TW201308876A - 用於修改發電機對非線性負載的敏感度之方法及設備 - Google Patents

用於修改發電機對非線性負載的敏感度之方法及設備 Download PDF

Info

Publication number
TW201308876A
TW201308876A TW101113436A TW101113436A TW201308876A TW 201308876 A TW201308876 A TW 201308876A TW 101113436 A TW101113436 A TW 101113436A TW 101113436 A TW101113436 A TW 101113436A TW 201308876 A TW201308876 A TW 201308876A
Authority
TW
Taiwan
Prior art keywords
generator
power amplifier
power
load
impedance
Prior art date
Application number
TW101113436A
Other languages
English (en)
Other versions
TWI473417B (zh
Inventor
Michael Mueller
Michael Lynn Westra
Jeremy Richardson
Zyl Gideon Van
Original Assignee
Advanced Energy Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Energy Ind Inc filed Critical Advanced Energy Ind Inc
Publication of TW201308876A publication Critical patent/TW201308876A/zh
Application granted granted Critical
Publication of TWI473417B publication Critical patent/TWI473417B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一種用於修改負載及發電機間之互動之方法及發電機被說明。該方法包含使用一功率放大器來施加一輸出功率至該負載、控制該輸出功率位準以回應一功率控制設定並調整該功率放大器之傳導角以降低該功率放大器對該負載之阻抗變化之敏感度位準。該發電機包含一補償子系統,耦接至該功率放大器以控制該功率放大器之傳導角以致能該功率放大器之敏感度被調整。

Description

用於修改發電機對非線性負載的敏感度之方法及設備
本發明大體上關於發電機。特別地,但並非有所限定,本發明關於用於修改一發電機及一非線性負載間之互動之方法及設備。
在一些應用中,它係有利於使用具有一來源阻抗之發電機,其係非常不同於會導致最大功率傳送至該負載之來源阻抗。例如,在射頻(RF)產生器範圍內,該來源阻抗常常是不同於該負載阻抗之共軛複數。就史密斯圖(Philip H.Smith於1939年所建立之反射係數圖)而言,這類產生器的來源阻抗係朝向正交於該負載阻抗(例如,對於標準射頻應用而言為50歐姆)之圖形邊緣。所設計的一些射頻(RF)產生器具有這類來源阻抗以提供較具有一電阻式來源阻抗(例如,50歐姆)者不貴且不笨重之產生器。
然而,當該負載阻抗係接近該產生器所設計操作之名目負載阻抗(例如,50歐姆)時,這類設計的一優勢係為該產生器對負載阻抗變化遠較具有匹配至該負載阻抗之電阻式來源阻抗的產生器更敏感。當操作於例如一電漿之非線性負載中時,這類系統之特別困難處係為產生器輸出功率變化會導致負載阻抗變化,且負載阻抗變化會導致產生器輸出功率變化。在一些情況中,該產生器及該非線性負載可在該輸出功率不穩定的結果方式下進行互動。
因此,顯然的在習知技術中具有對一種用於修改一發電機及一非線性負載間之互動之改進方法及設備的需求。
顯示於該些圖式中之本發明所示實施例被總結於下。這些及其它實施例係更完整地說明於該實施方式段落中。然而,要了解到沒有意圖將本發明限制於本發明內容或該實施方式所述形式中。一熟知此項技術之人士可理解到具有許多落在申請專利範圍所示之本發明精神及範圍內之修改例、等效例及替代性構造。
在一些實施例中,本發明特徵可為一發電機,其包含架構來施加輸出功率至一負載以回應一功率控制訊號及一參考訊號之功率放大器、在本實施例中耦接至該功率放大器以依據一功率設定點及該輸出功率來調整功率控制訊號之功率控制系統、以及耦接至該功率放大器以控制該功率放大器之傳導角來致能該功率放大器之敏感度進行調整之補償子系統。
根據本發明一些觀點,本發明特徵可為一種用於降低發電機對一負載之阻抗變化的敏感度之方法。該方法包含使用一功率放大器來施加一輸出功率至該負載、控制該輸出功率位準以回應一功率控制設定並調整該功率放大器傳導角以降低該功率放大器對該負載之阻抗變化之敏感度位準。
在此將這些及其它實施例更詳加說明於下。
本發明各種實施例之了解係經由分析由於發電機及與其連接之非線負載阻抗間之互動所致之發電機輸出功率穩定度能有多少來協助之。圖1A係連接著用以協助這類分析之非線性負載105之發電機100之方塊圖。發電機100包含一功率放大器110,其傳送輸出功率P 115至該非線性負載105。接著,非線性負載105對功率放大器110呈現出一阻抗Z,其實數及虛數成分分別為電阻R 120及電抗X 125。也就是,Z=R+jX。
功率放大器110包含接收一控制訊號C 135之控制輸入端130。控制訊號135被使用於控制功率放大器110所產生之輸出功率115。控制訊號135係由一主功率控制迴路(未示於圖1A中)所產生。
假設回應至該非線性負載105之阻抗變化之發電機輸出功率115之變化瞬間發生,且類似地,在進入非線性負載105之輸出功率115變化之瞬間發生非線性負載105之阻抗變化,則圖1A所示系統可由下列三個公式所模型化:P=f(C,R,X)
R=g(P)
X=h(P)。
假設這些函數係可微分並使用只具有第一導數的泰勒展開式,它們在該操作點附近可被線性化而得到: 其中,係該些向量之內積。這些向量中之第一者將該發電機100之敏感度模型化為非線性負載105之阻抗變化,且該第二向量將非線性負載105之阻抗敏感度模型化為發電機功率115之變化。
只要上述內積係小於1,發電機100之主功率控制迴路增益之下降可補償與該控制訊號135相對應之輸出功率增益之增加。然而,當上述內積係大於1時,自該控制訊號135至該輸出功率115之轉移函數之符號逆轉,且該發電機之主功率控制迴路之增益未修改可恢復穩定度。在一不穩定條件下,發電機100不會依要求而產生一固定輸出功率115。
因發電機100及非線性負載105間之互動所致之不穩定度係示於圖1B。圖1B係在P不穩定情況中,發電機100之輸出功率P 115為控制訊號C 135之函數的圖形。注意,圖形140並不是一對一(也就是,它係一關係式而非一函數)。也就是,C的一些值具有多個值。在C1(145)之控制訊號135,P係始於點150,但是接著P下降至點155。藉由將控制訊號135改變至C2(160)以補償輸出功率115之下降在點165最先產生P,但是接著P向上跳至點170。在一些應用中,自點150至點155或自點165至點170之轉移可發生於短至2-3微秒內。
所產生成為時間函數之發電機100之輸出功率115係 描述於圖1C之圖形175。
現在參考至圖2A,它係根據本發明所示實施例之連接著一非線性負載205之發電機200之方塊圖。發電機200包含某類型“引擎”。“引擎”範例包含一功率放大器及一轉換器,但不限於此。在圖2A所示特定實施例中,發電機200包含一功率放大器210,其傳送輸出功率P 215至非線性負載205。在一實施例中,發電機200係具有高度反應來源阻抗之射頻(RF)產生器,且非線性負載205除了例如匹配網路及纜線外還包含一電漿。這類系統可被使用於例如氣相沉積及蝕刻應用中。非線性負載205呈現給功率放大器210具有分別為電阻R 220和電抗X 225之實數及虛數成分的複數阻抗Z(Z=R+jX)。
功率放大器210包含控制輸入端230,其中,主控制訊號C 235被饋入。例如,在一實施例中,主控制訊號235係一電壓。大體上,主控制訊號235被使用於控制由發電機200所傳送至非線性負載205之輸出功率、輸出電壓、輸出電流或其組合。主控制訊號235係由一主功率控制迴路(未示於圖2A中)所產生。例如,在一典型主功率控制迴路配置中,在該負載及一功率設定點(所要求輸出功率215)所測量之回饋功率被饋入至一差動放大器之輸入端,其(該誤差訊號)輸出係主控制訊號235。
補償子系統240測量非線性負載205之阻抗並產生對應至(相依於)該測量負載阻抗之補償訊號K 245。饋入至功率放大器210之補償訊號245會讓與主控制訊號235有關 之發電機200之輸出功率215之轉移函數實際上對非線性負載205之阻抗變化不敏感。該結果係藉由線性化該輸出功率為該主控制訊號235之函數來穩定該系統。一給定測量負載阻抗之補償訊號245視該特定實施例而變。
圖2B係根據本發明所示實施例之補償子系統240之方塊圖。補償子系統240包含輸出測量負載阻抗255之阻抗測量電路250及產生補償訊號245之補償訊號產生電路260。
補償訊號245可透過例如下列之適當校準來預先決定。第一,發電機200係連接著具有一可調整阻抗(例如,一調整電路)之測試負載。該負載起初被設定為配合所設計之發電機200來操作(例如,50歐姆)之名目參考阻抗。第二,輸入一要求功率設定點P0至發電機200,並可讓發電機200在輸出功率P0穩定下來。第三,該主控制訊號235係凍結(固定)於產生輸出功率P0除該參考阻抗之電流值處。第四,改變該負載阻抗,且記錄用以維持具有那個負載阻抗之P0輸出功率215所需之補償訊號245。接著,該四個步驟係依所要求之許多負載阻抗值來重複之。上面整個校準程序係依所要求之許多不同輸出功率設定點來重複之。
在所示實施例中,補償子系統240係使用熟知此項技術之人士稱之為“反射係數領域”之高速數位演算法來配置之。在一實施例中,例如,補償子系統240係連同發電機200之其它功能一起配置於一現場可程式閘陣列(FPGA) 中。在其它實施例中,補償子系統240係使用執行軔體或軟體之處理器來配置之。大體上,該補償子系統240之功能可以硬體、軔體、軟體或其組合方式來配置之。
在本所示實施例中,假如與不穩定有關之頻率消除約低於500千赫,則阻抗測量電路250係能夠以大約每微秒一次方式來測量非線性205之阻抗。在其它實施例中,本取樣率係較低或較高。
在一實施例中,補償訊號產生電路260包含用於複數個輸出功率位準215中之每一個之查找表。對於一給定輸出功率215而言,每一個查找表將該測量負載阻抗255之一組離散值中之每一個映射至一相對應補償訊號245離散值。在這類實施例中,補償訊號產生電路260包含一數位至類比至數位(D/A)轉換器(未示於圖2B中)以產生一類比補償訊號245。
在一些實施例中,對於一給定輸出功率而言,該校準程序只針對少數點(例如,不同於在一史密斯圖上納入該參考阻抗之參考阻抗之四負載阻抗值)來執行之。對於該測量負載阻抗255之其它值而言,該補償訊號K可例如經由內插法自那些少數儲存值中得之。在一些實施例中,成為該測量負載阻抗255之函數之補償訊號245的斜率(梯度)係儲存於該些查找表,且一特定測量負載阻抗255之補償訊號245係藉由該適當斜率乘以該測量負載阻抗255及該參考阻抗間之差值來進行內插。同時,在一些實施例中,例如連續近似法之快速數值演算法被使用以執行例如除法之數學 運算,以改進補償子系統240之速度。
圖3係根據本發明所示實施例之用於修改一發電機及一非線性負載間互動之方法流程圖。在步驟305,功率放大器210於控制輸入端230接收一主控制訊號235。在步驟310,阻抗測量電路250測量非線性負載205之阻抗255。在步驟315,補償訊號產生電路260產生饋入至功率放大器210之補償訊號245。補償訊號245會讓與主控制訊號235有關之發電機200之輸出功率215之轉移函數實際上對非線性負載205之阻抗變化不敏感。因此,補償訊號245結合主控制訊號235使發電機200維持一穩定(實際上定值)輸出功率215於一要求位準P0,儘管非線性負載205之阻抗變化亦然。在步驟320,該程序終止。
圖4係根據本發明另一所示實施例之連接著一非線性負載205之發電機400方塊圖。發電機400包含具有控制輸入端410之功率放大器405。補償子系統415產生連同主控制訊號425一起饋入至加總電路430之補償訊號K 420。加總電路430之輸出被饋入至控制輸入端410。如同結合圖2A至圖3之上述實施例般地,補償訊號420所具有的效應會讓與主控制訊號425有關的發電機400之輸出功率215之轉移函數實際上對於非線性負載205之阻抗變化不敏感,以阻止在其它方面由於發電機400及非線性負載205之阻抗間互動所致之輸出功率215不穩定。
圖5A係根據本發明所示實施例顯示對於一特定輸出功率P0(215)而言,一組負載阻抗中之每一個於控制輸入端410 所需之功率放大器控制訊號之簡化版史密斯圖。在圖5A的假設範例中,用以產生100瓦(P0)要求輸出位準除50歐姆(該參考阻抗)所需之主控制訊號425係20伏特。該參考阻抗對應至史密斯圖500之中心點505。點510、520及525對應至不同於參考阻抗505之測量負載阻抗255。在控制輸入端410用以產生這些阻抗中之每一個之要求輸出功率所需之控制訊號係示於簡化版史密斯圖500上。在控制輸入端410成為負載阻抗函數所需控制訊號之這些不同值可透過例如上述那個之校準程序來決定並儲存於補償訊號產生電路260進行存取之查找表。
圖5B係根據本發明所示實施例顯示對於該相同要求輸出功率P0而言,對應至圖5A中所繪之該組負載阻抗(505、510、515、520及525)中之每一個之補償訊號K 420之簡化版史密斯圖530之圖例。在本特定實施例中,補償訊號420係在非線性負載205之阻抗係該測量阻抗時會使發電機400產生一P0特定輸出功率215之控制訊號及會使發電機400產生那個相同輸出功率P0除該參考阻抗之控制訊號間的差值。針對該些點505、510、515、520及525中之每一個而言,本差值係繪製於簡化版史密斯圖530上
因此,加總電路430所產生之總和-主控制訊號425及補償訊號420之總和-係控制輸入端410之控制訊號,其使功率放大器405產生該要求輸出功率P0除該測量負載阻抗255以主要提供無關於負載阻抗之相同主控制訊號值425,因而使得主控制訊號425對非線性負載205之阻抗變化不 敏感。當然,當該測量負載阻抗255係該參考阻抗(圖5B中之點505)時,該補償訊號420為零。
圖6係根據本發明另一所示實施例之用於修改一發電機及一非線性負載間之互動之方法流程圖。在步驟310,阻抗測量電路250測量非線性負載205之阻抗255。在步驟605,主控制訊號425及補償訊號420之總和被饋入至功率放大器405之控制輸入端415,該補償訊號420係在非線性負載205之阻抗係該測量阻抗時會使發電機400產生一P0特定輸出功率215之控制訊號及會使發電機400產生那個相同輸出功率P0除該參考阻抗之控制訊號間的差值。該結果為由於該發電機及該非線性負載205之阻抗間之互動而會在其它方面發生之輸出功率215不穩定被阻止。該程序終止於步驟610。
圖7係根據本發明再一所示實施例之連接著一非線性負載205之發電機700之方塊圖。在本實施例中,功率放大器705包含主控制輸入端710及副控制輸入端715兩者。主控制輸入端710接收一主控制訊號C 730。
補償子系統720會產生補償訊號725,其係特別為了連接副控制輸入端715。注意,做為負載阻抗函數之特定補償訊號725取決於功率放大器705。然而不管功率放大器705之設計為何,如上述校準程序可被執行以決定針對一給定要求輸出功率P0,用於該測量負載阻抗255的一組值中之每一個的補償訊號725。
儘管非線性負載205之阻抗變化,主控制訊號730及 補償訊號725的組合仍使功率放大器705產生該要求輸出功率P0。換言之,補償訊號725使得與主控制訊號730有關之發電機700的輸出功率215的轉移函數實際上對非線性負載205之阻抗變化不敏感,藉此穩定做為該主控制訊號730之函數的發電機700的輸出功率215。
圖8係根據本發明所示實施例分別包含主控制輸入端710和副控制輸入端715兩者之功率放大器705之電路圖。在圖8中,主控制輸入端710(本範例中之電壓)係連接著阻隔元件805。包含電感器810及電容器815之共振電路係連接於阻隔元件805相對節點及非線性負載205之間。振盪器820係連接著電容器825,其相對節點係連接著金屬氧化物半導體場效電晶體(MOSFET)830之閘極。在本特定實施例中,副控制輸入端715係串接著阻隔元件835之偏壓,其相對節點係連接於電容器825之節點及金屬氧化物半導體場效電晶體830之閘極之間。圖8只是副控制輸入端715之範例。在其它實施例中,副控制輸入端715不同於圖8所示之偏壓範例。
圖9係根據本發明再一所示實施例之用於修改一發電機及一非線性負載間之互動方法之流程圖。在步驟905,功率放大器705在它的主控制輸入端710處接收一主控制訊號730。在步驟310,阻抗測量電路250測量非線性負載205之阻抗255。在步驟910,補償子系統720將一補償訊號725饋入至功率放大器705之副輸入端715,該補償訊號725會使得與主控制訊號730有關之發電機700的輸出功率215 的轉移函數實際上對非線性負載205之阻抗變化不敏感,藉此阻止因為在其它方面於該發電機700及該非線性負載205之阻抗之間互動所導致的輸出功率215不穩定結果。該方法終止於步驟915。
在一些實施例中,該補償訊號有效地使上面公式1中的內積變成零。也就是,該補償訊號抵消該功率放大器對該非線性負載阻抗變化的敏感度。在其它實施例中,額外補償可透過該補償訊號來施加至該功率放大器以使公式1中之內積不為零,引起該功率放大器及該非線性負載阻抗以一特別可期待方式進行互動。在一些實施例中,用以得到該發電機及該非線性負載之間所要求互動之本額外補償可由該發電機的一使用者來標示之。本額外補償可提供例如超過由簡單地抵消該功率放大器對該負載阻抗變化的敏感度所提供之額外穩定度。
參考至圖10,它係根據本發明另一實施例所述之包含連接著一非線性負載1005之發電機1000的電漿處理系統方塊圖。如所示,該發電機1000包含一功率放大器1010,其傳送輸出功率P 1015至該非線性負載1005,且該發電機1000包含耦接至該功率放大器1010之補償子系統1040及功率控制系統1020。
大體上,操作本實施例中之發電機1000以一或更多要求頻率及一或更多要求功率位準(例如,用以激發並維持一電漿)來施加功率至該非線性負載1005。例如,該發電機1000可施加幾瓦至幾千瓦之功率,且該施加功率的頻率可 自幾赫茲變化至幾百萬赫茲。進一步舉例來說,該發電機100大體上施加13.56百萬赫茲功率,但這個不是必然的,也考慮到該發電機100可施加超過60百萬赫茲頻率的功率。甚至,如在此進一步所述地,考慮到可基於效率及/或穩定目的來調整該施加功率的頻率。
該功率放大器1010可由包含單端、雙端及推挽拓樸之各種拓樸來實現,且可操作於一放大器類型範圍。例如,在一些配置中,該功率放大器1010可操作於包含A類、B類、C類、D類及E類之類別範圍。又,在許多配置中,該功率放大器1010係使用切換模式科技(例如,圖8所述之拓樸)來配置,其提供包括改進效率、小型尺寸及低成本之許多優勢,但在利用典型控制方案時會增加發電機-電漿互動風險之缺點,其可促進電漿不穩定度的形成並增加電漿不穩定度的嚴重性兩者。
如圖10所示地,本實施例中之發電機1000包含一功率控制系統1020,其被架構以依據一功率位準設定點(例如,操作者設定點)來提供一功率控制訊號1035至該功率放大器1010並回饋指示著該輸出功率1015。例如,該功率控制系統1020可包含熟知此項技術之人士所熟知之控制迴路元件,且根據本說明書,熟知此項技術之人士可輕易地施行典型功率控制迴路之改編例以搭配本發明實施例進行操作。
同時顯示者係一補償子系統1040,其大體上操作於本實施例以藉由提供一可控制補償訊號1045至該放大器1010 來管理(例如,降低或消除)該輸出功率1015之不穩定度而不利用阻抗測量或其它即時回饋。例如,在許多配置中,一操作者可利用該補償子系統1040產生一要求補償訊號1045以結合一或更多特定程序以使該處理系統穩定。
圖10係在此所述利用至少二控制輸入端(例如,該控制訊號135及該補償訊號1045)之許多實施例的範例,其中,該至少二控制輸入端(例如,該補償訊號1045)中之至少一者被使用於修改該發電機敏感度成為一負載阻抗,且該至少二控制輸入端(例如,該補償訊號1035)中之至少一者被使用於控制該發電機的一輸出功率,使得同一功率位準可隨著該至少二控制輸入端之不同位準組合而被傳送至該負載,且用以產生一要求功率位準及對該負載阻抗之可接受敏感度的控制輸入端組合可被利用。
如所述地,本實施例中之補償子系統1040未依據一回饋訊號產生該補償訊號1045。更特別地,不像在此所述之一或更多其它實施例,本實施例未接收該非線性負載1005之阻抗指標。甚至,不像在此進一步所述之其它實施例,本實施例中之補償子系統1040未接收指示著功率不穩定度的任何訊號。儘管為了簡單起見將該補償訊號1045說明為一單控制訊號,如在此進一步所述地,該補償訊號1045可包含透過獨立線路傳送或透過單一線路進行多工之多個訊號。
參考至圖11,例如,所示者係可用以實現參考圖10所述之補償子系統1040所使用的示範性補償子系統1140。如 圖11所示地,在本配置中之補償子系統1140包含耦接至一補償訊號產生電路1160之操作者介面1150。在本實施例中,該操作者介面1150之作用使一使用者可控制該補償訊號產生電路1160之操作。更特別地,本實施例中之補償訊號產生電路1160使一使用者可影響一或更多補償訊號1145之變化。
例如,該操作者介面1150可被利用於致能一操作者設定偏壓參數(例如,電壓大小位準、波形屬性及/或脈寬調變位準),並可被利用於致能或除能該補償訊號產生電路1160的功能型態。熟知此項技術之人士會理解到地,除了其它軟體、硬體及/或軔體外,該操作者介面1150還可經由例如顯示器(例如,觸控螢幕顯示器)、指示裝置(例如,滑鼠)、鍵盤或其他手動裝置之各種不同元件來實現之。
如結合圖8及圖9所述地,一補償訊號可被使用以施加一偏壓至該功率放大器1010之開關構件(例如,金屬氧化物半導體場效電晶體830),且如該可控制偏壓結果地,該功率放大器之傳導角(或“導通時間”)可受到控制。且在圖11所述實施例的許多變化例中,該操作者介面1150使一使用者可控制施加至該功率放大器之一或更多開關構件的偏壓位準以實行一要求傳導角。但是,除偏壓(例如,偏壓715)之外或替代偏壓者,還有也是由該功率放大器1010所利用之參考訊號(亦稱之為驅動訊號)可被調整以影響該傳導角。
例如,接下來參考至圖12,它係說明可被使用於實現在此所述功率放大器之功率放大器的一般性功能元件方塊 圖。如所示地,該功率放大器1205包含耦接至功率元件1230之一開關元件1207、一參考訊號產生器1220及一偏壓供應器1275。該開關元件1207可包含可被安排及架構成各種拓樸的一或更多開關構件(例如,場效電晶體)(例如,金屬氧化物半導體場效電晶體830)。而且,該功率元件1230可包含一直流電供應器,其適合施加一導軌電壓(rail voltage)1210以回應於一控制訊號1235(例如來自一功率控制系統之控制訊號1035)來變化之。例如,在一些配置中,該導軌電壓1210可於0至200伏特直流電之間變化,但是在其它配置中,該電壓可超過200伏特直流電。
該參考訊號產生器1220大體上操作於施加一參考訊號至該開關元件1207以對如何將該導軌電壓1210施加至該開關元件1207的輸出產生影響。例如,該參考訊號產生器1220可包含一或更多可控制振盪器(例如,振盪器820),其可操作於窄頻範圍內或超過寬頻範圍。
在一些變化例中,該補償訊號1245可控制該參考訊號產生器1220,使得施加至該開關元件1207之參考訊號大小被調整;因而影響該功率放大器1205的要求傳導角。在其它變化例中,該參考訊號1220之波形可被控制以實現一要求傳導角。
甚至,除了或獨立於該傳導角調整外,還有該參考訊號頻率可被調整以移除及/或阻止該輸出功率的不穩定度。2010年4月25日所提申之美國專利申請案號第12/184,535號,名稱為偵測並阻止電漿製程上的不穩定度,揭示用於 偵測不穩定度之技術及用於調整頻率以降低及/或阻止所發生的不穩定度之技術,在此將其全體一併整合參考之。
該偏壓供應器1275大體上操作於致能一電壓位準,其係施加至欲控制之一或更多開關構件(例如,場效電晶體)的閘極以使該功率放大器1205之傳導角可受到控制。該偏壓供應器1275可經由能夠操作於-7至+4伏特直流電之電壓範圍的可控制直流電供應器來實現之,但是其它電壓範圍當然也被考慮到。
在一些操作模式中,該偏壓供應器1275之輸出係由一操作者所設定(例如,使用該操作者介面1150)之無變化直流電壓。例如,一操作者可知道在一或更多特定製程環境中使該功率放大器穩定的特定偏壓,且該偏壓供應器不須自動進行調整。
甚至,除了或獨立於該傳導角調整外,還有該偏壓供應器及導軌電壓(由該功率元件1230所控制)可被控制以實行該功率放大器之要求執行效率特性曲線。2009年12月31日所提申之美國專利申請案第12/650,652,名稱為一發電機之雙模式控制,揭示用於控制導軌電壓及偏壓以提供各種操作利益之技術,在此將其全體一併整合參考之。
在其它操作模式中,該偏壓供應器1275可被控制以施加一可變電壓至該開關元件1207。例如,一方波的工作週期可以脈寬調變進行調整以實行一要求傳導角,及/或該偏壓供應器1275所施加之電壓大小可被調整。該脈寬調變及/或電壓大小不是由一操作者進行控制就是可自動地調整以 回應於例如在此進一步所述之那些回饋機制。
如圖12所示地,該參考訊號產生器1220及該偏壓供應器1275中之一或兩者可由一或更多對應之補償訊號1245所控制。例如,在一些實施例中,只有該偏壓供應器1275被控制以調整該功率放大器1205之傳導角,但在其它實施例中,只有該參考訊號產生器1220被控制以調整該功率放大器1205之傳導角。但是,在另外的其它實施例中,該參考訊號產生器1220及該偏壓供應器1275兩者被控制以調整該功率放大器1205之傳導角。
熟知此項技術之人士會在考慮到本揭示中理解到許多操作模式,該功率控制迴路(例如,在功率控制系統1020內)自動地調整該控制訊號1235(例如,回應於來自該功率放大器1205之輸出處的功率感測器的回饋)而使得該功率元件1230調整該導軌電壓1210,及因此所產生之輸出功率的功率位準。例如,若對該功率放大器1205之傳導角的調整影響到該輸出功率(例如,降低輸出功率),則在許多實施例中之功率控制迴路改變該控制訊號1235以增加該輸出功率而維持一功率輸出位準於一設定點。結果,該功率放大器1205之傳導角及所產生之穩定度可被調整而維持一要求輸出功率位準(例如,用以維持一電漿之輸出功率位準)。
參考至圖13,它係根據本發明另一所示實施例包含連接著一非線性負載1305之發電機1300的電漿處理系統方塊圖。如所示地,本實施例中之發電機1300包含傳送輸出功率P 1315至該非線性負載1305之功率放大器1310,且 該發電機1300包含耦接至該功率放大器1310之補償子系統1340及耦接至該功率放大器1310之輸出的感測器1312。
如所示地,本實施例中之補償子系統1340提供一補償訊號1345以控制該功率放大器1310之傳導角以回應來自該感測器1312之一或更多訊號。許多實施例中之圖13所述感測器1312係該發電機1300一部分(例如,具有該放大器1310一起的相同框架),但這個不是必需的。大體上,該感測器1312被架構以提供指示著該功率1315之一或更多特性曲線之一或更多訊號,以利用該補償子系統1340來控制該放大器1310之傳導角。例如,在許多實施例中,該感測器1312偵測指示該功率1315之前進(FWD)及反射(RFL)射頻訊號,且該感測器1312可由包含一方向性耦合器及電壓電流感測器的各種元件來實現之。
接下來參考至圖14,所示者係可利用來實現參考圖13所述補償子系統1340之補償子系統1440之示範性實施例。大體上,所述元件之功能為辨識不穩定度是否呈現於一功率放大器(例如,功率放大器1310)之輸出功率中,以及調整該功率放大器之傳導角以移除及/或阻止該不穩定度。除了控制該功率放大器之傳導角外,該補償子系統1440也可被架構以使得一些操作模式中之補償子系統1440控制該功率放大器的參考訊號頻率以降低/阻止不穩定度(例如,藉由對準該電漿及該功率放大器之阻抗軌道)。
如所示地,該補償訊號產生電路1460被架構以產生一補償訊號1445以回應來自一不穩定度偵測器1470之不穩 定度訊號1409而控制該功率放大器1310之傳導角。在許多變化例中,該補償訊號產生電路1460定期地檢查該不穩定度訊號1409並據以調整該功率放大器1310之傳導角。
同時,本實施例中所述者係一選擇性操作者介面1450,其可以與參考圖11所述操作者介面1150多數相同方式來操作之,但除此之外,還有本實施例中之操作者介面1450可被利用於設定一或更多不穩定臨界值位準以設定於該補償訊號產生電路1460對應至偵測到不穩定度處之位準。例如,考慮到一些振盪可以一可容忍位準來呈現於該輸出功率,其不須藉由調整該放大器之傳導角來滿足之。
應理解,圖14中補償子系統1440之說明係功能性元件之邏輯說明而非意圖為一硬體圖;因此,所述功能性元件可經由一些散置且不同硬體、軟體及/或軔體之元件或整合元件來實現之。
接下來參考至圖15,所示者係一不穩定度偵測器1570之示範性實施例,其可被利用於實現參考圖14所述之不穩定度偵測器1470。如所示地,一測量元件1504、複數Γ元件1506及一偵測元件1508代表可被利用以偵測是否呈現不穩定度之示範性元件。應理解到圖15所述元件代表接近穩定度偵測之示範性方法,且在此參考圖17進一步所述之其它技術可被利用以偵測不穩定度。也應理解,這些元件之說明只是邏輯性,並不意謂一硬體圖;因此,所述元件可被組合或進一步被分開,且大體上,該些元件可由硬體、軟體、軔體或其組合來實現之。
本實施例中之測量元件1504大體上被架構以接收一感測器(例如,感測器1312)之輸出並提供前進及反射兩功率之同相及四相測量。這些測量係以例如1微秒之定期區間進行更新。用於處理來自一感測器之資料的示範性感測器及技術係揭示於2008年5月7日所提申之美國專利申請案第12/116,375號,名稱為用於監視功率之系統、方法及設備中,在此將其全體一併整合參考之。
對於每一個測量區間,該複數Γ元件1506計算之負載反射係數(Γ)為VRFL/VFWD,其係一複數(I係該向量的實數部分而Q係該向量的虛數部分)除法。Γ也可藉由將反射射頻訊號旋轉-1乘上前進射頻訊號相位之相位並接著除以來算出前進射頻訊號的絕對值而算出。具有用於現場可程式閘陣列配置效用之一示範性技術被建立並如下列地進行配置:
1.使用現場可程式閘陣列乘法器來計算FWDQ2+FWDI2,需要時利用移位法以極大化顯著位元的利用。
2.使用現場可程式閘陣列查找表來計算K=1/(FWDQ2+FWDI2),需要時利用移位法以極大化顯著位元的利用。
3.需要時使用移位法以極大化精確度,計算之Re(Γ)為K*IFWD*IRFL+K*QFWD*QRFL,且Im(Γ)為K*IFWD*QRFL-K*QFWD*IRFL
這個係自K乘上VRFL與共軛數VFWD之複數乘積所導 出。當二複數向量相乘時,該合成相位係相加的。當與該共軛數相乘時,該合成相位係相減的。
接下來參考至圖16,所示者係說明圖15所述偵測元件1508之示範性元件方塊圖。大體上,該偵測元件1508提供一振盪是否呈現於該功率(及因而產生於該電漿內之不穩定度類型指標)之指標(所述為一不穩定度訊號1509)。在圖15中所述實施例之一些變化例中,該偵測元件1508提供該不穩定度訊號1509以做為指示著一不穩定度是否呈現之二位元訊號。
但是,在圖15所述實施例之其它變化例中,元件1508提供指示著任何振盪頻率及大小之輸出。如上所述地,該功率放大器之參考頻率可被利用於降低不穩定度,且關於呈現於該輸出功率之特定振盪類型的知識可如上面所述的美國專利申請案第12/184,535號所教示般地被利用於對準該電漿及功率放大器之阻抗軌道。
如圖16所示地,未了移除任何直流成分,一高通濾波器被施用至實數Re(Γ)及虛數Im(Γ)兩者,具有對應至Γ(及該不穩定度類型)之振盪類型的輸出。例如,該高通濾泼器可被配置成y(n)=1024*x(n)-...-x(n-1024)。
在一配置中,為了節省現場可程式閘陣列資源,已濾波Re(Γ)及Im(Γ)值係藉由選擇該二者間之最大絕對值來進行組合。在替代性配置中,每一個參數具有獨立頻率/大小偵測之設計也可被使用。大體上,在執行該最大值函數後之結果會是一全波整流正弦曲線。三種計算被施加至該訊 號:
1. 0.5*abs(x(n)-x(n-1))之總和。y(n)=x(n)-x(n-1)操作係與頻率呈現一些線性響應之高通濾波器。本濾波器之響應係示於下面。
2. x(n)之總和。本操作提供該訊號內之全部能量指標,並被使用於正交化該頻率指標。當除以取樣數時,它也被使用於提供該大小輸出。
3. 1之總和。本累加器所產生結果係該取樣數。
如所示地,本特定實施例中之偵測元件輸出提供與一不穩定度有關之振盪頻率及大小兩者之指標。
參考至圖17A及圖17B,所示者各為外差型及二極體型偵測器,其可被利用於實現參考圖14所述之不穩定度偵測器1470。所述兩偵測器係為熟知此項技術之人士所熟知,且依照本說明書,這些偵測器類型可被修改而適用於偵測特定振盪頻率並提供該補償訊號偵測電路1460可使用之輸出。
接下來參考至圖18,所示者係說明結合在此所述本發明實施例來詳加討論之用於降低一功率放大器對負載阻抗變化之敏感度的示範性方法流程圖。如所示地,在本方法中,當施加功率至一負載(方塊1802)時,該輸出功率之穩定度被評估(方塊1804)。如在此前所述地,該穩定度可經由包含參考圖16至圖17所述方法之各種技術來評估。
如所述地,若該功率係穩定的(方塊1806),則持續施加功率至該負載(方塊1802)並再評估(例如,定期地)(方塊 1804)該穩定度。但是,若該功率係不穩定的(方塊1806),則調整(方塊1808)該放大器之傳導角並再評估(方塊1804)該輸出功率之穩定度,若該輸出功率仍是不穩定的(方塊1806),則再調整(方塊1808)該放大器之傳導角。因此與圖18所述方法一致地,若偵測到一不穩定度,則可以逐步方式調整該輸出功率之傳導角,直到該輸出功率穩定為止。在一些變化例中,該傳導角係向下調整以降低該功率放大器內之開關元件(例如,金屬氧化物半導體場效電晶體)的導通時間,但是申請者已發現到增加該功率放大器之傳導角的調整也可有效地使得該輸出功率穩定。
參考至圖19A及圖19B,所示者係說明分別操作於第一及第二傳導角時之發電機輸出功率對阻抗變化的開放迴路響應之史密斯圖。圖19A顯示該發電機輸出功率之開放迴路響應以對應例如一D類型或E類型放大器之典型高效率(例如,高傳導角)放大器之阻抗變化。圖19B顯示具有該典型高效率放大器之傳導角降低之發電機輸出功率的開放迴路響應。
如所示地,圖19A中橫過50歐姆的輪廓線斜率約為1.6。這個係對比於圖19B中類似線之斜率,其約為.35。因此,當該功率放大器之傳導角係降低(例如,自180度降至150度)時,本範例中之發電機敏感度係約降低4倍。
參考至圖20A及圖20B,所示者係分別沿著圖20A之線20A-20A及圖20B之線20B-20B所取之剖面圖。如圖20A所示地,當該發電機係當做該典型D類型或E類型放大器 來操作時,相較於圖20B所說明之發電機以一降低放大器傳導角來操作,任何負載阻抗變化導致該發電機輸出功率的實質變化。
圖21A及圖21B係分別說明操作於180度及150度傳導角之示範性發電機的增益大小(也就是,參考公式1所述的複數表示式)及角度兩者。如圖21A及圖21B所示地,除了在該傳導角被調整時之增益實質上降低外,還有該角度也在該傳導角自180度降至150度時有所變化。
接下來參考至圖22A及圖22B,所示者係分別說明用於沒有該傳導角調整功能之示範性發電機及所用發電機包含在此所揭示之傳導角調整功能的電漿不穩定度對自一功率放大器施加功率至一負載之纜線長度的圖形。如所示地,在圖22A中,該示範性發電機在跨越自約6至16呎之相當大的纜線長度範圍係不穩定的。且相對地(如圖22B所示地),當該傳導角如在此所揭示地進行調整時,相同發電機在跨越自零至25呎之纜線長度範圍係穩定的。
如在此前面所述地,一功率放大器之傳導角可以各種方式進行調整。例如,施加至該功率放大器之場效電晶體的閘極可以振幅或脈寬調變(PWM)上進行調整,及/或施加至該場效電晶體之參考頻率大小可被調整。
在一些操作模式中,在一段時間後該輸出功率係穩定(以回應該放大器之傳導角調整)後,若該輸出功率維持穩定,則該傳導角可在該原傳導角方向上慢慢地調整回來。例如,若加偏壓於該功率放大器以利用更有功率效率之傳 導角進行操作,且該傳導角被調整以使該輸出功率更穩定(但較少效率),則該放大器之傳導角可被調整回到一更有效率之操作狀態。
在一些變化例中,初始可加偏壓於該功率放大器以操作於一特定放大器類別(例如,A類、B類、C類、D類及E類中其中之一),接著遍及於一或更多其它放大器類別各處進行調整以使該放大器對負載阻抗變化更不敏感且更穩定。因此,在一些操作模式中,該功率放大器係以可依據效率、消耗及穩定度考量進行調整之可變類別放大器來操作之。
也考慮到對該放大器之傳導角的調整可被利用於結合對該功率放大器之頻率的調整以使該輸出功率更穩定。例如,頻率調整初始可嘗試使該輸出功率穩定,且若該些頻率調整係無效的,則可進行該傳導角之調整。替代性地,初使可進行對該傳導角之調整,且若該些傳導角調整不足以使該輸出功率穩定,則可進行頻率條整。
最後,除了別的方法及設備外,本發明還提供一種用於修改一發電機及一非線性負載間之互動的方法及設備。熟知此項技術之人士可輕易地理解到在本發明中它的使用及它的架構可產生許多變化例及替代例以實際上獲得如在此所述實施例所獲得之相同結果。據此,不是要將本發明限制至所揭示示範性形式。許多變化例、修改例及替代性建構如申請專利範圍所示地落在本揭示發明之範圍及精神內。
100、200、400、700、1000、1300‧‧‧發電機
105、205、1005、1305‧‧‧非線性負載
110、210、405、705、1010、1205、1310‧‧‧功率放大器
115、215、1015、1315‧‧‧輸出功率
120、220、R‧‧‧電阻
125、225、X‧‧‧電抗
130‧‧‧控制輸入端
135、1035、1235、1335、C‧‧‧控制訊號
230、410、710‧‧‧主控制輸入端
235、425‧‧‧主控制訊號
240、415、720、1040、1140、1340、1440‧‧‧補償子系統
245、420、725、1045、1245、1345、1445、K‧‧‧補償訊號
250‧‧‧阻抗測量電路
255‧‧‧測量的負載阻抗
260、1160、1460‧‧‧補償訊號產生電路
430‧‧‧加總電路
715‧‧‧副控制輸入端
805‧‧‧阻隔元件
810、835‧‧‧電感器
815、825‧‧‧電容器
820‧‧‧振盪器
830‧‧‧金屬氧化物半導體場效電晶體
1020‧‧‧功率控制系統
1150、1450‧‧‧操作者介面
1207‧‧‧開關元件
1210‧‧‧導軌電壓
1220‧‧‧參考訊號產生器
1230‧‧‧功率元件
1275‧‧‧偏壓供應器
1312‧‧‧感測器
1345‧‧‧傳導角控制
1409、1509‧‧‧不穩定度訊號
1470、1570‧‧‧不穩定度偵測器
1504‧‧‧測量元件
1506‧‧‧複數Γ元件
1508‧‧‧偵測元件
本發明各種目的和優勢及更完整的了解係在結合附圖進行時,經由參考至上述實施方式與所附申請專利範圍而顯而易見且更易於理解,其中:圖1A係連接著用以協助發電機之穩定度分析的非線性負載之發電機方塊圖。
圖1B係在P不穩定情況中之圖1A所示發電機之輸出功率P為發電機控制訊號C的函數圖。
圖1C係在與圖1B相同情況中之圖1A所示發電機之輸出功率P為時間的函數圖。
圖2A係根據本發明所示實施例之連接著一非線性負載之發電機方塊圖。
圖2B係根據本發明所示實施例之用於發電機之補償子系統方塊圖。
圖3係根據本發明所示實施例之用於修改一發電機及一非線性負載間互動之方法流程圖。
圖4係根據本發明另一所示實施例之連接著一非線性負載之發電機方塊圖。
圖5A係根據本發明所示實施例顯示對於一特定輸出功率P0而言,一組負載阻抗中之每一個所需之發電機控制訊號C之簡化版史密斯圖。
圖5B係根據本發明所示實施例顯示在圖5A中對於一特定輸出功率P0而言,一組負載阻抗中之每一個之補償訊 號K之簡化版史密斯圖。
圖6係根據本發明另一所示實施例之用於修改一發電機及一非線性負載間之互動之方法流程圖。
圖7係根據本發明再一所示實施例之連接著一非線性負載之發電機方塊圖。
圖8係根據本發明所示實施例之包含主控制輸入端和副控制輸入端之功率放大器電路圖。
圖9係根據本發明再一所示實施例之用於修改一發電機及一非線性負載間之互動之方法流程圖。
圖10係根據本發明再一所示實施例之連接著一非線性負載之發電機方塊圖。
圖11係根據本發明另一示範性實施例說明一示範補償子系統方塊圖。
圖12係說明一示範性功率放大器方塊圖。
圖13係根據本發明另一實施例之連接著一非線性負載之另一示範發電機方塊圖。
圖14係根據本發明再一示範性實施例說明另一示範補償子系統方塊圖。
圖15係說明一示範性不穩定度偵測器實施例之方塊圖。
圖16係說明圖15所述偵測元件之一示範性實施例方塊圖。
圖17A及圖17B說明圖15所述偵測元件之其它示範性實施例。
圖18係結合本發明實施例詳加討論之示範性方法流程圖。
圖19A及圖19B係分別說明一典型發電機及根據本發明所配置之發電機之操作特性曲線之史密斯圖。
圖20A及圖20B係分別說明一典型發電機及根據本發明所配置之發電機之操作特性曲線之附加圖。
圖21A及圖21B係分別說明一典型發電機及根據本發明所配置之發電機之操作特性曲線之再附加圖。
圖22A及圖22B顯示一電漿系統穩定度為安裝於該發電機及附接至該電漿腔之阻抗匹配網路間之纜線長度的函數,圖22A顯示針對一典型發電機例之不穩定區域的存在,且圖22B顯示用於根據本發明所配置之發電機之所有纜線長度之穩定操作。
100‧‧‧發電機
105‧‧‧非線性負載
110‧‧‧功率放大器
115、P‧‧‧輸出功率
120、R‧‧‧電阻
125、X‧‧‧電抗
130‧‧‧控制輸入端
135、C‧‧‧控制訊號

Claims (25)

  1. 一種發電機,包括:一功率放大器,架構以施加輸出功率至一負載以回應一功率控制訊號及一參考訊號;一功率控制系統,耦接至該功率放大器,該功率控制系統依據一功率設定點及該輸出功率來調整該功率控制訊號;及一補償子系統,耦接至該功率放大器,該補償子系統控制該功率放大器之傳導角以致能該功率放大器對該負載的阻抗變化之敏感度進行調整。
  2. 如申請專利範圍第1項之發電機,其中該補償子系統包含一操作者介面,以致能該發電機之操作者來控制該功率放大器之敏感度。
  3. 如申請專利範圍第1項之發電機,其中該補償子系統包含一不穩定度偵測器,架構以提供該輸出功率之不穩定度指標,其中該補償子系統被架構以依據該不穩定度指標來控制該功率放大器之傳導角。
  4. 如申請專利範圍第3項之發電機,其中該補償子系統被架構以逐步方式來調整該功率放大器之傳導角,直到該輸出功率之不穩定度降低至一可容忍位準為止。
  5. 如申請專利範圍第1項之發電機,其中該補償子系統被架構以依據該負載的阻抗來控制該功率放大器之傳導角。
  6. 如申請專利範圍第1項之發電機,其中該功率放大器 係正常地被施加偏壓以操作於一特定類別的功率放大器,且該補償子系統控制該功率放大器之傳導角以致能該功率放大器來操作於至少一其它類別的功率放大器,以調整該功率放大器之敏感度。
  7. 如申請專利範圍第1項之發電機,其中該功率放大器之傳導角係藉由調整施加至該功率放大器之開關元件的閘極之訊號而受到控制。
  8. 如申請專利範圍第7項之發電機,其中施加至該閘極之訊號係藉由控制施加至該閘極之直流偏壓來調整。
  9. 如申請專利範圍第8項之發電機,其中該直流偏壓係藉由脈寬調變該直流偏壓而受到控制。
  10. 如申請專利範圍第8項之發電機,其中該直流偏壓的大小係受到控制。
  11. 如申請專利範圍第7項之發電機,其中施加至該之訊號係藉由控制施加至該閘極之參考訊號的大小來調整。
  12. 一種用於降低一發電機對一負載的阻抗變化之敏感度之方法,該方法包括:使用一功率放大器來施加輸出功率至該負載;控制該輸出功率的位準以回應一功率控制設定;及調整該功率放大器之傳導角以降低該功率放大器對該負載的阻抗變化之敏感度位準。
  13. 如申請專利範圍第12項之方法,包含:偵測該輸出功率之不穩定度;及調整該功率放大器之傳導角以回應該不穩定度。
  14. 如申請專利範圍第13項之方法,其中調整步驟包含以一系列不連續調整來調整該傳導角,直到該不穩定度係低於一臨界值為止。
  15. 如申請專利範圍第12項之方法,包含:測量該負載之阻抗;及調整該功率放大器之傳導角以回應所測量到之阻抗。
  16. 如申請專利範圍第12項之方法,其中調整該傳導角包含調整施加至該功率放大器之場效電晶體的閘極之訊號。
  17. 如申請專利範圍第16項之方法,包含調整該訊號之參數,該參數選自由該訊號之大小、脈寬及頻率所構成的族群中。
  18. 一種發電機,包括:用於使用一功率放大器來施加輸出功率至該負載之機構;用於控制該輸出功率的位準以回應一功率控制設定之機構;及用於調整該功率放大器之傳導角以降低該功率放大器對該負載之阻抗變化的敏感度位準之機構。
  19. 如申請專利範圍第18項之發電機,包含:用於偵測該輸出功率的不穩定度之機構;及用於調整該功率放大器之傳導角以回應該不穩定度之機構。
  20. 如申請專利範圍第19項之發電機,其中用於調整之 機構包含用於以一系列不連續調整來調整該傳導角直到該不穩定度係低於一臨界值為止之機構。
  21. 如申請專利範圍第18項之發電機,包含:用於測量該負載的阻抗之機構;及用於調整該功率放大器之傳導角以回應該測量阻抗之機構。
  22. 如申請專利範圍第18項之發電機,其中用於調整該傳導角之機構包含用於調整施加至該功率放大器之場效電晶體的閘極之訊號之機構。
  23. 如申請專利範圍第22項之發電機,包含用於調整該訊號的參數之機構,該參數選自由該訊號之大小、脈寬及頻率所構成的族群中。
  24. 一種發電機,包括:至少二控制輸入端,其中該至少二控制輸入端中之至少一者被使用於修改該發電機對一負載的阻抗之敏感度,且該至少二控制輸入端中之至少一者被使用於控制該發電機之輸出功率,使得同一功率位準可隨著該至少二控制輸入端之不同位準組合而被傳送至該負載,且用以產生一要求功率位準以及對該負載的阻抗之可接受敏感度的控制輸入端組合可被利用。
  25. 如申請專利範圍第24項之發電機,其中該至少二控制輸入端中之第一者控制一導軌電壓(rail voltage),且該至少二控制輸入端中之第二者控制該發電機之放大器之傳導角。
TW101113436A 2011-04-18 2012-04-16 用於修改發電機對非線性負載的敏感度之方法及設備 TWI473417B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161476633P 2011-04-18 2011-04-18
US13/214,165 US8716984B2 (en) 2009-06-29 2011-08-20 Method and apparatus for modifying the sensitivity of an electrical generator to a nonlinear load

Publications (2)

Publication Number Publication Date
TW201308876A true TW201308876A (zh) 2013-02-16
TWI473417B TWI473417B (zh) 2015-02-11

Family

ID=46718573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113436A TWI473417B (zh) 2011-04-18 2012-04-16 用於修改發電機對非線性負載的敏感度之方法及設備

Country Status (4)

Country Link
US (2) US8716984B2 (zh)
KR (1) KR101722381B1 (zh)
TW (1) TWI473417B (zh)
WO (1) WO2012145215A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674746B (zh) * 2018-05-17 2019-10-11 朋程科技股份有限公司 同步整流發電機及其能量分配方法
US11411539B2 (en) 2016-12-30 2022-08-09 Richwave Technology Corp. Amplifier device
TWI787689B (zh) * 2019-05-08 2022-12-21 立積電子股份有限公司 放大器裝置

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344704B2 (en) * 2008-12-31 2013-01-01 Advanced Energy Industries, Inc. Method and apparatus for adjusting the reference impedance of a power generator
US8716984B2 (en) * 2009-06-29 2014-05-06 Advanced Energy Industries, Inc. Method and apparatus for modifying the sensitivity of an electrical generator to a nonlinear load
US9536713B2 (en) * 2013-02-27 2017-01-03 Advanced Energy Industries, Inc. Reliable plasma ignition and reignition
US9196459B2 (en) 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US9476370B2 (en) 2014-02-20 2016-10-25 Generac Power Systems, Inc. Single point engine control interface
JP6586725B2 (ja) * 2014-03-18 2019-10-09 株式会社リコー 印刷装置、印刷システム、印刷物の製造方法、およびプログラム
JP6586424B2 (ja) * 2014-03-24 2019-10-02 エーイーエス グローバル ホールディングス, プライベート リミテッド 高周波発生器ソースインピーダンスの制御のためのシステムおよび方法
US10224184B2 (en) * 2014-03-24 2019-03-05 Aes Global Holdings, Pte. Ltd System and method for control of high efficiency generator source impedance
US9854659B2 (en) * 2014-10-16 2017-12-26 Advanced Energy Industries, Inc. Noise based frequency tuning and identification of plasma characteristics
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US11017983B2 (en) 2015-02-18 2021-05-25 Reno Technologies, Inc. RF power amplifier
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10692699B2 (en) 2015-06-29 2020-06-23 Reno Technologies, Inc. Impedance matching with restricted capacitor switching
US11150283B2 (en) 2015-06-29 2021-10-19 Reno Technologies, Inc. Amplitude and phase detection circuit
US11342160B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Filter for impedance matching
US11342161B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Switching circuit with voltage bias
US11335540B2 (en) 2015-06-29 2022-05-17 Reno Technologies, Inc. Impedance matching network and method
US10984986B2 (en) 2015-06-29 2021-04-20 Reno Technologies, Inc. Impedance matching network and method
US11081316B2 (en) 2015-06-29 2021-08-03 Reno Technologies, Inc. Impedance matching network and method
US9577516B1 (en) 2016-02-18 2017-02-21 Advanced Energy Industries, Inc. Apparatus for controlled overshoot in a RF generator
CN110870039B (zh) 2017-07-07 2022-09-16 先进能源工业公司 等离子体功率输送系统的周期间控制系统及其操作方法
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US10727029B2 (en) 2017-07-10 2020-07-28 Reno Technologies, Inc Impedance matching using independent capacitance and frequency control
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US11114280B2 (en) 2017-07-10 2021-09-07 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US10727671B2 (en) * 2017-08-08 2020-07-28 Solar Turbines Incorporated Gas turbine electrical power system and control strategy for limiting reverse power shutdown
WO2020112108A1 (en) 2017-11-29 2020-06-04 COMET Technologies USA, Inc. Retuning for impedance matching network control
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
DE102019103015B4 (de) 2019-02-07 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Schaltung zu einem biasstromunempfindlichen Hochimpedanzmessverstärker
US11521831B2 (en) 2019-05-21 2022-12-06 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements
US11158488B2 (en) * 2019-06-26 2021-10-26 Mks Instruments, Inc. High speed synchronization of plasma source/bias power delivery
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US11830708B2 (en) 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11961711B2 (en) 2020-01-20 2024-04-16 COMET Technologies USA, Inc. Radio frequency match network and generator
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11373844B2 (en) 2020-09-28 2022-06-28 COMET Technologies USA, Inc. Systems and methods for repetitive tuning of matching networks
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11721523B2 (en) 2021-09-07 2023-08-08 Advanced Energy Industries, Inc. Control of rail voltage in multi-level pulsing RF power amplifier
US11972926B2 (en) * 2021-10-05 2024-04-30 Advanced Energy Industries, Inc. Dynamic control-setpoint modification
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160397A (en) 1977-10-17 1979-07-10 Milo Bertini Saw blade construction and method of making same
US4478130A (en) 1981-03-19 1984-10-23 Sundstrand Corporation Arrangement for slipper cavitation erosion control and impact reduction
US4463306A (en) 1981-09-11 1984-07-31 Power Technologies, Inc. System for stabilizing synchronous machines
US4387777A (en) 1981-10-26 1983-06-14 Willo Partners Calorie counting method and apparatus
FR2525680A1 (fr) 1982-04-26 1983-10-28 Dumenil Claude Dispositif d'etancheite a actionnement automatique pour fermetures de batiments, notamment portes et fenetres
US4462942A (en) 1982-07-30 1984-07-31 Eli Lilly And Company A47934 Antibiotic and process for production thereof
US4496899A (en) 1983-06-28 1985-01-29 General Electric Company Control for a force commutated current source var generator
JPS6221222A (ja) 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd 露光装置
US4770097A (en) 1986-07-04 1988-09-13 General Mining Union Corporation Limited Mining method with no delay between shot initiator and firing
US4704443A (en) 1986-10-27 1987-11-03 Dow Corning Corporation Method of reducing activity of silicone polymers
US4779924A (en) 1987-08-19 1988-10-25 Rudel Myron G Seat for a motorcycle
JPH03222508A (ja) 1990-01-26 1991-10-01 Onkyo Corp 増幅器回路
WO1993021685A1 (en) 1992-04-16 1993-10-28 Advanced Energy Industries, Inc. Stabilizer for switch-mode powered rf plasma processing
US5483147A (en) 1992-07-10 1996-01-09 Massachusetts Institute Of Technology Decentralized excitation control for an electrical power utility system
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5481914A (en) 1994-03-28 1996-01-09 The Charles Stark Draper Laboratory, Inc. Electronics for coriolis force and other sensors
US5576629A (en) 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
JP2845163B2 (ja) 1994-10-27 1999-01-13 日本電気株式会社 プラズマ処理方法及びその装置
US5710492A (en) 1994-12-22 1998-01-20 Hitachi, Ltd. Apparatus for monitoring and stabilizing power swing in a power system by utilizing a power electronics technique
US5618758A (en) 1995-02-17 1997-04-08 Sharp Kabushiki Kaisha Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method
KR970064327A (ko) 1996-02-27 1997-09-12 모리시다 요이치 고주파 전력 인가장치, 플라즈마 발생장치, 플라즈마 처리장치, 고주파 전력 인가방법, 플라즈마 발생방법 및 플라즈마 처리방법
KR0183844B1 (ko) 1996-04-30 1999-05-15 김광호 알에프 발생 장치 및 이를 이용한 펄스 플라즈마 형성 방법
US5859567A (en) * 1996-09-24 1999-01-12 Motorola, Inc. Power amplifier circuit with temperature compensating level shifter
US6214162B1 (en) 1996-09-27 2001-04-10 Tokyo Electron Limited Plasma processing apparatus
JP3042450B2 (ja) 1997-06-24 2000-05-15 日本電気株式会社 プラズマ処理方法
JP3411559B2 (ja) 1997-07-28 2003-06-03 マサチューセッツ・インスティチュート・オブ・テクノロジー シリコーン膜の熱分解化学蒸着法
US6187685B1 (en) 1997-08-01 2001-02-13 Surface Technology Systems Limited Method and apparatus for etching a substrate
US6218196B1 (en) 1998-05-06 2001-04-17 Mitsubishi Denki Kabushiki Kaisha Etching apparatus, etching method, manufacturing method of a semiconductor device, and semiconductor device
US6126778A (en) 1998-07-22 2000-10-03 Micron Technology, Inc. Beat frequency modulation for plasma generation
US5985375A (en) 1998-09-03 1999-11-16 Micron Technology, Inc. Method for pulsed-plasma enhanced vapor deposition
US5977737A (en) 1998-09-09 1999-11-02 Labriola, Ii; Donald P. Digital motor driver circuit and method
JP2000100790A (ja) 1998-09-22 2000-04-07 Canon Inc プラズマ処理装置及びそれを用いた処理方法
JP3533105B2 (ja) 1999-04-07 2004-05-31 Necエレクトロニクス株式会社 半導体装置の製造方法と製造装置
KR100321728B1 (ko) 1999-06-30 2002-01-26 박종섭 플라즈마 펄스를 이용한 강유전체 메모리 소자 제조 방법
KR100292412B1 (ko) 1999-07-14 2001-06-01 윤종용 폴리실리콘막에 대한 금속 실리사이드막의 식각선택비를 증가시키는 방법 및 이를 이용한 폴리실리콘막과 금속 실리사이드막의 적층막 식각방법
US6362690B1 (en) 2000-04-19 2002-03-26 Ophir Rf, Inc. System and method for closed loop VSWR correction and tuning in RF power amplifiers
US6459066B1 (en) 2000-08-25 2002-10-01 Board Of Regents, The University Of Texas System Transmission line based inductively coupled plasma source with stable impedance
US6416822B1 (en) 2000-12-06 2002-07-09 Angstrom Systems, Inc. Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US6459067B1 (en) 2001-04-06 2002-10-01 Eni Technology, Inc. Pulsing intelligent RF modulation controller
JP2003008365A (ja) 2001-04-16 2003-01-10 Matsushita Electric Ind Co Ltd 電力増幅用回路、電力増幅用回路の制御方法、及び携帯端末装置
US6696820B2 (en) 2001-10-30 2004-02-24 Delphi Technologies, Inc. Alternating current generator field regulation control
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
EP1573905A1 (en) 2002-12-12 2005-09-14 Koninklijke Philips Electronics N.V. Preserving linearity of an isolator-free power amplifier by dynamically adjusting bias and supply of active devices
US7546098B2 (en) * 2003-05-29 2009-06-09 Analog Devices, Inc. Control system with selective open-loop operation
WO2006070809A1 (ja) 2004-12-27 2006-07-06 Daihen Corporation 高周波電源装置
TWI290788B (en) * 2005-08-29 2007-12-01 Kun Shan University Of Technol A reactive power compensator device for compensating the reactive power of induction generator
CN101305434B (zh) 2005-11-11 2012-08-29 利纳克有限公司 一种用于电动可调节的病床和护理床的电动手控装置
US7570028B2 (en) * 2007-04-26 2009-08-04 Advanced Energy Industries, Inc. Method and apparatus for modifying interactions between an electrical generator and a nonlinear load
US8301186B2 (en) * 2008-04-04 2012-10-30 Stmicroelectronics Ltd. Enhanced sensitivity radio frequency front end circuit
US8258874B2 (en) * 2008-12-31 2012-09-04 Advanced Energy Industries, Inc. Dual-mode control of a power generator
US8301091B2 (en) * 2009-01-30 2012-10-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Power detector for multi-band network access
US8716984B2 (en) 2009-06-29 2014-05-06 Advanced Energy Industries, Inc. Method and apparatus for modifying the sensitivity of an electrical generator to a nonlinear load
JP5526241B2 (ja) * 2010-02-04 2014-06-18 エプコス アクチエンゲゼルシャフト 信号感知のための増幅回路および方法
US8283950B2 (en) * 2010-08-11 2012-10-09 Micron Technology, Inc. Delay lines, amplifier systems, transconductance compensating systems and methods of compensating
US8674782B2 (en) * 2011-03-31 2014-03-18 Texas Instruments Incorporated RF impedance detection using two point voltage sampling
US8761698B2 (en) * 2011-07-27 2014-06-24 Intel Mobile Communications GmbH Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information
US9362891B2 (en) * 2012-07-26 2016-06-07 Blackberry Limited Methods and apparatus for tuning a communication device
US9509261B2 (en) * 2013-12-02 2016-11-29 Crestron Electronics Inc. Reduced crosstalk and matched output power audio amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411539B2 (en) 2016-12-30 2022-08-09 Richwave Technology Corp. Amplifier device
TWI674746B (zh) * 2018-05-17 2019-10-11 朋程科技股份有限公司 同步整流發電機及其能量分配方法
TWI787689B (zh) * 2019-05-08 2022-12-21 立積電子股份有限公司 放大器裝置

Also Published As

Publication number Publication date
WO2012145215A1 (en) 2012-10-26
US20140210551A1 (en) 2014-07-31
US8716984B2 (en) 2014-05-06
TWI473417B (zh) 2015-02-11
KR101722381B1 (ko) 2017-04-05
KR20140026427A (ko) 2014-03-05
US9225299B2 (en) 2015-12-29
US20120218042A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
TWI473417B (zh) 用於修改發電機對非線性負載的敏感度之方法及設備
JP5414071B2 (ja) 電気発生器と非線形負荷との相互作用を修正する方法および装置
KR102364528B1 (ko) 플라즈마 전력 전달 시스템을 위한 주기 간 제어 시스템 및 그 동작 방법
CN104620509B (zh) 具有延迟校准的包络跟踪功率放大器系统及时间校准方法
CN109962638B (zh) 电力转换装置
TW201327620A (zh) 頻率調諧射頻功率源之基於功率失真的伺服控制系統
KR20120124415A (ko) 전력 증폭기의 효율적인 액티브 소스 임피던스 변경
Kükrer et al. Control strategy for single-phase UPS inverters
Luhtala et al. Adaptive control of grid-connected inverters based on real-time measurements of grid impedance: DQ-domain approach
JP2010252252A (ja) 増幅回路、入力バイアス調整方法、及び電源電圧調整方法
CN101040360B (zh) 采用动态阻抗实时估计的dc电源
De Gussemé et al. Digital control of boost PFC converters operating in both continuous and discontinuous conduction mode
US11336179B2 (en) DC/DC converter, and control method for DC/DC converter
JP6159472B2 (ja) 圧電トランスを制御する回路装置および方法
Kim et al. Pulsed plasma measurement method using harmonic analysis
Koda et al. Development of longitudinal feedback system for a storage ring free electron laser
JP5354583B2 (ja) 高周波電源装置及び高周波電源装置の高周波電力検出装置
Garber Constant Conduction Angle Bias Generation for Monolithic RF Power Amplifiers
KR0139504Y1 (ko) 고주파 유도 가열기의 오토 튜닝장치
Arif et al. Online predictive model fitting algorithm for supply inductance estimation