TW201311838A - 光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法 - Google Patents

光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法 Download PDF

Info

Publication number
TW201311838A
TW201311838A TW101120720A TW101120720A TW201311838A TW 201311838 A TW201311838 A TW 201311838A TW 101120720 A TW101120720 A TW 101120720A TW 101120720 A TW101120720 A TW 101120720A TW 201311838 A TW201311838 A TW 201311838A
Authority
TW
Taiwan
Prior art keywords
hydrazine
coordinated
absorbing layer
coating liquid
forming
Prior art date
Application number
TW101120720A
Other languages
English (en)
Inventor
Masaru Kuwahara
Koichi Misumi
Hidenori Miyamoto
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Publication of TW201311838A publication Critical patent/TW201311838A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一種光吸收層形成用塗佈液,其係使用在CZTS系太陽能電池之光吸收層的形成之塗佈液,其係將(A)聯胺配位Cu硫屬化物錯合物成分、(B)聯胺配位Sn硫屬化物錯合物成分、及(C)聯胺配位Zn硫屬化物錯合物成分溶解於二甲基亞碸而成。

Description

光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法
本發明係關於光吸收層形成用塗佈液及光吸收層形成用塗佈液的製造方法。
本申請案係根據2011年6月10日於美國提出申請之美國專利申請第13/157,923號主張優先權,並在此援引該內容。
近年來,由於對環境保護之考量而逐漸提高對太陽能電池之注意,當中,作為光電轉換效率高的薄膜太陽能電池之黃銅礦系太陽能電池、或是將黃銅礦系太陽能電池中所使用之銦等的稀有金屬取代為其他元素之CZTS系太陽能電池,係特別受到矚目,現階段其研發活動乃積極地進行著。
黃銅礦系太陽能電池,為將由黃銅礦系(黃銅礦系)材料所構成之光吸收層成膜於基板上所形成之太陽能電池。黃銅礦系材料的代表性元素,有銅(Cu)、銦(In)、鎵(Ga)、硒(Se)及硫(S)等,光吸收層的代表性者,有Cu(In,Ga)Se2和Cu(In,Ga)(Se,S)2等,其分別略稱為CIGS、CIGSS等。此外,近來係有人探討將稀有金屬的銦取代為例如銅(Cu)、鋅(Zn)、錫(Sn)、硒(Se)及硫(S)而成之CZTS系太陽能電池,光吸收層的代表性者,有Cu2ZnSnSe4、Cu2ZnSnS4、Cu2ZnSn(S,Se)4等。
第1圖係顯示黃銅礦系太陽能電池或CZTS系太陽能電池的一例之剖面示意圖。
如第1圖所示,黃銅礦系太陽能電池或CZTS系太陽能電池,係於基板2上,依序層合第1電極3、CIGS或CZTS層(光吸收層)4、緩衝層5、i-ZnO層6及第2電極7而概略地構成。緩衝層,為人所知者例如有CdS層、ZnS層、或InS層等。
於第1電極3及第2電極7上分別接合有端子,於端子上連接有配線。此般黃銅礦系或CZTS系太陽能電池1,朝著箭頭A的方向入射之光,由CIGS或CZTS層4所吸收,藉此產生電動勢而使電流朝著箭頭B的方向流通。
第2電極7的表面,以例如由MgF2層所構成之抗反射膜層8所覆蓋而加以保護。
使CIGS或CZTS層4成膜之方法,為人所知者有濺鍍法或塗佈法等方法。然而,當使用濺鍍法時,會導致裝置的規模增大,使良率惡化,故仍需精心研究可相對低成本地製造之塗佈法。
塗佈法,一般是將Cu、In、Ga、Se、及S等元素溶解於特定的溶劑以調製出塗佈液,並使用旋轉塗佈法或浸漬法等將該塗佈液塗佈於基板上,進行燒結而形成CIGS層。
調製塗佈液之方法,為人所知者有使用聯胺作為溶劑之方法,以及不使用聯胺而是添加胺類作為溶解促進劑之 方法(參考專利文獻1及2)。
[先前技術文獻] [專利文獻]
[專利文獻1]美國專利第7094651號說明書
[專利文獻2]美國專利第7517718號說明書
然而,當採用使用聯胺作為塗佈溶劑之方法作為調製塗佈液之方法時,由於聯胺所具有之化學特性(爆炸性)的問題,以往既已提到製程的安全性存在著問題。
此外,前述塗佈液,由於是金屬分散系塗佈液,所以其保存穩定性存在著問題。再者,必須特別考慮到用以保持金屬分散之塗佈裝置,所以塗佈裝置的選擇自由度低。
在此背景下,係期望一種可確保製程的安全性且保存穩定性長之塗佈溶液,但目前仍未能提供有效且適當者。
為了解決上述課題,本發明係採用下列構成。
本發明之光吸收層形成用塗佈液,其係使用在CZTS系太陽能電池之光吸收層的形成之塗佈液,其特徵為:將(A)聯胺配位Cu硫屬化物錯合物成分、(B)聯胺配位Sn硫屬化物錯合物成分、及(C)聯胺配位Zn硫屬化物錯合物成分溶解於二甲基亞碸而成。
此外,本發明之光吸收層形成用塗佈液的製造方法,其係使用在黃銅礦系或CZTS系太陽能電池之光吸收層的形成之塗佈液的製造方法,其特徵係具有:製備由溶解有聯胺配位Cu硫屬化物錯合物之二甲基亞碸所構成之第1溶液之步驟;將聯胺配位Sn硫屬化物錯合物溶解於二甲基亞碸以調製第2溶液之步驟;將聯胺配位Zn硫屬化物錯合物溶解於二甲基亞碸以調製第3溶液之步驟;以及混合前述第1溶液、前述第2溶液、及前述第3溶液之步驟。
本發明中,並非將Cu、Sn、及Zn元素溶解於聯胺,而是溶解於二甲基亞碸(DMSO),所以於塗佈時不需使用危險的聯胺而能夠進行,因此可確保光吸收層之形成製程的安全性。此外,本發明之光吸收層形成用塗佈液,由於聯胺配位金屬硫屬化物錯合物均一地溶解於溶劑中,所以可提升其保存穩定性,而提升塗佈裝置的選擇自由度。
以下說明本發明之光吸收層形成用塗佈液。
本實施形態之使用在CZTS系太陽能電池之光吸收層的形成之光吸收層形成用塗佈液,係將(A)聯胺配位Cu硫屬化物錯合物成分、(B)聯胺配位Sn硫屬化物錯合物成分、及(C)聯胺配位Zn硫屬化物錯合物成分溶解於二甲基 亞碸(DMSO)而得。
該光吸收層形成用塗佈液中,較佳係不含胺系溶劑。
聯胺配位Cu硫屬化物錯合物成分(A),係將金屬Cu與硫族元素溶解於添加有聯胺之DMSO,並將不良溶劑添加於所得之溶液來進行再結晶而得。
具體而言,例如在聯胺的存在下,在DMSO中使金屬Cu與硫族元素進行反應,並在室溫下攪拌約3~7天。然後對所得之溶液,在氮氣流通下去除聯胺並過濾。將不良溶劑添加於濾液來進行再結晶,藉此可得黑色的聯胺配位Cu硫屬化物錯合物。
此外,聯胺配位Cu硫屬化物錯合物成分(A),亦可在聯胺的存在下,在二甲基亞碸中使金屬Cu與硫族元素進行反應,並進行濃縮及過濾而得。
具體而言,可在金屬Cu、與2~4當量的Se、與在DMSO中相對於金屬Cu而言為2當量之聯胺的存在下,在室溫下攪拌約3天~1星期後,於減壓條件下去除殘留聯胺,然後進行濃縮並過濾所得之濃縮液,如此亦可調製出聯胺配位Cu-Se錯合物/DMSO溶液。
硫族元素可使用Se或S,但較佳為使用Se。此外,Cu不僅是金屬Cu,例如亦可使用硒化銅(Cu2Se)。不良溶劑較佳係使用醇系溶劑,尤佳為使用異丙醇(IPA)。
此外,聯胺可為無水聯胺,但較佳為使用聯胺單水合物或含有水的聯胺(以下稱為「含水聯胺」)。無水聯胺會與硒激烈地反應,但聯胺單水合物或含水聯胺會與硒緩慢 地反應,故就合成上的處理而言較為容易。含水聯胺中之水的含量,較佳為63質量%以上。
Cu與硫族元素的量,相對於1mol的Cu而言,較佳係使用約2~4mol的硫族元素,此外,相對於此等,較佳係使用添加有約2mol的聯胺之DMSO來進行溶解。
以化學式來表示上述聯胺配位Cu硫屬化物錯合物的生成時,係如下列式(1)所示。
接著說明聯胺配位Sn硫屬化物錯合物成分(B)。本實施形態中所使用之聯胺配位Sn硫屬化物錯合物成分(B),必須溶解於DMSO來生成。於生成聯胺配位Sn硫屬化物錯合物時,例如在將金屬Sn與硫族元素添加於聯胺得到粗製品後,以DMSO萃取粗製品,並將不良溶劑添加於所得之溶液,然後進行再沉澱而得。
具體而言,將金屬Sn與硫族元素添加於聯胺,並在室溫下攪拌約1天~3天。然後對所得之溶液,在氮氣流通下去除聯胺而得粗製品。然後以DMSO萃取所得之粗製品。
接著,例如以0.2μm的PTFE過濾器來過濾萃取粗製品後之萃取液,然後進行濃縮。接著將不良溶劑添加於 濃縮液並進行再沉澱,去除上澄液並以IPA等來洗淨沉澱物並乾燥,而得到黃褐色的聯胺配位Sn硫屬化物錯合物。
此外,聯胺配位Sn硫屬化物錯合物成分(B)亦可藉由下列方法來調製。將金屬Sn與3當量的Se添加於聯胺中(5ml),並在室溫下攪拌約1天~3天後,添加IPA並攪拌而使黃色生成物沉澱,然後去除上澄液並以IPA等來洗淨沉澱物並乾燥,而得到粗製品。
接著以DMSO從粗製品中萃取出生成物(80℃,1hr)並進行濃縮,然後過濾所得之濃縮液,如此亦可調製出聯胺配位Sn-Se錯合物/DMSO溶液。
以化學式來表示上述聯胺配位Sn硫屬化物錯合物的生成時,係如下列式(2)所示。
硫族元素可使用Se或S,但較佳為使用Se。此外,Sn不僅是金屬Sn,例如亦可使用硒化錫(SnSe,SnSe2)。此外,不良溶劑較佳係使用醇系溶劑,尤佳為使用IPA。此外,聯胺可為無水聯胺,但較佳為使用聯胺單水合物或含水聯胺。Sn與硫族元素的量之比,相對於1mol的Sn而言,較佳係使用3mol的硫族元素。
接著說明聯胺配位Zn硫屬化物錯合物。本實施形態 中所使用之Zn硫屬化物錯合物,必須溶解於DMSO來生成。於生成聯胺配位Zn硫屬化物錯合物時,例如在聯胺的存在下將Zn或ZnSe與硫族元素混合而得到粗製品後,以二甲基亞碸萃取該粗製品而得。
具體而言,將硒化鋅與硫族元素在DMSO中添加聯胺,並在室溫下攪拌約3~7天。然後對所得之溶液,在氮氣流通下去除聯胺而得粗製品(反應中間液)。然後以DMSO萃取所得之粗製品。
接著,例如以0.2μm的PTFE過濾器來過濾萃取粗製品後之萃取液,然後進行濃縮。接著過濾所得之濃縮液,藉此可得到聯胺配位Zn硫屬化物錯合物。
以化學式來表示上述聯胺配位Zn硫屬化物錯合物的生成時,係如下列式(3)所示。
硫族元素可使用Se或S,但較佳為使用Se。此外,Zn不僅為硒化鋅,例如亦可使用金屬Zn。此外,聯胺可為無水聯胺,但較佳為使用聯胺單水合物或含水聯胺。再者,反應溶劑亦可使用聯胺來取代DMSO。硒化鋅(ZnSe)與硫族元素的量之比,相對於1mol的硒化鋅而言,較佳係使用2mol以上,尤佳為使用3~4mol的硫族元素。
此外,本發明之光吸收層形成用塗佈液中,為了增大 晶粒,較佳亦添加聯胺配位Sb硫屬化物錯合物。
於生成聯胺配位Sb硫屬化物錯合物時,例如在將硒化銻(Sb2Se3)與硫族元素添加於聯胺得到粗製品後,以DMSO萃取粗製品,並將不良溶劑添加於所得之溶液,進行再結晶而得。
具體而言,將硒化銻與硫族元素添加於聯胺,並在室溫下攪拌約3~7天。然後對所得之溶液,在氮氣流通下去除聯胺而得粗製品。然後以DMSO萃取所得之粗製品。
接著,例如以0.2μm的PTFE過濾器來過濾萃取粗製品後之萃取液,將不良溶劑添加於過濾液並進行再沉澱,而得到黑色的聯胺配位Sb硫屬化物錯合物。
以化學式來表示上述聯胺配位Sb硫屬化物錯合物的生成時,係如下列式(4)所示。
硫族元素可使用Se或S,但較佳為使用Se。此外,不良溶劑較佳係使用醇系溶劑,尤佳為使用IPA。此外,聯胺可為無水聯胺,但較佳為使用聯胺單水合物或含水聯胺。硒化銻(Sb2Se3)與硫族元素的量之比,相對於1mol的硒化銻而言,較佳係使用2mol以上的硫族元素。
本實施形態中,係使用硒化銻來說明,但亦可使用單體的銻來取代硒化銻,此時,銻(Sb)與硫族元素的量之 比,相對於1mol的銻而言,較佳係使用4mol以上的硫族元素。
接著說明光吸收層形成用塗佈液的製造方法。
首先將DMSO添加於上述聯胺配位Cu硫屬化物錯合物,室溫下攪拌一晚,藉此得到溶解有聯胺配位Cu硫屬化物錯合物之DMSO溶液(第1溶液)。
此外,將DMSO添加於上述聯胺配位Sn硫屬化物錯合物,在80~120℃的溫度中攪拌約1小時,藉此得到溶解有聯胺配位Sn硫屬化物錯合物之DMSO溶液(第2溶液)。
此外,將DMSO添加於上述聯胺配位Zn硫屬化物錯合物,在80~120℃的溫度中攪拌約1小時,藉此得到溶解有聯胺配位Zn硫屬化物錯合物之DMSO溶液(第3溶液)。
再者,可因應必要,將DMSO添加於上述聯胺配位Sb硫屬化物錯合物,室溫下攪拌一晚,藉此得到溶解有聯胺配位Sb硫屬化物錯合物之DMSO溶液(第4溶液)。
此外,可因應必要,將2當量的Se添加於Na2Se,於DMSO中,在室溫下攪拌3~7天,得到均一的溶液。
本實施形態中使用Na之理由在於提升光吸收層的膜質(晶粒大小或結晶品質),亦可不使用該Na溶液。
然後將溶解有聯胺配位Cu硫屬化物錯合物之DMSO溶液、溶解有聯胺配位Sn硫屬化物錯合物之DMSO溶液、溶解有聯胺配位Zn硫屬化物錯合物之DMSO溶液混 合。
以上,可製造出本實施形態之光吸收層形成用塗佈液。
於本實施形態之光吸收層形成用塗佈液中,可添加前述第4溶液。此外,於本實施形態之光吸收層形成用塗佈液中,可添加前述Na溶液。
本實施形態之光吸收層形成用塗佈液,由於使用DMSO作為溶劑,並且塗佈液本身不含聯胺,所以在形成光吸收層時,不會有聯胺所具有之化學特性(爆炸性)的問題,可提升製程的安全性。
此外,由於聯胺配位金屬硫屬化物錯合物均一地溶解於溶劑中,所以可提升其保存穩定性,而提升塗佈裝置的選擇自由度。
此外,本實施形態之光吸收層形成用塗佈液,並未使用胺類作為溶解促進劑。當使用胺類作為溶解促進劑時,胺類會殘存於成膜後的裝置中,其結果導致PV特性的劣化。
此外,於本實施形態之光吸收層形成用塗佈液中,在不損及本發明的效果之範圍內,可因應必要,進一步適當地添加具有混合性之添加劑,例如用以調整黏度之有機溶劑、用以改良膜的性能之加成性樹脂、用以提升塗佈性之界面活性劑、穩定劑等而含有。
接著說明本實施形態之CZTS系太陽能電池的製造方法。
本實施形態之CZTS系太陽能電池的製造方法,係由:將第1電極形成於基板上之步驟、將光吸收層形成於第1電極上之步驟、將緩衝層形成於光吸收層上之步驟、以及將第2電極形成於緩衝層上之步驟所概略地構成。
當中,除了將光吸收層形成於第1電極上之步驟之外,其他可使用以往所知之適當的方法來形成。例如在將第1電極形成於基板上時,可將氮氣用作為濺鍍氣體,並藉由濺鍍法使例如Mo層來成膜。此外,緩衝層,例如可形成為CdS層,且例如可使用化學浴沉積法來成膜。再者,形成第2電極時,可使用適當的材料成膜作為透明電極。
形成光吸收層時,首先將上述光吸收層形成用塗佈液塗佈於第1電極(基體)上。塗佈的方法,可使用旋轉塗佈法、浸泡塗佈法、刮刀(濕膜塗佈)法、淋幕/狹縫鑄膜法、印刷法、噴霧法等。
塗佈條件,可因應期望的膜厚、材料的濃度等來適當地設定。
例如當使用旋轉塗佈法時,係將基體設置在旋轉塗佈機,並將塗佈液塗佈。此時之塗佈條件,可因應所欲形成之膜厚來適當地設定,例如可在旋轉速度300~3000rpm中維持10~60秒間來形成。
此外,當使用浸泡法時,可藉由將基體浸漬在裝有塗佈液之容器中來進行,浸漬次數可進行1次或複數次。
將光吸收層形成用塗佈液塗佈於基體上後,可進行真 空乾燥。
接著在將塗佈液塗佈於基體上後,燒結基體來形成光吸收層。
燒結條件,可因應期望的膜厚、材料的種類等來適當地設定。例如可構成為在加熱板上進行軟烤(前燒結)後,再於烘烤爐中進行燒結(退火)之兩階段步驟。
此時,例如將基體配置在加熱板上並予以保持後,將加熱板的溫度設為100~400℃並進行1~30分鐘的軟烤,然後將烘烤爐的內部溫度上升至300~600℃並保持1~180分鐘來進行退火。
藉此使光吸收層硬化。
上述燒結的各溫度,僅顯示出條件之一,並不限定於此。例如,加熱板的溫度可階段性地提高,此等加熱步驟亦可在手套箱中的惰性氣體環境中進行。
然後測定光吸收層的膜厚,當較期望的膜厚更薄時,係再次將光吸收層形成用塗佈液塗佈基體上並進行燒結。藉由重覆進行此等步驟,可得到期望厚度的光吸收層。
以上,可製造出本實施形態之CZTS系太陽能電池。藉由本實施形態的製造方法所製造之CZTS系太陽能電池,由於在光吸收層形成用塗佈液中不含聯胺,所以可提升製程的安全性。此外,由於光吸收層形成用塗佈液的保存穩定性長,所以對於製程所造成之限制少。
以上係根據實施形態來說明本發明,但本發明並不限定於上述實施形態,在不脫離該主旨之範圍內,當然可進 行種種變更。
例如,上述實施形態中,聯胺配位Cu硫屬化物錯合物,係將Cu與硫族元素溶解於添加有聯胺之DMSO中,並將不良溶劑添加於所得之溶液進行再結晶而得,但並不限定於此,可為任意的聯胺配位Cu硫屬化物錯合物。此外,由於最終只需製備溶解有聯胺配位Cu硫屬化物錯合物之DMSO即可,因此,例如將Cu與硫族元素溶解於添加有聯胺之DMSO後,去除殘留的聯胺所得之溶液,亦可直接應用。
尤其如上述實施形態般,由於聯胺配位Cu硫屬化物錯合物對DMSO之溶解性極佳,故可藉由使用該錯合物,來調製出精度較以往更佳之光吸收層形成用塗佈液。
[實施例]
以下係說明本發明之實施例,但本發明並不受到本實施例所限制。
(實施例1)
實施例1中,係以下列方式來調製光吸收層形成用塗佈液。
在相對於金屬Cu而言為2當量之聯胺(378μl,12.05mmol)的存在下,於2~4當量的Se(4當量:1903.2mg,24.10mmol)與DMSO中(10ml),在室溫下攪拌金屬Cu(383.0mg,6.03mmol)約3天~1星期後,在氮氣流 通下去除殘留的聯胺,並以0.2um的PTFE過濾器來過濾。
將IPA(合計20ml)緩慢添加於過濾液進行再結晶,而得到黑色的聯胺配位Cu-Se錯合物(2424mg)。
此外,將金屬Sn(356mg,3.00mmol)與3當量的Se(711mg,9.00mmol)添加於聯胺中(5ml),並在室溫下攪拌約1天~3天後,在氮氣流通下去除殘留的聯胺,而得粗製品。然後以DMSO萃取生成物(80℃,1hr),以0.2um的PTFE過濾器來過濾萃取液,接著添加IPA並攪拌而使深紅色的生成物沉澱,去除上澄液並以IPA洗淨沉澱物並乾燥,而得到黃褐色的聯胺配位Sn-Se錯合物(1016mg)。
在相對於ZnSe而言為2~4當量之聯胺(3當量:12.07mmol)的存在下,於DMSO中(8ml),在室溫下攪拌硒化鋅(ZnSe,460mg,4.02mmol)與2~6當量的Se(5當量:1588mg,20.11mmol)約3天~1星期後,在氮氣流通下去除殘留的聯胺,而得反應中間液。在室溫~加溫條件下,以DMSO對此進行萃取(加溫時:80℃,1hr),以0.2um的PTFE過濾器來過濾萃取液並在減壓條件下進行濃縮,然後過濾所得之濃縮液而調製出聯胺配位Zn前驅物溶液。
然後將聯胺配位Cu-Se錯合物、聯胺配位Sn-Se錯合物、聯胺配位Zn-Se錯合物分別溶解於DMSO,而調製出聯胺配位Cu-Se錯合物/DMSO溶液(濃度:Cu2Se換算為78.4mg/ml)(以下稱為「溶液A」)、聯胺配位Sn-Se錯合 物/DMSO溶液(濃度:SnSe2換算為178.2mg/ml)(以下稱為「溶液B」)及聯胺配位Zn-Se錯合物/DMSO溶液(濃度:ZnSe換算為12.4mg/ml)(以下稱為「溶液C」)。
接著將溶液A(1.904ml)、溶液B(1.255ml)及溶液C(14.400ml)混合,而調製出CZTS/DMSO前驅物溶液。
塗佈液的塗佈方法,係採用浸泡法,燒結條件,是在加熱板上於300℃中進行1分鐘的軟烤後,將加熱板加蓋並在540℃中進行10分鐘的退火。
第2圖係顯示成膜後的XRD(X射線繞射測定)之結果。
在2θ=約27°、45°及53~54°中,分別確認到相當於CZTS的(112)面、(220)/(204)面、(312)/(116)面之強峰值。此等值與藉由濺鍍法(R.A.Wibowo et al.,Journal of Physics and Chemistry of Solids,68,1908-1913(2007))或同步蒸鍍法(G.S.Babu et al.,Journal of Physics D:Applied Physics,41,205305(2008)及G.S.Babu et al.,Semiconductor Science and Technology,23,085023(2008))等之真空法所報告之XRD測定結果極為一致,故可確認到CZTS膜的生成。
(實施例2)
以與實施例1相同之方法,得到聯胺配位Cu-Se錯合物、聯胺配位Sn-Se錯合物、及聯胺配位Zn-Se錯合物。然後將聯胺配位Cu-Se錯合物、聯胺配位Sn-Se錯合物、 聯胺配位Zn-Se錯合物分別溶解於DMSO,而調製出聯胺配位Cu-Se錯合物/DMSO溶液(濃度:Cu2Se換算為76.3mg/ml)(以下稱為「溶液D」)、聯胺配位Sn-Se錯合物/DMSO溶液(濃度:SnSe2換算為98.4mg/ml)(以下稱為「溶液E」)及聯胺配位Zn-Se錯合物/DMSO溶液(濃度:ZnSe換算為15.9mg/ml)(以下稱為「溶液F」)。
接著將溶液D(4.412ml)、溶液E(5.00ml)及溶液F(14.084ml)混合,而調製出CZTS/DMSO前驅物溶液(a)(在300℃/1min+500℃/5min的條件下進行燒結後所殘留之固體成分量為6.95mg/ml)。
分餾出所得之CZTS/DMSO前驅物溶液(a)15ml,並藉由蒸餾來餾除溶劑而得CZTS固體成分混合物。將DMSO 5ml添加於此,得到濃縮CZTS/DMSO溶液(在300℃/1min+500℃/5min的條件下進行燒結後所殘留之固體成分量為100.40mg/ml)。
塗佈液的塗佈方法,係採用旋轉塗佈法,燒結條件,是在加熱板上於375℃中進行1分鐘的軟烤後,將加熱板加蓋並在540℃中進行10分鐘的退火。
第3圖係顯示成膜後的XRD(X射線繞射測定)之結果。
與實施例1相同,在2θ=約27°、45°及53~54°中,分別確認到相當於CZTS的(112)面、(220)/(204)面、(312)/(116)面之強峰值。此等值與藉由濺鍍法(R.A.Wibowo et al.,Journal of Physics and Chemistry of Solids, 68,1908-1913(2007))或同步蒸鍍法(G.S.Babu et al.,Journal of Physics D:Applied Physics,41,205305(2008)及G.S.Babu et al.,Semiconductor Science and Technology,23,085023(2008))等之真空法所報告之XRD測定結果極為一致,故可確認到CZTS膜的生成。
此外,於上述CZTS膜成膜後,藉由CBD法(Chemical Bath Deposition:化學浴沉積法)使CdS層成膜,然後藉由濺鍍法使ZnO及透明電極層(ITO)成膜於其上層。所得之膜之依據電子顯微鏡(SEM)所形成之剖面圖,係如第4圖所示。
(實施例3)
以與實施例1相同之方法,得到聯胺配位Cu-Se錯合物、聯胺配位Sn-Se錯合物、及聯胺配位Zn-Se錯合物。然後將聯胺配位Cu-Se錯合物、聯胺配位Sn-Se錯合物、聯胺配位Zn-Se錯合物溶解於DMSO,而調製出光吸收層形成用塗佈液。
該塗佈液,係以使混合莫耳比成為Cu/(Zn+Sn)=0.81、Zn/Sn=1.22之方式來調製。
塗佈液的塗佈方法,係採用旋轉塗佈法,燒結條件,是在加熱板上於325℃中進行1分鐘的軟烤後,在450℃中進行10分鐘的退火。
此外,係從基板依序成為基板、Mo層、CZTS層(光吸收層)、CdS層、ZnO層、ITO層、Ni-Al層、MgF2層 之方式來製造太陽能電池。
如此製造出之太陽能電池的裝置評估的結果,係如第1表所示。
第1表中,FF是指曲線因子,為以(開放電壓×短路電流)除上太陽能電池的最大輸出之值。Voc是指開放電壓,為在光照射時使端子開放時所得之電壓,並顯示出太陽能電池的最大電壓。Jsc是指短路電流,為在光照射時使端子短路時所得之電流,並顯示出太陽能電池的最大電流。此外,Rs是指串聯電阻,Rsh是指並聯電阻。
從第1表的結果中,可確認到使用本發明之塗佈液所製造之太陽能電池,係顯示出良好特性。
產業上之可應用性:
本發明中,並非將Cu、Sn、及Zn元素溶解於聯胺,而是溶解於二甲基亞碸(DMSO),所以於塗佈時不需使用危險的聯胺而能夠進行,因此可確保光吸收層之形成製程的安全性。此外,本發明之光吸收層形成用塗佈液,由於聯胺配位金屬硫屬化物錯合物均一地溶解於溶劑中,所以可提升其保存穩定性,而提升塗佈裝置的選擇自由度。因 此,本發明在產業上極為有用。
1‧‧‧太陽能電池
2‧‧‧基板
3‧‧‧第1電極
4‧‧‧CZTS層(光吸收層)
5‧‧‧緩衝層
6‧‧‧i-ZnO層
7‧‧‧第2電極
第1圖係顯示黃銅礦系或CZTS系太陽能電池的一例之剖面示意圖。
第2圖為本申請案實施例1中之成膜後的X射線繞射測定之結果。
第3圖為本申請案實施例2中之成膜後的X射線繞射測定之結果。
第4圖為本申請案實施例2中所成膜之CZTS層之依據電子顯微鏡(SEM)所形成之剖面圖。

Claims (13)

  1. 一種光吸收層形成用塗佈液,其係使用在CZTS系太陽能電池之光吸收層的形成之塗佈液,其特徵為:將(A)聯胺配位Cu硫屬化物錯合物成分、(B)聯胺配位Sn硫屬化物錯合物成分、及(C)聯胺配位Zn硫屬化物錯合物成分溶解於二甲基亞碸而成。
  2. 如申請專利範圍第1項之光吸收層形成用塗佈液,其中前述光吸收層形成用塗佈液不含胺系溶劑。
  3. 如申請專利範圍第1或2項之光吸收層形成用塗佈液,其中前述(A)聯胺配位Cu硫屬化物錯合物成分,係在聯胺的存在下,在二甲基亞碸中使Cu或Cu2Se與硫族元素進行反應,並將不良溶劑添加於所得之溶液、或是進行濃縮及過濾而得。
  4. 如申請專利範圍第1至3項中任一項之光吸收層形成用塗佈液,其中前述(B)聯胺配位Sn硫屬化物錯合物成分,係在將選自由Sn、SnSe及SnSe2所組成之群組的至少1種與硫族元素添加於聯胺得到粗製品後,以二甲基亞碸萃取該粗製品而得。
  5. 如申請專利範圍第1至4項中任一項之光吸收層形成用塗佈液,其中前述(C)聯胺配位Zn硫屬化物錯合物成分,係在聯胺的存在下混合Zn或ZnSe與硫族元素得到粗製品後,以二甲基亞碸萃取該粗製品而得。
  6. 如申請專利範圍第3項之光吸收層形成用塗佈液,其中前述不良溶劑為醇系溶劑。
  7. 如申請專利範圍第3至6項中任一項之光吸收層形成用塗佈液,其中前述硫族元素為硫或硒。
  8. 一種光吸收層形成用塗佈液的製造方法,其係使用在黃銅礦系或CZTS系太陽能電池之光吸收層的形成之塗佈液的製造方法,其特徵係具有:製備由溶解有聯胺配位Cu硫屬化物錯合物之二甲基亞碸所構成之第1溶液之步驟;將聯胺配位Sn硫屬化物錯合物溶解於二甲基亞碸以調製第2溶液之步驟;將聯胺配位Zn硫屬化物錯合物溶解於二甲基亞碸以調製第3溶液之步驟;以及混合前述第1溶液、前述第2溶液、及前述第3溶液之步驟。
  9. 如申請專利範圍第8項之光吸收層形成用塗佈液的製造方法,其中在聯胺的存在下,在二甲基亞碸中使Cu或Cu2Se與硫族元素進行反應,並將不良溶劑添加於所得之溶液、或是進行濃縮及過濾,藉此得到聯胺配位Cu硫屬化物錯合物。
  10. 如申請專利範圍第8或9項之光吸收層形成用塗佈液的製造方法,其中在將選自由Sn、SnSe及SnSe2所組成之群組的至少1種與硫族元素添加於聯胺得到粗製品後,以二甲基亞碸萃取該粗製品,藉此得到前述聯胺配位Sn硫屬化物錯合物。
  11. 如申請專利範圍第8至10項中任一項之光吸收 層形成用塗佈液的製造方法,其中在聯胺的存在下混合Zn或ZnSe與硫族元素得到粗製品後,以二甲基亞碸萃取該粗製品,藉此得到前述聯胺配位Zn硫屬化物錯合物。
  12. 如申請專利範圍第9項之光吸收層形成用塗佈液的製造方法,其中前述不良溶劑為醇系溶劑。
  13. 如申請專利範圍第9至12項中任一項之光吸收層形成用塗佈液的製造方法,其中前述硫族元素為硫或硒。
TW101120720A 2011-06-10 2012-06-08 光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法 TW201311838A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/157,923 US20120313044A1 (en) 2011-06-10 2011-06-10 Coating solution for forming light-absorbing layer, and method for producing coating solution for forming light-absorbing layer

Publications (1)

Publication Number Publication Date
TW201311838A true TW201311838A (zh) 2013-03-16

Family

ID=47292365

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101120720A TW201311838A (zh) 2011-06-10 2012-06-08 光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法

Country Status (7)

Country Link
US (2) US20120313044A1 (zh)
EP (1) EP2706577A4 (zh)
JP (1) JPWO2012169621A1 (zh)
KR (1) KR20140027396A (zh)
CN (1) CN103597605A (zh)
TW (1) TW201311838A (zh)
WO (1) WO2012169621A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368660B2 (en) * 2011-08-10 2016-06-14 International Business Machines Corporation Capping layers for improved crystallization
EP3067950A4 (en) * 2013-11-07 2017-06-07 Sekisui Chemical Co., Ltd. Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell
CN106098845A (zh) * 2016-06-29 2016-11-09 郭舒洋 一种高结晶度铜锌锡硫薄膜的制备方法
JP2019087745A (ja) * 2017-11-08 2019-06-06 東京応化工業株式会社 均一系塗布液及びその製造方法
CN108588838B (zh) * 2018-03-23 2019-12-06 桂林电子科技大学 一种制备具有高热电性能的SnSe多晶块体的方法
KR102512512B1 (ko) * 2020-09-03 2023-03-22 한국과학기술연구원 은 원소가 혼입된 찰코파이라이트 화합물계 박막 및 그 제조 방법
CN113979468B (zh) * 2021-12-09 2023-05-09 山东中鸿新能源科技有限公司 一种太阳能电池组件用CZTS(Se)系纳米粉体的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9711799D0 (en) * 1997-06-07 1997-08-06 Vecht Aron Preparation of sulphides and selenides
US6875661B2 (en) 2003-07-10 2005-04-05 International Business Machines Corporation Solution deposition of chalcogenide films
CN100490205C (zh) * 2003-07-10 2009-05-20 国际商业机器公司 淀积金属硫族化物膜的方法和制备场效应晶体管的方法
US7517718B2 (en) 2006-01-12 2009-04-14 International Business Machines Corporation Method for fabricating an inorganic nanocomposite
US20080314738A1 (en) * 2007-06-19 2008-12-25 International Business Machines Corporation Electrolytic Device Based on a Solution-Processed Electrolyte
JP5511320B2 (ja) * 2008-11-11 2014-06-04 京セラ株式会社 薄膜太陽電池の製法
JP2011091228A (ja) * 2009-10-23 2011-05-06 Fujifilm Corp 光導変換半導体層の製造方法
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film

Also Published As

Publication number Publication date
US20120313044A1 (en) 2012-12-13
EP2706577A4 (en) 2015-04-15
CN103597605A (zh) 2014-02-19
JPWO2012169621A1 (ja) 2015-02-23
EP2706577A1 (en) 2014-03-12
KR20140027396A (ko) 2014-03-06
US20150108416A1 (en) 2015-04-23
WO2012169621A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
TW201311838A (zh) 光吸收層形成用塗佈液,及光吸收層形成用塗佈液的製造方法
KR101333816B1 (ko) 페이스트 또는 잉크를 이용한 구리아연주석황화계 또는 구리아연주석셀렌계 박막의 제조 방법
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
Tian et al. A robust and low-cost strategy to prepare Cu 2 ZnSnS 4 precursor solution and its application in Cu 2 ZnSn (S, Se) 4 solar cells
Jin et al. Preparation of Cu2ZnSnS4-based thin film solar cells by a combustion method
US20120103420A1 (en) CU-IN-ZN-SN-(SE,S)-Based Thin Film for Solar Cell and Preparation Method Thereof
CN108807145B (zh) 一种制备高效铜铟硒和铜铟镓硒薄膜太阳能电池的方法
JP6302546B2 (ja) 高いクラックフリー限界を有するcigsナノ粒子インキ調製物
US9130084B2 (en) Liquid precursor for deposition of copper selenide and method of preparing the same
US20160155867A1 (en) Coating solution for forming light-absorbing layer, and method of producing coating solution for forming light-absorbing layer
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
TW201318967A (zh) 聯胺配位Cu硫屬化物錯合物及其製造方法,光吸收層形成用塗佈液,以及光吸收層形成用塗佈液之製造方法
US9856382B2 (en) Homogeneous coating solution and production method thereof, light-absorbing layer of solar cell and production method thereof, and solar cell and production method thereof
US8992874B2 (en) Method of producing hydrazine-coordinated Cu chalcogenide complex
Akhanda et al. Effect of annealing atmosphere on structural and optical properties of CZTS thin films prepared by spin-coating
US20180248057A1 (en) Preparation of Copper-Rich Copper Indium (Gallium) Diselenide/Disulphide Nanoparticles
JP2014130858A (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
JP2017212404A (ja) 均一系塗布液の製造方法、太陽電池用光吸収層の製造方法、及び太陽電池の製造方法
US20120315210A1 (en) HYDRAZINE-COORDINATED Cu CHALCOGENIDE COMPLEX AND METHOD OF PRODUCING THE SAME
JP2017212398A (ja) 均一系塗布液の製造方法、太陽電池用光吸収層の形成方法、および太陽電池の製造方法
WO2016068155A1 (ja) 均一系塗布液及びその製造方法、太陽電池用光吸収層及びその製造方法、並びに太陽電池及びその製造方法
Cooper et al. LE11 3TU, UK
US20140134792A1 (en) Solution-Processed Metal Selenide Semiconductor using Deposited Selenium Film
US20150125989A1 (en) Method for preparing light-absorbing layer for cis- or cigs-based solar cells, and light-absorbing ink for cis- or cigs-based solar cells