pt) | 2010-07-19 | 2016-05-31 | Zee Aero Inc | aeronave e método para voar uma aeronave e vtol |
US8579227B2 (en) * | 2011-01-24 | 2013-11-12 | J. Kellogg Burnham | Vertical and horizontal flight aircraft “sky rover” |
TWI538852B (zh) | 2011-07-19 | 2016-06-21 | 季航空股份有限公司 | 個人飛機 |
AU2014202607B2 (en) | 2011-07-19 | 2016-05-12 | Wisk Aero Llc | Personal aircraft |
US9550577B1 (en) * | 2014-06-26 | 2017-01-24 | Amazon Technologies, Inc. | Electricity generation in automated aerial vehicles |
US10364024B2 (en) * | 2016-10-18 | 2019-07-30 | Kitty Corporation | Multicopter with angled rotors |
-
2012
- 2012-07-18 TW TW101125915A patent/TWI538852B/zh not_active IP Right Cessation
- 2012-07-19 CN CN201280045400.3A patent/CN103796917B/zh not_active Expired - Fee Related
- 2012-07-19 AU AU2012283923A patent/AU2012283923B2/en not_active Ceased
- 2012-07-19 US US13/553,438 patent/US8485464B2/en active Active
- 2012-07-19 WO PCT/US2012/047467 patent/WO2013013084A1/en active Application Filing
- 2012-07-19 EP EP12815339.2A patent/EP2734444A4/en not_active Withdrawn
- 2012-07-19 BR BR112014001325A patent/BR112014001325A2/pt not_active IP Right Cessation
- 2012-07-19 JP JP2014521800A patent/JP5676824B2/ja not_active Expired - Fee Related
- 2012-07-19 KR KR1020147003769A patent/KR101502290B1/ko active IP Right Grant
- 2012-07-19 CA CA2841315A patent/CA2841315C/en not_active Expired - Fee Related
- 2012-07-19 KR KR1020157001999A patent/KR20150023061A/ko not_active Application Discontinuation
-
2013
- 2013-06-30 US US13/931,954 patent/US9242738B2/en active Active
-
2014
- 2014-01-06 IL IL230343A patent/IL230343A/en active IP Right Grant
- 2014-04-24 IL IL232257A patent/IL232257A0/en unknown
-
2015
- 2015-12-18 US US14/975,130 patent/US10974838B2/en active Active
-
2021
- 2021-03-03 US US17/191,549 patent/US11939071B2/en active Active
-
2024
- 2024-01-25 US US18/423,127 patent/US20240158092A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20150023061A (ko) | 2015-03-04 |
JP2014520726A (ja) | 2014-08-25 |
JP5676824B2 (ja) | 2015-02-25 |
TWI538852B (zh) | 2016-06-21 |
CN103796917A (zh) | 2014-05-14 |
CN103796917B (zh) | 2016-07-06 |
US11939071B2 (en) | 2024-03-26 |
US20130311008A1 (en) | 2013-11-21 |
AU2012283923A1 (en) | 2014-02-27 |
US9242738B2 (en) | 2016-01-26 |
AU2012283923B2 (en) | 2014-03-27 |
NZ621370A (en) | 2015-10-30 |
IL232257A0 (en) | 2014-06-30 |
WO2013013084A1 (en) | 2013-01-24 |
US20200172256A1 (en) | 2020-06-04 |
CA2841315C (en) | 2015-09-22 |
EP2734444A1 (en) | 2014-05-28 |
US20240158092A1 (en) | 2024-05-16 |
KR20140028148A (ko) | 2014-03-07 |
US8485464B2 (en) | 2013-07-16 |
US20210276726A1 (en) | 2021-09-09 |
EP2734444A4 (en) | 2014-11-26 |
US10974838B2 (en) | 2021-04-13 |
IL230343A (en) | 2014-05-28 |
KR101502290B1 (ko) | 2015-03-12 |
CA2841315A1 (en) | 2013-01-24 |
US20130020429A1 (en) | 2013-01-24 |
BR112014001325A2 (pt) | 2017-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI538852B (zh) | 個人飛機 | |
US20180065737A1 (en) | Personal aircraft | |
US20190291860A1 (en) | Vertical take-off and landing aircraft and control method | |
AU2014202607B2 (en) | Personal aircraft | |
AU2011282250B2 (en) | Personal aircraft | |
NZ621370B2 (en) | Personal aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |